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Abstract

This work introduces a cluster-based structural optimization (CBSO) method for the design of cat-

egorical, multimaterial structures subjected to crushing, dynamic loading. The proposed method

consists of three steps: conceptual design generation, design clustering, and Bayesian optimiza-

tion. In the first step, a conceptual design is generated using the hybrid cellular automaton (HCA)

algorithm. In the second step, threshold-based cluster analysis yields a lower-dimensional design.

Here, a cluster validity index for structural optimization is introduced in order to qualitatively

evaluate the clustered design. In the third step, the optimal design is obtained through Bayesian

optimization, minimizing a constrained expected improvement function. This function allows to

impose soft constraints by properly redefining the expected improvement based on the maximum

constraint violation. The Bayesian optimization algorithm implemented in this work has the ability

to search over: (i) a real design space for sizing optimization, (ii) a categorical design space for

material selection, or (iii) a mixed design space for concurrent sizing optimization and material

selection. With the proposed method, materials are optimally selected based on multiple attributes

and multiple objectives without the need for material ranking. The effectiveness of this approach

is demonstrated with the design for crashworthiness of multimaterial plates and thin-walled struc-

tures.

Keywords: Structural optimization; Finite element-based optimization; Bayesian optimization;

Metamodel-based design; Unsupervised machine learning; Clustering; Multimaterial structures.
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1. Introduction

While trial-and-error procedures and experiential decisions remain predominant in the selec-

tion of materials [15, 29], systematic material selection methods have been developed in the last

three decades [10, 17, 3, 30, 54]. Within these methods, two common procedures include material

screening and material ranking [29]. Material screening aims to identify a set of candidate materi-

als, while material ranking aims to order and select the optimal materials. Material ranking can be

accomplished using material attributes such as cost and strength, or using performance objectives

defined as functions of the material attributes [2]. Material screening and material ranking are

performed sequentially, either before or after the mechanical components are designed [16, 32].

In either case, this sequential approach does not guarantee the optimal combination of the compo-

nents’ material and structure [14].

Recently, optimization algorithms have been integrated in the material selection of finite element-

based structural optimization. Common approaches include combinatorial [49] and gradient-based

optimization methods with material ranking [7, 50, 8, 9, 26, 61, 31]. The latter methods are suitable

for multimaterial topology optimization (MMTO) methods including boundary and density-based

methods. Boundary MMTO methods include level set-based [55, 38, 11, 57, 18] and phase field-

based methods [60, 56]. These methods can provide a continuous description of the structure’s

boundary, but they also require a discretization step before every finite element analysis.

Density-based MMTO methods include the alternating active-phase method [50] and methods

based on a power-law material interpolation function, generally referred to as solid isotropic ma-

terial with penalization or SIMP [43]. With SIMP-based MMTO methods, optimal structures with

two solid phases and a void can be synthesized [7]. An extension of the SIMP interpolation is the

so-called ordered SIMP interpolation, which allows the integration of multiple materials within the

structure and the minimization of its cost [61]. Since density-based methods operate directly on

the discretized space, no additional discretization step is required; however, these methods require

post-processing to assign a single material to each element of the structure. Recently, the use of an

inverse p-norm function has been proposed to ensure that optimized continuous material proper-
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ties converge to a set of discrete values, eliminating the need for post-processing [31]. The discrete

material optimization (DMO) method [48] has been implemented to generate optimal topologies

with multiple discrete materials. In the DMO method, the discrete material selection problem is

relaxed with a continuous design variable. At every finite element, the element constitutive matrix

is expressed as a weighted sum of the constitute matrices of the candidate materials. The total

number of design variables is the product of the number of finite elements by the number of can-

didate materials. SIMP-like penalization drives the design variables to 0 or 1. At the same time,

geometry projection methods have been used to generate multimaterial designs through moving

morphable components [59]. In this method, the material of the geometric components does not

change during the optimization. Adopting the DMO method, the aforementioned approach has

been extended to allow the geometric components to be made of any available material [34].

Thus far, current MMTO methods require continuous material interpolation and/or material

ranking as well as a linear finite element model under a static load. Their application to nonlin-

ear, dynamic models, such as the ones required in design for crashwortiness, is rather limited.

Heuristic design methods for multimaterial structures have been proposed to address problems in-

volving nonlinear numerical models. These methods include the bi-directional evolutionary struc-

tural optimization (BESO) method [23, 22, 24] and the Hybrid Cellular Automaton (HCA) method

[52, 53, 42]. In particular, the HCA method can be efficient in problems involving a large number

of design variables in nonlinear multimaterial structures subjected to a dynamic load [20]. Heuris-

tic methods are well-suited to solve nonlinear structural optimization problems; however, they are

non-general, so their application is restricted to a certain type of problems and global optimality is

not guaranteed.

This work introduces a novel cluster-based structural optimization (CBSO) method for the de-

sign of multimaterial, nonlinear structural optimization problems. Integral to this work is the use

of clustering analysis and metamodel-based global (Bayesian) optimization, which was previously

introduced by the authors [36, 37]. Contributions of the present work include: (i) the derivation of a

new cluster validity index for structural optimization that improves the clustering of the conceptual
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design, and (ii) the incorporation of a new correlation function to handle categorical design vari-

ables (i.e., materials from a material library) in the multimaterial structural optimization scheme.

In this way, the proposed CBSO method integrates material selection and structural optimization

using multiple attributes and multiple objectives without material ranking.

This paper is organized as follows: Sec. 2 describes the three steps involved in cluster-based

structural optimization, namely, conceptual design generation, design clustering, and Bayesian

optimization (metamodel-based global optimization). Secs. 3 to 5 explain in detail these three

steps. In particular, Sec. 4 contains the description of proposed cluster validity index that improves

the clustering process and Sec. 5 contains the changes in a Kriging metamodel that allow the use

of categorical design variables. Section 6 illustrates three numerical examples to demonstrate the

application of the proposed approach in design for crashworthiness.

2. Overview of the proposed CBSO method

The proposed cluster-based structural optimization (CBSO) method for categorical multimate-

rial structures involves three steps:

Step 1 Conceptual design generation (Sec. 3): The conceptual design consists of a continuous

distribution of artificial materials (e.g., density or thickness) generated through the uniform

distribution of a response field (e.g., internal energy, mutual potential energy). The approach

implemented in this step is the hybrid cellular automaton (HCA) method [52, 53, 42]. The

dimension of the design space is Rn, where n is the number of elements in the design domain.

Step 2 Design clustering (Sec. 4): The conceptual design with potentially n different artificial

materials is clustered into K clusters, where K � n. The clustered designed is generated

using a threshold clustering algorithm that maximizes a cluster validity index (CVI). The

dimension reduction from Rn to RK allows to incorporate Bayesian optimization to find the

global optimal design.

Step 3 Bayesian optimization (Sec. 5): A global optimization problem is defined to assign a ma-
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terial from a material library to each cluster. The design space is non-ordinal, categorical

of dimension NK . Kriging metamodels are built using the Hamming distance correlation

function. The global optimization algorithm has the ability to search over (i) a real design

space for sizing optimization, (ii) a categorical design space for material selection, or (iii) a

mixed design space for concurrent sizing optimization and material selection.

The design strategy is illustrated in Fig. 1. In this figure, x∗ is the a vector of design variables

that represent the conceptual design, θ∗ is the vector of threshold values that define the cluster

boundaries for K clusters, S are the sampling points, f are the objective function values, f̂ are

the metamodel predicted function values, D denotes the material in the material library, M is the

total number of materials in the material library, P is the total number of samples, n f is the total

number of objective functions. In the metamodel-based global (Bayesian) optimization step, an

expected improvement function E[I] is utilized as infill criterion to add additional sampling points

and update the metamodel. For constraints problems, such as the ones considered in this work, a

constrained expected improvement function is defined as explained in Sec. 5.2. The details of each

step are discussed in the following sections.

3. Conceptual Design (Step 1)

The conceptual design step consists of finding a suitable material distribution within a design

domain. The conceptual design is given by an array of artificial materials identified by a material

parameter vector x ∈Rn, where n is the number of elements in the discretized design domain. The

material parameter xe, generally referred to as the artificial material density, is bounded so that

xe ∈ [0,1] for e = 1, . . . ,n.

The conceptual design can be generated using either gradient-based method such as SIMP and

non gradient-based method, such as the hybrid cellular automaton (HCA) algorithm [52, 53, 42].

The HCA algorithm is used in this work due to its ability to handle both linear and nonlinear finite

element models subjected to static or dynamic (impact) load conditions [42]. This algorithm uses

local control rules to minimize the error between element structural responses Se(x) and a target
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Figure 1: Cluster-based structural optimization algorithm flowchart. The numerical simulation block is detailed in
Fig. 2.
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Figure 2: The numerical simulation block in Fig. 1.
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value S∗. The corresponding design problem is

find x ∈ Rn

minimize |Se(x)−S∗| for e = 1, . . . ,n

subject to x ∈ χ,

(1)

where χ is the feasible design space defined by the box and functional constraints, this is

χ = {x ∈ Rn : gi(x)≤ 0 for i = 1, . . . ,ng, and 0≤ xe ≤ 1 for e = 1, . . . ,n}.

The ng functional constraints include, for example, the volume or mass of the structure, maximum

intrusion, and maximum nodal acceleration responses. The HCA algorithm converges when the

change in the design variables is small, ‖xt−xt−1‖ ≤ ε , where t is the iteration number.

For multiple load cases, the design problem is

find x ∈ Rn

minimize
nl

∑
i=1

ωi|Se(x)−S∗| for e = 1, . . . ,n

subject to x ∈ χ,

(2)

where nl is the total number of load cases and ωi is the weight factor of the ith load case. While

there are no definite guideline for selecting the weight factors, their correct selection requires

knowledge of load case, including its relative importance, the relative magnitude of the forces

involved, and its frequency of occurrence. In the context of multi-objective optimization, the

significance of the weight factors in terms of preferences and others is discussed in [40].

In design for crashworthiness, a suitable structural response Se(x) is the element internal energy

IEe [53, 42, 58]. This is

Se(x) = IEe =
∫

ve

σe
T
εe dve, (3)

where σe is the element stress, εe is the element strain field, and ve is the volume of the element.
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In order to prescribe the collapse mode in axially-loaded thin-walled structure, the HCA algorithm

uses principles of compliant mechanism design [47, 44]. In that case, the structural response

corresponds to the element mutual potential energy MPEe. This is

Se(x) = MPEe =
∫

ve

σ
out
e

T
ε

in
e dve, (4)

where σout
e is the element stress field produced by a (dummy) load on a prescribed output port,

and ε in
e is the element strain field produced by the load on a prescribed input port [35]. For a

multimaterial design, let M be the number of materials available in a material library and Pm a

material property that allows material sorting of the form P1 ≤ P2 ≤ ·· · ≤ PM. For a given artificial

material density xe ∈ [0,1], there are material property values Pm−1 and Pm, such that

Pm−1

PM
≤ xe ≤

Pm

PM
, (5)

for m = 1, . . . ,M, with P0 = 0 (void). In order to determine the corresponding material property

P(xe), e.g., Young’s modulus, the HCA algorithm implemented in this work incorporates the fol-

lowing material mixture rule:

P(xe) = (1− xe)Pm−1 + xePm. (6)

In the first iteration of the HCA algorithm, one observes a significant drop or “elbow” in the

value of the objective function (Fig. 3). Here, the structure corresponds to a “gray” artificial mul-

timaterial design. In this work, this gray design is used as the conceptual design.

4. Design clustering (Step 2)

The number of expected materials K in the final design is lower than the available number of

materials M in the material library and significantly lower than the potential number of artificial

materials n in the conceptual design. In order to reduce the number of artificial materials, this work
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Figure 3: Evolution of the HCA algorithm using internal energy density as the structural response and P(xe) = (1−
xe)P0 + xeP1, where P0 = 0 (void) and P1 is the Young’s modulus of a solid material. The lowest value is achieved in
the first iterations and starts increasing as the structure tends to become more binary.

makes use of cluster analysis. The goal of cluster analysis is to categorize objects into different

classes according to their attributes, so that similar objects belong to the same class. The final

number of classes or clusters can be significantly lower than the number of objects.

Cluster analysis has been implemented in structural optimization to reduce the computational

cost of the optimization algorithm [21] and to reduce the dimension of the design space [4, 35, 36,

37]. Using a modified p-norm distance, stress functions have been grouped to reduce the number

of constraints in stress-constrained topology optimization [21]. A clustering method in a genetic

algorithm is also being reported for the design of rotor topologies [27, 28]. Clustering in topology

optimization has been utilized by researchers at the Honda Research Institute Europe GmbH to

reduce the dimension in a multi-dimensional feature space [4].

In our previous work [35, 36, 37], K-means clustering was utilized to reduce the dimension of

the design space. Despite the effectiveness of this approach, the objective function in the previ-

ously proposed cluster analysis is not directly related to the structural optimization problem and

it is also difficult to impose constraints. This work introduces a new cluster analysis for struc-

tural optimization. The proposed cluster analysis includes a suitable measure of the quality of the

clustered design (cluster validity index) and a threshold clustering algorithm.
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4.1. Cluster validity index

Numerous ways to measure clustered designs have been reported in the last four decades.

Examples of such measures, referred to as cluster validity indices (CVIs), include: the Dunn index

[13], the Davies Bouldin index [12], and the root-mean-square standard deviation (RMSSTD) and

R square (RS) indices [46], among others. A review by Arbelaitz et al. [1] reports over thirty CVIs

in different environments with different characteristics.

A traditional CVI defines a representative point for each cluster and calculates the distances be-

tween them. The resulting index is a statistical measure that involves cluster separation (Dunn-like

indices), cluster similarity (Davis Bouldin-like indices), or cluster dissimilarity (RS-like indices).

A suitable CVI for a multimaterial structural optimization should provide a measure of the num-

ber, size, and connectivity of the clusters. In this context, the number of clusters should be a target

value, the size of each cluster should be as large as possible, and adjacent clusters should be con-

nected in a way that facilitates manufacturability (e.g., welding). Available CVIs are not suitable

for this task.

Inspired by the entropy in the information theory [45], this work introduces a new CVI tailored

for structural optimization. The proposed CVI is defined by the following function:

CVI =
1

K−1

K

∑
k=1
−pk log2(pk), for K > 1, (7)

where pk is the probability that an observation belongs to the kth cluster. For a set of observations,

pk is calculated as

pk =
|Ck|

n
ek = VFkek, (8)

where Ck is the set of the observations that belong to the kth cluster and n is the total number of

observations in the data set. The ratio |Ck|/n corresponds to volume fraction VFk of the kth cluster.
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In Eq. (8), ek is the entropy of the kth cluster defined as

ek =


1 if Nk = 1

1
Nk

Nk

∑
i=1
−pki log2(pki), pki =

|Cki|
|Ck|

otherwise,
(9)

where Nk is the number of islands of the kth cluster and Cki is the set of observations in the ith

island of the kth cluster. In this context, an island refers to a group of observations that belongs

to an isolated cluster, which is surrounded by the observations of other clusters. The CVI value

is inversely proportional to both the number of clusters K and the number of islands Nk. For K

clusters, the CVI value is maximized when pk = 1/K.

As an illustration, let us consider a set of structures with K clusters, such that Nk = 1 and |Ck|

is the same for all clusters. This is, ek = 1 and pk = VFk = 1/K for k = 1, . . . ,K. In this case,

Eq. (7) can be expressed as

CVI =− 1
K−1

log2

(
1
K

)
.

The resulting CVI values as function of K are shown in Fig. 4. The maximum value is reached at

K = 1 and K = 2 followed by a logarithmic decay.

To illustrate the effect of cluster volume fraction VFk and the corresponding probability pk, let

us consider K = 2 with N1 = N2 = 1, then e1 = e2 = 1. In this case, Eq. (7) can be expressed as

CVI =−VFlog2 (VF)− (1−VF) log2 [(1−VF)] .

where VF = VF1 = 1−VF2. The resulting CVI values as function of VF are shown in Fig. 5 (left).

This example depicts a circular cluster growing inside a squared cluster. As the circular cluster

grows, the VF value increases. For VF = 0.50, the CVI function reaches its maximum value,

CVI = 1.00. At VF ≈ 0.772, the squared cluster is eventually divided into four islands, N2 = 4.

The increased number of islands decreases the entropy e2 and abruptly reduces the CVI value

creating a discontinuity for this example. The effect of the number of islands N1 = N with N2 = 1
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designs with fewer clusters are favored.

and VF= 0.20 is illustrated in Fig. 5 (right) with similar examples involving circular clusters inside

a squared cluster.
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reduction of the entropy.
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4.2. Threshold clustering algorithm

The objective of the threshold clustering algorithm introduced in this work is to optimally

cluster the conceptual design. In this way, the number of artificial materials is reduced to K clusters.

The clustering function, described in Algorithm 1, can be expressed as

C :(x∗,θ) 7→ x′(x∗,θ)

Rn×RK−1→ Rn,

where x∗ ∈ Rn is the artificial material distribution from the conceptual design, x′ ∈ Rn is the

resulting material distribution after clustering, and θ ∈ RK−1 are the threshold values separating

the K clusters. The optimization problem to be solved is the following:

find θ ∈ RK−1

maximize CVI(x′(x∗,θ))

subject to 0 < θ1 < θ2 · · ·< θK−1 < 1.

(10)

Algorithm 1: Threshold clustering algorithm C (x∗,θ).
Function ThresholdClustering(x∗, θ)

K← Length(θ) + 1 ;
θ0← 0, θK ← 1 ;
for e : 1 to n do

ze← argk′ θk′−1 ≤ x∗e < θk′ ; /* Assign cluster */

end

for k : 1 to K do
µk← Mean({ x∗e | ze = k}) ; /* Calculate mean */

end

for e : 1 to n do
x′e← µk,∃k ∈ {1, . . . ,K}ze = k ; /* Assign mean to element */

end

return x′
end
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5. Bayesian optimization (Step 3)

Finite element models under dynamic load involving geometric, material, and contact nonlin-

earities are commonly found in design for crashworthiness [5]. For such models, the computational

cost of a function evaluation is high and the use of traditional gradient-based optimization methods

is impractical due to the lack of accurate sensitivity coefficients. As an alternative, metamodels

can be derived through sampling methods. Kriging metamodels are used in this work.

The Kriging approximation of a scalar valued function f at the prediction point S(p) is given

by

f̂ (S(p)) = R(S(p))+
np

∑
i=1

ωiψ(S(i),S(p)), (11)

where R(S(p)) is a regression function, S(i) is the ith sampled point, np is the number of sampled

points, ψ(S(i),S(p)) is a correlation function, and ωi is the corresponding Kriging weight. The

regression function R(S(p)) is generally constant, linear, or quadratic [39]. The correlation function

ψ(S(i),S(p)) measures the correlation between two points S(i) and S(p). The function values f (S(i))

and f (S( j)) will tend to be close if the distance between S(i) and S( j) is small. For a continuous

design space, their correlation can be modeled as Gaussian correlation function [19], which has

the form

ψ(S(i),S( j)) = exp

(
−

K

∑
k=1

ωk

(
S(i)k −S( j)

k

)2
)
. (12)

This Gaussian correlation function is effective for continuous design variables but not suitable for

non-ordinal, categorical design variables. Therefore, for a material selection problem, a different

correlation function is required.

5.1. Categorical design variables for material selection

The design space for the material selection is non-ordinal and categorical. To successfully

explore this space, this work proposes the adoption of a new correlation function ψ in the Kriging
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metamodel (11). The new correlation function uses the Hamming distance [25] and is defined as

ψ(S(i),S( j)) = exp

(
−

K

∑
k=1

ωk

[
1−δ (S(i)k ,S( j)

k )
])

, (13)

where δ (i, j) = [i = j] is the Kronecker delta function. When the material selection is integrated to

the structural optimization problem, the design space becomes mixed: continuous and categorical.

For a mixed continuous design space Ωcont and categorical design space Ωcat , the new (mixed)

correlation function is defined as

ψ(S(i),S( j)) = exp

(
∑

k∈Ωcont

−ωk

(
S(i)k −S( j)

k

)2
+ ∑

k∈Ωcat

−ωk

[
1−δ (S(i)k ,S( j)

k )
])

. (14)

For material selection problems, the input to the metamodel f̂ is a vector of material identifi-

cation d ∈ NK from the material library and the optimal cluster distributions defined by θ∗. The

output is the predicted value of the function f . The global, multiobjective optimization problem is

the following:

find d ∈ NK

minimize f̂(θ∗,d) : RK−1×NK → Rn f

subject to ĝ(θ∗,d)≤ 0

dk ∈ {D1, . . . ,DM}, k = 1, . . . ,K,

(15)

where n f is the number of Kriging objective functions. One metamodel is built for each function

in the optimization problem using Latin hypercube designs [41]. Once the metamodels are built

and cross-validated, the global optimization problem (15) can be solved. The optimal design can

be found using Bayesian optimization, i.e., the Efficient Global Optimization (EGO) algorithm

[33, 19].

5.2. Constrained optimization

During the search for the global optimum, the EGO algorithm balances global exploration and

local exploitation using an expected improvement function [33, 19]. The expected improvement
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function calculates the amount of improvement at a given point S(p) as

E[I(S(p))] = E
[
max( fpbs−F,0)

]
, (16)

where the present best function value is defined as fpbs = min{ f (S(p))} for p = 1, . . . ,np, and F is

a normally distributed random variable with mean and standard deviation defined by the Kriging

metamodel. With F ∼N ( f̂ ,σ2), one can express the expected improvement in closed form as

E[I(S(p))] = ( fpbs− f̂ )Φ(u)+σφ(u), (17)

where u= ( fpbs− f̂ )/σ , f̂ = f̂ (S(p)) is the predicted value at point S(p), σ2(S(p)) is the variance of

the Kriging metamodel, Φ(·) and φ(·) are the cumulative density function (CDF) and probability

density function (PDF) of a normal distribution, respectively [33].

For constrained problems, feasibility of the newly selected points S(p) must be ensured. A

measure of feasibility G(S(p)) can be used to formulate a constrained expected improvement as

E[I(S(p))∩G(S(p))] = E[I(S(p))] P[G(S(p))], (18)

where P[G(S(p))]→ 0 when a constraint is violated and P[G(S(p))]→ 1 when the constraints are

satisfied. Calculating the maximum predicted constraint violation ĝmax as

ĝmax = max
{

ĝ1(θ
∗,S(p)), . . . , ĝng(θ

∗,S(p))
}
. (19)

This work defines P[G(S(p))] as

P[G(S(p))] =


1 ĝmax 6 0

1− (ĝmax/ε) 0 < ĝmax 6 ε

0 ĝmax > ε

, (20)
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where ε is the constraint violation tolerance. When ĝmax 6 0, all the constraints are satisfied,

therefore, E[I(S(p))] remains unchanged. When 0 < ĝmax 6 ε , then some constraints are violated

but are within the tolerance ε , hence, the E[I(S(p))] is penalized. When ĝmax > ε , then some con-

straints exceed the constraint violation tolerance, then E[I(S(p))] is set to zero. For hard constraints,

ε → 0, while for soft constraints this value can be increased. If the problem formulation prevents

convergence to a feasible solution, the constraint violation tolerance can be increased as well.

In a multiobjective optimization problem that involves the minimization of two objective func-

tions f1(S(p)) and f2(S(p)), the set of m Pareto points is defined as

f∗1,2 =
{
( f ∗(1)1 , f ∗(1)2 ), . . . ,( f ∗(m)

1 , f ∗(m)
2 )

}
. (21)

In this set, f ∗(i)j = f j(S∗(i)) and S∗(i) is referred to as a Pareto design. The expected improvement

for this multiobjective problem is defined as [19]:

E[I(S∗(p))] = P[I(S∗(p))] min{s1, . . . ,sm}, (22)

where P[I(S∗(p))] is the probability of improving both functions f1 and f2 at the Pareto design

S∗(p). This probability of improvement is defined as:

P[I(S∗(p))] = Φ(u1
1)+

m−1

∑
i=1

[
Φ(ui+1

1 )−Φ(ui
1)
]

Φ(ui+1
2 )+ [1−Φ(um

1 )]Φ(um
2 ), (23)

where ui
j = ui

j(S
∗(p)) =

(
f ∗(i)j − f̂ j(S∗(p))

)
/σ j(S∗(p)).

In (22), si for i = 1, . . . ,m is the distance between the vectors (F̄1, F̄2) and ( f ∗(i)1 , f ∗(i)2 ), where

(F̄1, F̄2) is the centroid of the probability integral used to calculate E[I(S∗(p))]:

F̄1(S∗(p)) =
1

P[I(S∗(p))]

[
z1

1 +
m−1

∑
i=1

(
zi+1

1 − zi
1
)

Φ(ui+1
2 )+ zm

1 Φ(um
2 )

]
, (24)

where zi
j = zi

j(S
∗(p)) = f̂ j(S∗(p))Φ(ui

j)−σ j(S∗(p))φ(ui
j). F̄2(S∗(p)) is defined similarly. The use of

Page 17

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanical Design. Received January 15, 2019;
Accepted manuscript posted August 12, 2019. doi:10.1115/1.4044838
Copyright © 2019 by ASME



Andres Tovar MD-19-1029

the multiobjective expected improvement is illustrated in Secs. 6.2 and 6.3.

The expected improvement functions for a single-objective problem (17) and a multiobjective

problem (22) are maximized using an evolutionary algorithm. If the maximum expected improve-

ment is less than 0.1% of the present best function value fpbs in two consecutive iterations, then

convergence is achieved and the metamodel needs no further improvement; otherwise, the point

where the expected improvement is maximized is added to the sample set and the metamodel is

updated. If no convergence is achieved in 100 iterations, the algorithm is terminated.

6. Numerical Examples

To demonstrate the effectiveness of the proposed cluster-based structural optimization (CBSO)

approach, three examples are presented. The first example (bridge) consists of a two-dimensional,

linear elastic finite element model with a density-based material library. The last two examples

(armor and S-rail) include three-dimensional nonlinear finite element models under dynamic loads

and utilize a library of elastoplastic materials. The main features of these examples is summarized

in Table 1.

Table 1: Main features of the numerical examples.

Example Element type FE model Material type Design objective
Bridge (Sec. 6.1) Q4 linear 2D density-based single
Armor (Sec. 6.2) shell nonlinear 3D engineering multiple
S-rail (Sec. 6.3) shell nonlinear 3D engineering multiple

6.1. Bridge

The objective of the “bridge” design problem is to minimize the strain energy of a simply

supported, two-dimensional, linear structure. The design domain is discretized into 100× 50 Q4

finite elements. The base material of the structure has an elastic modulus E = 1.0 and density

ρ = 1.0. Static forces (F = 1) are applied simultaneously to the bottom edge as shown in Fig. 6

(single load case). The initial design and corresponding element strain energy distribution are

shown in Fig. 7.
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?

2F FF

Figure 6: Bridge problem—Design domain and boundary conditions.

Step 1: Conceptual design generation. The conceptual design is obtained after one iteration of the

HCA algorithm. The HCA algorithm is set up to uniformly distribute the element strain energy.

The parameters used in the design problem are summarized in Table 2. The resulting conceptual

design and corresponding element energy distribution are shown in Fig. 8. The intensity of the

color gray in the conceptual design indicates the value of the artificial material density varying

from 0.1 (white) to 1.0 (black). The average value is 0.5.

Table 2: Bridge problem—Design problem parameters.

Parameter Value
Dimensions 100×50

FEA mesh 100×50
HCA structural response Strain energy

Mass fraction 0.50

Figure 7: Bridge problem—Initial design (left) and corresponding element strain energy distribution (right) with total
strain energy f = 119.90.
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Figure 8: Bridge problem—Conceptual design (left) and corresponding element strain energy distribution (right) with
total strain energy f = 77.47.

Step 2: Design clustering. Figure 9 shows the clustered designs corresponding to K = 3 to 6. In

each case, the objective is to find the optimal density threshold values that maximize the cluster

validity index (CVI) as described in (10).

K =  3 K =  4

K =  5 K =  6

1 2 3 4 5 6

Figure 9: Bridge problem—Clustered designs with K = 3 to 6. The corresponding CVI values are 0.5783 (K = 3),
0.2375 (K = 4), 0.2186 (K = 5), and 0.1713 (K = 6).

Step 3: Bayesian optimization. This example considers three density-based (artificial) materials in

addition to void. The material properties are shown in Table 3. The optimization problem in this

step is to minimize the strain energy of the structure subject to a mass fraction constraint. This is

Page 20

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanical Design. Received January 15, 2019;
Accepted manuscript posted August 12, 2019. doi:10.1115/1.4044838
Copyright © 2019 by ASME



Andres Tovar MD-19-1029

as follows:

find d ∈ NK

minimize f̂ (θ∗,d): Kriging strain energy

subject to g(θ∗,d) = ∑ρ(θ∗,dk)vk

∑vk
−m f 6 ε

dk ∈ {D1,D2,D3,D4}, k = 1, . . . ,K,

(25)

where Dm, m = 1, . . . ,4 is the material ID from the material library (Table 3), vk is the volume for

the kth cluster, and ε is the constraint violation tolerance. When ε = 0, the constraint becomes a

hard constraint, otherwise, the constraint is soft. The mass function constraint g(θ∗,d) is linear,

hence no metamodel is required. A Kriging metamodel is built for the strain energy f using the

method described in Sec. 5 using ten times the number of clusters. The designs are generated using

Latin hypercube sampling. The constrained expected improvement function described in (20) is

used to search for the global optimum.

Table 3: Bridge problem—Material library.

Material ID Density ρ Young’s modulus E
D1 0.0 0.0
D2 0.4 0.2
D3 0.7 0.6
D4 1.0 1.0

The design optimization problem described in (25) with ε = 0 is solved for each clustered

design with K = 3 to 6. The optimized solutions are shown in Table 4. The number of function

evaluations as well as the design space dimension increase as the number of clusters increases.

However, the growth rate for the design space dimension is much faster than the number of function

evaluations. As a result, the portion of the design space explored by the EGO algorithm decreases

dramatically. For K = 3, the algorithm explores 62.5% of the design space. For K = 6, only 3.9%

of the design space is explored. The EGO algorithm converges for all the problems except for

K = 6, which shows that the EGO algorithm can search for the global optimum with even a small
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Table 4: Bridge problem—Global optimized solution with ε = 0.

Conceptual Design

Clustered Design

Optimized Design

K = 3 K = 4 K = 5 K = 6
Strain Energy 113.20 127.81 106.18 105.19
Mass Fraction 0.498 0.496 0.479 0.495
Function eval. 40 69 138 160

Materials D2,D4 D3,D4 D1,D2,D3,D4 D1,D2,D4
Design space N3 N4 N5 N6

D1 D2 D3 D4

number of function evaluations.

As observed, the strain energy does not monotonically decrease as the number of clusters in-

creases. This is due to the fact that clusters are fixed during the global optimization step. Notably,

the mass fraction constraint is inactive in all cases. From all optimized structures, the one cor-

responding to K = 5 is the most mass-efficient, i.e., it has less strain energy per unit mass. This

structure happens to utilize all the materials in the material library to achieve the best performance,

although this is not always the case.

For comparison, this problem is also solved using the alternating active-phase multimaterial

topology optimization (MTOP) algorithm [51]. The MTOP algorithm consists of outer and inner

iterations. Each outer iteration involves the solution of K(K−1)/2 alternating active-phase inner

iterations. The inner iteration consists of a binary-phase topology optimization subproblem. The

MTOP algorithm requires the definition of several parameters including the number of materials,

Young’s moduli, and volume fractions. These parameters are obtained from the optimized designs

(see Tables 4 and 3).

Table 5 summarizes the results obtained by the MTOP algorithm and the proposed CBSO
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method. As observed, the final optimized solutions share similarities and the final objective values

are similar; however, the number of the function evaluations and the design space dimension in the

MTOP are significantly higher than the ones in CBSO.

Table 5: Bridge problem—Comparison of the proposed CBSO and MTOP.

Optimized Design Strain energy Mass fraction Function evaluation Design space

K = 3 CBSO 113.20 0.498 40 N3

MTOP 111.24 0.498 888 R15000

K = 4 CBSO 127.81 0.496 69 N4

MTOP 132.41 0.496 2127 R20000

K = 5 CBSO 106.18 0.479 138 N5

MTOP 113.21 0.479 5860 R25000

K = 6 CBSO 105.19 0.495 160 N6

MTOP 105.43 0.495 22410 R30000

Another exercise using a soft mass constraint with ε = 0.05 is conducted. Table 6 gives the

comparison of a hard constrained problem and a soft constrained problem. As can be seen from the

table, for the soft-constrained problems, the design objective is decreased while the mass fraction

is increased. With the relaxation of the constraint, the EGO algorithm requires more iterations to

converge.

The comparative results shown in this section demonstrate that the proposed CBSO is suitable

for synthesizing multimaterial structures using density-based materials and linear elastic mod-

els; however, better designs can be synthesized applying specialized, gradient-based optimization
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Table 6: Bridge problem—Effect of hard and soft constraints.

Optimized Design Strain energy Mass fraction Function evaluation Design space

K = 3

ε = 0.00 113.20 0.498 40

N3
ε = 0.05 113.20 0.498 40

K = 4

ε = 0.00 127.81 0.496 69

N4
ε = 0.05 98.95 0.527 96

K = 5

ε = 0.00 106.18 0.479 138

N5
ε = 0.05 98.45 0.529 150

K = 6

ε = 0.00 105.19 0.495 160

N6
ε = 0.05 91.29 0.547 160
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methods for linear structures, which can handle thousands of designs variables. The great ad-

vantage and uniqueness of the proposed method is its ability to handle categorical engineering

materials, for which aforementioned specialized methods are of limited use. The following two

examples (Armor and S-rail) show the application to multiobjective problems involving nonlinear

structures subjected to impact loading utilizing categorical engineering materials from a material

library.

6.2. Armor

The objective of this problem is to minimize the mass of an armor plate and the penetration of

an impacting rigid ball (Fig. 10). The dimensions of the armor plate are 300 mm × 300 mm. The

armor plate is discretized into 30×30 identical shell elements. The nodal displacement of the plate

is fully constrained along its four edges. The thickness of the initial design is 5.0 mm (Fig. 11).

The mass of the plate is 3.51 kg. The rigid ball impacts the plate in a perpendicular direction at a

speed of 10 m/s. The plate undergoes large displacements and plasticity. Nonlinear finite element

analysis is utilized. The maximum penetration caused by the impact is 12.05 mm.

10 m/s

constrained edges

Figure 10: Armor plate problem—Design domain and boundary conditions.

Step 1: Conceptual design generation. The dynamic simulation is performed using explicit non-

linear finite element analysis in LS-DYNA. The conceptual design is obtained after one iteration

of the HCA algorithm. The conceptual design problem is summarized in Table 7. The result is

shown in Fig. 12. The intensity of the gray color indicates the value of the design variable (element

thickness) varying from 1.0 mm (white) to 10.0 mm (black). The average value is kept at 5.0 mm.
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Table 7: Armor plate problem—Design problem parameters.

Parameter Value
Dimensions 300 mm×300 mm

FE mesh 30×30
HCA structural response Internal energy

Mass fraction 0.50

Figure 11: Armor plate problem—Initial design (left) and impact simulation (right) with the mass of 3.51 kg and the
maximum penetration of 12.05 mm.

Figure 12: Armor plate problem—Conceptual design (left) and impact simulation (right) with the mass of 3.51 kg and
the maximum penetration of 9.33 mm.
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Step 2: Design clustering. The conceptual design is clustered using the proposed threshold clus-

tering algorithm (Sec. 4) for three clusters (K = 3). The threshold clustering algorithm aims to

maximize the CVI value as described in (10). The resulting clustered design is shown in Fig. 13.

1

2

3

Figure 13: Armor plate problem–Clustered design with K = 3 using threshold clustering, CVI = 0.79.

Table 8: Armor plate problem—Material library.

Material ID Density ρ Young’s modulus E Poisson’s ratio ν Yield strength Sy
g/cm3 GPa GPa

D1 7.8 207 0.30 253
D2 7.8 207 0.30 346
D3 7.8 207 0.30 466
D4 7.8 207 0.30 789
D5 2.7 70 0.33 98
D6 2.7 70 0.33 235
D7 2.7 70 0.33 182
D8 2.7 70 0.33 300

Step 3: Bayesian optimization. In this example, the material library contains eight different engi-

neering materials consisting of steel and aluminum alloys with various yield strength values. The

detailed material properties are summarized in Table 8. The design objectives are to minimize the

armor plate mass f1 and to minimize the impacting ball maximum penetration f2. In this example,

three design optimization approaches are compared: sizing optimization, material selection, and

concurrent sizing optimization and material selection.
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Sizing optimization In this approach, the (single) material is pre-defined before global optimiza-

tion. The material used corresponds to D1 from Table 8. The optimization aims to find the

optimal clustered shell thickness µ. This is:

find µ ∈ RK(K = 3)

minimize f1(θ
∗,µ) = ∑ρ(θ∗,µk)vk

minimize f̂2(θ
∗,µ) : Kriging maximum penetration

subject to 1.0≤ µk ≤ 10.0, k = 1, . . . ,K.

(26)

Material selection In this approach, the structure geometry (element shell thickness) is pre-defined

and set to 5.0 mm. The optimization problem aims to find the optimal clustered material ID

d. This is,

find d ∈ NK(K = 3)

minimize f1(θ
∗,d) = ∑ρ(θ∗,dk)vk

minimize f̂2(θ
∗,d) : Kriging maximum penetration

subject to dk ∈ {D1, . . . ,D8}, k = 1, . . . ,K.

(27)

Concurrent sizing optimization and material selection In this approach, both the shell thick-

ness and the material are treated as design variables. The optimization problem aims to find

the optimal clustered shell thickness µ and the material ID d simultaneously. This is,

find µ ∈ RK, d ∈ NK(K = 3)

minimize f1(θ
∗,µ,d) = ∑ρ(θ∗,µk,dk)vk

minimize f̂2(θ
∗,µ,d) : Kriging maximum penetration

subject to 1.0≤ µk ≤ 10.0

dk ∈ {D1, . . . ,D8}, k = 1, . . . ,K.

(28)

A Kriging metamodel is built for the maximum penetration function f2 using Latin hypercube
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sampling. Figure 14 shows the Pareto fronts obtained by the multiobjective, Bayesian optimization

algorithm. As observed, all the Pareto designs dominate the initial design and the conceptual

design. This demonstrates the effectiveness of the proposed CBSO algorithm with nonlinear finite

element models. The material selection Pareto designs dominate the sizing optimization Pareto

designs, which indicate the advantages of using multiple materials. Finally, the Pareto designs

from the concurrent sizing optimization and material selection approach dominate all other Pareto

designs suggesting that better structural performance can be achieved when structure geometry and

material are considered concurrently.
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Figure 14: Armor plate problem—Pareto fronts for K = 3. All the Pareto optimal designs dominate the initial design
as well as the conceptual design. The concurrent optimization Pareto front dominates the other Pareto fronts.

6.3. S-rail

The objective of this problem is to maximize specific energy absorption (SEA) and minimize

the peak crushing force (PCF) resulting from the impact of a thin-walled S-rail structure and a

rigid wall (Fig. 15). The length of the S-rail is L = 1.0 m and the width of its squared cross-section

is H = 0.1L. The S-rail is axially crushed by a rigid wall traveling at a constant speed of 5.0 m/s
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(frontal impact). The crushing distance is prescribed to be 0.5L, which occurs 100 ms after the

impact. The base material is Material D1 in Table 8.

L = 1; H = 0.1L

0.25HH 0.5H

0.125L
L

x
y

●z

x

y

●
z

H

H

Figure 15: S-rail problem—Geometry of the thin-walled S-rail: side and front views.

Step 1: Conceptual design generation. In order to trigger a progressive collapse on the S-rail,

principles of topology optimization of compliant mechanisms [47, 44] are applied to the design

of thin-walled structures [6, 36]: given the displacement of prescribed input ports, the objective is

to find the thickness distribution that maximizes the displacement of prescribed output ports. The

input ports are prescribed on the S-rail at the contact nodes with the rigid wall. The output ports are

defined by the wavelength λ of the progressive buckling corresponding to an ideal axial crushing

condition [6] (Fig. 16).

The design problem is summarized in Table 9. The initial design has a thickness of 3.0 mm

for all the finite elements. The corresponding crash simulation shows Euler-type buckling with

two plastic hinges (Fig. 17). The conceptual design is obtained after one iteration of the HCA

algorithm using element mutual potential energy as the structural response. Progressive collapse is

observed in this conceptual design. The corresponding thickness distribution and crash simulation

are shown in Fig. 18.

Step 2: Design clustering. In this example, the “unfolded” conceptual design is clustered into four

clusters. The threshold clustering algorithm aims to maximize the CVI value as described in (10).

The resulting clustered design is shown in Fig. 19.
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Table 9: S-rail problem—“unfolded” design problem parameters.

Parameter Value
Dimensions 1000 mm×400 mm

FE mesh 100×40
HCA structural response Mutual potential energy

Mass fraction 0.50

In
pu

t p
or

ts0.5λλ

Output ports

Figure 16: S-rail problem—Location of the input and output ports. The axial distance λ between output ports is the
progressive buckling wavelength after an ideal axial crushing condition.

Figure 17: S-rail problem—Initial design represented by a uniform thickness distribution in the “unfolded” thin-walled
structure (left). The initial design depicts Euler-type buckling (right). The corresponding crashworthiness indicators
are SEA = 2.19 kJ/kg and PCF = 130 kN.

Figure 18: S-rail problem—Conceptual design represented the thickness distribution in the “unfolded” thin-walled
structure (left). The conceptual design depicts progressive folding (right). The corresponding crashworthiness indica-
tors are SEA = 1.52 kJ/kg and PCF = 85 kN.
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1 2 3 4

Figure 19: S-rail problem—Clustered design in the “unfolded” structure with K = 4 using threshold clustering and
resulting CVI = 0.36.

Step 3: Bayesian optimization. Eight materials from the material library in Table 8 are to be op-

timally distributed in four clusters. The design objectives are to maximize the specific energy

absorption (SEA) and minimize the peak crushing force (PCF). As before, three different opti-

mization approach are compared: sizing optimization, material selection, and concurrent sizing

optimization and material selection.

Sizing optimization The (single) material used in this approach is D1 from Table 8. The opti-

mization aims to find the optimal clustered shell thickness µ. This is,

find µ ∈ RK(K = 4)

maximize f̂1(θ
∗,µ) : Kriging SEA

minimize f̂2(θ
∗,µ) : Kriging PCF

subject to 0.6≤ µk ≤ 6.0, k = 1, . . . ,K.

(29)

Material selection In this approach, the structure geometry (element shell thickness) is predeter-

mined to be 3.0 mm. The optimization problem aims to find the optimal clustered material
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ID d. This is,

find d ∈ NK(K = 4)

maximize f̂1(θ
∗,d) : Kriging SEA

minimize f̂2(θ
∗,d) : Kriging PCF

subject to dk ∈ {D1, . . . ,D8}, k = 1, . . . ,K.

(30)

Concurrent sizing optimization and material selection In this approach, both the shell thick-

ness and the material become design variables. The optimization problem aims to find the

optimal clustered shell thickness µ and material ID d simultaneously. This is,

find µ ∈ RK, d ∈ NK(K = 4)

maximize f̂1(θ
∗,µ,d) : Kriging SEA

minimize f̂2(θ
∗,µ,d) : Kriging PCF

subject to 0.6≤ µk ≤ 6.0

dk ∈ {D1, . . . ,D8}, k = 1, . . . ,K.

(31)

Kriging metamodels are built for both objective functions using Latin hypercube sampling.

The Bayesian optimization algorithm with multiobjective expected improvement is utilized to find

the Pareto designs (Sec. 5). Figure 20 shows the resulting Pareto designs. As expected, all Pareto

designs dominate both the initial design and the conceptual design. Notably, the material-selection

Pareto designs dominate the sizing-optimization Pareto designs. This indicates the advantages

of using multiple materials. With more freedom on the optimization problem, the concurrent-

optimization Pareto designs dominate other Pareto designs. Figure 21 compares the concurrent de-

sign optimization performed on two different clustered designs, namely, threshold clustering with

CVI maximization (CVI = 0.36) and K-means clustering (CVI = 0.09). The threshold clustering

with CVI maximization Pareto front dominates the K-means clustering Pareto front suggesting that

CVI is a suitable indicator for the clustered design.
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Figure 20: S-rail problem—Pareto fronts for K = 4. All the Pareto optimal designs dominate the initial design as well
as the conceptual design. The material-selection Pareto front dominates the sizing-optimization Pareto front indicating
the advantage of using multiple materials in the structure. With more freedom in the design optimization problem, the
concurrent-optimization Pareto front dominates the other Pareto fronts.
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(a) S-rail problem—Comparison of the concurrent sizing optimization and material selection Pareto fronts of
two clustered designs obtained using threshold clustering (CVI=0.36) and K-means clustering (CVI=0.09).

1 2 3 4

(b) S-rail problem—Clustered design with K = 4
using threshold clustering (CVI=0.36).

1 2 3 4

(c) S-rail problem—Clustered design with K = 4 us-
ing K-means clustering (CVI=0.09).

Figure 21: The effect of the clustered design on the final solutions.
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7. Conclusions

This work introduces a cluster-based structural optimization (CBSO) method for crashworthi-

ness of categorical, multimaterial structures. The proposed method consists of three steps: con-

ceptual design generation, design clustering, and Bayesian optimization. The conceptual design is

generated using one iteration of the HCA algorithm. In this algorithm, a structural response (inter-

nal energy or mutual potential energy) aims to be uniformly distributed across the design domain.

The clustered design is obtained through a threshold clustering algorithm that maximizes a cluster

validity index (CVI) for structural optimization.

The CVI presented for the first time in this work integrates a measure of the number of clus-

ters, cluster size, and cluster connectivity. Finally, Bayesian optimization is used to obtain the

optimal material distribution. In this work, Kriging metamodels are utilized with a new correla-

tion function that allows the exploration of a mixed space with continuous and categorical design

variables. In addition, a constrained expected improvement function is introduced to handle hard

and soft constraints. The resulting Bayesian optimization algorithm has the ability to search over:

(i) a real design space for sizing optimization, (ii) a categorical design space for material selec-

tion, or (iii) a mixed design space for concurrent sizing optimization and material selection. With

the proposed approach, materials are optimally selected based on multiple attributes and multiple

objectives without the need for material ranking. Numerical examples show the Pareto designs

that maximize crashworthiness indicators such as penetration, peak crushing force, and specific

energy absorption. All of the Pareto designs obtained with this method dominate both the initial

design and conceptual design. The integrated, concurrent Pareto designs dominate the separated,

sequential Pareto designs (Sec. 6.2 and Sec. 6.3).

While the proposed method can solve relevant nonlinear structural optimization problems for

improved crashworthiness, it has limitations that are currently under investigation. First, the op-

timal number of clusters needs to be determined by the algorithm; currently, it is prescribed by

the designer. As shown in Sec. 6.1, a high number of clusters does not necessarily improve the

objective function. Second, the current algorithm does not consider material screening, so that the
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material library is predefined. A more systematic approach can be adapted to better select can-

didate materials [29]. Third, the metamodels used in this algorithm are limited to a few design

variables or clusters. Our ongoing work is on extending the current approach to a larger number of

clusters by using, for example, multi-level (hierarchical) cluster analysis. Fourth, manufacturabil-

ity and material failure are not considered in this approach. While the proposed clustering strategy

promotes designs with larger clusters, which are potentially more manufacturable, the joining of

dissimilar materials is a complex and important issue that is not developed in this work. Finally,

the proposed sequential approach may lead to sub-optimal designs due to the predefined cluster

configuration in the design clustering step. A fully coupled, iterative approach would mitigate this

problem. Such approach is the subject of ongoing research.
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