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ABSTRACT 

Total Knee Arthroplasty (TKA) continues to be a common and important orthopedic procedure for many in the United 

States. Despite recent medical advancements and increasing knowledge in the orthopedic community, it has been 

determined that 20% of TKA patients are still dissatisfied with their knee replacements. Causes of this failure include 

septic loosening and wear on the bearing component of the implant. Another cause of failure that has received specific 

attention from the mechanical community is aseptic loosening, which has been attributed to unbalanced ligaments or 

misalignment of the implant components. Previous efforts have been made to detect loosening by using passive force 

sensors such as piezoelectric transducers or strain gauges to detect misalignment. An alternative to this is to perform active 

sensing or structural health monitoring to evaluate possible loosening before it becomes a critical concern to the patient. 

One method of structural health monitoring, called the electromechanical impedance (EMI) method, is particularly 

attractive as it can use a single, compact piezoelectric transducer to determine the state of the host structure. This work is 

intended to evaluate the ability of the EMI method in sensing loosening between the cement and bone of a TKA tibial tray. 

This work will utilize real tibial trays implanted into synthetic bone (Sawbone) to evaluate the feasibility of detecting 

loosening using the EMI method. The intention of this work is to serve as a foundation for further in-vivo and intra-

operative studies. 
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1. INTRODUCTION

As the American population continues to age, the demand for total knee replacements (TKR) progressively increases as 

well1. This demand has created a push to improve patient outcomes from TKR procedures. Currently, about a fifth of all 

TKR patients are dissatisfied with their procedural outcomes2, 3. Further, approximately 8% of all total knee replacements 

will fail within 10 years post-operative4. Though implants can fail in a variety of ways, the most common modes are 

infection and loosening. When investigating failure due to loosening, it is often found that the failure occurs at the 

cemented interface between the tibial component and the tibia bone, both shown in Figure 15, 6. Because of the mechanical 

nature of failure due to loosening, there has been significant drive to further understand the mechanical conditions that 

lead to or predict such a failure. Historically, the mechanical conditions in the TKR system have been investigated using 

force plates and fluoroscopy7. Recently, the development of smaller sensing technology has given way to embedding 

sensors inside of the patient’s implant, allowing for more direct force and pressure distribution measurements8. One 

method that has shown promise as a force sensing technique is embedding piezoelectric transducers between the tibial tray 

and bearing component of the implant9. Piezoelectric transducers benefit from being able to perform both energy 
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harvesting and force sensing function, creating the possibility for a self-contained, self-powered force sensing system10. It 

should be noted that piezoelectric transducers are often referred to as PZT’s, due to the common piezoelectric material 

lead zirconate titanate. 

In addition to performing energy harvesting and force sensing, piezoelectric transducers also possess the ability to perform 

certain forms of structural health monitoring (SHM)11. SHM would benefit the TKR community as it would allow detection 

of changes in the mechanical conditions of a TKR implant, prior to it becoming a hazard for the patient. This could reduce 

the need for patients to receive multiple costly post-operative x-rays that are normally required to detect loosening.  

Methods of SHM in which piezoelectric transducers are used include guided wave and the electromechanical impedance 

(EMI) method12. Between these two methods, the EMI method is particularly interesting as the associated measurement 

system has the potential to maintain a compact profile. This is particularly useful in the space-limited area of a TKR 

implant. The EMI method has already been heavily researched in the fields of aerospace and civil structures13. With this 

said, little research has been done on the medical applications for SHM, with an even smaller amount of research on EMI 

specific applications. One study which serves as an exception was intending to investigate the application of EMI based 

SHM in detecting loosening of dental implants14. The success found in determining the stability of dental implants may 

suggest the ability to detect stability in orthopedic implants. Additionally, another study from the Dynamic and Smart 

Systems Lab at Tennessee Technological University displayed the ability to use the EMI method to detect damage in a 

geometrically generic cemented implant-bone interface15. This study successfully showed that the EMI method has the 

potential to detect damage in a cemented interface with materials found in the TKR system. With this said, it did not 

account for specific geometries that occur at the interface between the tibial component and tibial bone. 

From the current literature, it is apparent that only preliminary studies into the use of EMI based SHM in total knee 

replacements have been investigated. What is needed is a study of the effectiveness of the EMI method on an actual knee 

implant. This study intends to fill that need by extending the author’s previous work and investigating damage detection 

of loosening of the cemented interface between an actual tibial component and a simulated tibia bone. Specific focus is 

given to loosening that occurs as a result of separation between the tibial cement and the underlying bone structure, as this 

failure mode has been shown to be common6. In this study, test samples for a healthy implant system as well as weakened 

and failed implant systems are created. Measurements are taken in the frequency domain using the EMI method and 

compared in order to determine if there is a detectable difference between the healthy, weakened, and failed conditions. 

Additionally, an algorithm is developed to map key frequency bandwidths which consistently show differences between 

the healthy implant system and the weakened and failed implant systems. Finally, example bandwidths are selected and 

overlaid with the original data to evaluate which measurement features show impactful change between the healthy implant 

system and the weakened and failed implant systems. 

This study is intended to provide a basic view of the EMI method’s ability to detect loosening in total knee replacements. 

The knowledge gained from this study includes a better understanding of the impedance response of the TKR system as 

well as an understanding of the effectiveness of the EMI method with an actual tibial component. The long-term goal is to 

use the knowledge gained from this study to perform cadaver or in vivo testing of loosening in the future. The final 

objective is to implement SHM in patient implants, ideally predicting loosening failure before it becomes a health hazard. 

 

Figure 1 Components of a Total Knee Replacement (TKR). 
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2. METHODOLOGY 

2.1 Electromechanical impedance method 

The electromechanical impedance method of SHM was first developed in 1994 and remains a relatively simplistic method 

of structural health monitoring16. The guiding principal of the EMI method is centered around the electrical and mechanical 

coupling of piezoelectric materials. In the EMI method, a piezoelectric transducer is adhered to the host structure that will 

be monitored, in this case the implant system. When the piezoelectric is adhered to the structure, the mechanical impedance 

of the system becomes a combination of the mechanical impedance of the PZT and the structure. Due to the coupled nature 

of the PZT, changes in the mechanical impedance cause a measurable change of the electrical impedance. Further, if the 

mechanical impedance of either the PZT or the host structure changes, this has the potential to show up as a measurable 

change in electrical impedance. Damage can be detected using the EMI method by measuring the difference between the 

electrical impedance of a damaged and healthy structure. Historically, impedance methods have used large and 

cumbersome impedance analyzers to perform measurements. However, in recent years, the potential for using smaller data 

acquisition hardware has made it conceivable that a smaller measurement device could be used to effectively detect 

damage17. This suggests the potential for the EMI method to be used to detect damage in a physically constrained 

environment such as a TKR. 

2.2 Creation of test samples 

As previously stated, the presented work will investigate three different conditions pertinent to the detection of loosening 

between the tibial component and tibia. The three conditions will include a healthy implant system, a weakened implant 

system, and a failed implant system. The healthy implant system is intended to represent a tibial component that is properly 

cemented into the tibia bone structure. The weakened implant system is intended to represent a tibial component that is 

not properly cemented into the tibia bone structure but has not yet failed. Finally, the failed implant system represents a 

tibial implant that has become loose to the point that it can no longer safely or properly function and presents a health 

hazard to the patient. Test samples representing these three conditions must be created and measured for comparison. 

In order to replicate the implant system, representation of the TKR’s tibial component, bone cement, and tibia bone 

structure is needed. For the tibial component, a size 5 DJO Empower 3D tibial tray is used. The bone cement selected is 

Stryker VeraPlex HV bone cement (Stryker Corporation). This bone cement relies on a dry powder and liquid monomer 

which must be mixed before it hardens. For the tibia bone structure, a foam-based artificial bone, referred to as Sawbone, 

is used (Sawbones USA). This Sawbone has a cross section that is similar in shape to a tibial cross section (Model #1522-

912). Additionally, the Sawbone has a dense outer shell with a porous core made of 40 PCF and 12.5 PCF Sawbone 

material, respectively. These two densities are intended to represent the dense outside and porous inside of an actual tibia 

bone. Figure 2 displays images of the tibial component and Sawbone used in this work. 

The process for creating the test samples of the three conditions is similar to the actual implantation process for the tibial 

tray component of a TKR. Because of this similarity to the actual surgery, a board-certified orthopedic surgeon (Dr. R. 

Michael Meneghini, co-author) created all test samples. For the healthy test samples, the two components of the cement 

mixture are mixed together for 6 minutes in order to gain a desired consistency. During this mixing process, an orthopedic 

surgical tool referred to as a “tibial punch” is used to create a hole in the top of the Sawbone that is roughly in the shape 

 

Figure 2. Image of a) DJO Empower 3D tibial tray and b) the selected Sawbone structure. 

(a) (b)
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of the stem of the tibial tray. Once the bone cement is mixed, it is applied to the bottom of the tibial tray and the top of the 

Sawbone. The tibial tray is then placed inside of the hole created by the tibial punch. A standard hardware hammer is then 

used to strike the top of the tibial component in order to seat it into the Sawbone. Once the tibial component is firmly 

seated inside the Sawbone, the cement is allowed to harden. In order to verify repeatability of experimentation, seven 

healthy implant samples are created. Since access to only one DJO tibial tray was available for experimental testing, the 

current sample must be tested and then destroyed in order to recover the tibial tray for the next sample. 

The process for simulating the weakened implant environment is similar to that of the process for creating a healthy implant 

setup. The exception is that before the application of any cement, a coating of mineral oil is applied to the Sawbone. As a 

result of this layer of mineral oil, the bone cement firmly adheres to the tibial component but does not adhere as well to 

the Sawbone. This lack of adhesion to the Sawbone is due to a lack of chemical bonding between the cement and the bone 

as well as a reduced ability for the cement to seep into the pores of the inner bone structure in the presence of the mineral 

oil. This poor adhesion to the porous bone structure has been hypothesized to be a cause of tibial loosening in past clinical 

studies6. A total of six weakened samples are created once again for repeatability. After the weakened measurements are 

taken, the weakened cement is separated from the porous Sawbone using a small knife inserted between the cement and 

the Sawbone. This new separated state is representative of a knee implant which has failed due to loosening. Measurements 

are then taken for this failed implant condition. It should be noted that both weakened and failed measurements are taken 

prior to moving on to the next sample. As a result, there are six failed sample measurements to complement the six 

weakened sample measurements. 

2.3 Experimental setup 

Impedance measurements of the test samples are made in the frequency domain using an HP 4194A impedance analyzer 

(Hewlett Packard). A small PZT is adhered to the top of the tibial component using super glue and connected via electrical 

leads to the impedance analyzer. The PZT is a 12.85 mm diameter, 2.1 mm thick piezoceramic made from APC 850 PZT 

material (APC International, Ltd). The PZT is adhered 14 mm from the anterior edge of the tibial tray and 10 mm from 

the centerline, as displayed in Figure 3. Tabbed electrodes on the top of the piezoelectric allow for easy electrical access 

to the surface that is directly adhered to the tibial component. It should be noted that due to the destructive nature of 

removing the tibial component from a sample after a measurement as well as the hammering of the tibial component during 

the implanting process, a new piezoelectric is used for each new healthy and unhealthy test sample. A new PZT is not 

placed on the tibial component between the weakened and failed measurements as no destructive process is required to 

create the failed state. The test samples are clamped to a table using a table vice in order to provide a consistent fixed end 

condition. This end condition also provides consistency with previous studies15, 18. 

As previously stated, seven healthy implant samples and six unhealthy implant samples are created and tested. The 

unhealthy samples are tested in both a weakened and failed state. Measurements are taken within a frequency range of 10 

kHz to 310 kHz, at a measurement resolution of 25 Hz. Data is imported from the impedance analyzer into a computer 

running a LabVIEW interface via a GPIB-to-USB interface cable. This collected data is then stored in a text file and 

imported into MATLAB for data processing. 

 

Figure 3. Image of a) the approximate location of the PZT transducer and b) a completed healthy implant test setup in the 

experimental configuration. 

(a) (b)
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2.4 Data processing algorithm 

Due to the size of the data set and the complexity of the response signals, it is desirable to develop an algorithm which 

conveys what areas and features of the frequency response are sensitive to the weakened and failed knee conditions when 

compared to the healthy implant system. The algorithm should be able to take the raw data samples for the healthy knee 

(baseline) and the unhealthy condition (damaged) and return a value of statistical significance between the two states. The 

raw data evaluated should be impedance measured across the frequency domain. The real component of impedance is 

evaluated as it has been shown to be the most sensitive component19. The presented algorithm designed for this work will 

return a value of statistical confidence that shows how certain the differences in measured impedance is caused by a 

measurable change rather than experimental error or natural variation between samples. The presented algorithm performs 

three operations in order to go from the raw data to statistical confidence: feature selection, evaluation via a damage metric, 

and calculation of statistical confidence. The end values can then be mapped across various measured features in order to 

optimize the resulting statistical confidence.  

The first component of the algorithm is feature selection. It is well known in impedance-based SHM that certain features 

of the impedance spectrum will be more sensitive to damage than others, therefore, it is common practice to extract only 

these sensitive bandwidths for inclusion in a damage metric algorithm. Since it is uncertain whether the peaks in measured 

impedance or the areas between peaks on the frequency spectrum show the most statistically significant difference, it is 

desirable to sweep the entire measured spectrum, evaluating various bandwidth sizes for inclusion in the damage metric 

algorithm. This means evaluating individual peaks as well as multiple peaks grouped together. During the mapping of the 

algorithmic results, it is best to map statistical confidence off location in the measured spectrum, from 10kHz to 310 kHz. 

Additionally, the map should display results centered at a given frequency across all possible bandwidth sizes that do not 

exceed the limits of the measured spectrum. This means that the selected features are all possible measured frequencies, 

each of which is evaluated across all possible bandwidths at that frequency. 

The second component of the data processing algorithm is evaluation via a damage metric. For this study the selected 

damage metric is root-mean-square-difference (RMSD). RMSD has been shown to be a simplistic yet effective method 

for quantifying the difference between signals across a given bandwidth20. RMSD is calculated 

as

RMSD = √∑ (𝑍𝑖,𝑢−𝑍𝑖,ℎ)
2𝑛

𝑖=1

𝑛
, (1) 

where n is the number of points in the bandwidth, i is an index, and Zh and Zu are the signals for the healthy and unhealthy 

conditions, respectively. Naturally, the RMSD equation requires the calculation of a difference between two signals. For 

this algorithm, the difference is taken between a given sample’s impedance response and the average response of all seven 

healthy implant systems. This calculation is done for each unhealthy and healthy sample being compared. As a result, for 

a given frequency and bandwidth selected in the previous step, there are seven healthy RMSD values and twelve unhealthy 

RMSD values, six for the weakened implant and six for the failed implant. These are then statistically compared in the 

final component of the algorithm. 

The last component of the algorithm is the calculation of statistical significance. This component involves evaluating the 

previously derived RMSD values to determine if there is a difference between the healthy and unhealthy conditions. For 

this part, the t-test is used as it performs well with small sample sizes. Welch’s version of the t-test is used as it cannot be 

assumed that the variation of the healthy and unhealthy RMSD values is equal. The resulting t-score from the t-test is 

converted using MATLAB’s internal equations and tables to find a statistical confidence. The equation for Welch’s t-test 

is given as  

t − score =
�̅�𝑢 − �̅�ℎ

√𝑠𝑢
2

𝑛𝑢
+
𝑠ℎ
2

𝑛ℎ

, (2)
 

where �̅�ℎ and �̅�𝑢 are the averages of the RMSD values for the healthy and unhealthy conditions, respectively, sh and su are 

the sample standard deviations for the healthy and unhealthy condition RMSD values, respectively, and nh and nu are the 

number of samples for the healthy and unhealthy conditions, respectively. 
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As mentioned before, the resulting confidence values are mapped across frequency and bandwidth size. The weights of 

the various mapped regions are assigned based off the confidence calculated from the algorithm for the given region. Two 

separate maps are to be created, one comparing healthy and weakened implant responses and the other comparing healthy 

and failed implant responses. It should be noted that the medical community typically uses a confidence of 95% as the 

point by which statistical significance is achieved. As a result, the created maps focus on regions that have confidences 

higher than 95%. The developed maps should provide insight to where and to what extent the impedance responses of the 

healthy and unhealthy implant systems differ. 

3. RESULTS AND DISCUSSION 

3.1 Qualitative analysis of healthy and unhealthy conditions 

Before quantitatively evaluating the collected data for the unhealthy and healthy conditions, it is useful to qualitatively 

inspect the features of the impedance responses to look for key patterns. As a result, this section displays a comparison 

between the healthy and weakened conditions as well as the healthy and failed conditions. First, Figure 4 displays an 

overlay of the healthy implant impedance responses and the weakened implant impedance responses. Looking at the 

overall trend of the implant responses, it is apparent that significant activity occurs between 10 kHz and 50 kHz for the 

weakened samples as well as between 200 kHz and 270 kHz for both weakened and healthy samples. Between these two 

regions, the response between 10 and 50 kHz shows much more consistent and well-defined features such as peaks. The 

first peak detected, which is at approximately 11 kHz, shows an exceptionally large amplitude compared to other peaks in 

the region. Looking at the weakened implant data in the same figure, it is apparent that the response shows the same general 

trend as the healthy implant data. Looking at the active region between 200 and 270 kHz, it is difficult to make any 

qualitative deductions, due to the variation of the features and lack of apparent difference between the healthy and 

weakened implant systems. At the lower active region between 10 and 50 kHz, there are multiple apparent differences 

between the healthy and weakened implant systems. The first peak at 11 kHz experiences a frequency shift between the 

two conditions as well as an increase in impedance for the weakened condition. Additionally, the peaks at 20, 26, and 31 

kHz for the weakened condition are much more apparent than the same features in the healthy implant. It should be noted 

that there is some additional new activity in the weakened implant samples between 60 and 80 kHz but it appears to be 

isolated to only one weakened sample. 

In addition to the weakened implant samples, the failed implant samples are cross examined against the same baselines. 

The results for the failed implant samples overlaying the healthy implant samples are displayed in Figure 5. It is 

immediately apparent that there is significantly more activity in the failed condition than in the weakened condition. 

Overall the response of the failed condition still follows the same general trend but is not as smooth as the weakened or 

 

Figure 4. Measured impedance spectrum of the weakened and healthy test samples across a) 10 kHz to 310 kHz and b) 10 kHz to 

60 kHz. 

 

(a) (b)
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healthy implants, even in areas of low activity. The peaks at 20, 26, and 31 kHz have grown even more different from the 

healthy implant than what was displayed in the weakened condition. Additionally, more activity has occurred between 50 

kHz and 80 kHz than the healthy and weakened conditions. The peak at 11 kHz maintains a similar frequency shift to what 

was seen in the weakened condition. This qualitative difference between the weakened and failed condition is promising 

as it may suggest the ability to determine degradation in mechanical stability as a patient’s implant loosens. 

3.2 Quantitative results from mapping algorithm 

The data presented in the previous section is quantitatively evaluated using the algorithm discussed in the methodology 

section of this paper. Figure 6 displays the resulting map from the six healthy and seven unhealthy test samples when 

 

Figure 5. Measured impedance spectrum of the failed and healthy test samples across a) 10 kHz to 310 kHz and b) 10 kHz to 60 

kHz. 

 

 

Figure 6. Mapping results for the weakened condition. 

(a) (b)
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evaluated using the mapping algorithm. The map is plotted as bandwidth size vs. location of the center of the bandwidth, 

with the quantitative weights at a given location being the statistical confidence of the difference between the RMSD 

values for the healthy and weakened condition. Note the two regions which remained undefined (white), as a bandwidth 

of the given size at the given location would exceed the boundaries of the measured frequency spectrum. Focus is given 

to regions with statistical confidence greater than 95%. When looking at the map for the weakened implant condition, it is 

apparent that there are multiple regions in the frequency spectrum where the difference between the healthy and weakened 

condition is statistically significant. One feature of the map that is particularly interesting is the bright line running 

diagonally on the left-hand side of the plot. This line is likely caused by the large peaks displayed at 11 kHz which 

experiences a frequency shift between healthy and unhealthy conditions. Due to the size of these peaks, the RMSD values 

of the bandwidth which include these peaks are dominated by their contribution. With this said, the regions that show the 

greatest statistical confidence are at approximately 15, 30, and 55 kHz. Additionally, there are regions of statistical 

significance encompassing the peaks at 20, 26, and 31 kHz which were mentioned in the previous section.  Outside of the 

lower frequency areas, there is little statistically significant activity, with the exception being a few small regions at 150 

and 210 kHz. 

Moving on to the map in Figure 7 which compares the healthy and failed implants, it is apparent that many more frequency 

location and bandwidth size options become statistically significant. Additionally, the regions that already displayed a 

statistically significant difference have increased in confidence, suggesting a greater and more consistent difference 

between the healthy and failed condition. The largest change occurred in the 50 to 150 kHz range, particularly when a 

bandwidth size of at least 50 kHz was considered. The best range for detecting failure is still between 10 and 60 kHz. The 

mapped response at 150 kHz has increased in size and confidence from the weakened comparison. Additionally, the 

significant region at 210 kHz is still present but does not display a major change from the weakened comparison. 

 

3.3 Comparison of qualitative and quantitative results 

In order to relate the quantitative results with the features discussed in the qualitative analysis, it is helpful to overlay a 

few example bandwidths which were identified as statistically significant in the quantitative analysis on top of the 

impedance data shown in the qualitative analysis. It should be noted that the example bandwidths selected are not 

exhaustive of all possible bandwidths and serve only to illustrate some of the statistically significant regions. Further, in 

order to detect weakening or failure, any one of these bands can be selected and evaluated independently. For the weakened 

damage condition, which is displayed in Figure 8, an example frequency band is selected that encompassed the peak at 11 

kHz as well as the cluster of peaks at 20, 26, and 31 kHz. Example bands are also selected near 50 kHz as well as at 150 

 

Figure 7. Mapping results for the failed condition. 
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and 210 kHz. From these example bands, it is still apparent that the area of greatest interest is in the range of 10 kHz to 60 

kHz. It should be noted that, although some of the highest impedance values are displayed at above 200 kHz, not much of 

the high frequency range shows consistent difference between the healthy and weakened conditions. It should also be 

noted that the frequency range of 60 kHz to 80 kHz, which was discussed in the qualitative section, did not show a 

statistically significant bandwidth. This is due to the fact that only one weakened sample showed a difference from the 

healthy samples, suggesting that it was an outlier rather than a statistically significant trend. 

Investigating the failed detection bandwidths in Figure 9, it is immediately apparent that the features of interest discussed 

in previous sections have increased in statistical confidence. The peaks at 20, 26, and 31 kHz display a much higher 

confidence during failure when compared to weakening. Additionally, the bands at and around 50 kHz display an increase 

in statistical significance. It should be noted that the failed damage condition displayed statistically significant bandwidths 

on the failed map that were much larger in size; however, these bandwidths are not displayed as examples in this figure as 

they would block out smaller bands. It should be noted additionally that no bandwidth is displayed at 210 kHz as the failed 

condition map did not display a statistically significant region in this frequency range. 

Reflecting on the results presented above, it is apparent that the EMI method is able to effectively detect structural changes 

between the healthy implant samples and the weakened and failed implants samples. Further, it is apparent that these 

 

Figure 8. Example bandwidths which are statistically significant in weakening. 

 

Figure 9. Example bandwidths which are statistically significant in failure. 
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differences are statistically significant across multiple samples and can be measured at a variety of frequency bandwidths. 

From the mapping algorithm, it appears to be that the bandwidths with the highest statistical confidence in the measured 

frequencies lie roughly between 10 kHz and 75 kHz. Additionally, statistical confidence of measured changes increases 

when going from weakened to failed test samples, suggesting that the differences become larger and more consistent with 

increased damage. These key findings provide a positive outlook for using EMI based structural health monitoring in 

detecting mechanical loosening of TKR tibial components. 

4. CONCLUSION

This study investigated the ability of impedance-based structural health monitoring to detect tibial loosening of a total 

knee replacement. For this work, experimental test samples involving actual bone cement, synthetic bone (Sawbone), and 

an actual tibial component were created in order to simulate an implant system. Test samples were created for a healthy 

implant, an implant which has a weakened cement interface, and an implant which has failed due to loosening. Data was 

collected for these test setups and qualitatively and quantitatively compared in order to find differences between the healthy 

and unhealthy samples. An algorithm which mapped statistically significant changes between healthy and unhealthy 

samples was developed and utilized for quantitative analysis. From the data presented, it is apparent that the EMI method 

is able to effectively detect both weakening as well as failure in a loosened TKR. It is also apparent from both the qualitative 

and quantitative data that there is a perceptible difference between an implant which is weakened and one that has failed. 

This work has also displayed key frequency regions which are useful for identifying both weakened and failed mechanical 

conditions. Additional work should be done in order to lay the groundwork for a clinical trial of EMI-based SHM of TKRs. 

A parametric study needs to be performed in order to evaluate whether changing the location of dimensions of the PZT 

transducer affects the sensitivity of the measurement system. Additionally, investigation into how the measurement system 

will maintain biocompatibility without compromising damage sensitivity is necessary. This study has the potential to serve 

as a foundation for those future works as well as laying the long-term groundwork for improved TKR patient outcomes. 
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