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Abstract. Many scientific communities have adopted community-based
models that integrate multiple components to simulate whole system dy-
namics. The community software projects’ complexity, stems from the
integration of multiple individual software components that were de-
veloped under different application requirements and various machine
architectures, has become a challenge for effective software system un-
derstanding and continuous software development. The paper presents
an integrated software toolkit called X-ray Software Scanner (in abbrevi-
ation, XScan) for a better understanding of large-scale community-based
scientific codes. Our software tool provides support to quickly summarize
the overall information of scientific codes, including the number of lines of
code, programming languages, external library dependencies, as well as
architecture-dependent parallel software features. The XScan toolkit also
realizes a static software analysis component to collect detailed structural
information and provides an interactive visualization and analysis of the
functions. We use a large-scale community-based Earth System Model
to demonstrate the workflow, functions and visualization of the toolkit.
We also discuss the application of advanced graph analytics techniques
to assist software modular design and component refactoring.

Keywords: Application software analysis · Community-based code ·
Code modulation · Code refactoring

1 Introduction

Many scientific communities have employed community-based models to simu-
late complex dynamics [8, 22]. These community-based models usually adopted
open modeling and open coupling infrastructure, and integrated many individ-
ual components to address community-driven scientific questions. Since these
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Fig. 1: Architecture of the XScan toolkit.

models are developed by multidisciplinary communities over a variety of high-
performance computational facilities [8], close collaborations and continuous
communications among many domain science groups and computational sci-
ence groups are required for improving model understanding and development.
To this end, we present a software toolkit to facilitate the understanding of
these complex software systems and layout some considerations on further code
migration and refactorization. We design and develop a static software analy-
sis tool, which is named as X-ray Software Scanner (i.e., XScan). The XScan
toolkit can collect an array of software specific information related to overall
source code meta data, third-party library requirements/dependencies, major
HPC software features, and detailed function relationship. XScan consists of
four components (see Fig. 1): 1) an integration with CLOC [3] to provide infor-
mation about the used high level programming languages and number of lines
of code in each programming language (Section 2.1.1); 2) a CMake [13] based
analysis component to reveal what external third-party libraries are required by
an open-source community project and their dependency relationship (Section
2.1.2); 3) an HPC-specific query language (Feature Query Language FQL) and
component to search for HPC hardware and architecture features that are re-
quired by an open-source project (Section 2.1.3); and 4) a Doxygen [24] based
data collector to collect function-relevant information and build graphs to facili-
tate big graphs and networking analysis targeting software engineering problems
(Section 2.2).

Finally, for the demonstration purpose, we apply the XScan toolkit to collect
the overall information and structural relationship of an open-source community
Earth System Modeling system, called Exascale Energy Earth System Model
(E3SM). Mainly funded by US Department of Energy, E3SM is a computation-
ally advanced coupled climate-energy model to investigate the challenges posed
by the interactions of weather-climate scale variability with energy and related
sectors.

2 Methodology

Fig. 1 shows the architecture of our XScan toolkit, whose four components can
be classified into two categories: 1) Components to show overall information of
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source code, and 2) Components to show function relationship information. The
two categories will be described in the following two subsections, respectively.

2.1 Category 1: Overall information of source code

2.1.1 Language and size The very first step of software system understand-
ing is to present the information about a community project’s size and program-
ming languages. There are several existing tools available for code size evalua-
tions, such as CLOC (Counting Lines Of Code) [3], Sonar [19] and SLOC [25]).
We incorporates CLOC to XScan to provide the language and size information
because CLOC consists of a single Perl file and can be executed on any machine.
With CLOC, XScan can measure the lines of source code for a variety of lan-
guages, and can differentiate between the actual code, blank lines, code crossing
multiple lines, and comment lines for each programming language. We consider
it a convenient feature for XScan users.

2.1.2 External library dependency In addition to the programming lan-
guage and size information, it is important for community users to know what
third-party libraries are needed by the open-source code. Since physically in-
stalling open-source projects is often challenging and time-consuming, we target
designing a module (inside XScan) to parse and analyze the project’s build sys-
tems (e.g., Makefile [20], CMake [13], Autoconf [12]) to automatically collect
the library dependency information. This quick scan functionality is particu-
larly useful when users are evaluating many choices of open source software and
considering distinct computer architectures.

In this paper, we choose CMake as an example to achieve the objective
without any physical software installation. CMake is an operating system inde-
pendent tool for building and testing software. By modifying a configuration file
(commonly named as CMakeLists.txt), developers are able to control the whole
building process on most systems.

We design and develop a “CMake Analyzer” module in XScan, which scans
all the CMakeLists.txt files in an open-source software project, and finds all the
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Fig. 2: Workflow of the CMake Analyzer.
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needed external libraries and identifies the dependency relationship among the
detected libraries.

The design of CMake Analyzer is shown in Fig. 2, in which ellipses represent
the data exchanged between software components meanwhile rectangles repre-
sent the software components. CMake Analyzer works in the following three
steps: 1) Search for CMake files by using the CMakeLists.txt Finder component
(see Fig. 2); 2) Scan the CMake files and identify the needed external libraries by
the External Library Finder component; And 3) Use the Parent Library Finder
and Parent Library Marker components to search and mark the parent of each
needed library. The final output is a dependency graph for all the libraries.

2.1.3 Query software features User community may want to understand
special characteristics of the complex community projects. We defined these
special characteristics as “features” of these community projects. For example,
the user who are interested in high performance computing (HPC), may ask
whether MPI or GPU is used by the code. To answer these questions, we created
a new language, called Feature Query Language (FQL) [26], to describe the
user’s questions. It is an extensible and flexible language. Users can translate
their questions to a query quickly when they know the keywords of a feature.
Next, we design and implement a program parser to parse and execute the FQL
queries. We also provide a number of predefined queries for commonly asked HPC
related feature questions. By executing those queries, the FQL component can
provide users with an overview of the HPC features in the community project.

2.2 Category 2: Function relationship of the source code

It is important to gather function relationship information, from which users can
gain insights into the internal structure of a community project.

XScan uses Doxygen [24] as a lower-level internal library to collect detailed
information including code structure, function dependency, class inheritance re-
lations as well as collaboration diagrams. Instead of using Doxygen as a GUI tool
that generates documentation for projects, we call the Doxygen library and API
directly to create an in-memory software-data repository, and perform in-situ
graph partitioning, coloring, and data analysis.

Fig. 3 shows an overview of the in-memory Doxygen-enhanced Analyzer,
which consists of three major parts: 1) Data Collection (i.e., the large blue
rectangle on the upper left in Fig. 3), 2) Doxygen API (the large yellow rectangle
at the bottom), and 3) Data Presentation and Analysis (the blue rectangle on
the upper right). The following subsections will describe them in more details.
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Fig. 3: Workflow of Doxygen-based Software Analyzer

2.2.1 Data Collection & The Doxygen API :

Data Collection: The input is a configuration file to configure Doxygen. Next,
Data Collector calls the Doxygen APIs (shown in the yellow box) to obtain infor-
mation of the code. In our implementation, Data Collector first calls initDoxy-
gen(), then calls readConfiguration to read the configuration file, and finally calls
generateOutput to generate the output.

Function Dictionary: The generateOutput function yields a Function Dictio-
nary, which is stored in an in-memory data structure. In XScan, we need to
know each function’s function name, caller, module name and location. All of
them are stored in this data structure. Because any information can be found
by looking up the in-memory Function Dictionary data structure, XScan can
perform fast graph and network data analytics efficiently in an in-situ manner.

Data Parser : Finally, XScan converts the code information stored in Function
Dictionary to different graphs. The output graphs are stored in the Dot format
[5]. Note that a Dot file can be read by many graph visualization tools.

2.2.2 Data Presentation and Analysis :

This last part is responsible for reading the graphs generated from Data
Parser, and using the open-source graph visualization tool Gephi [2] to visualize
them with different layouts. These graphs will also be processed by using big
graph/network analysis tools to facilitate software engineering code optimiza-
tion, redesign and refactoring.

3 Case Study

In this section, we first introduce an Earth System Model. Then, we show the gen-
eral code information of the model using XScan functions stated in section 2.1.
After that, we present different function call graphs generated by the Doxygen-
based Software Analyzer within XScan. Preliminary data analyses based on those
graphs are also demonstrated at the end of the section.
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3.1 The E3SM application

The Energy Exascale Earth System Model (E3SM) is a computationally ad-
vanced coupled climate-energy model to investigate the challenges posed by the
interactions of weather-climate scale variability with energy and related sectors
[8]. E3SM is a 3D (plus time) computer-based general-circulation model that
uses mathematical formulas to simulate the chemical and physical processes that
drive Earths climate. Being extraordinarily sophisticated, E3SM can be used to
study phenomena ranging from the effect that an ocean surface temperature
has on tropical cyclone patterns to the impact of land use on carbon dioxide
concentration in the atmosphere.

Currently, E3SM contains several major community model components to
simulate Earth systems: Atmosphere, Ocean, Land, Glacier, and Sea Ice. E3SM
also provides a complicated system script tool, which allows science-oriented
modelers to automatically reconfigure, compile, build, and submit jobs. It is
an extremely valuable feature in helping E3SM users conduct computational
experiments on various high-end computers.

3.2 Overall source code information of E3SM

3.2.1 Language and code size :
We use XScan/CLOC to check the overall information about E3SM’s source

code with respect to the source code size and programming languages. As listed
in Table 1, the top ten programming languages used in E3SM (from the most to
least) are FORTRAN 90, HTML, XML, C, Perl, Python, Tex, Fortran 77, Shell,
and CMake. FORTRAN 90 is the most used programming language. There are
2184 FORTRAN files and nearly 1 million lines of FORTRAN code (excluding
comments and empty lines), while HTML is mainly used for the documentation
purpose.

Table 1: Top 10 programming languages inside the E3SM source code package

Detected language: Number of files: Number of lines of the code:
Fortran 90 2,184 934,296
HTML 429 158,640
XML 307 85,785
C 124 46,245
Perl 156 37,860
Python 240 34,786
Tex 171 23,596
Fortran 77 70 21,118
Bourne Shell 236 20,598
CMake 213 6,125
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Fig. 4: CMake Analyzer results of E3SM via XScan.

3.2.2 External library dependencies :
XScan is applied to scan the required third-party libraries for E3SM. Fig. 4

shows the external libraries needed by E3SM. From the XScan-generated graph,
we can see that E3SM needs more than ten external libraries, which include
the data library NetCDF, message passing library MPI, numerical libraries of
LAPACK, timing library GPTL, scientific application library Trillinos, scientific
simulation library Zoltan, and program instrumentation library Extrae. We may
also notice that MPI appears twice in the graph as it is used by both GPTL and
the main program of E3SM.

3.2.3 HPC specific features in E3SM :
We apply XScan/FQL to extract HPC related features that are used and

required by E3SM. The HPC results obtained by executing related FQL queries
are listed in Table 2.

Table 2: FQL result of the E3SM.

MPI Min version required: MPI one-sided communication:
Yes 2.0 Yes

MPI process topology: MPI I/O
Cartesian Yes

OpenMP Hybrid MPI/OpenMP: Task programming constructs:
Yes Yes Yes

OpenMP scheduling method:
Dynamic

CUDA Support multiple GPUs: Single/Double precision:
No – –
OpenACC Atomic operation: Asynchronous operation:
Yes No No
Language Support Min required C compiler: Fortran standard:

C99 Fortran 2003

From the table, we find that MPI, OpenMP and OpenACC are all employed
by the E3SM project. We can also find further information about how E3SM
uses MPI, OpenMP, and OpenACC. For instance, E3SM uses the MPI Cartesian
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topology, one-sided communication and MPI I/O techniques. E3SM is written
mainly in the FORTRAN language meanwhile using the C language for system
level functions, such as parallel I/O and string handling. Also, please note that
OpenMP is not listed in previous Fig. 4 since recent GCC compiler has the full
support of OpenMP.

3.3 Presentation and exploration of code function relationship in
E3SM

In this section, we present two sets of graph results generated by XScan for
the E3SM project: Partitioned function graphs computed by Doxygen-enhanced
Software Analyzer, and Preliminary data analysis results on investigating soft-
ware modularity.

3.3.1 Different presentations of source code function graphs :
Fig. 5 presents the global function-call graph for the E3SM project. In this

graph, different functions have different colors which are decided by their res-
ident directories. As shown in the figure, the directory /components/cam has
the largest number of functions (i.e., the green nodes). Moreover, the functions
located in directory /cime — which are shown as the red nodes and working as
the coupler to combine different models — have many connections with other
colored nodes.

/cime

/components/cam

/components/cice

/components/clm

/components/homme

/components/mosart

/components/mpas-albany-landice

Fig. 5: Global function graph for the E3SM project.

Next, we want to dive into the specific /components/cice directory to in-
vestigate the function relationship in the CICE component. For example, Fig.
6.a shows a colored function graph for the CICE component only, based on each
function’s subdirectoy location. Since there are four sub-directories in CICE, the
function graph has four colors.
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Fig. 6: Different colored function graphs for the CICE component of E3SM.

Finally, we use XScan to study how a software module of interest can interact
with other modules. By using the identical set of vertices and edges as Fig. 6.a,
Fig. 6.b focuses on the module of ice forcing, and reveals its interaction with
other modules. In Fig. 6.b, all the nodes that have no connection with the module
ice forcing are colored in the grey color. The rest of the nodes (i.e., with colors)
are colored separately based on their corresponding module names. As shown in
the figure, nine modules have interactions with the ice forcing module.

ice_flux ice_therm_vertical ice_spacecurve

ice_read_write ice_timers cice_initmod

ice_distribution

ice_forcing ice_shortwave ice_dyn_evp ice_grid

cice_runmod cice_finalmod

Fig. 7: Partial function graph for CICE before merging interface functions.
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3.3.2 Preliminary graph analysis results :
Here, we present our preliminary big graph data analysis results based on

the graph information collected by XScan. One purpose of the data analysis is to
help users better understand the software modularity, and assist users to make
good decision on software component refactoring. We use the CICE case again
to illustrate our data analysis approach.

As shown in Fig. 6, the CICE component has more than 50 modules. For the
purpose of demonstration, we abstract 13 modules as presented in Fig. 7. We
propose and make a few modifications to those nodes, using common software
engineering approaches, such as function encapsulation, merge, and function
interface redesign. For all the modifications, we check how graph modularity
score are changed. Graphs with higher modularity scores are more modular with
denser connections inside the module and sparser connections between modules.

In Fig. 7, there are a certain number of functions (presented as nodes in the
graph) that have edges connected with other modules. We call them interface
functions of a module. We can merge the interface functions of the module
ice timers as shown in the red rectangle box. It is an action to mimic the function
encapsulation and interface redesign. As a result, the new graph is more modular
with its modularity score improved from 0.649 to 0.66. On top of that, we further
combine the interface functions of module ice forcing, which is shown in the big
rectangle box on the top of the figure. The modified new graph is even more
modular with its modularity score rising to 0.71. Therefore, we can conclude
that merging the interface functions of a module is able to make open source
software more modular.

Currently, we only apply the modularity metric to evaluate the impact of
source code modifications. Our next research plans to design new metrics and
apply graphs analysis techniques to guide our further code developments, such as
using k-component analysis [15] to estimate the difficulties of module refactoring.

4 Related Work

A number of tools have been developed to collect various kinds of overall code
information. For example, a few tools can analyze a projects code size and lan-
guages by scanning the source code [3, 25, 19]. Certain tools like the ScanCode
toolkit [18] and fossology [6] can provide the software license, copyright, depen-
dency and other kinds of information of the code. By integrating other third
party package managers (e.g., MAVEN, PIP, NPM) and code scanners (e.g.,
Licensee [11], ScanCode), OSS Review toolkit can tell user dependencies of dif-
ferent open-source libraries of the project [21].

Function call graph is commonly used to represent the calling relationship
between different functions [17]. Many tools such as Doxygen [24], CFlow [16]
and Egypt [4], are developed to statically extract the relationship. There are also
many different ways to use the function-call graph. For example, some researchers
analyze the software change impacts by checking the transitive closure of the
function-call graph [1, 9]. Function-call graph based reverse engineering work,
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such as the work of Mitchell et al. [14] and Vassilios et al. [23], can abstract the
structure of software by applying clustering based machine learning algorithms
to function call graphs.

5 Future work

In the next phase, we will further enhance the in-memory software analyzer to
collect more information (such as global variable, data context, data aliases)
from static software analysis and to help users to evaluate the complexity of
scientific software projects. We will apply graph algorithms and graph analysis
tools (such as networkX [7] and SNAP [10]) to the software function graphs to
estimate efforts to factorize a submodule as well as the workload to combine sub-
modules from multiple different software to build an integrated software system.
We will also look into the methods to estimate the effort of migrating software to
a new platform. For instance, we can list modules, functions, and libraries (i.e.,
both internal and external) that need to be modified. Furthermore, with the vast
collection of software information, we can transform the software understand-
ing problem into software optimization problem. Then, we will apply machine
learning approaches (such as reinforcement learning) to aid users in optimizing
software structure and functional redesigns.
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