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Machine learning is becoming the cutting edge, and likely the way of the future, for 

patient surveillance. In this issue of Mayo Clinic Proceedings, Chiofolo et al report a Mayo 

Clinic retrospective, mixed intensive care unit (ICU) study that shows the potential of 

machine learning with regard to monitoring patients in the ICU environment. Using a 

continuous random forest analysis technique, the authors first trained and subsequently 

validated its utility in identifying patients with acute kidney injury (AKI) before an increase 

in serum creatinine level was detected. Acute kidney injury was defined using standard 

Acute Kidney Injury Network (AKIN) staging, and known demographic characteristics, 

hemodynamic variables, ventilation status, fluid details, medications, illness severity, and 

chronic comorbidities, along with laboratory data, were used for classification. This 

dynamic model was run every 15 minutes and achieved a remarkable area under the 

receiver operating characteristic curve of 0.88 in an independent validation cohort, being 

92% sensitive and 68% specific for AKIN stages 1 to 3. In 30% of the patients, AKI was 

detected more than 6 hours in advance of standard classification techniques. In patients 

with AKI stages 2 and 3, the model had even better sensitivity (91%), specificity (71%), 

and early detection (53%). So why is this important in the care of ICU patients? 

 Hospital ICU--acquired AKI remains a common and expensive syndrome 

associated with a variety of diseases, nephrotoxins, and surgeries, and one that imposes 

a high rate of morbidity and mortality and an increased length of hospital stay and costs. 

The early diagnosis of AKI is difficult because it is a clinically silent syndrome, with the 

diagnosis dependent on laboratory determinations and/ or a decrease in urine output. In 

addition, without a specific therapy, some even question why surveillance and early 

diagnosis would be beneficial and therefore necessary. However, a series of studies 
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reported from different hospital centers around the world beginning in 2002 showed that 

nonecritically ill patients initially, and critically ill patients subsequently, with AKI evaluated 

early after diagnosis by nephrology consultation exhibited reduced mortality and need for 

dialysis and improved renal outcomes.2-5 Whether this resulted from additional attention 

to hemodynamic parameters, volume status, and avoidance of nephrotoxic agents (such 

as radiocontrast or nephrotoxic antibiotics) was not determined but was presumed to be 

the case by many nephrologists. This finding was followed by the development and use 

of electronic AKI alert systems based on serum creatinine values to provide early 

recognition across all hospital acute care specialties.6,7 Subsequent use of a clinical 

decision support system based on early AKI detection revealed a decrease in hospital 

mortality, dialysis use, and length of stay.8 These studies set off a cascade of events 

leading to the potentially clinically important use of machine learning approaches so 

elegantly and persuasively described by Chiofolo et al.1 This study thus introduces a 

novel methodological approach that may predict AKI earlier than detecting it by serum 

creatinine elevations and is predicated on the notion that earlier detection would ultimately 

enhance care and improve outcomes beyond electronic AKI alert approaches based on 

serum creatinine level.  

This first step in reducing the time to the diagnosis of AKI was identification of risk 

factors associated with its occurrence. A study by Thakar et al9 produced a risk 

development score for patients undergoing cardiothoracic surgery. Although primarily 

developed for enrollment of high-risk patients in clinical AKI therapeutic studies, 

identification of high-risk patients could also be envisioned as the first step toward 

increasing attention to hemodynamics and monitoring of the results of laboratory tests 
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and urine output. Accompanying this increasing emphasis on identifying patients at a high 

risk for AKI was the search for novel urinary and serum biomarkers for the diagnosis of 

AKI. The use of these AKI biomarkers has a history, consequences, and relevance well 

beyond the scope of this editorial. Although these various biomarkers exhibit varying 

sensitivities in detecting AKI and arise from different pathobiologic mechanisms in the 

acutely injured kidney, they are all united by the common hopedindeed, the common 

promisedthat such biomarkers would identify AKI before serum creatinine concentration 

became diagnostic. This factor relates to many challenges when using serum creatinine 

as the diagnostic tool for AKI, including first the nature of the relationship between serum 

creatinine and glomerular filtration rate (GFR) and second the existence of renal 

functional reserve.10 Serum creatinine is so insensitive to a decrease in GFR in patients 

with normal GFR that in many patients AKI is undetected when quantifying serum 

creatinine. For instance, many individuals donating a kidney for transplant have less than 

a 0.3 mg/dL increase in their serum creatinine level (the increment in serum creatinine 

used by the AKIN to diagnose AKI), even though they have lost one-half of their total 

kidney function. Therefore, loss of up to 50% of total kidney function in these patients 

would not have been registered as AKI. Thus, one use for the novel biomarkers is to 

identify “subclinical AKI” as a serum creatinineenegative but biomarker-positive 

diagnosis, indicating the presence of renal tubular epithelial cell injury. Patients with 

subclinical AKI detected by urinary biomarkers alone are known to have a worse outcome 

than biomarker- and serum creatinineenegative patients.11 Another important use for 

biomarkers is their predictive value in ruling out the likelihood of development of AKI12; 

for example, in this latter study, if the cell cycle urinary biomarkers were absent there was 
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less than a 5% chance that the patient would have development of AKI. However, use of 

these biomarkers is expensive, and this must be considered before considering routine 

surveillance protocols.  

Therefore, attention has turned to other approaches to identify patients with a high 

probability of AKI and alert the physician to its likely occurrence. In particular, both 

electronic health records and noneelectronic health recordebased risk algorithms derived 

from patient demographic characteristics, medical history, vital signs, and laboratory 

values offered a dynamic and inexpensive approach to predict AKI before serum 

creatinine elevations.13,14 Subsequent studies incorporated additional data sources 

including medications, transfusions, diagnostics, and interventions to predict AKI in 

advance of serum creatinine diagnostic criteria.15,16 These retrospective studies used 

machine learning to develop an AKI prediction tool on a training cohort and then applied 

them to a validation cohort.  

The present model differs from previous contributions to this field in several 

important and positive ways. First, the model was run across time, thereby offering a 

dynamic approach to patients in the ICU setting. Second, the model was computer-

calculated, which thus provided near real-time information for surveillance purposes 

without physician input or time. Third, it was based on and used in all ICU patients and 

not subgroups of patients, as many of the previous studies have done.  

Although the authors delineated several limitations in their study, the significance 

of this type of approach will only be proven by a prospective, randomized, double-blind, 

controlled study comparing outcomes in ICU patients with and without the use of such a 
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system. This step will of course be dependent on the actions taken by physicians in 

response to the information supplied. Such a study using e-alerts for AKI defined by 

serum creatinine level, and not machine learning surveillance as in the present study, 

found a reported increase in AKI, a reduced length of stay, and improvements in the 

quality of care but no change in the 30-day AKI mortality rate.17 Perhaps machine 

learningemediated surveillance, with earlier recognition of AKI, will offer additional 

improvements in the care of the patient with AKI. The exciting prospect that machine 

learningemediated surveillance may confer salutary outcomes in AKI and reduce 

attendant morbidity and mortality should be examined in further studies.  

Potential Competing Interests: The author reports no competing interests. 

 

 

 

 

 

 

 

 

 

 



 
BEYOND BIOMARKERS: MACHINE LEARNING IN DIAGNOSING ACUTE KIDNEY 
INJURY  7 
 

References 

1. Chiofolo, C., Chbat, N., Ghosh, E., Eshelman, L., & Kashani, K. (2019). Automated 

Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model. 

Mayo Clinic Proceedings, 94(5), 783–792. https://doi.org/10.1016/j.mayocp.2019.02.009 

2. Balasubramanian, G., Al-Aly, Z., Moiz, A., Rauchman, M., Zhang, Z., Gopalakrishnan, R., 

Balasubramanian, S., & El-Achkar, T. M. (2011). Early Nephrologist Involvement in 

Hospital-Acquired Acute Kidney Injury: A Pilot Study. American Journal of Kidney 

Diseases, 57(2), 228–234. https://doi.org/10.1053/j.ajkd.2010.08.026 

3. Mehta, R. L. (2011). Management of Acute Kidney Injury: It’s the Squeaky Wheel That 

Gets the Oil! Clinical Journal of the American Society of Nephrology, 6(9), 2102–2104. 

https://doi.org/10.2215/CJN.07720811 

4. Mehta, R. L., McDonald, B., Gabbai, F., Pahl, M., Farkas, A., Pascual, M. T. A., Zhuang, 

S., Kaplan, R. M., & Chertow, G. M. (2002). Nephrology consultation in acute renal 

failure: Does timing matter? The American Journal of Medicine, 113(6), 456–461. 

https://doi.org/10.1016/S0002-9343(02)01230-5 

5. Meier, P., Bonfils, R. M., Vogt, B., Burnand, B., & Burnier, M. (2011). Referral Patterns 

and Outcomes in Noncritically Ill Patients with Hospital-Acquired Acute Kidney Injury. 

Clinical Journal of the American Society of Nephrology, 6(9), 2215–2225. 

https://doi.org/10.2215/CJN.01880211 

6. Holmes, J., Roberts, G., Geen, J., Dodd, A., Selby, N. M., Lewington, A., Scholey, G., 

Williams, J. D., & Phillips, A. O. (2018). Utility of electronic AKI alerts in intensive care: 

https://doi.org/10.1016/j.mayocp.2019.02.009
https://doi.org/10.1053/j.ajkd.2010.08.026
https://doi.org/10.2215/CJN.07720811
https://doi.org/10.1016/S0002-9343(02)01230-5
https://doi.org/10.2215/CJN.01880211


 
BEYOND BIOMARKERS: MACHINE LEARNING IN DIAGNOSING ACUTE KIDNEY 
INJURY  8 
 
A national multicentre cohort study. Journal of Critical Care, 44, 185–190. 

https://doi.org/10.1016/j.jcrc.2017.10.024 

7. Selby, N. M., Crowley, L., Fluck, R. J., McIntyre, C. W., Monaghan, J., Lawson, N., & 

Kolhe, N. V. (2012). Use of Electronic Results Reporting to Diagnose and Monitor AKI in 

Hospitalized Patients. Clinical Journal of the American Society of Nephrology, 7(4), 

533–540. https://doi.org/10.2215/CJN.08970911 

8. Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R., & Kellum, J. A. (2018). 

Clinical Decision Support for In-Hospital AKI. Journal of the American Society of 

Nephrology, 29(2), 654–660. https://doi.org/10.1681/ASN.2017070765 

9. Thakar, C. V., Arrigain, S., Worley, S., Yared, J.-P., & Paganini, E. P. (2005). A Clinical 

Score to Predict Acute Renal Failure after Cardiac Surgery. Journal of the American 

Society of Nephrology, 16(1), 162–168. https://doi.org/10.1681/ASN.2004040331 

10. Molitoris, B. A., & Reilly, E. S. (2016). Quantifying Glomerular Filtration Rates in Acute 

Kidney Injury: A Requirement for Translational Success. Seminars in Nephrology, 36(1), 

31–41. https://doi.org/10.1016/j.semnephrol.2016.01.008 

11. Haase, M., Kellum, J. A., & Ronco, C. (2012). Subclinical AKI—an emerging syndrome 

with important consequences. Nature Reviews Nephrology, 8(12), 735–739. 

https://doi.org/10.1038/nrneph.2012.197 

12. Hodgson, L. E., Venn, R. M., Short, S., Roderick, P. J., Hargreaves, D., Selby, N., & 

Forni, L. G. (2019). Improving clinical prediction rules in acute kidney injury with the use 

https://doi.org/10.1016/j.jcrc.2017.10.024
https://doi.org/10.2215/CJN.08970911
https://doi.org/10.1681/ASN.2017070765
https://doi.org/10.1681/ASN.2004040331
https://doi.org/10.1016/j.semnephrol.2016.01.008
https://doi.org/10.1038/nrneph.2012.197


 
BEYOND BIOMARKERS: MACHINE LEARNING IN DIAGNOSING ACUTE KIDNEY 
INJURY  9 
 
of biomarkers of cell cycle arrest: A pilot study. Biomarkers, 24(1), 23–28. 

https://doi.org/10.1080/1354750X.2018.1493617 

 13. Flechet, M., Güiza, F., Schetz, M., Wouters, P., Vanhorebeek, I., Derese, I., Gunst, J., 

Spriet, I., Casaer, M., Van den Berghe, G., & Meyfroidt, G. (2017). AKIpredictor, an 

online prognostic calculator for acute kidney injury in adult critically ill patients: 

Development, validation and comparison to serum neutrophil gelatinase-associated 

lipocalin. Intensive Care Medicine, 43(6), 764–773. https://doi.org/10.1007/s00134-017-

4678-3 

14. Koyner, J. L., Adhikari, R., Edelson, D. P., & Churpek, M. M. (2016). Development of a 

Multicenter Ward–Based AKI Prediction Model. Clinical Journal of the American Society 

of Nephrology, 11(11), 1935–1943. https://doi.org/10.2215/CJN.00280116 

15. Koyner, J. L., Carey, K. A., Edelson, D. P., & Churpek, M. M. (2018). The Development 

of a Machine Learning Inpatient Acute Kidney Injury Prediction Model*. Critical Care 

Medicine, 46(7), 1070–1077. https://doi.org/10.1097/CCM.0000000000003123 

 

16. Mohamadlou, H., Lynn-Palevsky, A., Barton, C., Chettipally, U., Shieh, L., Calvert, J., 

Saber, N. R., & Das, R. (2018). Prediction of Acute Kidney Injury With a Machine 

Learning Algorithm Using Electronic Health Record Data. Canadian Journal of Kidney 

Health and Disease, 5, 2054358118776326. https://doi.org/10.1177/2054358118776326 

17. Selby, N. M., Casula, A., Lamming, L., Stoves, J., Samarasinghe, Y., Lewington, A. J., 

Roberts, R., Shah, N., Johnson, M., Jackson, N., Jones, C., Lenguerrand, E., 

https://doi.org/10.1080/1354750X.2018.1493617
https://doi.org/10.1007/s00134-017-4678-3
https://doi.org/10.1007/s00134-017-4678-3
https://doi.org/10.2215/CJN.00280116
https://doi.org/10.1097/CCM.0000000000003123
https://doi.org/10.1177/2054358118776326


 
BEYOND BIOMARKERS: MACHINE LEARNING IN DIAGNOSING ACUTE KIDNEY 
INJURY  10 
 
McDonach, E., Fluck, R. J., Mohammed, M. A., & Caskey, F. J. (2019). An 

Organizational-Level Program of Intervention for AKI: A Pragmatic Stepped Wedge 

Cluster Randomized Trial. Journal of the American Society of Nephrology, 30(3), 505–

515. https://doi.org/10.1681/ASN.2018090886 

 

https://doi.org/10.1681/ASN.2018090886

