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Shaher Bahakeem 

WILL MORTALITY RATE OF HIV-INFECTED PATIENTS DECREASE 

AFTER STARTING ANTIRETROVIRAL THERAPY (ART)? 

Background: Many authors have indicated that HIV-infected patients mortality risk is 

higher immediately following the start of Antiretroviral Therapy. However, mortality rate 

of HIV-infected patients is expected to decrease after starting Antiretroviral Therapy 

(ART) potentially complicating accurate statistical estimation of patient survival and, more 

generally, effective monitoring of the evolution of the worldwide epidemic.  

Method: In this thesis, we determine if mortality of HIV-patients increases or decreases 

after the initiation of ART therapy using flexible survival modelling techniques. To achieve 

this objective, this study uses semi-parametric statistical models for fitting and estimating 

survival time using different covariates. A combination of the Weibull distribution with 

splines is compared to the usual Weibull, exponential, and gamma distribution parametric 

models, and the Cox semi-parametric model. The objective of this study is to compare 

these models to find the best fitting model so that it can then be used to improve modeling 

of the survival time and explore the pattern of change in mortality rates for a cohort of 

HIV-infected patients recruited in a care and treatment program in Uganda.  

Results: The analysis shows that flexible survival Weibull models are better than usualoff-

parametric and semi-parametric model fitting according to the AIC criterion.  

Conclusion: The mortality of HIV-patients is high right after the initiation of ART therapy 

and decreases rapidly subsequently. 

 

Constantin Yiannoutsos, PhD, Chair 
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Chapter One: Background 

Several authors like Stringer and colleagues (Stringer, et al., 2006)  and May and colleagues 

(May, et al., 2016) among others have indicated that HIV-infected patients’ mortality risk 

is higher immediately following the start of Antiretroviral Therapy (ART). However, the 

mortality rate of HIV-infected patients is expected to decrease after starting Antiretroviral 

Therapy (ART). This fact poses challenge in accurate statistical estimation of patient 

survival and complicates effective monitoring of the evolution of the worldwide epidemic. 

In general, to estimate survival, a number of  survival time models, such as non-parametric 

models, like the Kaplan-Meier approach, as well as parametric models like those based on 

Weibull, Exponential and Gamma distribution plus semiparametric models like the Cox 

model, are being used to predict mortality and to assess the impact of various predictive 

factors on patient survival. In many situations however, “off the shelf” methods cannot 

accurately assess rapid changes in the hazard of mortality experienced by HIV patients 

starting ART.  More recently, Yiannoutsos (Yiannoutsos, 2009)  used a Weibull models 

with a one and two change points to model the high mortality experienced by HIV patients 

right after the start of therapy.  Another possibility, which I explore in this research, is 

using flexible survival models such as those, for example, developed by Lambert and 

Royston (Lambert & Royston, 2009), which rely on the use of splines to model more 

complex behaviors in the data and provide a close representation of the data being 

analyzed.  

 

The present study uses actual data collected from a sample of people living with HIV, who 

receive care and treatment in health programs in Uganda. We extend the change-point 



2 

approach used by Yiannoutsos (Yiannoutsos, 2009) and compare our spline-based method 

with the semiparametric Cox model (Lin & Halabi, 2013) with flexible survival models of 

Lambert and Royston (Lambert & Royston, 2009) to evaluate their effectiveness in 

modeling the mortality rate of HIV-infected patients. 
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Chapter Two: Methods  

To achieve this objective, this study uses parametric and nonparametric statistical models 

for fitting and estimating survival time using different covariates. Weibull, exponential, 

and gamma distributions will be used for the parametric models, while the Cox Model will 

be used for comparison. The objective of this study is to compare these models to find the 

best fitting model so that it can then be used to improve modeling of the survival time in 

HIV-infected individuals starting therapy in this context and explore the pattern of change 

in mortality rates for a cohort of HIV-infected patients recruited in a care and treatment 

program in Uganda. Among the class of semiparametric models in particular, we explore 

the use of flexible spline-based models for survival which expand traditional survival 

models to reflect changes in survival which may not be fully captured by traditional 

modeling approaches.  

 

Some Existing Models 

The Weibull Model 

The Weibull model is a popular model for survival analysis. The model depends on the 

cumulative distribution function of the Weibull. The hazard function for T survival time 

for the 𝑖𝑡ℎ patient is given by 

ℎ0(𝑡𝑖) = (
𝜌

𝜆
) (

𝑡𝑖

𝜆
)

𝜌−1

 

If covariates are included in the above model then we have 

ℎ(𝑡𝑖; 𝑧) = (
𝜌

𝜆
) (

𝑡𝑖

𝜆
)

𝜌−1

𝑒𝜷′𝒛 
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Where 𝜷 and z represent vectors of coefficients and covariates respectively. In other words, 

the effect of 𝒛 is multiplicative on the hazard. The Weibull model for the cumulative hazard 

up to time 𝑡𝑖 is given by the expression 

𝐻(𝑡𝑖; 𝑧) = ∫ ℎ(𝑢; 𝑧)𝑑𝑢 =  ∫ ℎ𝑜(𝑢)𝑒𝛽′𝑧𝑑𝑢
𝑡𝑖

0

𝑡𝑖

0

 

and we also have  

𝐻(𝑡𝑖; 𝑧) = 𝐻𝑜(𝑡𝑖)𝑒𝜷′𝒛 = (
𝑡

𝜆
)

𝜌

𝑒𝜷′𝒛 

The above model is a proportional hazard model because the hazard at time 𝑡𝑖 and covariate 

z is represented as ℎ(𝑡𝑖; 𝑧) = ℎ0(𝑡𝑖)𝛹  where Ψ = 𝑒𝜷′𝒛 is a constant of proportionality 

independent of time.  The log hazard distribution function is given by  

log 𝐻(𝑡𝑖; 𝑧) =  𝜌 log 𝑡𝑖 − 𝜌 log 𝜆 +  𝜷′ 𝒛 

If ρ = 1 then the above model is equivalent to the exponential survival model. The Weibull 

model is appropriate for many real-life applications and is more flexible in relation to 

exponential model because it does not assume a constant hazard function of death (see for 

example Noura & Read, 1990).  

 

The Generalized Gamma Model 

The generalized gamma is based on a two-parameter distribution with parameters α and σ.  

If α = 1 then the Gamma model becomes the Weibull model. The survival and hazard 

distribution of the Gamma model is complex therefore it is not explicitly written here. For 

further details, see Stacy (1962).  
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The Cox Model 

The Cox model is a famous mathematical model used in medical research and other 

contexts for survival analysis. It represents the hazard for time t as the product of baseline 

hazard and a function of the covariates.  

ℎ(𝑡) =  ℎ𝑜(𝑡)𝑒𝜷′𝒛 

Where z are predictor variables. For further details see Kleinbaum & Klein (2005). 

An attractive assumption of the above model is that it is a proportional hazards model, 

since the “baseline” hazard function ℎ𝑜(𝑡) does not contain any covariate information, 

while the linear term 𝜷′𝒛  in the exponential expression above is free of time. The Cox 

model can be extended if variables z are time-dependent, although this technically violates 

the assumption of proportional hazards. The interpretation of the baseline hazard is the 

hazard that corresponds to the situation where all z are set to zero. This may not have a 

physical interpretation. For example, no one has age equal to zero in a problem involving 

age as a covariate. For further details see Lambert & Royston (2009). 

 

Proposed Models 

The Parametric Flexible Survival Models 

The parametric models listed above make some strong structural assumptions for the nature 

of the hazard and, implicitly, the survival distribution. The Cox model does not make such 

assumptions for the baseline hazard but neither does it model it explicitly. We can also 

consider models which combine a parametric distribution with a non-parametric estimate 

of the underlying hazard. Such parametric flexible survival models are implemented for 
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example in the R package as flexsurv. In general, the software fits the probability density 

of death at time t as; 

𝑓(𝑡|µ(𝑧), 𝛼(𝑧)), where 𝑡 ≥  0  

The cumulative distribution function 𝐹(𝑡), the survivor function 𝑆(𝑡)  =  1 −  𝐹(𝑡), the 

cumulative hazard function 𝐻(𝑡) =  − log 𝑆(𝑡) and hazard ℎ(𝑡)  =  𝑓(𝑡)/𝑆(𝑡) are also 

defined (suppressing the conditioning on the covariate vector z for clarity). In addition, 

µ =  𝛼0 is the parameter of primary interest, which usually determines the mean of the 

distribution. Other parameters 𝛼 =  (𝛼1, . . . ,  𝛼𝑅) are called “ancillary” and determine the 

shape, variance or higher moments (Jackson, 2016).  

 

The model may sometimes include covariates such that all parameters may depend on a 

vector of variable z through link-transformed linear models 𝑔0(µ(𝑧))  =  𝛾0  + 𝛽′𝑧 and 

𝑔𝑟( 𝛼𝑟(𝑧))  =  𝛾𝑟  + 𝛽′𝑧. 𝑔(⋅) will typically be the logarithmic function if the parameter is 

defined to be positive, or the identity function if the parameter is unrestricted (resulting in 

simple linear regression models). Suppose that the location parameter, but not the ancillary 

parameters, depends on covariates. If the hazard function factors as ℎ(𝑡|𝛼, µ(𝑧))  =

 µ(𝑧)ℎ0(𝑡|𝛼), then this is a proportional hazards (PH) model, so that the hazard ratio 

between groups (defined by different values of z) is constant over time t. Alternatively, if 

𝑆(𝑡|µ(𝑧), 𝛼)  =  𝑆0(µ(𝑧)𝑡|𝛼) then it is an accelerated failure time (AFT) model, so that the 

effect of covariates is to speed or slow the passage of time. We are not concerned with 

these models in this thesis. 
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The Royston and Parmar Spline Model 

Royston & Parmar (Royston & Parmar, 2002) presented a spline-based survival model, 

which is a transformation 𝑔(𝑆(𝑡, 𝑧)) of the survival function and it is modelled as a natural 

cubic spline function of log time: 𝑔(𝑆(𝑡, 𝑧))  =  𝑠(𝑥, 𝛾) where 𝑥 = log(𝑡). This model can 

be fitted in flexsurv R package using the function flexsurvspline. It is also achievable in 

STATA as presented in a user-supplied STATA program by (Lambert & Royston, 2009). 

In the R package flexsurv by (Jackson, 2016), a log-log transformation approach was used 

with 𝑔(𝑆(𝑡, 𝑧)) defined as: 

𝑔(𝑆(𝑡, 𝑧)) = log(− log(𝑆(𝑡, 𝑧))) = log(𝐻(𝑡, 𝑧)). 

The last expression log(𝐻(𝑡, 𝑧)) is the log of cumulative hazard function in a proportional-

hazard model. The spline function 𝑠(𝑥, 𝛾) is then parameterized as: 

𝑠(𝑥, 𝛾) =  𝛾0 + 𝛾1𝑥 +  𝛾2 𝑣1(𝑥) + ⋯ + 𝛾𝑚+1 𝑣𝑚(𝑥) 

where  𝑣𝑗(𝑥) is the ith basis function defined as: 

𝑣𝑗(𝑥) = (𝑥 − 𝑘𝑗)
+

3
− 𝜆𝑗(𝑥 − 𝑘𝑚𝑖𝑛)+

3 − (1 − 𝜆𝑗)(𝑥 − 𝑘𝑚𝑎𝑥)+
3      

where 𝜆𝑗 =
𝑘𝑚𝑎𝑥−𝑘𝑗

𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛
, (𝑥 − 𝑎)+ = max (0, 𝑥 − 𝑎) and 𝑘𝑗 are the knots in the spline 

function. If 𝑚 =  0 then there are only two parameters 𝛾0, 𝛾1, and this is a Weibull model 

if 𝑔(⋅) is the log cumulative hazard. 
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Chapter Three: Results 

The model comparisons without covariate fitting summaries are presented in Table 1. The 

goodness of fit measures used are -2log-likelihood and the Akaike Information Criterion 

(AIC). The best model is the model with the lowest AIC or -2log-likelihood. From Table 

1, the best models are proportional odds models with one internal spline knot (scale = 

"odds") and proportional hazards models with one internal spline knot (scale = "hazard"). 

The models are better than all other models including all parametric models and the semi-

parametric Cox models. 

 

Table 1: Comparison of conventional models with Flexible survival models  

(without covariates) 

Models -2 log likelihood Parameters AIC 

Cox 1561.5 0 1561.5 

Weibull 1470.8 2 1474.8 

Generalized gamma 1445.8 3 1451.7 

Log-logistic-Spline 1469.2 2 1473.2 

Log-normal-Spline 1459.8 2 1463.8 

k=1, Proportional Hazard-Spline 1440.4 3 1446.4 

k=1, Proportional Odds-Spline 1440.4 3 1446.5 

k=1, Inverse Normal-Spline 1442.4 3 1448.5 
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Figure 1: Kaplan Meier (step function) patient survival (smooth curve) versus conventional 

models with Flexible survival models (without covariates). 

 

Figure 1. shows that the closest survival estimates to the true observed survival estimates 

(Kaplan Meier) are the proportional hazards models with one internal spline knot (scale = 

"hazard") and proportional odds models with one internal spline knot (scale = "odds"). The 

plot also shows that Weibull, Generalized Gamma, log-logistic, lognormal and over 

(under) estimates the survival (mortality) of the patients immediately following ART 

initiation.  
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Table 2 presents the model comparison with covariate fitting summary. The goodness of 

fit measures used are the -2log-likelihood and Akaike Information Criterion as above. The 

best model is the model with the lowest AIC or -2log-likelihood. From Table 2, the best 

model is proportional odds models with one internal spline knot (scale = "odds"). The 

model is better than all other models especially the off shelf parametric and semi-

parametric Cox models. 

 

Table 2: Comparison of off shelf models with Flexible survival models (with covariates) 

Models -2 log likelihood Parameters AIC 

Cox 1502.9 4 1510.9 

Weibull 1414.8 6 1426.9 

Generalized gamma 1404.2 7 1418.3 

Log-logistic-Spline 1412.4 6 1424.4 

Log-normal-Spline 1405.8 6 1417.9 

k=1, Proportional Hazard-Spline 1385.2 7 1399.1 

k=1, Proportional Odds-Spline 1384.8 7 1398.9 

k=1, Inverse Normal-Spline 1390.4 7 1404.4 
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Figure 2: Kaplan Meier (step function) patient survival (smooth curve) versus conventional 

models with Flexible survival models (with covariates). 

 

Figure 2 shows that the closest survival estimates to the true observed survival estimates 

(Kaplan Meier) are proportional hazards models with one internal spline knot (scale = 

"hazard") and proportional odds models with one internal spline knot (scale = "odds"). 

Furthermore, the plot also shows that the Weibull,  Generalized Gamma, log-logistic, log-

normal, and the proportional hazards models with one internal spline knot (scale = 

"hazard"), proportional odds models with one internal spline knot (scale = "odds") and 

inverse normal models with one internal spline knot (scale = "normal") over (under) 

estimates the survival (mortality) of the patients immediately following ART initiation.  
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Table 3: Summary of the best model (proportional odds models with one internal  

spline knot) 

Parameter Estimate L95% U95% SE Odds -ratio L95% U95% 

𝛾0 -6.132 -8.444 -3.820 1.180 
   

𝛾1 1.190 0.836 1.544 0.181 
   

𝛾2 0.031 0.018 0.044 0.007 
   

Age 0.005 -0.019 0.029 0.012 1.005 0.981 1.030 

basecd4 -0.006 -0.009 -0.004 0.001 0.994 0.991 0.996 

baselogvl 0.547 0.172 0.922 0.191 1.728 1.188 2.514 

male 0.192 -0.245 0.628 0.223 1.212 0.783 1.875 

 

Table 3 shows that the effect of age and gender are not significant in the model given that 

the odds ratio confidence interval includes 1. However, the baseline CD4 counts and 

baseline log of viral loads are significant. The effect of baseline CD4 shows that increase 

in baseline CD4 reduces the hazard rate by 0.994 times per higher cell/μl of CD4-positive 

lymphocyte cells while a one-unit increase in baseline log of viral load increases the hazard 

rates by 1.728 times.  
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Chapter Four: Conclusions 

The objective of this thesis research was to determine how mortality of HIV-infected 

patients changes after the initiation of ART therapy. Comparison of various modeling 

approaches shows that the flexible survival models are superior than a number of 

conventional parametric and semi-parametric models both in terms of model fitting, 

comparing visually their fit against that produced by the Kaplan-Meier approach, as well 

as using the AIC or log-likelihood criteria. We conclude that mortality of HIV-infected 

patients high after the initiation of ART therapy and decreases rapidly.  
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