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Bioinformatics

Russ B. ALTMAN AND SEAN D. MOONEY

After reading this chapter, you should know the answers to these questions:

e Why is sequence, structure, and biological pathway information relevant to medicine?

e Where on the Internet should you look for a DNA sequence, a protein sequence, or a
protein structure?

e What are two problems encountered in analyzing biological sequence, structure, and
function?

e How has the age of genomics changed the landscape of bioinformatics?

e What two changes should we anticipate in the medical record as a result of these new
information sources?

e What are two computational challenges in bioinformatics for the future?

22.1 The Problem of Handling Biological Information

Bioinformatics is the study of how information is represented and analyzed in biologi-
cal systems, starting at the molecular level. Whereas clinical informatics deals with
the management of information related to the delivery of health care, bioinformatics
focuses on the management of information related to the underlying basic biological
sciences. As such, the two disciplines are closely related—more so than generally appre-
ciated (see Chapter 1). Bioinformatics and clinical informatics share a concentration on
systems that are inherently uncertain, difficult to measure, and the result of complicated
interactions among multiple complex components. Both deal with living systems that
generally lack straight edges and right angles. Although reductionist approaches to
studying these systems can provide valuable lessons, it is often necessary to analyze
them using integrative models that are not based solely on first principles. Nonetheless,
the two disciplines approach the patient from opposite directions. Whereas applications
within clinical informatics usually are concerned with the social systems of medicine,
the cognitive processes of medicine, and the technologies required to understand human
physiology, bioinformatics is concerned with understanding how basic biological sys-
tems conspire to create molecules, organelles, living cells, organs, and entire organisms.
Remarkably, however, the two disciplines share significant methodological elements, so
an understanding of the issues in bioinformatics can be valuable for the student of clin-
ical informatics.

The discipline of bioinformatics is currently in a period of rapid growth, because the
needs for information storage, retrieval, and analysis in biology—particularly in molec-
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ular biology and genomics—have increased dramatically in the past decade. History has
shown that scientific developments within the basic sciences tend to lag about a decade
before their influence on clinical medicine is fully appreciated. The types of information
being gathered by biologists today will drastically alter the types of information and
technologies available to the health care workers of tomorrow.

22.1.1 Many Sources of Biological Data

There are three sources of information that are revolutionizing our understanding of
human biology and that are creating significant challenges for computational process-
ing. The most dominant new type of information is the sequence information produced
by the Human Genome Project, an international undertaking intended to determine the
complete sequence of human DNA as it is encoded in each of the 23 chromosomes.!
The first draft of the sequence was published in 2001 (Lander et al., 2001) and a final
version was announced in 2003 coincident with the 50th anniversary of the solving of
the Watson and Crick structure of the DNA double helix.> Now efforts are under way
to finish the sequence and to determine the variations that occur between the genomes
of different individuals.® Essentially, the entire set of events from conception through
embryonic development, childhood, adulthood, and aging are encoded by the DNA
blueprints within most human cells. Given a complete knowledge of these DNA
sequences, we are in a position to understand these processes at a fundamental level and
to consider the possible use of DNA sequences for diagnosing and treating disease.

While we are studying the human genome, a second set of concurrent projects is
studying the genomes of numerous other biological organisms, including important
experimental animal systems (such as mouse, rat, and yeast) as well as important human
pathogens (such as Mycobacterium tuberculosis or Haemophilus influenzae). Many of
these genomes have recently been completely determined by sequencing experiments.
These allow two important types of analysis: the analysis of mechanisms of patho-
genicity and the analysis of animal models for human disease. In both cases, the func-
tions encoded by genomes can be studied, classified, and categorized, allowing us to
decipher how genomes affect human health and disease.

These ambitious scientific projects not only are proceeding at a furious pace, but also
are accompanied in many cases by a new approach to biology, which produces a third
new source of biomedical information: proteomics. In addition to small, relatively
focused experimental studies aimed at particular molecules thought to be important for
disease, large-scale experimental methodologies are used to collect data on thousands or
millions of molecules simultaneously. Scientists apply these methodologies longitudi-
nally over time and across a wide variety of organisms or (within an organism) organs
to watch the evolution of various physiological phenomena. New technologies give us
the abilities to follow the production and degradation of molecules on DNA arrays*

Thttp://www.genome.gov/page.cfm?pagelD=10001694.

http://www.genome.gov/10005139.

http://www.genome.gov/page.cfm?pageID=10001688.

4These are small glass plates onto which specific DNA fragments can be affixed and then used to detect other
DNA fragments present in a cell extract.
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(Lashkari et al., 1997), to study the expression of large numbers of proteins with one
another (Bai and Elledge, 1997), and to create multiple variations on a genetic theme to
explore the implications of various mutations on biological function (Spee et al., 1993).
All these technologies, along with the genome-sequencing projects, are conspiring to
produce a volume of biological information that at once contains secrets to age-old
questions about health and disease and threatens to overwhelm our current capabilities
of data analysis. Thus, bioinformatics is becoming critical for medicine in the twenty-
first century.

22.1.2 Implications for Clinical Informatics

The effects of this new biological information on clinical medicine and clinical infor-
matics are difficult to predict precisely. It is already clear, however, that some major
changes to medicine will have to be accommodated.

1. Sequence information in the medical record. With the first set of human genomes now
available, it will soon become cost-effective to consider sequencing or genotyping at
least sections of many other genomes. The sequence of a gene involved in disease may
provide the critical information that we need to select appropriate treatments. For
example, the set of genes that produces essential hypertension may be understood at
a level sufficient to allow us to target antihypertensive medications based on the pre-
cise configuration of these genes. It is possible that clinical trials may use information
about genetic sequence to define precisely the population of patients who would ben-
efit from a new therapeutic agent. Finally, clinicians may learn the sequences of infec-
tious agents (such as of the Escherichia coli strain that causes recurrent urinary tract
infections) and store them in a patient’s record to record the precise pathogenicity and
drug susceptibility observed during an episode of illness. In any case, it is likely that
genetic information will need to be included in the medical record and will introduce
special problems. Raw sequence information, whether from the patient or the
pathogen, is meaningless without context and thus is not well suited to a printed med-
ical record. Like images, it can come in high information density and must be pre-
sented to the clinician in novel ways. As there are for laboratory tests, there may be a
set of nondisease (or normal) values to use as comparisons, and there may be diffi-
culties in interpreting abnormal values. Fortunately, most of the human genome is
shared and identical among individuals; less than 1 percent of the genome seems to
be unique to individuals. Nonetheless, the effects of sequence information on clinical
databases will be significant.

2. New diagnostic and prognostic information sources. One of the main contributions of
the genome-sequencing projects (and of the associated biological innovations) is that
we are likely to have unprecedented access to new diagnostic and prognostic tools.
Single nucleotide polymorphisms (SNPs) and other genetic markers are used to iden-
tify how a patient’s genome differs from the draft genome. Diagnostically, the genetic
markers from a patient with an autoimmune disease, or of an infectious pathogen
within a patient, will be highly specific and sensitive indicators of the subtype of dis-
ease and of that subtype’s probable responsiveness to different therapeutic agents. For
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example, the severe acute respiratory syndrome (SARS) virus was determined to be a
corona virus using a gene expression array containing the genetic information from
several common pathogenic viruses.’ In general, diagnostic tools based on the gene
sequences within a patient are likely to increase greatly the number and variety of
tests available to the physician. Physicians will not be able to manage these tests with-
out significant computational assistance. Moreover, genetic information will be avail-
able to provide more accurate prognostic information to patients. What is the
standard course for this disease? How does it respond to these medications? Over
time, we will be able to answer these questions with increasing precision, and will
develop computational systems to manage this information.

Several genotype-based databases have been developed to identify markers that are
associated with specific phenotypes and identify how genotype affects a patient’s
response to therapeutics. The Human Gene Mutations Database (HGMD) annotates
mutations with disease phenotype.® This resource has become invaluable for genetic
counselors, basic researchers, and clinicians. Additionally, the Pharmacogenomics
Knowledge Base (PharmGKB) collects genetic information that is known to affect a
patient’s response to a drug.” As these data sets, and others like them, continue to
improve, the first clinical benefits from the genome projects will be realized.

3. Ethical considerations. One of the critical questions facing the genome-sequencing
projects is “Can genetic information be misused?” The answer is certainly yes. With
knowledge of a complete genome for an individual, it may be possible in the future
to predict the types of disease for which that individual is at risk years before the dis-
ease actually develops. If this information fell into the hands of unscrupulous
employers or insurance companies, the individual might be denied employment or
coverage due to the likelihood of future disease, however distant. There is even debate
about whether such information should be released to a patient even if it could be
kept confidential. Should a patient be informed that he or she is likely to get a disease
for which there is no treatment? This is a matter of intense debate, and such questions
have significant implications for what information is collected and for how and to
whom that information is disclosed (Durfy, 1993; see Chapter 10).

22.2 The Rise of Bioinformatics

A Dbrief review of the biological basis of medicine will bring into focus the magnitude
of the revolution in molecular biology and the tasks that are created for the discipline
of bioinformatics. The genetic material that we inherit from our parents, that we use
for the structures and processes of life, and that we pass to our children is contained
in a sequence of chemicals known as deoxyribonucleic acid (DNA).® The total collec-

Shttp://www.cde.gov/ncidod/sars/.

®http://archive.uwem.ac.uk/uwem/mg/hgmd0.html.

http://pharmgkb.org.

8If you are not familiar with the basic terminology of molecular biology and genetics, reference to an intro-
ductory textbook in the area would be helpful before you read the rest of this chapter.
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tion of DNA for a single person or organism is referred to as the genome. DNA is a
long polymer chemical made of four basic subunits. The sequence in which these sub-
units occur in the polymer distinguishes one DNA molecule from another, and the
sequence of DNA subunits in turn directs a cell’s production of proteins and all other
basic cellular processes. Genes are discreet units encoded in DNA and they are tran-
scribed into ribonucleic acid (RNA), which has a composition very similar to DNA.
Genes are transcribed into messenger RNA (mRNA) and a majority of mRNA
sequences are translated by ribosomes into protein. Not all RNAs are messengers for
the translation of proteins. Ribosomal RNA, for example, is used in the construction
of the ribosome, the huge molecular engine that translates mRINA sequences into pro-
tein sequences.

Understanding the basic building blocks of life requires understanding the function
of genomic sequences, genes, and proteins. When are genes turned on? Once genes are
transcribed and translated into proteins, into what cellular compartment are the pro-
teins directed? How do the proteins function once there? Equally important, how are the
proteins turned off? Experimentation and bioinformatics have divided the research into
several areas, and the largest are: (1) genome and protein sequence analysis, (2) macro-
molecular structure—function analysis, (3) gene expression analysis, and (4) proteomics.

22.2.1 Roots of Modern Bioinformatics

Practitioners of bioinformatics have come from many backgrounds, including medi-
cine, molecular biology, chemistry, physics, mathematics, engineering, and computer
science. It is difficult to define precisely the ways in which this discipline emerged.
There are, however, two main developments that have created opportunities for the
use of information technologies in biology. The first is the progress in our under-
standing of how biological molecules are constructed and how they perform their
functions. This dates back as far as the 1930s with the invention of electrophoresis,
and then in the 1950s with the elucidation of the structure of DNA and the subse-
quent sequence of discoveries in the relationships among DNA, RNA, and protein
structure. The second development has been the parallel increase in the availability of
computing power. Starting with mainframe computer applications in the 1950s and
moving to modern workstations, there have been hosts of biological problems
addressed with computational methods.

22.2.2 The Genomics Explosion

The Human Genome Project was completed and a nearly finished sequence was
published in 2003.° The benefit of the human genome sequence to medicine is both in
the short and in the long term. The short-term benefits lie principally in diagnosis:
The availability of sequences of normal and variant human genes will allow for the
rapid identification of these genes in any patient (e.g., Babior and Matzner, 1997). The

*http://www.genome.gov/10005139.
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long-term benefits will include a greater understanding of the proteins produced from
the genome: how the proteins interact with drugs; how they malfunction in disease
states; and how they participate in the control of development, aging, and responses
to disease.

The effects of genomics on biology and medicine cannot be understated. We now
have the ability to measure the activity and function of genes within living cells.
Genomics data and experiments have changed the way biologists think about ques-
tions fundamental to life. Where in the past, reductionist experiments probed the
detailed workings of specific genes, we can now assemble those data together to build
an accurate understanding of how cells work. This has led to a change in thinking
about the role of computers in biology. Before, they were optional tools that could
help provide insight to experienced and dedicated enthusiasts. Today, they are
required by most investigators, and experimental approaches rely on them as critical
elements.

22.3 Biology Is Now Data-Driven

Twenty years ago, the use of computers was proving to be useful to the laboratory
researcher. Today, computers are an essential component of modern research. This is
because advances in research methods such as microarray chips, drug screening robots,
X-ray crystallography, nuclear magnetic resonance spectroscopy, and DNA sequencing
experiments have resulted in massive amounts of data. These data need to be properly
stored, analyzed, and disseminated.

The volume of data being produced by genomics projects is staggering. There are now
more than 22.3 million sequences in GenBank comprising more than 29 billion digits.'°
But these data do not stop with sequence data: PubMed contains over 15 million liter-
ature citations, the PDB contains three-dimensional structural data for over 40,000 pro-
tein sequences, and the Stanford Microarray Database (SMD) contains over 37,000
experiments (851 million data points). These data are of incredible importance to biol-
ogy, and in the following sections we introduce and summarize the importance of
sequences, structures, gene expression experiments, systems biology, and their compu-
tational components to medicine.

22.3.1 Sequences in Biology

Sequence information (including DNA sequences, RNA sequences, and protein
sequences) is critical in biology: DNA, RNA, and protein can be represented as a set of
sequences of basic building blocks (bases for DNA and RNA, amino acids for proteins).
Computer systems within bioinformatics thus must be able to handle biological
sequence information effectively and efficiently.

One major difficulty within bioinformatics is that standard database models, such as
relational database systems, are not well suited to sequence information. The basic
problem is that sequences are important both as a set of elements grouped together and

http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html.
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treated in a uniform manner and as individual elements, with their relative locations and
functions. Any given position in a sequence can be important because of its own iden-
tity, because it is part of a larger subsequence, or perhaps because it is part of a large
set of overlapping subsequences, all of which have different significance. It is necessary
to support queries such as, “What sequence motifs are present in this sequence?” It is
often difficult to represent these multiple, nested relationships within standard rela-
tional database schema. In addition, the neighbors of a sequence element are also crit-
ical, and it is important to be able to perform queries such as, “What sequence elements
are seen 20 elements to the left of this element?” For these reasons, researchers in bioin-
formatics are developing object-oriented databases (see Chapter 6) in which a sequence
can be queried in different ways, depending on the needs of the user (Altman, 2003).

22.3.2 Structures in Biology

The sequence information mentioned in Section 22.3.1 is rapidly becoming inexpensive
to obtain and easy to store. On the other hand, the three-dimensional structure infor-
mation about the proteins that are produced from the DNA sequences is much more
difficult and expensive to obtain, and presents a separate set of analysis challenges.
Currently, only about 30,000 three-dimensional structures of biological macromole-
cules are known.!! These models are incredibly valuable resources, however, because an
understanding of structure often yields detailed insights about biological function. As
an example, the structure of the ribosome has been determined for several species and
contains more atoms than any other to date. This structure, because of its size, took
two decades to solve, and presents a formidable challenge for functional annotation
(Cech, 2000). Yet, the functional information for a single structure is vastly outsized by
the potential for comparative genomics analysis between the structures from several
organisms and from varied forms of the functional complex, since the ribosome is
ubiquitously required for all forms of life. Thus a wealth of information comes from
relatively few structures. To address the problem of limited structure information, the
publicly funded structural genomics initiative aims to identify all of the common struc-
tural scaffolds found in nature and grow the number of known structures considerably.
In the end, it is the physical forces between molecules that determine what happens
within a cell; thus the more complete the picture, the better the functional understand-
ing. In particular, understanding the physical properties of therapeutic agents is the
key to understanding how agents interact with their targets within the cell (or within
an invading organism). These are the key questions for structural biology within bioin-
formatics:

1. How can we analyze the structures of molecules to learn their associated function?
Approaches range from detailed molecular simulations (Levitt, 1983) to statistical
analyses of the structural features that may be important for function (Wei and
Altman, 1998).

"For more information see http://www.rcsb.org/pdb/.
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2. How can we extend the limited structural data by using information in the sequence
databases about closely related proteins from different organisms (or within the same
organism, but performing a slightly different function)? There are significant unan-
swered questions about how to extract maximal value from a relatively small set of
examples.

3. How should structures be grouped for the purposes of classification? The choices
range from purely functional criteria (“these proteins all digest proteins”) to purely
structural criteria (“these proteins all have a toroidal shape™), with mixed criteria in
between. One interesting resource available today is the Structural Classification of
Proteins (SCOP),'? which classifies proteins based on shape and function.

22.3.3 Expression Data in Biology

The development of DNA microarrays has led to a wealth of data and unprecedented
insight into the fundamental biological machine. The premise is relatively simple; up to
40,000 gene sequences derived from genomic data are fixed onto a glass slide or filter.
An experiment is performed where two groups of cells are grown in different conditions,
one group is a control group and the other is the experimental group. The control group
is grown normally, while the experimental group is grown under experimental condi-
tions. For example, a researcher may be trying to understand how a cell compensates for
a lack of sugar. The experimental cells will be grown with limited amounts of sugar. As
the sugar depletes, some of the cells are removed at specific intervals of time. When the
cells are removed, all of the mRNA from the cells is separated and converted back to
DNA, using special enzymes. This leaves a pool of DNA molecules that are only from
the genes that were turned on (expressed) in that group of cells. Using a chemical reac-
tion, the experimental DNA sample is attached to a red fluorescent molecule and the
control group is attached to a green fluorescent molecule. These two samples are mixed
and then washed over the glass slide. The two samples contain only genes that were
turned on in the cells, and they are labeled either red or green depending on whether
they came from the experimental group or the control group. The labeled DNA in the
pool sticks or hybridizes to the same gene on the glass slide. This leaves the glass slide
with up to 40,000 spots and genes that were turned on in the cells are now bound with
a label to the appropriate spot on the slide. Using a scanning confocal microscope and
a laser to fluoresce the linkers, the amount of red and green fluorescence in each spot
can be measured. The ratio of red to green determines whether that gene is being turned
off (downregulated) in the experimental group or whether the gene is being turned on
(upregulated). The experiment has now measured the activity of genes in an entire cell
due to some experimental change. Figure 22.1 illustrates a typical gene expression
experiment from SMD. "3

Computers are critical for analyzing these data, because it is impossible for a
researcher to comprehend the significance of those red and green spots. Currently sci-
entists are using gene expression experiments to study how cells from different organ-

12See http://scop.mre-lmb.cam.ac.uk/scop/.
Bhttp://genome-wwwS5.stanford.edu/MicroArray/SMD/.
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Figure 22.1. Measuring global levels of gene expression. Genomics has created a new need for
bioinformatics tools. In this experiment (from the Stanford Microarray Database), stress-induced
changes in the gene expression pattern for bakers yeast (S. cerevisae) are shown.

isms compensate for environmental changes, how pathogens fight antibiotics, and how
cells grow uncontrollably (as is found in cancer). A new challenge for biological com-
puting is to develop methods to analyze these data, tools to store these data, and
computer systems to collect the data automatically.

22.3.4 Systems Biology

With the completion of the human genome and the abundance of sequence, struc-
tural, and gene expression data, a new field of systems biology that tries to under-
stand how proteins and genes interact at a cellular level is emerging. The basic
algorithms for analyzing sequence and structure are now leading to opportunities for
more integrated analysis of the pathways in which these molecules participate and
ways in which molecules can be manipulated for the purpose of combating disease.
A detailed understanding of the role of a particular molecule in the cell requires
knowledge of the context—of the other molecules with which it interacts—and of the
sequence of chemical transformations that take place in the cell. Thus, major research
areas in bioinformatics are elucidating the key pathways by which chemicals are trans-
formed, defining the molecules that catalyze these transformations, identifying the
input compounds and the output compounds, and linking these pathways into
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networks that we can then represent computationally and analyze to understand the
significance of a particular molecule. The Alliance for Cell Signaling is generating
large amounts of data related to how signal molecules interact and affect the concen-
tration of small molecules within the cell.

22.4 Key Bioinformatics Algorithms

There are a number of common computations that are performed in many contexts
within bioinformatics. In general, these computations can be classified as sequence
alignment, structure alignment, pattern analysis of sequence/structure, gene expression
analysis, and pattern analysis of biochemical function.

22.4.1 Early Work in Sequence and Structure Analysis

As it became clear that the information from DNA and protein sequences would be
voluminous and difficult to analyze manually, algorithms began to appear for automat-
ing the analysis of sequence information. The first requirement was to have a reliable
way to align sequences so that their detailed similarities and distances could be exam-
ined directly. Needleman and Wunsch (1970) published an elegant method for using
dynamic programming techniques to align sequences in time related to the cube of the
number of elements in the sequences. Smith and Waterman (1981) published refine-
ments of these algorithms that allowed for searching both the best global alignment of
two sequences (aligning all the elements of the two sequences) and the best local align-
ment (searching for areas in which there are segments of high similarity surrounded by
regions of low similarity). A key input for these algorithms is a matrix that encodes the
similarity or substitutability of sequence elements: When there is an inexact match
between two elements in an alignment of sequences, it specifies how much “partial
credit” we should give the overall alignment based on the similarity of the elements,
even though they may not be identical. Looking at a set of evolutionarily related pro-
teins, Dayhoff et al. (1974) published one of the first matrices derived from a detailed
analysis of which amino acids (elements) tend to substitute for others.

Within structural biology, the vast computational requirements of the experimental
methods (such as X-ray crystallography and nuclear magnetic resonance) for determining
the structure of biological molecules drove the development of powerful structural analy-
sis tools. In addition to software for analyzing experimental data, graphical display algo-
rithms allowed biologists to visualize these molecules in great detail and facilitated the
manual analysis of structural principles (Langridge, 1974; Richardson, 1981). At the same
time, methods were developed for simulating the forces within these molecules as they
rotate and vibrate (Gibson and Scheraga, 1967; Karplus and Weaver, 1976; Levitt, 1983).

The most important development to support the emergence of bioinformatics, how-
ever, has been the creation of databases with biological information. In the 1970s, struc-
tural biologists, using the techniques of X-ray crystallography, set up the Protein Data
Bank (PDB) of the Cartesian coordinates of the structures that they elucidated (as well
as associated experimental details) and made PDB publicly available. The first release,
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in 1977, contained 77 structures. The growth of the database is chronicled on the Web:!'4
the PDB now has over 30,000 detailed atomic structures and is the primary source of
information about the relationship between protein sequence and protein structure.
Similarly, as the ability to obtain the sequence of DNA molecules became widespread,
the need for a database of these sequences arose. In the mid-1980s, the GENBANK
database was formed as a repository of sequence information. Starting with 606
sequences and 680,000 bases in 1982, the GENBANK has grown by much more than 2
million sequences and 100 billion bases. The GENBANK database of DNA sequence
information supports the experimental reconstruction of genomes and acts as a focal
point for experimental groups.'> Numerous other databases store the sequences of pro-
tein molecules'® and information about human genetic diseases.!”

Included among the databases that have accelerated the development of bioinfor-
matics is the Medline'® database of the biomedical literature and its paper-based com-
panion Index Medicus (see Chapter 19). Including articles as far back as 1953 and
brought online free on the Web in 1997, Medline provides the glue that relates many
high-level biomedical concepts to the low-level molecule, disease, and experimental
methods. In fact, this “glue” role was the basis for creating the Entrez and PubMed
systems for integrating access to literature references and the associated databases.

22.4.2 Sequence Alignment and Genome Analysis

Perhaps the most basic activity in computational biology is comparing two biological
sequences to determine (1) whether they are similar and (2) how to align them. The
problem of alignment is not trivial but is based on a simple idea. Sequences that per-
form a similar function should, in general, be descendants of a common ancestral
sequence, with mutations over time. These mutations can be replacements of one amino
acid with another, deletions of amino acids, or insertions of amino acids. The goal of
sequence alignment is to align two sequences so that the evolutionary relationship
between the sequences becomes clear. If two sequences are descended from the same
ancestor and have not mutated too much, then it is often possible to find corresponding
locations in each sequence that play the same role in the evolved proteins. The problem
of solving correct biological alignments is difficult because it requires knowledge about
the evolution of the molecules that we typically do not have. There are now, however,
well-established algorithms for finding the mathematically optimal alignment of two
sequences. These algorithms require the two sequences and a scoring system based on
(1) exact matches between amino acids that have not mutated in the two sequences and
can be aligned perfectly; (2) partial matches between amino acids that have mutated in
ways that have preserved their overall biophysical properties; and (3) gaps in the align-
ment signifying places where one sequence or the other has undergone a deletion or

14See http://www.rcsb.org/pdb/holdings.html.

Bhttp://gdbwww.gdb.org/.

16The Protein Identification Resource: http:/pir.georgetown.edu; Swiss-Prot at http://www.expasy.ch/sprot/.
"Online Mendelian Inheritance in Man: http://www3.ncbi.nlm.nih.gov/omim/.

18See http://www.ncbi.nlm.nih.gov/PubMed/.
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insertion of amino acids. The algorithms for determining optimal sequence alignments
are based on a technique in computer science known as dynamic programming and are
at the heart of many computational biology applications (Gusfield, 1997). Figure 22.2
shows an example of a Smith-Waterman matrix.

Unfortunately, the dynamic programming algorithms are computationally expensive
to apply, so a number of faster, more heuristic methods have been developed. The most
popular algorithm is the Basic Local Alignment Search Tool (BLAST) (Altschul et al.,
1990). BLAST is based on the observations that sections of proteins are often conserved
without gaps (so the gaps can be ignored—a critical simplification for speed) and that
there are statistical analyses of the occurrence of small subsequences within larger
sequences that can be used to prune the search for matching sequences in a large data-
base. Another tool that has found wide use in mining genome sequences is BLAT (Kent,
2003). BLAT is often used to search long genomic sequences with significant perform-
ance increases over BLAST. It achieves its 50-fold increase in speed over other tools by
storing and indexing long sequences as nonoverlapping k-mers, allowing efficient stor-
age, searching, and alignment on modest hardware.

22.4.3 Prediction of Structure and Function from Sequence

One of the primary challenges in bioinformatics is taking a newly determined DNA
sequence (as well as its translation into a protein sequence) and predicting the structure
of the associated molecules, as well as their function. Both problems are difficult, being
fraught with all the dangers associated with making predictions without hard experi-
mental data. Nonetheless, the available sequence data are starting to be sufficient to
allow good predictions in a few cases. For example, there is a Web site devoted to the
assessment of biological macromolecular structure prediction methods.!® Recent results
suggest that when two protein molecules have a high degree (more than 40 percent) of
sequence similarity and one of the structures is known, a reliable model of the other can
be built by analogy. In the case that sequence similarity is less than 25 percent, however,
performance of these methods is much less reliable.

When scientists investigate biological structure, they commonly perform a task anal-
ogous to sequence alignment, called structural alignment. Given two sets of three-
dimensional coordinates for a set of atoms, what is the best way to superimpose them
so that the similarities and differences between the two structures are clear? Such com-
putations are useful for determining whether two structures share a common ancestry
and for understanding how the structures’ functions have subsequently been refined
during evolution. There are numerous published algorithms for finding good structural
alignments. We can apply these algorithms in an automated fashion whenever a new
structure is determined, thereby classifying the new structure into one of the protein
families (such as those that SCOP maintains).

One of these algorithms is MinRMS (Jewett et al., 2003).2 MinRMS works by
finding the minimal root-mean-squared-distance (RMSD) alignments of two protein

Yhttp://predictioncenter.org/.
http://www.cgl.ucsf.edu/Research/minrms/.
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a) Pairwise alignment between human chymotrypsin and human trypsin.

CTRB_HUMAN MAFLWLLSCWALLGTTFGCGVPAIHPVLSGLSR IVNGEDAVPGSWPNQVELODETGFHFC
TRY1_HUMAN MNPLLILTFVA----=-===-== AALARPFDDDDKIVGGYNCEENSVPYQVSLN- - SGYHFC
CTRE_HUMAN GESLISEDWVVTARHCGVRTSDVVVAGEFDOGSDEENIQVLKIAKVFENPKFS ILTVHNND
TREY1_ HUMAN GGELINEQWVVSAGHC - YKSRIQVRLGEHN IEVLEGNEQFINARKI IRHFQYDRKTLNND
CTRE_HUMAN ITLLELATPARFSQTVSAVCLPSADDDFPAGTLCATTGWGKTKYNANKTPDEKLOQAALFL
TRY1_ HUMAN IMLIKLSSRAVINARVSTISLPTAPP- - ATGTKCLISGWGNTASSGADYPDELQCLDARV

CTRE_HUMAN LENAECKESWGRRITDVMIC IVEWGSDTC
TRY1_HUMAN LEQAKCEASYPGEITSNME VVEWEDGCA
CTRE_HUMAN STESSPGVYARVTELIPWVQKILARN-
TRY1_HUMAN QENEKPGVYTEVYNYVEWIKNTIARNS

b) Smith Waterman matrix illustrating the aligned region in A, using the BLOSUM&Z
mutation matrix (Henikoff and Henikoff, 19%4).
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Figure 22.2. Example of sequence alignment using the Smith Waterman algorithm.

structures as a function of matching residue pairs. MinRMS generates a family of
alignments, each with different number of residue position matches. This is useful for
identifying local regions of similarity in a protein with multiple domains. MinRMS
solves two problems. First, it determines which structural superpositions, or alignment,
to evaluate. Then, given this superposition, it determines which residues should be
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considered “aligned” or matched. Computationally, this is a very difficult problem.
MinRMS reduces the search space by limiting superpositions to be the best superposi-
tion between four atoms. It then exhaustively determines all potential four-atom-
matched superpositions and evaluates the alignment. Given this superposition, the
number of aligned residues is determined, as any two residues with C-alpha carbons
(the central atom in all amino acids) less than a certain threshold apart. The minimum
average RMSD for all matched atoms is the overall score for the alignment. In Figure
22.3, an example of such a comparison is shown.

A related problem is that of using the structure of a large biomolecule and the struc-
ture of a small organic molecule (such as a drug or cofactor) to try to predict the ways
in which the molecules will interact. An understanding of the structural interaction
between a drug and its target molecule often provides critical insight into the drug’s
mechanism of action. The most reliable way to assess this interaction is to use experi-
mental methods to solve the structure of a drug-target complex. Once again, these
experimental approaches are expensive, so computational methods play an important
role. Typically, we can assess the physical and chemical features of the drug molecule
and can use them to find complementary regions of the target. For example, a highly
electronegative drug molecule will be most likely to bind in a pocket of the target that
has electropositive features.

Prediction of function often relies on use of sequential or structural similarity met-
rics and subsequent assignment of function based on similarities to molecules of known

orvins | orem | mem  Boevew |
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Figure 22.3. Example of structural comparison. Comparison of the chymotrypsin and trypsin
protein structures using Chimera and MinRMS (http://www.cgl.ucsf.edu/chimera).
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function. These methods can guess at general function for roughly 60 to 80 percent of
all genes, but leave considerable uncertainty about the precise functional details even for
those genes for which there are predictions, and have little to say about the remaining
genes.

22.4.4 Clustering of Gene Expression Data

Analysis of gene expression data often begins by clustering the expression data. A typ-
ical experiment is represented as a large table, where the rows are the genes on each
chip and the columns represent the different experiments, whether they be time points
or different experimental conditions. Within each cell is the red to green ratio of that
gene’s experimental results. Each row is then a vector of values that represent the
results of the experiment with respect to a specific gene. Clustering can then be per-
formed to determine which genes are being expressed similarly. Genes that are associ-
ated with similar expression profiles are often functionally associated. For example,
when a cell is subjected to starvation (fasting), ribosomal genes are often downregu-
lated in anticipation of lower protein production by the cell. It has similarly been
shown that genes associated with neoplastic progression could be identified relatively
easily with this method, making gene expression experiments a powerful assay in can-
cer research (see Guo, 2003, for review). In order to cluster expression data, a distance
metric must be determined to compare a gene’s profile with another gene’s profile. If
the vector data are a list of values, Euclidian distance or correlation distances can be
used. If the data are more complicated, more sophisticated distance metrics may be
employed. Clustering methods fall into two categories: supervised and unsupervised.
Supervised learning methods require some preconceived knowledge of the data at
hand. Usually, the method begins by selecting profiles that represent the different
groups of data, and then the clustering method associates each of the genes with the
representative profile to which they are most similar. Unsupervised methods are more
commonly applied because these methods require no knowledge of the data, and can
be performed automatically.

Two such unsupervised learning methods are the hierarchical and K-means cluster-
ing methods. Hierarchical methods build a dendrogram, or a tree, of the genes based on
their expression profiles. These methods are agglomerative and work by iteratively join-
ing close neighbors into a cluster. The first step often involves connecting the closest
profiles, building an average profile of the joined profiles, and repeating until the entire
tree is built. K-means clustering builds k clusters or groups automatically. The algo-
rithm begins by picking k representative profiles randomly. Then each gene is associated
with the representative to which it is closest, as defined by the distance metric being
employed. Then the center of mass of each cluster is determined using all of the mem-
ber gene’s profiles. Depending on the implementation, either the center of mass or the
nearest member to it becomes the new representative for that cluster. The algorithm
then iterates until the new center of mass and the previous center of mass are within
some threshold. The result is k groups of genes that are regulated similarly. One draw-
back of K-means is that one must chose the value for k. If k is too large, logical “true”
clusters may be split into pieces and if k is too small, there will be clusters that are
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merged. One way to determine whether the chosen k is correct is to estimate the average
distance from any member profile to the center of mass. By varying k, it is best to
choose the lowest k where this average is minimized for each cluster. Another drawback
of K-means is that different initial conditions can give different results, therefore it is
often prudent to test the robustness of the results by running multiple runs with differ-
ent starting configurations (Figure 22.4).

The future clinical usefulness of these algorithms cannot be understated. In 2002,
van’t Veer et al. (2002) found that a gene expression profile could predict the clinical
outcome of breast cancer. The global analysis of gene expression showed that some can-

a)k=4 Figure 22.4. K-means clustering example with
varying k. In this case, k = 3 is the most reasonable.
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cers were associated with different prognosis, not detectable using traditional means.
Another exciting advancement in this field is the potential use of microarray expression
data to profile the molecular effects of known and potential therapeutic agents. This
molecular understanding of a disease and its treatment will soon help clinicians make
more informed and accurate treatment choices.

22.5 Current Application Successes from Bioinformatics

Biologists have embraced the Web in a remarkable way and have made Internet
access to data a normal and expected mode for doing business. Hundreds of data-
bases curated by individual biologists create a valuable resource for the developers of
computational methods who can use these data to test and refine their analysis algo-
rithms. With standard Internet search engines, most biological databases can be
found and accessed within moments. The large number of databases has led to the
development of meta-databases that combine information from individual databases
to shield the user from the complex array that exists. There are various approaches
to this task.

The Entrez system from the National Center for Biological Information (NCBI) gives
integrated access to the biomedical literature, protein, and nucleic acid sequences,
macromolecular and small molecular structures, and genome project links (including
both the Human Genome Project and sequencing projects that are attempting to deter-
mine the genome sequences for organisms that are either human pathogens or impor-
tant experimental model organisms) in a manner that takes advantages of either explicit
or computed links between these data resources.?! The Sequence Retrieval System (SRS)
from the European Molecular Biology Laboratory allows queries from one database to
another to be linked and sequenced, thus allowing relatively complicated queries to be
evaluated.?> Newer technologies are being developed that will allow multiple heteroge-
neous databases to be accessed by search engines that can combine information auto-
matically, thereby processing even more intricate queries requiring knowledge from
numerous data sources.

22.5.1 Sequence and Genome Databases

The main types of sequence information that must be stored are DNA and protein. One
of the largest DNA sequence databases is GENBANK, which is managed by NCBI.?
GENBANK is growing rapidly as genome-sequencing projects feed their data (often in
an automated procedure) directly into the database. Figure 22.5 shows the logarithmic
growth of data in GENBANK since 1982. Entrez Gene curates some of the many genes
within GENBANK and presents the data in a way that is easy for the researcher to use
(Figure 22.6).

2ISee http://www3.ncbi.nlm.nih.gov/Entrez/.
22See http://www.lionbioscience.com/solutions/products/srs/.
Zhttp://www.ncbi.nlm.nih.gov/.
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Figure 22.5. The exponential growth of GENBANK. This plot shows that since 1982 the num-
ber of bases in GENBANK has grown by five full orders of magnitude and continues to grow by

a factor of 10 every 4 years.
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In addition to GENBANK, there are numerous special-purpose DNA databases for
which the curators have taken special care to clean, validate, and annotate the data. The
work required of such curators indicates the degree to which raw sequence data must be
interpreted cautiously. GENBANK can be searched efficiently with a number of algo-
rithms and is usually the first stop for a scientist with a new sequence who wonders “Has
a sequence like this ever been observed before? If one has, what is known about it?”
There are increasing numbers of stories about scientists using GENBANK to discover
unanticipated relationships between DNA sequences, allowing their research programs
to leap ahead while taking advantage of information collected on similar sequences.

A database that has become very useful recently is the University of California Santa
Cruz genome assembly browser>* (Figure 22.7). This data set allows users to search for
specific sequences in the UCSC version of the human genome. Powered by the similar-
ity search tool BLAT, users can quickly find annotations on the human genome that
contain their sequence of interest. These annotations include known variations (muta-
tions and SNPs), genes, comparative maps with other organisms, and many other
important data.
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Figure 22.7. Screen from the UC Santa Cruz genome browser showing chymotrypsin. The rows
in the browser show annotations on the gene sequence. The browser window here shows a small
segment of human chromosome 15, as if the sequence of a, g, c and t are represented from left to
right (5 to 3). The annotations include gene predictions and annotations as well as an alignment
of the similarity of this region of the genome when compared with the mouse genome.

Zhttp://genome.ucsc.edu/.
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22.5.2 Structure Databases

Although sequence information is obtained relatively easily, structural information
remains expensive on a per-entry basis. The experimental protocols used to deter-
mine precise molecular structural coordinates are expensive in time, materials, and
human power. Therefore, we have only a small number of structures for all the mol-
ecules characterized in the sequence databases. The two main sources of structural
information are the Cambridge Structural Database® for small molecules (usually
less than 100 atoms) and the PDB?® for macromolecules (see Section 22.3.2), includ-
ing proteins and nucleic acids, and combinations of these macromolecules with small
molecules (such as drugs, cofactors, and vitamins). The PDB has approximately
20,000 high-resolution structures, but this number is misleading because many of
them are small variants on the same structural architecture (Figure 22.8). If an algo-
rithm is applied to the database to filter out redundant structures, less than 2,000
structures remain.

There are approximately 100,000 proteins in humans; therefore many structures
remain unsolved (e.g., Burley and Bonanno, 2002; Gerstein et al., 2003). In the PDB,

Figure 22.8. A stylized diagram of the structure of chymotrypsin, here shown with two identical
subunits interacting. The red portion of the protein backbone shows o-helical regions, while the
blue portion shows B-strands, and the white denotes connecting coils, while the molecular surface
is overlaid in gray. The detailed rendering of all the atoms in chymotrypsin would make this view
difficult to visualize because of the complexity of the spatial relationships between thousands of
atoms.

Zhttp://www.cede.cam.ac.uk/.
2http://www.rcsb.org/.
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each structure is reported with its biological source, reference information, manual
annotations of interesting features, and the Cartesian coordinates of each atom
within the molecule. Given knowledge of the three-dimensional structure of mole-
cules, the function sometimes becomes clear. For example, the ways in which the med-
ication methotrexate interacts with its biological target have been studied in detail for
two decades. Methotrexate is used to treat cancer and rheumatologic diseases, and it
is an inhibitor of the protein dihydrofolate reductase, an important molecule for cel-
lular reproduction. The three-dimensional structure of dihydrofolate reductase has
been known for many years and has thus allowed detailed studies of the ways in which
small molecules, such as methotrexate, interact at an atomic level. As the PDB
increases in size, it becomes important to have organizing principles for thinking
about biological structure. SCOP?’ provides a classification based on the overall struc-
tural features of proteins. It is a useful method for accessing the entries of the PDB.

22.5.3 Analysis of Biological Pathways and Understanding
of Disease Processes

The ECOCYC project is an example of a computational resource that has comprehen-
sive information about biochemical pathways.”® ECOCYC is a knowledge base of the
metabolic capabilities of E. coli; it has a representation of all the enzymes in the E. coli
genome and of the compounds on which they work. It also links these enzymes to their
position on the genome to provide a useful interface into this information. The network
of pathways within ECOCYC provides an excellent substrate on which useful applica-
tions can be built. For example, they could provide: (1) the ability to guess the function
of a new protein by assessing its similarity to E. coli genes with a similar sequence, (2)
the ability to ask what the effect on an organism would be if a critical component of a
pathway were removed (would other pathways be used to create the desired function, or
would the organism lose a vital function and die?), and (3) the ability to provide a rich
user interface to the literature on E. coli metabolism. Similarly, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) provides pathway datacets for organism genomes.”

22.5.4 Postgenomic Databases

A postgenomic database bridges the gap between molecular biological databases with
those of clinical importance. One excellent example of a postgenomic database is the
Online Mendelian Inheritance in Man (OMIM) database,*® which is a compilation of
known human genes and genetic diseases, along with manual annotations describing the
state of our understanding of individual genetic disorders. Each entry contains links to
special-purpose databases and thus provides links between clinical syndromes and basic
molecular mechanisms (Figure 22.9).

?7See http://scop.mrc-Imb.cam.ac.uk/scop/.
Zhttp://www.ecocyc.org/.
http://www.genome.ad.jp/kegg/.
Ohttp://www3.ncbi.nlm.nih.gov/omim/.
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Figure 22.9. Screen from the Online Mendelian Inheritance in Man (OMIM) database showing
an entry for pancreatic insufficiency, an autosomal recessive disease in which chymotrypsin
(LocusLink entry shown in Figure 22.2) is totally absent (as are some other key digestive
enzymes). (Courtesy of NCBI)

The SMD is another example of a postgenomic database that has proven extremely
useful, but has also addressed some formidable challenges. As discussed previously in
several sections, expression data are often represented as vectors of data values. In addi-
tion to the ratio values, the SMD stores images of individual chips, complete with anno-
tated gene spots (see Figure 22.1). Further, the SMD must store experimental
conditions, the type and protocol of the experiment, and other data associated with the
experiment. Arbitrary analysis can be performed on different experiments stored in this
unique resource.

A critical technical challenge within bioinformatics is the interconnection of data-
bases. As biological databases have proliferated, researchers have been increasingly
interested in linking them to support more complicated requests for information. Some
of these links are natural because of the close connection of DNA sequence to protein
structure (a straightforward translation). Other links are much more difficult because
the semantics of the data items within the databases are fuzzy or because good methods
for linking certain types of data simply do not exist. For example, in an ideal world, a
protein sequence would be linked to a database containing information about that
sequence’s function. Unfortunately, although there are databases about protein func-
tion, it is not always easy to assign a function to a protein based on sequence informa-
tion alone, and so the databases are limited by gaps in our understanding of biology.
Some excellent recent work in the integration of diverse biological databases has been
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done in connection with the NCBI Entrez/PubMed systems,’! the SRS resource,?
DiscoveryLink,* and the Biokleisli project.3*

22.6 Future Challenges as Bioinformatics and Clinical
Informatics Converge

The human genome sequencing projects will be complete within a decade, and if the
only raison d’etre for bioinformatics is to support these projects, then the discipline is
not well founded. If, on the other hand, we can identify a set of challenges for the next
generations of investigators, then we can more comfortably claim disciplinary status for
the field. Fortunately, there is a series of challenges for which the completion of the first
human genome sequence is only the beginning.

22.6.1 Completion of Multiple Human Genome Sequences

With the first human genome in hand, the possibilities for studying the role of genetics
in human disease multiply. A new challenge immediately emerges, however: collecting
individual sequence data from patients who have disease. Researchers estimate that
more than 99 percent of the DNA sequences within humans are identical, but the
remaining sequences are different and account for our variability in susceptibility to and
development of disease states. It is not unreasonable to expect that for particular disease
syndromes, the detailed genetic information for individual patients will provide valuable
information that will allow us to tailor treatment protocols and perhaps let us make
more accurate prognoses. There are significant problems associated with obtaining,
organizing, analyzing, and using this information.

22.6.2 Linkage of Molecular Information with Symptoms,
Signs, and Patients

There is currently a gap in our understanding of disease processes. Although we have a
good understanding of the principles by which small groups of molecules interact, we
are not able to fully explain how thousands of molecules interact within a cell to create
both normal and abnormal physiological states. As the databases continue to accumu-
late information ranging from patient-specific data to fundamental genetic information,
a major challenge is creating the conceptual links between these databases to create an
audit trail from molecular-level information to macroscopic phenomena, as manifested
in disease. The availability of these links will facilitate the identification of important
targets for future research and will provide a scaffold for biomedical knowledge, ensur-
ing that important literature is not lost within the increasing volume of published data.

3thttp://www.ncbi.nlm.nih.gov/PubMed/.
Zhttp://srs.embl-heidelberg.de:8000/.
Bhttp://www.research.ibm.com/journal/sj/402/haas.html.
http://www.geneticxchange.com/.
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22.6.3 Computational Representations of the Biomedical
Literature

An important opportunity within bioinformatics is the linkage of biological experimental
data with the published papers that report them. Electronic publication of the biological
literature provides exciting opportunities for making data easily available to scientists.
Already, certain types of simple data that are produced in large volumes are expected to
be included in manuscripts submitted for publication, including new sequences that are
required to be deposited in GENBANK and new structure coordinates that are deposited
in the PDB. However, there are many other experimental data sources that are currently
difficult to provide in a standardized way, because the data either are more intricate than
those stored in GENBANK or PDB or are not produced in a volume sufficient to fill a
database devoted entirely to the relevant area. Knowledge base technology can be used,
however, to represent multiple types of highly interrelated data.

Knowledge bases can be defined in many ways (see Chapter 20); for our purposes, we
can think of them as databases in which (1) the ratio of the number of tables to the
number of entries per table is high compared with usual databases, (2) the individual
entries (or records) have unique names, and (3) the values of many fields for one record
in the database are the names of other records, thus creating a highly interlinked net-
work of concepts. The structure of knowledge bases often leads to unique strategies for
storage and retrieval of their content. To build a knowledge base for storing informa-
tion from biological experiments, there are some requirements. First, the set of experi-
ments to be modeled must be defined. Second, the key attributes of each experiment
that should be recorded in the knowledge base must be specified. Third, the set of legal
values for each attribute must be specified, usually by creating a controlled terminology
for basic data or by specifying the types of knowledge-based entries that can serve as
values within the knowledge base.

The development of such schemes necessitates the creation of terminology standards,
just as in clinical informatics. The RiboWeb project is undertaking this task in the
domain of RNA biology (Chen et al., 1997). RiboWeb is a collaborative tool for ribo-
somal modeling that has at its center a knowledge base of the ribosomal structural lit-
erature. RiboWeb links standard bibliographic references to knowledge-based entries
that summarize the key experimental findings reported in each paper. For each type of
experiment that can be performed, the key attributes must be specified. Thus, for exam-
ple, a cross-linking experiment is one in which a small molecule with two highly reactive
chemical groups is added to an ensemble of other molecules. The reactive groups attach
themselves to two vulnerable parts of the ensemble. Because the molecule is small, the
two vulnerable areas cannot be any further from each other than the maximum
stretched-out length of the small molecule. Thus, an analysis of the resulting reaction
gives information that one part of the ensemble is “close” to another part. This
experiment can be summarized formally with a few features—for example, target of exper-
iment, cross-linked parts, and cross-linking agent.

The task of creating connections between published literature and basic data is a dif-
ficult one because of the need to create formal structures and then to create the neces-
sary content for each published article. The most likely scenario is that biologists will
write and submit their papers along with the entries that they propose to add to the
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knowledge base. Thus, the knowledge base will become an ever-growing communal
store of scientific knowledge. Reviewers of the work will examine the knowledge-based
elements, perhaps will run a set of automated consistency checks, and will allow the
knowledge base to be modified if they deem the paper to be of sufficient scientific merit.
RiboWeb in prototype form can be accessed on the Web.

22.6.4 A Complete Computational Model of Physiology

One of the most exciting goals for computational biology and bioinformatics is the cre-
ation of a unified computational model of physiology. Imagine a computer program
that provides a comprehensive simulation of a human body. The simulation would be a
complex mathematical model in which all the molecular details of each organ system
would be represented in sufficient detail to allow complex “what if?” questions to be
asked. For example, a new therapeutic agent could be introduced into the system, and
its effects on each of the organ subsystems and on their cellular apparatus could be
assessed. The side-effect profile, possible toxicities, and perhaps even the efficacy of the
agent could be assessed computationally before trials are begun on laboratory animals
or human subjects. The model could be linked to visualizations to allow the teaching of
medicine at all grade levels to benefit from our detailed understanding of physiological
processes—visualizations would be both anatomic (where things are) and functional
(what things do). Finally, the model would provide an interface to human genetic and
biological knowledge. What more natural user interface could there be for exploring
physiology, anatomy, genetics, and biochemistry than the universally recognizable struc-
ture of a human that could be browsed at both macroscopic and microscopic levels of
detail? As components of interest were found, they could be selected, and the available
literature could be made available to the user.

The complete computational model of a human is not close to completion. First, all
the participants in the system (the molecules and the ways in which they associate to
form higher-level aggregates) must be identified. Second, the quantitative equations and
symbolic relationships that summarize how the systems interact have not been eluci-
dated fully. Third, the computational representations and computer power to run such
a simulation are not in place. Researchers are, however, working in each of these areas.
The genome projects will soon define all the molecules that constitute each organism.
Research in simulation and the new experimental technologies being developed will give
us an understanding of how these molecules associate and perform their functions.
Finally, research in both clinical informatics and bioinformatics will provide the com-
putational infrastructure required to deliver such technologies.

22.7 Conclusion

Bioinformatics is closely allied to clinical informatics. It differs in its emphasis on a
reductionist view of biological systems, starting with sequence information and moving

3http://smi-web.stanford.edu/projects/helix/riboweb.html.
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to structural and functional information. The emergence of the genome sequencing
projects and the new technologies for measuring metabolic processes within cells is
beginning to allow bioinformaticians to construct a more synthetic view of biological
processes, which will complement the whole-organism, top-down approach of clinical
informatics. More importantly, there are technologies that can be shared between bioin-
formatics and clinical informatics because they both focus on representing, storing, and
analyzing biological data. These technologies include the creation and management of
standard terminologies and data representations, the integration of heterogeneous data-
bases, the organization and searching of the biomedical literature, the use of machine
learning techniques to extract new knowledge, the simulation of biological processes,
and the creation of knowledge-based systems to support advanced practitioners in the
two fields.

Suggested Readings

Altman R.B., Dunker A.K., Hunter L., Klein T.E. (2003). Pacific Symposium on Biocomputing
’03. Singapore: World Scientific Publishing.

The proceedings of one of the principal meetings in bioinformatics, this is an excellent source for
up-to-date research reports. Other important meetings include those sponsored by the
International Society for Computational Biology (ISCB, http://www.iscb.org/), Intelligent
Systems for Molecular Biology (ISMB, http://iscb.org/conferences.shtml.35), and the RECOMB
meetings on computational biology (http://www.ctw-congress.de/recomb/). ISMB and PSB have
their proceedings indexed in Medline.

Baldi P, Brunak S. (1998). Bioinformatics: The Machine Learning Approach. Cambridge, MA:
MIT Press.

This introduction to the field of bioinformatics focuses on the use of statistical and artificial intel-

ligence techniques in machine learning.

Baldi P., Hatfield, G.W. (2002). DNA Microarrays and Gene Expression. Cambridge: Cambridge
University Press.
Introduces the different microarray technologies and how they are analyzed.

Bishop M., Rawlings C. (Eds.) (1997). DNA and Protein Sequence Analysis—A Practical
Approach. New York: IRL Press at Oxford University Press.

This book provides an introduction to sequence analysis for the interested biologist with limited

computing experience.

Durbin R., Eddy R., Krogh A., Mitchison G. (1998). Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press.

This edited volume provides an excellent introduction to the use of probabilistic representations

of sequences for the purposes of alignment, multiple alignment, and analysis.

Gribskov M., Devereux J. (1991). Sequence Analysis Primer. New York: Stockton Press.
This primer provides a good introduction to the basic algorithms used in sequence analysis,
including dynamic programming for sequence alignment.

Gusfield D. (1997). Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge: Cambridge University Press.
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Gusfield’s text provides an excellent introduction to the algorithmics of sequence and string
analysis, with special attention paid to biological sequence analysis problems.

Hunter L. (1993). Artificial Intelligence and Molecular Biology. Menlo Park, CA: AAAI
Press/MIT Press.

This volume shows a variety of ways in which artificial intelligence techniques have been used to

solve problems in biology.

Malcolm S., Goodship, J. (Eds.) (2001) Genotype to Phenotype (2nd ed.). Oxford: BIOS Scientific
Publishers.
This volume illustrates the different efforts to understand how diseases are linked to genes

Salzberg S., Searls D., Kasif S. (Eds.) (1998). Computational Methods in Molecular Biology. New
York: Elsevier Science.
This volume offers a useful collection of recent work in bioinformatics.

Setubal J., Medianis J. (1997). Introduction to Computational Molecular Biology. Boston: PWS
Publishing.
Another introduction to bioinformatics, this text was written for computer scientists.

Stryer L. (1995). Biochemistry. New York: W.H. Freeman.
The textbook by Stryer is well written, and is illustrated and updated on a regular basis. It
provides an excellent introduction to basic molecular biology and biochemistry.

Questions for Discussion

1. In what ways will bioinformatics and medical informatics interact in the future? Will
the research agendas of the two fields merge, or will they always remain separable?
2. Will the introduction of DNA and protein sequence information change the way that
medical records are managed in the future? Which types of systems will be most

affected (laboratory, radiology, admission and discharge, financial, order entry)?

3. It has been postulated that clinical informatics and bioinformatics are working on the
same problems, but in some areas one field has made more progress than the other.
Identify three common themes. Describe how the issues are approached by each sub-
discipline.

4. Why should an awareness of bioinformatics be expected of clinical informatics pro-
fessionals? Should a chapter on bioinformatics appear in a clinical informatics text-
book? Explain your answers.

5. One major problem with introducing computers into clinical medicine is the extreme
time and resource pressure placed on physicians and other health care workers. Will
the same problems arise in basic biomedical research?

6. Why have biologists and bioinformaticians embraced the Web as a vehicle for dis-
seminating data so quickly, whereas clinicians and clinical informaticians have been
more hesitant to put their primary data online?
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