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Structural Optimization of Thin-Walled Tubular Structures for Progressive 
Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field 

Abstract 

The design optimization of thin-walled tubular structures is of 
relevance in the automotive industry due to their low cost, ease of 
manufacturing and installation, and high-energy absorption efficiency. 
This study presents a methodology to design thin-walled tubular 
structures for crashworthiness applications. During an impact, thin-
walled tubular structures may exhibit progressive collapse/buckling, 
global collapse/buckling, or mixed collapse/buckling. From a 
crashworthiness standpoint, the most desirable collapse mode is 
progressive collapse due to its high-energy absorption efficiency, 
stable deformation, and low peak crush force (PCF). In the automotive 
industry, thin-walled components have complex structural geometries. 
These complexities and the several loading conditions present in a 
crash reduce the possibility of progressive collapse. The Hybrid 
Cellular Automata (HCA) method has shown to be an efficient 
continuum-based approach in crashworthiness design. All the current 
implementations of the HCA method use a scalar set point to design 
structures with a uniform distribution of a field variable, e.g., stress, 
strain, internal energy density (IED), mutual potential energy. For 
example, using IED and mutual potential energy as the field variable 
result in high stiffness and progressive collapsing structures, 
respectively. This paper presents a modified version of the HCA 
method to design thin-walled structures that collapse progressively. In 
this methodology, the set point has two components, a prescribed 
response field, which promotes progressive collapse, and a variable 
offset value, which satisfies the mass constraint. The numerical 
examples show that this modified HCA method is capable of finding 
material distributions that exhibit progressive collapse, resulting in 
significant improvement in specific energy absorption (SEA) with 
relatively little change in the PCF. 

Introduction 

The number of car accidents is an ever-increasing event due to the 
permanent demand for mass transportation. Within this context, 
researchers of the automotive industry continuously develop 
methodologies to improve the crash behavior of their vehicular 
structures to reduce the risk of injuries or death of the passengers. Thin-
walled tubular components are widely used to manufacture structures 
with the ability to absorb the kinetic energy of the impact in a 
controllable and predictable manner [1]. The constitutive material, 
structural geometry, and loading conditions are the principal factors 
that determine the deformation mechanisms that absorb the kinetic 
energy of the impact. For example, metallic components absorb the 

kinetic energy through plastic deformation, while composite laminate 
components dissipate energy through several failure mechanisms that 
include matrix cracking, fiber fracture, delamination, frond formation, 
and bending [2]. 

The crush behavior of metallic thin-walled tubular structures has been 
well studied in the last decades since the pioneering work of Pugsley 
and Macaulay [3], and Alexander [4] in the 1960s. They 
experimentally studied the collapse of cylindrical tubes under quasi-
static axial loading and developed theoretical models that include 
several features of the crumpling process. Later, Wierzbicki and 
Abramowicz presented a theory assuming rigid plasticity and 
kinematic continuity to study planar surface structures such as boxes 
beams, columns, and plate intersections [5]. Abramowicz and Jones 
modified this kinematic approach to include strain rate sensitivity of 
the material, in order to predict the collapse of circular and square tubes 
under static and dynamic axial loads [6-8]. The advancement in 
computing technologies has enabled the development of numerical 
implementations of the finite element method to study the crush 
behavior of thin-walled components [9-11]. 

Multiple numerical and experimental studies have shown that the 
dominant collapse modes of metallic thin-walled structures under axial 
loading are global, progressive, and mixed collapse. Mixed collapse 
initially starts with progressive collapse and ends in global collapse [1, 
12, 13]. These collapse modes can occur at low (e.g., dynamic 
progressive collapse) or high (e.g., dynamic plastic collapse) impact 
velocities, however at high impact velocities, inertia effects are 
significant [1, 8, 12]. Progressive collapse is the most efficient mode 
for crashworthiness purposes [13]. During a progressive collapse, the 
plastic deformation of large amounts of material is used to absorb the 
kinetic energy of the impact. In general, thin-walled structures are 
designed so that the folding starts at the end closer to the impact and 
progresses along the structure towards the other end [14]. Researchers 
have explored several alternatives to promote progressive collapse in 
thin-walled components. The most popular solutions are the 
modification of the geometrical shape, the use of collapse initiators, 
and the implementation of filler materials. Other non-conventional 
methods include the use of multi-cell sections and functionally graded 
structures [12, 13]. 

The improvement in computational technologies, design optimization 
methods, and finite element analysis (FEA) formulations have 
propelled the design optimization of thin-walled structures for 
crashworthiness. FEA and optimization techniques find designs that 
maximize or minimize a given objective function satisfying certain 
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functional and geometrical constraints. One of the most innovative 
optimization techniques for the design of thin-walled structures is 
topology optimization. This methodology finds optimal distribution of 
material along the design space in order to improve the 
crashworthiness of the component [15, 16]. Gradient-based topology 
optimization techniques require the simplification of the complex 
interactions in the dynamic impact problem. The contact, geometrical, 
and material non-linearities limit the analytical evaluation of 
sensitivities and require an infeasible computational cost if they are 
evaluated numerically. A solution to this problem is the use of non-
gradient based optimization techniques like the Hybrid Cellular 
Automaton (HCA) method [17]. This makes the HCA method an 
efficient technique for the design of components for crashworthiness. 
The HCA method is a continuum-based approach that aims to find 
designs with a uniform distribution of a field variable. A set point 
drives the field variables to a common value by redistributing the 
material along the whole design domain. The HCA method finds 
designs with high stiffness and energy absorbing capabilities when the 
field variable is the IED [18]. Another version of the HCA method use 
the concept of compliant mechanisms to design thin-walled structures 
that collapse progressively. In this implementation, the HCA method 
finds designs with a uniform distribution of the mutual potential energy 
[14, 19]. 

In this work, we propose an extension of the HCA method that includes 
a prescribed response field as one of the components of the set point in 
order to promote progressive collapse. This modified HCA method is 
capable of designing progressively collapsing thin-walled tubular 
structures resulting in significant improvement in SEA with relatively 
little increase in the PCF. 

Topometry Optimization. 

Topometry optimization is an element-based topology optimization 
process whose design variables are the thickness of each shell element. 
The optimization process systematically changes the thickness 
distribution within the design domain to minimize or maximize an 
objective function.  

The standard optimization problem is the minimization of an objective 
function subjected to one or more constraint functions, and bounds in 
the design variable. Common objectives of a topology optimization 
problem are the minimization of structural responses such as 
compliance, von Mises stress, or eigenfrequencies. A common 
constraint in the topology optimization problem is imposed on the 
mass or volume (V) of the design. 

find 𝐱𝐱
min 𝑓𝑓(𝐱𝐱)

s. t. � v(xi) ≤ V
N

i=1
𝐱𝐱 ∈ 𝜒𝜒, 𝜒𝜒 = {𝐱𝐱 ∈ ℝ𝑛𝑛: xmin ≤ xi ≤ xmax},

where 𝐱𝐱 is the vector of design variables, v is a function for the 
elemental mass or volume, N is the number of elements in the design 
domain, and xmin and xmax are the bounds of the design variables [18]. 

Design Methodology 

The HCA method is a computational approach to generate optimal 
topologies. Without explicitly being an optimization technique, the 
HCA method continuously improves the structural response of a 

design by using local rules. The HCA method combines the cellular 
automaton (CA) paradigm with FEA [17, 18]. 

CA is a discrete model that consists of a grid of cells where the state 
of each cell is defined by a finite dimensional array. In the HCA 
method, the state of a CA, 𝛃𝛃𝐢𝐢

(k), at discrete position i and iteration k,
corresponds to the design variable xi

(k) (e.g., density, thickness) and a
field variable Si

(k) (e.g., stress, strain, IED or mutual potential energy
or a function of these quantities) and is given by 

𝛃𝛃𝐢𝐢
(𝐤𝐤) = �

Si
(k)

xi
(k)�. 

Correspondence between the FEA mesh and the grid of CA grid is 
generally preferred but not required. Current HCA implementations 
attempt a uniform distribution of a field variable by redistributing the 
material along the whole design domain. With this purpose, all the field 
variables are driven to a common value called the set point  Si∗ [18]. 
The concept of obtaining optimal designs through uniform distribution 
of a field variable is similar to the fully stressed design approach, 
where the material is distributed over the whole design domain so that 
all the elements equally contribute to the structure’s performance. 

In this work, the set point 𝐒𝐒𝐢𝐢∗ is composed by two components. The first 
component is a prescribed field 𝐒𝐒𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩𝐩𝐩 that resembles the response 
field of a design that progressively collapses. The second component 
is an offset value 𝐩𝐩 that varies at each iteration to satisfy the mass 
constraint. This formulation of the set point is different from traditional 
HCA, which uses a common value for the entire design domain. 

Prescribed Field Variable 

The crucial aspect of the proposed methodology is the implementation 
of a prescribed field component in the set point of the HCA method. 
By prescribing an adequate response field, this modified HCA version 
finds designs with high-energy absorption and structural integrity. The 
prescribed set point S∗ is defined as, 

𝐒𝐒∗ = w ∗ 𝐒𝐒𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩𝐩𝐩 + 𝐩𝐩 

where 𝐒𝐒𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩𝐩𝐩 is the prescribed response field, w is a weight factor 
that controls the contribution of the prescribed field and 𝐩𝐩 is an offset 
vector of value c, that is used to satisfy the mass constraint. At each 
iteration, c is determined using the bisection method. In this modified 
version of the HCA method, the set point is no longer a unique value 
for the whole design space, but rather an N-dimensional quantity that 
promotes progressive collapse. 

Since the purpose of this work is the design of thin-walled structures 
for progressive collapse, the prescribed set point is specified as the 
normalized IED field 𝐒𝐒𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩𝐩𝐩 of structures that progressively 
collapse. Figure 1 is an example of a prescribed response field for 
progressive collapse. 
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Figure 1. Prescribed response field that corresponds to the normalized IED at 
500 ms of a 3 mm square tube impacted by a rigid wall with a velocity of 5 m/s. 

Normalized Field Variable 

In order to perform the material distribution, the final state S�i of a CA 
given by 

S�i =
1

N� + 1
� Sj

N�

j=0

 

is determined. The final state of a cell takes into account the field 
information of itself S0 and the field information Sj of the N� cells in its 
neighborhood. The final state is an averaging scheme that works as a 
filtering technique that reduces checkerboarding patterns. Once the 
final states of all the cells have been determined, a normalization 
operation, 

𝐒𝐒�𝐧𝐧𝐧𝐧𝐩𝐩𝐧𝐧 =
𝐒𝐒� − min(𝐒𝐒�)

max(𝐒𝐒�) − min(𝐒𝐒�)
, 

is applied to the entire design domain. This normalization is required 
to enable the comparison between the response field and the set point. 

Control Based Rules 

In the HCA method, control based rules regulate the distribution of the 
material along the whole design domain. This study uses a PID 
controller, for which the change in the design variable Δxi

(k) of the ith

element xi at the kth iteration is expressed as [20], 

Δxi
(k) = Kpei

(k) + Ki � ei
(k)

k

k−2
dk + KdΔei

(k)

where Kp, Ki, and Kd correspond to the proportional, integral and 
derivative control gains, respectively and ei

(k) is the error between the
final state of the CA and the set point given by 

ei
(k) = S�norm(i) − Si∗.

It is important to note that the set point 𝐒𝐒∗ does not necessarily remain 
constant through the optimization. As stated before, the set point is the 

summation of the spatial distribution of prescribed values 𝐒𝐒𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩𝐩𝐩 
that promotes progressive collapse and an offset value 𝐩𝐩 used to satisfy 
the mass constraint at each iteration. 

In this study, the error 𝐩𝐩(𝐤𝐤) measures the difference between the IED 
distribution of the current design and the set point that represents the 
desired IED distribution. The control rule uses 𝐩𝐩(𝐤𝐤) to distribute the 
material. At an iteration k, the ith CA is in equilibrium when ei

(k) = 0.
If this condition is not satisfied, material is redistributed along the 
whole design domain. In order to avoid numerical instabilities, a limit 
Δxlim over the minimum and maximum change of the design variable 
is applied. The design variable change Δxi

(k) at each iteration is,

Δxi
(k) = max �−Δxlim, min �Δxi

(k),Δxlim��.

The new value of the design variable is 

𝐱𝐱𝐢𝐢
(𝐤𝐤+𝟏𝟏) = 𝐱𝐱𝐢𝐢

(𝐤𝐤) + 𝚫𝚫𝐱𝐱𝐢𝐢
(𝐤𝐤).

Mass Constraint 

By itself, the updating rule for Δxi
(k), does not impose any constraint

in the mass (or volume) on the updated design 𝐱𝐱(k+1). To enforce a 
mass constraint, an appropriate value for the offset value c is 
determined in a secondary inner loop based on the difference in mass 
of the updated design and the desired mass. The offset value c adjusts 
the set point so that after applying the updating rules for 𝚫𝚫𝐱𝐱(𝐤𝐤), the 
final design  𝐱𝐱(k+1) satisfies the mass constraint. 
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Figure 2. Inner loop (bisection method) flowchart used to determine offset value 
c. 

The inner loop follows the bisection method scheme indicated at 
Figure 2. At each outer iteration k, lower c lower and upper c upper 
bounds on c are defined. The offset value is the mean of the lower and 
upper moving limits a and b. These limits are updated depending on 
the difference between the updated mass fraction M(c)(k+1) and the 
desired mass constraint V.  If the difference is positive, the lower 
moving limit a is updated with the current value of c. This operation 
increases the set point 𝐒𝐒∗(c) in order to remove material from the 
design. If material should be added to the design the set point is 
lowered by updating the upper moving limit b as c. This process is 
repeated iteratively until the difference between the current mass 
fraction and the mass constraint is within a tolerance value ε. 

The optimization methodology of this paper, illustrated in Figure 3, is 
described as follows: 

1. Initial design: Define the design domain, material 
properties, loading conditions, and initial thickness 
distribution. 

2. Crash analysis: Determine the IED Ui
(k) at each ith element 

using FEA. 
3. Update material distribution: Use the updating rules and 

the inner optimization loop to determine the new design 
𝐱𝐱(k+1). 

4. Convergence test: Determine if convergence criteria have 
been satisfied. Otherwise, the iterative process is executed 
from step 2. 

 

Figure 3. HCA methodology with prescribed set point for the design of thin-
walled structures. 

Numerical Model 

The explicit nonlinear finite element code LS-DYNA is used to 
perform the dynamic simulations of this study. The thin-walled 
structures are modeled using a linear elastic, piecewise linear plastic 
material model (*MAT_24). The tube models are made of steel whose 
material properties are included in Table 1. Multiple investigations 
have shown an acceptable agreement between plane stress shell-based 
models and experimental results when studying thin-walled tubular 
structures under compressive loads. A plane stress shell element 
formulation with four in-plane integration points (ELEFORM = 16) is 
used in this work. This is an efficient formulation that controls 
hourglass effects by implementing strain interpolants that alleviate 
locking and enhance in-plane bending behavior [21]. 

The thin-walled tube designs are impacted by a rigid plate with a 
prescribed velocity of 5 m/s.  The contact between the tubes and the 
rigid plate is modeled with a friction coefficient of 0.3 to account for 
sliding movement. A single surface contact algorithm with a friction 
coefficient of 0.1 is used to account for the contact between sections 
of the tube during the folding process. 
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Table 1. Material properties of steel used for tube models. 

Property Value 

Density 7800 kg/m3 

Elastic Modulus 207 GPa 

Poisson’s Ratio 0.29 

Yield Stress 253 MPa 

Effective plastic strain Effective stress (MPa) 

0.000 253 

0.048 367 

0.108 420 

0.148 442 

0.208 468 

0.407 524 

0.607 561 

0.987 608 

Numerical Examples 

The proposed methodology is used to design two thin-walled tubular 
structures; a square tube and an S-rail. Both models have a geometric 
imperfection (i.e., dent) near their fixed edge. In order to promote 
progressive collapse, the prescribed response field of the HCA 
algorithm should correspond to a design that has undergone 
progressive collapse. In this study, the prescribed field is the IED of a 
uniform thickness square tube of 3 mm impacted by a rigid wall with 
a prescribed velocity of 5 m/s. The IED values are taken at a time of 
500 ms (Figure 1). All the numerical examples are solved using 100 
iterations of the modified HCA method. An expression that represents 
the global change of the design variable in the last three iterations is 
the index that measures the convergence of the algorithm as follows,  

Convergence =
1
2
���xi

(k−2) − xi
(k−1)�

N

i=1

+ �xi
(k−1) − xi

(k)��

where xi
(k−2), xi

(k−1) and xi
(k) are the thickness values of the ith element

at the last three iterations. 

Square Tube 

The first example is a straight square tube with a geometric 
imperfection. The finite element model has a mesh size of 40×101 with 
an average element size of 0.01×0.01 m. The square tube’s side length 
is 0.1 m. In the FEA model, the nodes of one end of the tube are fixed, 
while the other end is axially impacted by a rigid plate with a 
prescribed constant velocity of 5 m/s (Figure 4). During the 
optimization process, the thickness of each shell element can range 
from 3 to 10 mm. The optimized designs must satisfy a mass constraint 
of 0.5. The weight of the prescribed field w is 0.5 and the simulation 
time is 500 ms.   

Figure 4. Geometry and finite element model of the square tube. 

The initial design (uniform thickness of 5 mm) collapses globally at 
the geometric imperfection (Figure 11.a). The proposed modified HCA 
method continuously changes the thickness distribution in order to 
move the zones with high IED from the geometric imperfection to the 
end of the tube that receives the impact. Figure 5 is a comparison of 
the IED distribution at iterations 1, 3, and 5. Figure 6 shows the change 
in the thickness distribution of the square tube at iterations 1, 3 and 5.  

Figure 5. IED distribution of the square tube designs at iterations 1, 3 and 5. 
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Figure 6. Change in thickness distribution of the square tube designs at 
iterations 1, 3 and 5. 

The proposed methodology find designs with a larger area under the 
force-displacement curve without significantly affecting the PCF as 
illustrated in Figure 7. The energy absorbed by designs at iterations 3 
and 5 is higher than the initial design. 

 

Figure 7. Force – displacement curves of the square tube designs at iterations 
1, 3 and 5. 

When the weight factor w of the prescribed field is 0.50, the algorithm 
presents an oscillatory convergence (Figure 8). Therefore, at the end 
of the searching process, a Pareto front in terms of SEA and PCF is 
generated (Figure 9). One of the members of the Pareto optimal set is 
found at iteration 52 whose thickness distribution is shown in Figure 
10. The design of iteration 52 shows that it is not necessary to 
reinforced the entire surface of the geometric imperfection in order to 
prevent global collapse. Figure 11 compares the collapse of the initial 
square tube and the optimized designs at iteration 52, which feature 

progressive collapse.  The percent change in SEA and PCF, with 
respect to the initial design, is summarized in Table 2. The algorithm 
found designs that improve the SEA by 16% to 64%. No design had 
an increment in the PCF larger than 7%. 

 

Figure 8. Convergence curve of the square tube problem using a weight factor 
of 0.50. 

 

Figure 9. SEA and PCF of optimized square tube designs using a weigh factor 
of 0.50. The Pareto front is shown with blue dots. 

 

Figure 10. Thickness distribution of the square tube at iteration 52 using a 
weight factor of 0.50. 
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Figure 11. Collapse comparison of the (a) uniform thickness and (b) iteration 
52 square tube designs using a weight factor of 0.50. 

Table 2. Change in SEA and PCF (with respect to the initial design) of the 
Pareto front square tube designs; using a weight factor of 0.50. 

Iteration Δ SEA (%) Δ PCF (%) 
18 16.47 -5.97 
68 18.05 0.11 
31 31.26 0.94 
52 48.60 1.89 
62 54.60 3.62 
73 56.71 5.77 
53 64.55 6.27 

S-Rail 

The second example is an S-rail with a geometric imperfection. The 
finite element model has a mesh size of 40×102 with an average 
element size of 0.01×0.01 m. The S-rail has a square cross-section of 
size 0.1 m. In the FEA model, the nodes of one end of the S-rail are 
fixed, while the other end is axially impacted by a rigid plate with a 
prescribed constant velocity of 5 m/s (Figure 12). Similar to the square 
tube example, the thickness of each shell element can range from 3 to 
10 mm. The proposed methodology is used to find the thickness 
distribution that will lead to progressive collapse when using a mass 
fraction of 0.5. In order to assess the effect of the weight factor w of 
the prescribed field in the final designs, values of 0.25, 0.75 and 1.25 
are used. The simulation time is 500 ms. 

 

Figure 12. Geometry and finite element model of the S-rail. 

 

Figure 13. Thickness distribution of the S-rail at iteration 44 using a weight 
factor of 0.75. 

 

Figure 14. Collapse comparison of the (a) uniform thickness and (b) iteration 
44 S-rail designs using a weight factor of 0.75. 
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Figure 13 shows the thickness distribution of an S-rail design at 
iteration 44 using a w of 0.75. Figure 14 compares the collapse of this 
design and the initial design (uniform thickness of 5 mm). Due to 
geometrical complexity of the S-rail, the initial design undergoes 
global collapse (Figure 14.a) while the thickness distribution of the S-
rail at iteration 44 initiates progressive collapse (Figure 14.b). The 
design at iteration 44 presents larger values of PCF and energy 
absorption than the corresponding values of the initial design (Figure 
15). An increment in the PCF of 23% represents an increase of 61% in 
the energy absorption. 

Figure 15. Force – displacement curves of the S-rail designs at iterations 1 and 
44; using a weight factor of 0.75. 

The weight factor w of the prescribed response field determines the 
crashworthiness of the optimized designs and the convergence of the 
algorithm. In terms of the convergence and stability of the algorithm, 
a faster and more stable convergence is achieved when using large w 
factors (Figure 16). From a crashworthiness standpoint, the change in 
SEA and the PCF is inversely proportional to the w factor (Figure 17). 
For example, the designs generated with the smallest weight factor 
(w = 0.25) exhibit the highest SEA and PCF values. Each weight 
factor generates a different Pareto front as shown in Figure 17. Some 
examples of the S-rail designs that are members of these Pareto fronts 
are shown in Figure 18.  

Figure 16. Convergence curves of the S-rail problem using weight factors of 
0.25, 0.75 and 1.25. 

Using as a reference the SEA and PCF of the initial design, the 
modified HCA method finds designs that increase the SEA within a 
range of 38% to 102% with increments in the PCF up to 21% (Table 
3). 

Figure 17. SEA and PCF of optimized S-rail designs and Pareto fronts using 
weight factors of 0.25, 0.75 and 1.25. 
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Figure 18. Thickness distribution of select Pareto front S-rails using weight 
factors of 0.25, 0.75 and 1.25. 

Table 3. Change in SEA and PCF (with respect to the initial design) of the 
Pareto front S-rail designs; using weight factors of 0.25, 0.75 and 1.25. 

Design w Iteration Δ SEA (%) Δ PCF (%) 

1 

1.25 

60 38.85 -0.65 

2 66 40.47 5.30 

3 82 40.62 8.48 

4 86 46.10 8.53 

5 97 46.16 9.84 

6 
0.75 

2 2.42 9.39 

7 74 58.03 13.04 

8 80 64.55 14.67 

9 
0.25 

95 89.29 7.38 

10 85 93.89 20.85 

11 69 102.35 21.15 

Conclusion 

This study presents the use of a modified HCA method, enhanced with 
a prescribed response field, to topometry optimize thin-walled tubular 
structures that exhibit progressive collapse upon impact. The modified 
HCA method uses a set point defined by two components: a prescribed 
response field, which promotes progressive collapse, and an offset 
value, which enforces mass constraints. The numerical examples 
include square tube and s-rail tubular structures with geometric 
imperfections. Despite the geometric imperfections, the proposed 
methodology generates designs featuring progressive collapse and 
consequently better SEA. 

The progressive collapsibility, stiffness, and convergence rate of a 
design are shown to be dependent on the weight factor w of the 
prescribed response field. A small weight factor produced stiffer 
designs with worse progressive collapsibility compared to the 
compliant designs produced with large weight factors. The weight 
factor is also inversely proportional to improvement in SEA and PCF 
over the initial designs. In terms of convergence, large values of 
w produce a faster and more stable optimization process.  

While only axial, direct, impacts were observed in this study, ongoing 
work includes the application of this enhanced HCA method for the 
design of thin-walled tubular structures undergoing oblique impacts. 
Future work also includes an extension of this modified HCA method 
to included prescribed force-displacement curve behavior. 
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