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Abstract

Dysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has 

been shown in several diseases including cancer, Alzheimer’s disease, and chronic obstructive 

pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in 

tumors and hematological malignancies and its increased expression is often associated with a 

poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates 

its anti-cell death functions through binding to FADD (FAS associated death domain protein), an 

adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death 

regulating complexes including the death-inducing signaling complex (DISC) formed by various 

death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-

FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of 

cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death 

induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing 

radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-

promoting immune cells and functions in inflammation, Alzheimer’s disease (AD), and chronic 

obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for 

cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In 

this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic 

factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, 

immunosuppression, Alzheimer’s disease, and COPD.
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Introduction

c-FLIP or CLARP (caspase-like apoptosis-regulatory protein) plays important roles in 

apoptosis, necroptotic cell death [1–4], and autophagy [1]. It also triggers resistance to 

anticancer agents and cytokines [1,5–10], as well as immune suppression [1,9]. Furthermore, 

recent results show that c-FLIP plays important roles in other diseases [11–13]. Therefore, c-

FLIP is a valuable biomarker of prognosis and a reliable molecular target for developing 

therapeutics for cancer [1,9,14,15]. AD, and immune-related diseases. This review 

concentrates on the usefulness of c-FLIP as a biomarker. We discuss how c-FLIP prevents 

apoptosis and induces cytokine and chemotherapy drug resistance in cancer cells, its role for 

cancer prognosis, necrosis and autophagy, and its involvement as a marker of AD and 

COPD.

Literature Review

Apoptosis signaling pathways and role of c-FLIP

Three major signaling pathways, the intrinsic or mitochondrial pathway, the extrinsic or cell 

surface death receptors (DRs) pathway, and the endoplasmic reticulum (ER) stress-induced 

apoptosis pathway are known to regulate apoptosis (Figures 1 and 2) [1,4]. In the 

mitochondrial apoptotic pathway, anti- and pro-apoptotic members of the Bcl-2 family 

cooperate and regulate the release of cytochrome c and other apoptosis-inducing factors 

from the mitochondria to the cytosol [16,17]. Cytochrome c and dATP bind to apoptotic 

proteinase-activating factor-1 (Apaf-1) and make a complex with adenine nucleotides to 

form the apoptosome, which promotes procaspase-9 autoactivation [17,18]. Formation of 

apoptosome is important in the mitochondrial apoptosis pathway and by binding to 

cytochrome c it activates the initiator caspase-9. This caspase in turn activates caspases-2, 

-3, -6, -7, -8, and -10 [17–22]. Successful apoptosis requires direct activation of the pro-

apoptotic proteins Bax and Bak at the mitochondria by a member of the pro-apoptotic family 

of proteins including Bid, Bim, or PUMA [20]. Cytochrome c, release and opening the 

permeability transition pore (PTP), and a collapse of mitochondrial transmembrane potential 

(Δψm) are associated processes and are due to the intake of endoplasmic reticulum (ER) 

Ca2+ release [20–22] into cytosol.

In the death receptor (DR)-mediated or extrinsic apoptosis pathway, Fas/Fas Ligand (FasL) 

[CD95/CD95 Ligand, CD95L] interaction, TRAIL/DR4 or TRAIL/DR5 interaction, or the 

binding of tumor necrosis factor α (TNF-α) with its receptor, TNF receptor 1 (TNFR1), 

initiates apoptosis (Figures 1 and 2). Similarly, binding of the agonistic antibodies to these 

respective receptors also initiates the apoptotic signaling cascade. Following the interactions 

of the DR ligands or DR agonistic antibodies with their respective trimerized DRs, the 

adaptor molecule Fas-Associated Death Domain (FADD) is recruited to the DRs via death 
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domain (DD) interactions, whereas procaspase-8, procaspase-10, and c-FLIP are recruited to 

the death-inducing signaling complex (DISC) via death effector domain (DED) interactions 

[23,24]. Therefore, the DISC consists of trimerized DRs, FADD, procaspase-8/-10, and c-

FLIP. Procaspase-8 and procaspase-10 form a complex with FADD and are autocatalytically 

activated to form the active initiator caspase-8 or caspase-10.

Caspase-8 also becomes activated intrinsically, and not extrinsically, as a result of c-Myc 

inducing the down-regulation of c-FLIPL. Therefore, c-FLIPL may be of importance not 

only in regulating the death receptor ligand-induced apoptosis, but also in apoptotic 

processes triggered from within the cell [25]. Moreover, chromatin immunoprecipitation 

(ChIP) and luciferase assays identified the binding of c-Myc to the c-FLIPL promoter [26]. 

Moreover, after treating I/R rats with the c-Myc inhibitor 10058-F4, a significant decrease in 

c-FLIPL and an increase in cleaved caspases-8 and 3 was seen, providing further support for 

the functional role of c-FLIPL in intrinsic apoptosis [26].

Silencing c-FLIP caused sensitivity of tumor cells to death ligands and chemotherapeutic 

agents in cancer cell models [6,27]. Furthermore, in addition to its function as an anti-

apoptotic protein, c-FLIP has other functions such as increased cell proliferation and 

tumorigenesis [3,27]. In TNF-α-triggered apoptosis (Figure 2), TNFR1 internalizes and 

induces formation of Complex II containing RIP, TRADD, FADD, and caspase-8. Caspase-8 

autoactivation triggers activation of caspases-3 and -7, leading to apoptosis, and c-FLIP 

inhibits capsase-8 and -10 activation and apoptosis [3,28]. A pro-apoptotic Bcl-2 family 

member, Bid, is cleaved to the truncated Bid (tBid) by caspase-8 and -10 and triggers 

mitochondrial cytochrome c release. Thus, tBid links the death receptor pathway to 

mitochondrial pathway. After activation, both caspases-8 and -9 activate caspase- 3 and 

other caspases, and ultimately apoptosis. Mitochondria play a leading role in cellular 

respiration and homeostasis in the cells and transfer various signals for cell survival and 

death to the cytosol.

Ranjan and Pathak [29] demonstrated that c-FLIPL and FADD expression participate in 

balancing redox potential by regulating antioxidant levels. Further, they noticed that 

knockdown of c-FLIPL and induced expression of FADD results in rapid accumulation of 

intracellular ROS accompanied by JNK1 activation to enhance apoptosis. Therefore, besides 

their death receptor signaling, c-FLIPL and FADD play important roles in preventing 

mitochondrial mediated apoptosis. The interaction of the TNF-α trimer to TNF receptor 1 

(TNFR1) also triggers TNFR1 trimerization and Complex I formation participating in 

inducing the antiapoptotic proteins (Figure 2). Complex I contains TNFR1, TRADD, 

TRAF2, and RIP and is able to activate the NF-κB signaling pathway through the MEKK3-

IKK-IκB-NF-κB cascade and subsequently activates the transcription and expression of 

several genes including antiapoptotic factors such as IAPs, Bcl-2, and c-FLIP [3,30]. As 

shown in Figure 2, TNF-α treatment through Complex I can also cause activation of JNK 

and ERK through the MAPK signaling pathway. The ubiquitin#specific proteases system 2 

(USP2) stabilizes the ubiquitin-E3-ligase ITCH and lowers NF-κB basal activity, which 

leads to reduced c-FLIP mRNA production; proteasomal degradation of c- FLIP isoforms is 

also elevated by its negative regulator proteasome ITCH [31]. Therefore, levels of c-FLIP 

protein isoforms decrease and apoptosis increases. The TRAIL receptors, DR4 or DR5, can 
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also promote alternative signaling pathways such as JNK, MAPK, or NF-κB by recruiting 

RIP1 and TRAF2 or TRAF5 to form a secondary signaling complex [32,33]. Activation of 

NF-κB in this pathway also results in increased expression of c-FLIP (Figure 2). Studies 

with TRADD-deficient mouse embryo fibroblasts (MEFs) have documented that RIP1 is 

also recruited to the TRAIL receptor by interacting with TRADD, and both RIP1 and 

TRADD protect against TRAIL-induced apoptosis [5,34]. In these TRADD-deficient MEFs, 

MAPK and NF-κB pathway activation was impaired, confirming the role of TRADD as the 

key adaptor protein mediating nonapoptotic signaling by DRs [5,34]. Indeed, the human T-

cell leukemia virus type 1 (HTLV-1) Tax protein triggers c- FLIP production through 

activation of the IKK-NF-κB cascade the via DR4/DR5 pathway [35].

It is also known that TNF-α and Fas trigger the cleavage of mitogen-activated protein 

kinase/ERK kinase kinase (MEKK), resulting in production of a constitutive active form of 

MEKK1 and leading to JNK activation in c-FLIP knockdown cells [36]. In the absence of 

caspase-8 activity, the death receptors promote death by programmed necrosis (necroptosis) 

which requires the kinases receptor-interacting kinase 1 (RIPK1), RIPK3, and mixed-lineage 

kinase-like protein (MLKL) [37].

The endoplasmic reticulum (ER) stress-induced apoptosis pathway is the result of internal 

cellular stress like the accumulation of damaged glycoproteins [38], or exogenous stress, 

such as chemotherapeutic agents and hypoxia [39], which activate the process of cellular 

responses to stress, termed the unfolded protein response (UPR) [40]. UPR plays a major 

role in the homeostasis of ER. Prolonged or excessive ER stress triggers signaling pathways 

resulting in cell death. Triggering apoptosis via ER stress is usually associated with 

increased expression of DR5, downregulation of c-FLIP, caspase activation, and 

participation of the JNK pathway. ER and mitochondria cross-talk through forming 

mitochondria-ER associated membranes (MAMs) or mitochondria associated ER 

membranes (MERCs) [41] that reciprocally transmit signals under stress conditions, 

triggering synergistic death responses [42].

c-FLIP spliced variants and the structure of c-FLIP isoforms

The mammalian cellular homolog of viral FLICE-inhibitory proteins (v-FLIPS) was termed 

c-FLIP [43]. While c-FLIP consists of a family of alternatively spliced variants, three of 

these variants including the 26 kDa short form (c-FLIPS), the 55 kDa long form (c-FLIPL) 

and the 24 kDa form (c- FLIPR) are expressed as proteins (Figure 3) [20,44]. c-FLIPR is 

smaller than c-FLIPS and has a similar pattern of expression as c-FLIPS during activation of 

primary human T cells and is strongly induced in T cells upon CD3/CD28 co-stimulation 

[45]. In humans, three isoforms of c-FLIP, c- FLIPL (55 kDa), c-FLIPS (27 kDa), and c-

FLIPR (25 kDa) have been identified [1,46]. These isoforms contain two DEDs (Figure 3). 

c-FLIPL also contains a catalytically inactive caspase-like [44] domains (p20 and p12). 

Moreover, c-FLIPS has an additional isoform-specific 19 amino acids in its C-terminal 

domain. Moreover, c-FLIPL has a caspase-8 cleavage site at position Asp-376 (LEVD) and 

cleavage at this site results in generation of the fragment variant p43c-FLIP, p43- FLIP, and 

p22-FLIP [1,47]. The C-terminal region of c-FLIPS and c-FLIPR plays an important role in 

ubiquitination and degradation and their anti-apoptotic function.
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c-FLIP activates cytoprotective and proliferation pathways

As we previously discussed [1] several pathways with major roles in regulating cell survival, 

proliferation, and carcinogenesis can be activated by c-FLIP (Figure 2) [47–55]. DNA-

PK/Akt pathway also can regulate the expression of c-FLIP [56]. Furthermore, interaction of 

c-FLIPL with MKK7 might selectively suppress JNK activation [57]. c-FLIP may also 

regulate pathways participating in the production of inflammatory cytokines, tumor cell 

migration and metastasis [58,59], alter cell cycle progression and enhance cell proliferation 

and carcinogenesis [1,9]. Furthermore, overexpression of c-FLIP can alter cell cycle 

progression and enhance cell proliferation and carcinogenesis [1,9].

c-FLIP as a an anti-apoptotic protein

It has been shown that c-FLIP inhibits death receptor-mediated apoptosis as well as 

apoptosis induced by a variety of cancer chemotherapeutic agents and small molecule 

targeted anticancer compounds and ionizing radiation [1,51]. Additionally, major roles for c-

FLIP in promoting the survival of immunosuppressive tumor-promoting immune cells have 

been discovered [9]. Thus, c-FLIP is a rational anticancer therapeutic target. c-FLIPL 

modulates signals [11] leading to both cell death and cell growth [60]. c-FLIPL is 

upregulated in human tumors [51,61], rendering tumor cells resistant to therapies and 

immune surveillance [62], Regulatory T cells or Tregs turn off immune responses and have 

been used for immunotherapies. Treg cells compared to conventional T cells are more 

susceptible to apoptosis due to low c-FLIP expression [63]. Treg-specific deletion of c-FLIP 

in mice has been shown to cause fatal autoimmune disease [29]. Therefore, c-FLIP function 

is essential for cell homeostasis and prevention of autoimmunity in Treg [63]. Given the fact 

that Treg cells control autoimmunity and inhibit anti-cancer immunity, c-FLIP could be used 

as a therapeutic target to modulate Treg cell abundance and immune responses in cancer or 

autoimmune disease [63].

c-FLIP has been shown to affect immune regulatory pathways enriched in NF-κB response 

to TNF, cytokine network, and genes upregulated by IL-6 via STAT3 [64]. This specific gene 

upregulation may be partially linked to NF-κB activation induced by the nuclear 

translocation of c-FLIP [64]. These authors uncovered a critically important dual role of c-

FLIP in myeloid cells. In mature monocytes, cancer-induced c-FLIP expression promoted 

immune suppressive functions and increased survival. On the other hand, constitutive c-FLIP 

activation in the myeloid lineage induced chronic inflammation associated with 

myeloproliferation and immune suppression. These results revealed that c-FLIP emerged as 

a novel factor for controlling cancer-associated chronic inflammation and immune 

dysfunction.

Role of c-FLIP in programmed necroptosis

Necroptosis is physiologically regulated by specific proteins including RIPK1, receptor 

interacting protein kinase 3 (RIPK3, also known as RIP3), and mixed lineage kinase-like 

protein (MLKL) [1]. Receptor interacting protein kinase 1 (RIPK1), also known as RIP1, is 

a protein which interacts with the TNF-α receptor 1 signaling complex and recent advances 

have shown the critical roles of RIPK1 in cell survival, apoptosis, and necroptosis [65,66]. 

Necroptosis is induced as a result of inhibiting caspase-8 activation regulated by the death 
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platform complex, Ripoptosome, and c-FLIP isoforms can switch apoptotic and necroptotic 

cell death. Moreover, the cellular inhibitor of apoptosis proteins (clAPs) blocks Ripotosome 

formation [1]. Interestingly, while c-FLIPL is able to prevent Ripoptosome formation, c-

FLIPS promotes its formation [1]. Therefore, these c-FLIP isoforms in the Ripoptosome 

determine whether cell death occurs by RIP3-dependent necroptosis or caspase-dependent 

apoptosis [1,67,68]. Molecularly, RIPK1 phosphorylates and activates RIPK3, and activated 

RIPK3 then phosphorylates MLKL. Subsequently, the phosphorylated MLKL oligomer 

form translocates to the plasma membrane and induces necrotic cell death by forming pores 

on the plasma membrane [69].

Autophagy and c-FLIP

In addition to inhibiting apoptosis, c-FLIPL can affect autophagy by (1) direct action on 

autophagy by competing with Atg3 binding to LC3, reducing LC3 processing and inhibiting 

autophagosome formation [1,70,71] and (2) by interacting with procaspase-10, it forms an 

enzymatic complex that can cleave the Bcl-2 associated transcription factor 1 (BCLAF1), 

which is an autophagy inducer. This cleaved BCLAF1 form displaces Bcl-2 from an 

inhibitory complex with Beclin-1 and Beclin-l-induced autophagy [71]. Disrupting or 

preventing formation of the procaspase-10/c-FLIPL complex may induce autophagic cell 

death [71]. Recently, it was shown that inhibition of c-FLIP overcomes acquired resistance 

to sorafenib by reducing endoplasmic reticulum stress (ERS)-related autophagy in 

hepatocellular carcinoma (HCC) [72].

c-FLIP as a valuable prognostic biomarker in various cancers

c-FLIP variants (c-FLIPL and c-FLIPS) serve as prognostic biomarkers for various cancer 

types. As shown in Figure 3, c-FLIPL has a bipartite nuclear localization signal (NLS) and a 

nuclear export signal (NES) in its C-terminal region, required for its transport between the 

nucleus [10] and the cytosol [73,74]. High expression of c-FLIP is lethal in human cancers 

including ovarian, colon, cervical, glioblastoma, breast, colorectal, and prostate cancers, and 

multiple myeloma [1,50,51,61,75,76]. Collectively, c-FLIP expression is frequently 

upregulated in various malignancies and correlates with poor prognoses. 

Immunohistochemical analysis has shown two distinct pools of c-FLIPL, which correlate the 

expression and the subcellular localization of c-FLIPL protein with patient therapeutic and 

survival outcomes [75,76]. Humphreys et al. [9] in a cohort of 184 non-small lung cancer 

(NSCLC) patients demonstrated high cytoplasmic but not nuclear c-FLIP significantly 

correlated with decreased overall survival. Valnet-Rabier et al. [77] showed that in 32 

Burkitt’s lymphoma cases, a mainly cytoplasmic pool of c-FLIP was highly correlated with 

poor patient outcome [77]. Several studies have identified c-FLIP as an independent adverse 

indicator in cancer and found both c-FLIPL and c-FLIPS play important roles in cancer 

patient treatment outcomes and that the expression of particular c-FLIP isoforms has 

prognostic clinical value [66,78–86]. Ullenhag et al. [87] showed in colorectal (CLR) cancer 

patients that c-FLIPL is an independent marker of poor prognosis. Furthermore, a high c-

FLIP level was shown to be an independent adverse prognostic marker in stage II and III 

CLR cancer and might identify patients with a high possibility of relapse [78]. Moreover, c-

FLIPL mRNA significantly correlates with poorer overall survival of a cohort of acute 

myeloid leukemia (AML) patients [88]. Zang et al. [89] using immunohistochemistry found 
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c-FLIP protein expression in IA2-IIIA cervical-squamous cell carcinoma patients and 

showed that high c-FLIP level was an independent negative indicator for disease-free 

survival (p=0.015). Lee et al. [90] found that c-FLIPL expression in invasive breast 

carcinomas with c-FLIPL-positive patients showed a poor prognosis (p<0.01). Furthermore, 

expression of c-FLIPL, lymph nodes status, and molecular subtypes were independent 

prognostic factors for these patients (p<0.05). McCourt et al. [91] have reported that 

expression levels of c-FLIP and heat shock protein 27 (HSP27) in prostate cancer correlated 

with the Gleason score sum and pathologic stage. A prostate cancer Gleason score or grade 

assists in determining how aggressively the tumor is likely to behave. The score helps to 

classify the cancer by grading how quickly it is likely to grow and is an indicator of how 

likely it is to metastasize outside the prostate gland. Elevated expression of c-FLIP was 

shown to antagonize the therapeutic response to androgen receptor targeted therapy in 

castration-resistant prostate cancer (CRPC) [92]. Furthermore, the overexpression of stromal 

c-FLIP promotes androgen-dependent prostate cancer growth and invasion [93]. Another 

significant role of c-FLIP is in the carcinogenesis and aggressiveness of endometrial 

carcinoma and might be a critical prognostic factor in this cancer [94]. Acute human 

papillomavirus (HPV) infection causes cervical intraepithelial neoplasia marked by high 

copy episomal viral DNA and L1/L2 capsid protein expression in the cells that facilitate 

sexual viral transmission. Recently, Nuovo et al. [14] showed that an increased level of c-

FLIP and elevated expression of importin-β, exportin-5, Mcl1, p16, and Ki67 are new 

biomarkers of human papillomavirus infection in acute cervical intraepithelial neoplasia.

Identification of reliable biomarkers remains a crucial factor to evaluate clinical progress in 

pancreatic ductal adenocarcinoma (PDAC), a lethal cancer. Haag et al. [94] found that c-

FLIP overexpression in pancreatic intraepithelial neoplasia (PanIN) lesions (the most 

prevalent type of early lesion, arising from the ductal epithelial cells leading to moderate 

dysplasia, high-grade dysplasia, and invasive carcinoma), and PDAC, compared to normal 

pancreatic ducts. In addition, knockdown of c-FLIP increased death receptor-triggered 

apoptosis in PDAC cell lines. Schmid et al. [95] demonstrated that c-FLIP expression status 

is a [32] valuable prognostic biomarker in PDAC. Subsequently, these investigators explored 

the prognostic significance of c- FLIP protein expression in PDAC in a well-defined cohort 

including clinical parameters, and other PDAC cohorts. Interestingly, the complete lack of c-

FLIP was associated with a highly aggressive clinical course [94]. c-FLIPL is usually 

considered to function as an antiapoptotic protein [96]. However, it is also believed that c-

FLIPL may also function as a pro-apoptotic protein [48], depending on its isoform and 

expression levels [48,96]. Indeed, it is known that high [19] expression of c-FLIPL blocks 

caspase-8 activation [27,96] while physiological levels of c-FLIPL enhance oligomerization 

and autoproteolytic processing of caspase-8 [27,96]. c-FLIPS has been implicated to 

function in antiapoptotic signaling as well as in increased cell death [48]. Interestingly, c-

FLIPS has been shown to promote necroptosis in response to Toll-like receptor 3 stimulation 

and depletion of IAP proteins [68] by increasing the formation of a cytosolic complex 

containing RIP1, FADD, and caspase-8 [1,68]. Therefore, the finding that the absence of c-

FLIP is an indicator of poor prognosis in PDAC may be due to concept that c-FLIPL can 

function both as an antiapoptotic and proapoptotic factor, depending on the tumor 

environment. The absence of c-FLIP in PDAC as an independent indicator of short overall 
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survival implies that c-FLIP has prognostic value. Moreover, further research into the 

prognostic relevance of c-FLIP in PDAC is required to validate the impact of this protein as 

a prognostic biomarker for this devastating disease. Increased c-FLIP expression is a 

frequent event in stomach carcinoma [81,97], and as McCourt et al. [91] suggested, stomach 

carcinoma cells in vivo may require c-FLIP expression to evade apoptosis and its expression 

is associated with tumor cell proliferation in this cancer [98]. Additionally, c-FLIP 

expression and its relationship with clinicopathologic features of melanoma have been 

actively explored [99]. c-FLIP was found to have an important role in the aggressiveness of 

malignant melanoma and is a useful prognostic marker for patients with this disease [99].

c-FLIP as a mediator of anticancer therapy resistance

Increased expression of c-FLIP in various tumor types is associated with the 

chemotherapeutic resistance and silencing of c-FLIP restores the proapoptotic signaling 

cascades efficiently to enhance chemosensitivity [1,12,46,61]. The association between 

expression of c-FLIP variants and poor prognosis relates to the fact that c-FLIP confers 

resistance to a number of anticancer agents [6,48,99–102] including sorafenib [103], the 

inhibitor of RAF-1 and class II receptor tyrosine kinase. c-FLIP triggers TRAIL resistance 

due to its increased expression level in various human tumors as well as in cancer stem cells 

(CSCs) from these tumors [104]. Furthermore, silencing c-FLIP expression or using c-FLIP 

inhibitors sensitizes tumor cells and CSCs to TRAIL and drugs like Taxol, doxorubicin, 

cisplatin, gemcitabine, etc. [46,100,104–106]. CSCs are also resistant to chemotherapy and 

radiotherapy and play a significant role in cancer recurrence [100]. Expression levels of c-

FLIP isoforms were significantly higher in glioblastoma cancer stem cells (GSCs) than the 

entire GBM tumor cell population, and c-FLIP silencing in GSCs enhanced TRAIL and 

temozolomide (TMZ)-induced apoptosis [107]. It is known that breast cancer stem cells 

(BCSCs) mediate tumor recurrence and drive tumor metastasis [105,108]. Piggott et al. 

[108] reported a therapeutic approach to selectively eliminate BCSCs. They found that c-

FLIP is upregulated in BCSCs from various breast cancer subtypes and that silencing of c-

FLIP by its siRNA partially sensitizes these cells to the anticancer agent TRAIL. 

Significantly, their data demonstrated that BCSCs are sensitive to derepression of the 

proapoptotic pathway by TRAIL due to c-FLIP silencing, which results in an 80% reduction 

in primary tumors, a 98% reduction in tumor metastases, and the loss of BCSC self-renewal.

Overall, c-FLIP can serve as a biomarker for detecting CSCs that are refractory to cell death, 

and inhibition of c-FLIP by pharmacological agents or genetic approaches may be a rational 

therapeutic strategy to increase the efficacy of anti-cancer agents and eliminate the 

apoptosis-resistant CSCs. Phenotypic plasticity is a new paradigm for understanding the 

origin of CSCs and the genesis of interconversion between differentiated cells and CSCs, 

which acquire self-renewal, proliferation, and resistance to therapy [109,110]. Recently, 

Thakur and Ray [111] identified NF-κB as a regulator of dedifferentiation, which increases 

both TNF-α and PIK3CA expression only in the enriched side-population (SP) containing 

CSCs, but not in the nonside-population in platinum-resistant ovarian cancer cells treated 

with cisplatin. Activation of PI3K/AKT signaling pathway drives SPs into an 

undifferentiated state, through increased c-FLIP, P21, and P27 expression [111]. 

Interestingly, Piggott et al. [112] recently identified a novel mechanism of acquired 
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vulnerability to an extrinsic apoptosis stimulus in breast cancer primary cultures and BCSCs 

with acquired resistance to tamoxifen (TAMR) or Faslodex (fulvestrant), which has both 

therapeutic and prognostic potential for breast cancer therapy. In parallel with developing an 

endocrine resistance phenotype, these cells acquired TRAIL sensitivity, which correlated 

with decreased expression of intracellular levels of c-FLIP and an increase in JNK-mediated 

phosphorylation of the E3-ligase ITCH, which degrades c-FLIP. Furthermore, while the 

apoptosis inducing agent lapatinib has clinical efficacy in treating trastuzumab-refractory 

HER2-positive breast cancers, significant proportions of patients develop acquired resistance 

to the drug and develop progressive disease. Eustace et al. [113] demonstrated that the 

development of acquired resistance to lapatinib resulted in triggering TRAIL sensitivity. 

Mechanistically, increased sensitivity to TRAIL in these cells was related to decreased 

phosphorylation of AKT, elevated level of FOX03a and reduced expression of c-FLIP [113]. 

c-FLIPL and c-FLIPS display several roles in various cellular signaling pathways, and 

activate and/or upregulate several cytoprotective and pro-survival signaling proteins that 

include Akt, ERK, and Wnt (Figure 4). Strategies to develop new cancer therapeutics that 

improve the efficacy and decrease the toxicity of chemotherapeutic agents by targeting 

specific c-FLIP isoforms is very attractive [48]. The association between c-FLIP expression 

and poor prognosis in tumors may be because c-FLIP confers resistance to several 

anticancer agents [46,100,104,106]. We have reported that increased expression of c-FLIPL 

or c-FLIPS triggers resistance to Taxol by interacting with caspases-8 and -10 and silencing 

c-FLIP isoforms increases Taxol-induced apoptosis in malignant cells [6]. In colorectal 

cancer (CRC), high c-FLIP expression triggered resistance to #CRC standard-of-care 

chemotherapeutic agents, 5-fluorourcil-and oxaliplatin-triggered apoptosis both in vitro and 

in vivo [114]. Moreover, siRNA mediated silencing of c-FLIP isoforms (particularly c-

FLIPL) to significantly increase cell death by these drugs. Similarly, cisplatin in NSCLC 

models, Taxol in leukemia [6], anticancer drugs in renal cancer cells [106] and ionizing 

radiation in NSCLC [114] trigger more apoptosis when c-FLIP was silenced or inhibited by 

pharmacological inhibitors [1,46,85,101,114]. Interestingly, high expression of cytoplasmic 

c-FLIP is indicative of poor prognosis [75]. Recent data also show that inhibition of the 

bromodomain and extra terminal domain (BET) family inhibitors effectively inhibit c-FLIP 

expression and sensitize KRAS-mutated NSCLC cells to pro-apoptotic agents TRAIL and 

cisplatin [115].

c-FLIP and the tumor immune microenvironment

c-FLIP effects on immune effector cells is a potential reason for the correlation between c-

FLIP expression and poor prognosis in tumors with high c-FLIP expression. c-FLIP can 

prevent cell death induced by immune effector cells [63]. In fact, cytotoxic T lymphocytes 

(CTLs) and natural killer cells express Fas ligand (FasL) and TRAIL, but may exert immune 

resistance in tumors with high c-FLIP expression. Overexpression of c-FLIP has been shown 

to allow establishment of tumors in immune-competent mice by blocking Fas-dependent cell 

death triggered by CTLs on their target tumor cells [62]. c-FLIP is also important in the 

survival of monocytic myeloid-derived suppressor cells (MDSCs) through its ability to 

inhibit death receptor mediated extrinsic apoptosis [12,62,116]. These MDSCs are 

immunosuppressive cells that are recruited to tumors [117] and MDSC numbers may be a 

marker for poor prognosis in cancer patients [118,119]. Zhao et al. [120] have shown that 
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signaling of TNFR-2, but not TNFR-1, promoted MDSC survival through upregulation of c-

FLIP. These results demonstrate that TNFR-2 signaling promotes MDSC survival and 

accumulation through c-FLIP overexpression and helps tumor cells evade the immune 

system [120]. Furthermore, c-FLIP is important for FoxP3+ regulatory T cells (Tregs) 

survival and maintaining local immunosuppressive environments [64]. Particularly 

significant is that c-FLIP knockout in dendritic cells enhanced production of TNF-α, IL2, or 

granulocyte-macrophage colony-stimulating factor (GM-CSF), in response to stimulation of 

TLR4, TLR2, and dectin-1 and increased T cell activation [121]. Therefore, c-FLIP [64] has 

a functional role in immunosuppression.

c-FLIP in Alzheimer’s disease (AD)

Abnormal c-FLIP protein expression has been identified in several diseases including 

multiple sclerosis (MS), Alzheimer’s disease (AD), diabetes mellitus, rheumatoid arthritis 

(RA) and various cancers [30]. Fossati et al. [122] have fund that the TRAIL receptors DR4 

and DR5 specifically mediate oligomeric amyloid-β (Aβ) induction of apoptosis in human 

microvascular cerebral endothelial cells through caspases-8 and -9 activation. Direct binding 

assays using receptor chimeras have confirmed the specific interaction of oligomeric Aβ 
with DR4 and DR5. DR4 and DR5 upregulation and colocalization with Aβ at the cell 

membrane suggests their involvement as initiators of the apoptotic cascade [122]. Aβ 
induced c-FLIP downregulation and the caspase-8-triggered mitochondrial pathway of 

apoptosis through engagement of cleaved Bid. Conversely, apoptosis protection achieved 

through siRNA silencing of DR4 and DR5 highlighted their active role downstream 

apoptotic pathways unveiling new targets in (i.e., c-FLIP, DR4, and DR5) for therapeutic 

intervention for AD. Chemicals and miRNAs known to upregulate [77] c-FLIP may be used 

to relieve depression and anxiety among AD patients. The antidepressant fluoxetine 

upregulates expression of c-FLIP through activating the c-FLIP promoter region spanning 

nucleotides −414 to −133, including the CREB and SP1 sites, and inhibits LPS-induced 

apoptosis in hippocampus-derived neural stem cells (NSCs) [123,124]. Moreover, fluoxetine 

treatment significantly inhibited the induction of proinflammatory factor IL-1β, IL-6, and 

TNF-α in the culture medium of LPS-treated NSCs. Therefore, the activation of c-FLIP by 

fluoxetine indicates its role in neuroprotection. Recent results show that fluoxetine could 

activate the Wnt/β-catenin signaling pathway and reduce amyloidosis in AD brain tissue 

[125]. Interestingly, Wnt/β-catenin is activated by c-FLIP [124]. Therefore, c-FLIP either 

directly or indirectly may be involved in initiating and maintaining AD. Accumulation of β-

amyloid and hyperphosphorylated tau protein in AD probably triggers the neurofibrillary 

tangles and plaques in this disease [123]. At the present, there is no histologic marker for 

AD and recent evidence suggests that the hyperphosphorylation of tau protein in neurons 

may be [9,36] critical in AD. Previously, miR-512 has been shown to prevent c-FLIP 

expression and enhance Taxol triggered apoptosis in hepatocellular carcinoma cells [125]. 

Corroborating these results, miR-512 significantly is reduced in AD brain sections with high 

level of hyperphosphorylated tau protein. Interestingly, immunohistochemistry documented 

that c-FLIP and MCL1, the 2 targets of miRNA-512, were significantly upregulated in AD 

brain, were colocalized with the abnormal tau protein, and no apoptosis was noted in these 

areas [12]. Therefore, these results suggest that increased expression of c-FLIP and MCL1 

may change the balance between apoptosis and anti-apoptotis events in neurons. Similarly, 
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using neuronal cell cultures, Nuovo et al. [11] suggested that molecular changes including 

accumulation of MCL1 and c-FLIP in the affected neurons in AD prevent cell death and 

accumulate hyperphosphorylated tau and β-amyloid. There is no authentic histologic marker 

for AD and the above data underscore the significance of MCL1 and c-FLIP as biomarkers 

for this disease and may offer clues to its etiology. Strategies to upregulate these proteins in 

Alzheimer’s disease may help identify agents to prevent or inhibit the progress of this severe 

the disease.

c-FLIP as a biomarker of COPD

Cigarette smoking (CS) is a critical risk factor for COPD [125]. Pouwels et al. [126] found 

the c-FLIP gene, CFLAR, is has a relationship with CS-triggered release of damage-

associated molecular patterns (DAMP) in airway epithelial cells. Recently, Faiz et al. [13] 

studied the effect of CS on CFLAR expression levels in bronchial biopsies from smokers 

and non-smokers and isoform-expression of CFLAR transcripts in air-liquid interface-

differentiated bronchial epithelial cells (BECs). These investigators concluded that CS 

exposure significantly decreased CFLAR expression in BECs. Furthermore, there was a shift 

in relative levels of the isoform c-FLIPS and c-FLIPL isoform transcripts in bronchial 

biopsies of smokers compared to non-smokers, correlated with cell death. The proof of 

concept came from in vitro downregulation of CFLAR by siRNA, which showed increased 

apoptosis, necrosis, and DAMP release as observed in CS. As this study concluded, CS 

exposure downregulates CFLAR expression. Moreover, decrease in c- FLIP might increase 

susceptibility of BECs to immunogenic cell death. Therefore, c-FLIP serves as a molecular 

biomarker for DAMPs and COPD [127–129].

Conclusion

Deregulation of c-FLIP plays crucial roles in several diseases including cancer, AD, and 

COPD. c-FLIP is a master apoptosis regulator frequently overexpressed in various 

malignancies and its upregulation is often correlated with a poor prognosis. It is well 

documented that c-FLIP isoforms induce resistance to death receptor ligands such as 

TRAIL, chemotherapeutic agents, and various cell death mechanisms in malignant cells, and 

is a rational target for modulating therapy-resistant human malignances Transitory 

pharmacological inhibition of c-FLIP is adequate to sensitize cancer cells to 

chemotherapeutics. Agents that indirectly target c-FLIP, such as the drug entinostat (also 

known as MS-275 or SNDX-275) used for aromatase inhibitor-resistant breast cancer, have a 

therapeutic window and usefulness which suggests more specific c-FLIP-targeted agents 

will also be tolerated and effective. Moreover, in addition to high expression of c-FLIP in 

various cancers, specific mutations may serve as biomarkers and provide c-FLIP 

“dependency” in certain cancers. For example, an important function of c-FLIPL is 

activation of the NLRP3 and AIM2 inflammasomes and NSCLC cells with NLRP3 

mutations are hypersensitive to cell death due to the loss of c-FLIP expression. Therefore, 

this hypersensitivity serves as a potential biomarker to identify a subgroup of patients who 

display enhanced vulnerability to c-FLIP-targeted therapies. Significantly, c-FLIP plays 

major roles in promoting the survival of immunosuppressive tumor promoting immune cells 

and function in inflammation, Alzheimer’s disease and COPD. Thus, the foregoing 
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discussion and these conclusions show that c-FLIP can serve as a versatile biomarker for 

cancer prognosis, a diagnostic marker for several diseases, and as a therapeutic window for 

direct targeting.

Acknowledgment

We would like to thank Dr. Mary D. Kraeszig for her editorial assistance. The work in the author’s laboratory on 
drug resistance and apoptosis signaling pathways was supported by research grants from the National Cancer 
Institute (CA 080734, CA 90878, and CA 101743), and Department of Defense (DOD) (OC 06095).

Abbreviations:

FADD Fas-Associated Via Death Domain

c-FLIP Cellular FLICE (FADD-Like IL-1β-Converting Enzyme)-Inhibitory 

Protein

AD Alzheimer’s Disease

COPD Chronic Obstructive Pulmonary Disease

UPR Unfolded Protein Response

References

1. Safa AR (2013) Roles of c-FLIP in apoptosis, necroptosis, and autophagy. J Carcinog Mutagen 6: 3.

2. Cain K, Bratton SB, Langlais C, Walker G, Brown DG, et al. (2000) Apaf-1 oligomerizes into 
biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome 
complexes. J Biol Chem 275: 6067–6070. [PubMed: 10692394] 

3. Bagnoli M, Canevari S, Mezzanzanica D (2010) Cellular FLICE inhibitory protein (c-FLIP) 
signalling: A key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J 
Biochem Cell Biol 42: 210–213. [PubMed: 19932761] 

4. Yu JW, Jeffrey PD, Shi Y (2009) Mechanism of procaspase-8 activation by c-FLIPL. Proc Natl Acad 
Sci USA 106: 8169–8174. [PubMed: 19416807] 

5. Cao X, Pobezinskaya YL, Morgan MJ, Liu ZG (2011) The role of TRADD in TRAIL-induced 
apoptosis and signaling. FASEB J 4: 1353–1358.

6. Day TW, Najafi F, Wu CH, Safa AR (2006) Cellular FLICE-like inhibitory protein (c-FLIP): A 
novel target for Taxol induced apoptosis. Biochem Pharmacol 71: 1551–1561. [PubMed: 16579975] 

7. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, et al. (2018) Endoplasmic reticulum 
stress signaling-from basic mechanisms to clinical applications. FEBS J 286: 241–278. [PubMed: 
30027602] 

8. Pfeffer CM, Singh ATK (2018) Apoptosis: A target for anticancer therapy. Int J Mol Sci 19: E448. 
[PubMed: 29393886] 

9. Humphreys L, Espona-Fiedler M, Longley DB (2018) FLIP as a therapeutic target in cancer. FEBS J 
285: 4104–4123. [PubMed: 29806737] 

10. Perez LE, Parquet N, Shain K, Nimmanapalli R, Alsina M, et al. (2008) Bone marrow stroma 
confers resistance to Apo2 ligand/TRAIL in multiple myeloma in part by regulating c-FLIP. J 
Immunol 180: 1545–1555. [PubMed: 18209050] 

11. Nuovo G, Paniccia B, Mezache L, Quiñónez M, Williams J, et al. (2017) Diagnostic pathology of 
Alzheimer’s disease from routine microscopy to immunohistochemistry and experimental 
correlations. Ann Diagn Pathol 28: 24–29. [PubMed: 28648936] 

12. Mezache L, Mikhail M, Garofalo M, Nuovo GJ (2015) Reduced miR-512 and the elevated 
expression of its targets cFLIP and MCL1 localize to neurons with hyperphosphorylated Tau 

Safa et al. Page 12

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein in Alzheimer disease. Appl Immunohistochem Mol Morphol 23: 615–623. [PubMed: 
26258756] 

13. Faiz A, Heijink IH, Vermeulen CJ, Guryev V, Berge MVD, et al. (2018) Cigarette smoke exposure 
decreases CFLAR expression in the bronchial epithelium, augmenting susceptibility for lung 
epithelial cell death and DAMP release. Sci Rep 8: 124–126. [PubMed: 29317666] 

14. Nuovo GJ, De-Andrade CV, Wells SI, Brusadelli M, Nicol AF (2018) New biomarkers of human 
papillomavirus infection in acute cervical intraepithelial neoplasia. Ann Diagn Pathol 36: 21–27. 
[PubMed: 29966832] 

15. Li X, Pan X, Zhang H, Lei D, Liu D, et al. (2008) Overexpression of c-FLIP in head and neck 
squamous cell carcinoma and its clinicopathologic correlations. J Cancer Res Clin Oncol 134: 
609–615. [PubMed: 17922291] 

16. Grimm S (2012) The ER-mitochondria interface: The social network of cell death. Biochem 
Biophys Acta 1823: 327–334. [PubMed: 22182703] 

17. Shakeri R, Kheirollahi A, Davoodi J (2017) Apaf-1: Regulation and function in cell death. 
Biochimie 135: 111–125. [PubMed: 28192157] 

18. Edlich F (2018) BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys 
Res Commun 500: 26–34. [PubMed: 28676391] 

19. Aouacheria A, Baghdiguian S, Lamb HM, Huska JD, Pineda FJ, et al. (2017) Connecting 
mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochem Int 109: 
141–161. [PubMed: 28461171] 

20. Vela L, Marzo I (2015) Bcl-2 family of proteins as drug targets for cancer chemotherapy: The long 
way of BH3 mimetics from bench to bedside. Curr Opin Pharmacol 23: 74–81. [PubMed: 
26079328] 

21. Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, et al. (2015) Emerging understanding of 
Bcl-2 biology: implications for neoplastic progression and treatment. Biochem Biophys Acta 
1853: 1658–1671. [PubMed: 25827952] 

22. Krammer PH, Kamiński M, Kiessling M, Gülow K (2007) No life without death. Adv Cancer Res 
97: 111–138. [PubMed: 17419943] 

23. Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 
19: 36–41. [PubMed: 22075988] 

24. Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118: 265–267. 
[PubMed: 15654015] 

25. Järvinen K, Hotti A, Santos L, Nummela P, Hölttä E (2011) Caspase-8, c-FLIP, and caspase- 9 in c-
Myc-induced apoptosis of fibroblasts. Exp Cell Res N 317: 2602–2615.

26. Xu D, Wang B, Chen PP, Wang YZ, Miao NJ, et al. (2018) c-Myc promotes tubular cell apoptosis 
in ischemia-reperfusion-induced renal injury by negatively regulating c-FLIP and enhancing FasL/
Fas-mediated apoptosis pathway. Acta Pharmacol Sin 2: 1.

27. Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, et al. (2002) c-FLIPL is a dual 
function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21: 3704–
3714. [PubMed: 12110583] 

28. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free 
extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157. [PubMed: 8689682] 

29. Ranjan K, Pathak C (2016) Expression of FADD and cFLIPL balances mitochondrial integrity and 
redox signaling to substantiate apoptotic cell death. Mol Cell Biochem 422: 135–150. [PubMed: 
27619661] 

30. Micheau O (2003) Cellular FLICE-inhibitory protein: An attractive therapeutic target? Expert Opin 
Ther Targets 7: 559–573. [PubMed: 12885274] 

31. Haimerl F, Erhardt A, Sass G, Tiegs G (2009) Down-regulation of the de-ubiquitinating enzyme 
ubiquitin-specific protease 2 contributes to tumor necrosis factor-alpha-induced hepatocyte 
survival. J Biol Chem 284: 495–504. [PubMed: 19001362] 

32. Yang A, Wilson NS, Ashkenazi A (2010) Proapoptotic DR4 and DR5 signaling in cancer cells: 
Toward clinical translation. Curr Opin Cell Biol 22: 837–844. [PubMed: 20813513] 

33. Trivedi R, Mishra DP (2015) Trailing TRAIL resistance: Novel targets for TRAIL sensitization in 
cancer cells. Front Oncol 5: 69. [PubMed: 25883904] 

Safa et al. Page 13

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Füllsack S, Rosenthal A, Wajant H, Siegmund D (2019) Redundant and receptor-specific activities 
of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death Dis 10: 122. [PubMed: 
30741924] 

35. Wang W, Zhou J, Shi J, Zhang Y, Liu S, et al. (2014) Human T-cell leukemia virus type 1 Tax-
deregulated autophagy pathway and c-FLIP expression contribute to resistance against death 
receptor-mediated apoptosis. J Virol 88: 2786–2798. [PubMed: 24352466] 

36. Nakajima A, Kojima Y, Nakayama M, Yagita H, Okumura K, et al. (2008) Downregulation of c-
FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in 
tumor cells. Oncogene 27: 76–84. [PubMed: 17599041] 

37. Silke J, Strasser A (2013) The FLIP side of life. Sci Signal 6: 2.

38. Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833: 
3460–3470. [PubMed: 23850759] 

39. Wang M, Law ME, Castellano RK, Law BK (2018) The unfolded protein response as a target for 
anticancer therapeutics. Crit Rev Oncol Hematol 127: 66–79. [PubMed: 29891114] 

40. Rah B, Nayak D, Rasool R, Chakraborty S, Katoch A, et al. (2016) Reprogramming of molecular 
switching events in UPR driven ER stress: Scope for development of anticancer therapeutics. Curr 
Mol Med 16: 690–701. [PubMed: 27573195] 

41. Giacomello M, Pellegrini L (2016) The coming of age of the mitochondria-ER contact: A matter of 
thickness. Cell Death Differ 23: 1417–1427. [PubMed: 27341186] 

42. Marchi S, Patergnani S, Pinton P (2014) The endoplasmic reticulum-mitochondria connection: One 
touch, multiple functions. Biochim Biophys Acta 1837: 461–469. [PubMed: 24211533] 

43. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, et al. (1997) Inhibition of death receptor 
signals by cellular FLIP. Nature 388: 190–195. [PubMed: 9217161] 

44. Ueffing N, Keil E, Freund C, Kühne R, Schulze-Osthoff K, et al. (2008) Mutational analyses of c-
FLIPR, the only murine short FLIP isoform, reveal requirements for DISC recruitment. Cell Death 
Differ 15: 773–782. [PubMed: 18219316] 

45. Telieps T, Ewald F, Gereke M, Annemann M, Rauter Y, et al. (2013) Cellular-FLIP, Raji isoform 
(c-FLIPR) modulates cell death induction upon T-cell activation and infection. Eur J Immunol 43: 
1499–1510. [PubMed: 23505065] 

46. Safa AR, Pollok KE (2011) Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers 
(Basel) 3: 1639–1671. [PubMed: 22348197] 

47. Oztürk S, Schleich K, Lavrik IN (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): Fine- 
tuners of life and death decisions. Exp Cell Res 318: 1324–1331. [PubMed: 22309778] 

48. Safa AR, Day TW, Wu CH (2008) Cellular FLICE-like inhibitory protein (c-FLIP): A novel target 
for cancer therapy. Curr Cancer Drug Targets 8: 37–46. [PubMed: 18288942] 

49. Safa AR (2012) c-FLIP: A master anti-apoptotic regulator. Exp Oncol 34: 176–184. [PubMed: 
23070002] 

50. Yang JK (2008) FLIP as an anti-cancer therapeutic target. Yonsei Med J 49: 19–27. [PubMed: 
18306465] 

51. Fulda S (2013) Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert Opin Ther 
Targets 17: 195–201. [PubMed: 23252466] 

52. Seidelin JB, Coskun M, Vainer B, Riis L, Soendergaard C (2013) ERK controls epithelial cell 
death receptor signaling and cellular FLICE-like inhibitory protein (c-FLIP) in ulcerative colitis. J 
Mol Med (Berl) 91: 839–849. [PubMed: 23371318] 

53. Kataoka T, Tschopp J (2004) N-terminal fragment of c-FLIP(L) processed by caspase 8 
specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. 
Mol Cell Biol 24: 2627–2636. [PubMed: 15024054] 

54. Yu JW, Shi Y (2008) FLIP and the death effector domain family. Oncogene 27: 6216–6227. 
[PubMed: 18931689] 

55. Gilot D, Serandour AL, Ilyin GP, Lagadic-Gossmann D, Loyer P, et al. (2005) A role for caspase-8 
and c-FLIPL in proliferation and cell-cycle progression of primary hepatocytes. Carcinogenesis 
26: 2086–2094. [PubMed: 16033771] 

Safa et al. Page 14

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



56. Kim MJ, Kim HB, Bae JH, Lee JW, Park SJ (2009) Sensitization of human K562 leukemic cells to 
TRAIL-induced apoptosis by inhibiting the DNA-PKcs/Akt-mediated cell survival pathway. 
Biochem Pharmacol 78: 573–582. [PubMed: 19464267] 

57. Nakajima A, Komazawa-Sakon S, Takekawa M, Sasazuki T, Yeh WC (2006) An antiapoptotic 
protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 25: 5549–5559. 
[PubMed: 17110930] 

58. Naito M, Katayama R, Ishioka T, Suga A, Takubo K, et al. (2004) Cellular FLIP inhibits beta- 
catenin ubiquitylation and enhances Wnt signaling. Mol Cell Biol 24: 8418–8427. [PubMed: 
15367663] 

59. Leverkus M, Diessenbacher P, Geserick P (2008) FLIP ing the coin?: Death receptor-mediated 
signals during skin tumorigenesis. Exp Dermatol 17: 614–622. [PubMed: 18558995] 

60. Lens SM, Kataoka T, Fortner KA, Tinel A, Ferrero I, et al. (2002) The caspase 8 inhibitor c-
FLIP(L) modulates T-cell receptor-induced proliferation but not activation-induced cell death of 
lymphocytes. Mol Cell Biol 22: 5419–5433. [PubMed: 12101236] 

61. Shirley S, Micheau O (2013) Targeting c-FLIP in cancer. Cancer Lett 332: 141–150. [PubMed: 
21071136] 

62. Medema JP, De-Jong J, Van-Hall T, Melief CJ, Offringa R (1999) Immune escape of tumors in 
vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190: 1033–1038. [PubMed: 
10510093] 

63. Plaza-Sirvent C, Schuster M, Neumann Y, Heise U, Pils MC, et al. (2017) c-FLIP expression in 
Foxp3-expressing cells is essential for survival of regulatory T cells and prevention of 
autoimmunity. Cell Rep 18: 12–22. [PubMed: 28052242] 

64. Fiore A, Ugel S, De-Sanctis F, Sandri S, Fracasso G, et al. (2018) Induction of immunosuppressive 
functions and NF-κB by FLIP in monocytes. Nat Commun 9: 5193. [PubMed: 30518925] 

65. Dhuriya YK, Sharma D (2018) Necroptosis: A regulated inflammatory mode of cell death. J 
Neuroinflammation 15: 199. [PubMed: 29980212] 

66. Wang T, Jin Y, Yang W, Zhang L, Jin X, et al. (2017) Necroptosis in cancer: An angel or a demon? 
Tumor Biology 39: 1–11.

67. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, et al. (2011) The Ripoptosome, a 
signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43: 
432–448. [PubMed: 21737329] 

68. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, et al. (2011) cIAPs block 
Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex 
differentially regulated by c-FLIP isoforms. Mol Cell 43: 449–463. [PubMed: 21737330] 

69. Zhang J, Yang Y, He W, Sun L (2016) Necrosome core machinery: MLKL. Cell Mol Life Sci 73: 
2153–2163. [PubMed: 27048809] 

70. Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, et al. (2009) FLIP-mediated autophagy regulation in cell 
death control. Nat Cell Biol 11: 1355–1362. [PubMed: 19838173] 

71. Lamy L, Ngo VN, Emre NCT, Shaffer AL, Yang Y, et al. (2013) Control of autophagic cell death 
by caspase-10 in multiple myeloma. Cancer Cell 23: 435–449. [PubMed: 23541952] 

72. Liu D, Fan Y, Li J, Cheng B, Lin W, et al. (2018) Inhibition of c-FLIP overcomes acquired 
resistance to sorafenib via reducing ER stress-related autophagy in hepatocellular carcinoma. 
Oncol Rep 40: 2206–2214. [PubMed: 30066934] 

73. Zhang J, Chen Y, Huang Q, Cheng W, Kang Y, et al. (2009) Nuclear localization of c-FLIP-L and 
its regulation of AP-1 activity. Int J Biochem Cell Biol 41: 1678–1684. [PubMed: 19433309] 

74. Katayama R, Ishioka T, Takada S, Takada R, Fujita N, et al. (2010) Modulation of Wnt signaling 
by the nuclear localization of cellular FLIP-L. J Cell Sci 123: 23–28. [PubMed: 20016063] 

75. Riley JS, Hutchinson R, McArt DG, Crawford N, Holohan C, et al. (2013) Prognostic and 
therapeutic relevance of FLIP and procaspase-8 overexpression in non-small cell lung cancer. Cell 
Death Dis 4: e951. [PubMed: 24309938] 

76. Yao Q, Du J, Lin J, Luo Y, Wang Y, et al. (2016) Prognostic significance of TRAIL signalling 
molecules in cervical squamous cell carcinoma. J Clin Pathol 69: 122–127. [PubMed: 26254281] 

Safa et al. Page 15

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



77. Valnet-Rabier MB, Challier B, Thiebault S, Angonin R, Margueritte G, et al. (2005) c-FLIP protein 
expression in Burkitt’s lymphomas is associated with a poor clinical outcome. Br J Haematol 128: 
767–773. [PubMed: 15755279] 

78. McLornan DP, Barrett HL, Cummins R, McDermott U, McDowell C, et al. (2010) Prognostic 
significance of TRAIL signaling molecules in stage II and III colorectal cancer. Clin Cancer Res 
16: 3442–3451. [PubMed: 20570920] 

79. Chen LC, Chung IC, Hsueh C, Tsang NM, Chi LM, et al. (2010) The antiapoptotic protein, FLIP, 
is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall 
survival of nasopharyngeal carcinoma patients. Cell Death Differ 17: 1463–1473. [PubMed: 
20224598] 

80. Zhou XD, Yu JP, Liu J, Luo HS, Chen HX, et al. (2004) Overexpression of cellular FLICE- 
inhibitory protein (FLIP) in gastric adenocarcinoma. Clin Sci 106: 397–405. [PubMed: 14636156] 

81. Lee SH, Kim HS, Kim SY, Lee YS, Park WS, et al. (2003) Increased expression of FLIP, an 
inhibitor of Fas-mediated apoptosis, in stomach cancer. APMIS 111: 309–314. [PubMed: 
12716387] 

82. Tirapelli DP, Menezes SB, Franco IM, Lustosa IL, Rodrigues AR, et al. (2017) High expression of 
anti-apoptotic genes in grade I and II meningiomas. Arq Neuropsiquiatr 75: 209–215. [PubMed: 
28489139] 

83. Korkolopoulou P, Goudopoulou A, Voutsinas G, Thomas-Tsagli E, Kapralos P, et al. (2004) c-FLIP 
expression in bladder urothelial carcinomas: Its role in resistance to Fas-mediated apoptosis and 
clinicopathologic correlations. Urology 63: 1198–1204. [PubMed: 15183989] 

84. Bagnoli M, Ambrogi F, Pilotti S, Alberti P, Ditto A, et al. (2009) c-FLIPL expression defines two 
ovarian cancer patient subsets and is a prognostic factor of adverse outcome. Endocr Relat Cancer 
16: 443–453. [PubMed: 19321593] 

85. McLaughlin KA, Nemeth Z, Bradley CA, Humphreys L, Stasik A, et al. (2016) FLIP: A targetable 
mediator of resistance to radiation in non-small cell lung cancer. Mol Cancer Ther 15: 2432–2441. 
[PubMed: 27474150] 

86. Abedini MR, Qiu Q, Yan X, Tsang BK (2004) Possible role of FLICE-like inhibitory protein 
(FLIP) in chemo-resistant ovarian cancer cells in vitro. Oncogene 23: 6997–7004. [PubMed: 
15258564] 

87. Ullenhag GJ, Mukherjee A, Watson NF, Al-Attar AH, Scholefield JH, et al. (2007) Overexpression 
of FLIPL is an independent marker of poor prognosis in colorectal cancer patients. Clin Cancer 
Res 13: 5070–5075. [PubMed: 17785559] 

88. McLornan D, Hay J, McLaughlin K, Holohan C, Burnett AK, et al. (2013) Prognostic and 
therapeutic relevance of c-FLIP in acute myeloid leukaemia. Br J Haematol 160: 188–198. 
[PubMed: 23167276] 

89. Zang F, Wei X, Sun B (2014) Relationship of c-FLIPL protein expression with molecular 
subtyping and clinical prognosis in invasive breast cancer. Zhonghua Bing Li Xue Za Zhi 43: 442–
446. [PubMed: 25327791] 

90. Lee SW, Cho JM, Cho HJ, Kang JY, Kim EK, et al. (2015) Expression levels of heat shock protein 
27 and cellular FLICE-like inhibitory protein in prostate cancer correlate with Gleason score sum 
and pathologic stage. Korean J Urol 7: 505–514.

91. McCourt C, Maxwell P, Mazzucchelli R, Montironi R, Scarpelli M (2012) Elevation of c-FLIP in 
castrate-resistant prostate cancer antagonizes therapeutic response to androgen receptor-targeted 
therapy. Clin Cancer Res 18: 3822–3833. [PubMed: 22623731] 

92. Ye H, Li Y, Melamed J, Pearce P, Wei J, et al. (2009) Stromal anti-apoptotic androgen receptor 
target gene c-FLIP in prostate cancer. J Urol 181: 872–877. [PubMed: 19095249] 

93. Chen HX, Liu YJ, Zhou XD, Luo RY (2005) Expression of cellular FLICE/caspase-8 inhibitory 
protein is associated with malignant potential in endometrial carcinoma. Int J Gynecol Cancer 15: 
663–670. [PubMed: 16014121] 

94. Haag C, Stadel D, Zhou S, Bachem MG, Möller P, et al. (2011) Identification of c-FLIPL and c-
FLIPS as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut 60: 
225–237. [PubMed: 20876774] 

Safa et al. Page 16

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



95. Schmid SJ, Glatzel MC, Welke C, Kornmann M, Kleger A, et al. (2013) Absence of FLICE-
inhibitory protein is a novel independent prognostic marker for very short survival in pancreatic 
ductal adenocarcinoma. Pancreas 42: 1114–1119. [PubMed: 24005232] 

96. Peter ME (2004) The flip side of FLIP. Biochem J 382: 1–3. [PubMed: 15193142] 

97. Koyama S (2003) Differential expression of intracellular apoptotic signaling molecules in tumor 
and tumor-infiltrating lymphocytes during development of invasion and/or metastasis of gastric 
carcinoma. Dig Dis Sci 48: 2290–2300. [PubMed: 14714615] 

98. Ryang DY, Joo YE, Chung KM, Lim SR, Jeong HK, et al. (2007) Expression of c-FLIP in gastric 
cancer and its relation to tumor cell proliferation and apoptosis. Korean J Intern Med 22: 263–269. 
[PubMed: 18309685] 

99. Tian F, Lu JJ, Wang L, Li L, Yang J, et al. (2012) Expression of c-FLIP in malignant melanoma, 
and its relationship with the clinicopathological features of the disease. Clin Exp Dermatol 37: 
259–265. [PubMed: 22103668] 

100. Zhang W, Zhou J, Zhu X, Yuan H (2017) MiR-126 reverses drug resistance to TRAIL through 
inhibiting the expression of c-FLIP in cervical cancer. Gene 627: 420–427. [PubMed: 28669929] 

101. Huang Y, Yang X, Xu T, Kong Q, Zhang Y, et al. (2016) Overcoming resistance to TRAIL-
induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and 
IAPs. Int J Oncol 49: 153–163. [PubMed: 27210546] 

102. Kim EA, Kim SW, Nam J, Sung EG, Song IH, et al. (2016) Inhibition of c-FLIPL expression by 
miRNA-708 increases the sensitivity of renal cancer cells to anti-cancer drugs. Oncotarget 7: 
31832–31846. [PubMed: 27092874] 

103. Carson R, Celtikci B, Fenning C, Javadi A, Crawford N, et al. (2015) HDAC inhibition 
overcomes acute resistance to MEK inhibition in BRAF-mutant colorectal cancer by 
downregulation of c-FLIPL. Clin Cancer Res 21: 3230–3240. [PubMed: 25813020] 

104. Safa AR (2016) Resistance to cell death and its modulation in cancer stem cells. Crit Rev Oncog 
2: 203–219.

105. Lee S, Yoon CY, Byun SS, Lee E, Lee SE (2013) The role of c-FLIP in cisplatin resistance of 
human bladder cancer cells. J Urol 189: 2327–2334. [PubMed: 23313194] 

106. Hassanzadeh A, Hagh MF, Alivand MR, Akbari AAM, Asenjan KS, et al. (2018) Down-
regulation of intracellular anti-apoptotic proteins, particularly c-FLIP by therapeutic agents; the 
novel view to overcome resistance to TRAIL. J Cell Physiol 233: 6470–6485. [PubMed: 
29741767] 

107. Zhitao J, Long L, Jia L, Yunchao B, Anhua W (2015) Temozolomide sensitizes stem-like cells of 
glioma spheres to TRAIL-induced apoptosis via upregulation of casitas B-lineage lymphoma (c-
Cbl) protein. Tumour Biol 36: 9621–9630. [PubMed: 26142735] 

108. Piggott L, Omidvar N, Martí-Pérez S, French R, Eberl M, et al. (2011) Suppression of apoptosis 
inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-
cancer agent, TRAIL. Breast Cancer Res 13: 88.

109. Hashimoto N, Tsunedomi R, Yoshimura K, Watanabe Y, Hazama S, et al. (2014) Cancer stem-like 
sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess 
the resistance to anti-cancer drugs. BMC Cancer 14: 722. [PubMed: 25260650] 

110. Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2015) 
Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated 
non-GSCs and GSCs. Genes Dis 2: 152–163. [PubMed: 26137500] 

111. Thakur B, Ray P (2017) Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells 
through NF-κB-TNFα-PIK3CA loop. J Exp Clin Cancer Res 36: 164. [PubMed: 29169370] 

112. Piggott L, Silva A, Robinson T, Santiago-Gómez A, Simões BM, et al. (2018) Acquired 
resistance of ER-positive breast cancer to endocrine treatment confers an adaptive sensitivity to 
TRAIL through posttranslational downregulation of c-FLIP. Clin Cancer Res 24: 2452–2463. 
[PubMed: 29363524] 

113. Eustace AJ, Conlon NT, McDermott MSJ, Browne BC, O’Leary P (2018) Development of 
acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis 
induction by obatoclax and TRAIL. BMC Cancer 18: 965. [PubMed: 30305055] 

Safa et al. Page 17

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



114. Longley DB, Wilson TR, McEwan M, Allen WL, McDermott U, et al. (2006) c-FLIP inhibits 
chemotherapy-induced colorectal cancer cell death. Oncogene 25: 838–848. [PubMed: 
16247474] 

115. Klingbeil O, Lesche R, Gelato KA, Haendler B, Lejeune P (2016) Inhibition of BET 
bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to 
proapoptotic agents. Cell Death Dis 7: e2365. [PubMed: 27607580] 

116. Haverkamp JM, Smith AM, Weinlich R, Dillon CP, Qualls JE, et al. (2014) Myeloid-derived 
suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of 
extrinsic and intrinsic death pathways. Immunity 41: 947–959. [PubMed: 25500368] 

117. Weiss JM, Subleski JJ, Back T, Chen X, Watkins SK, et al. (2014) Regulatory T cells and 
myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell 
death during IL-2/αCD40 therapy. J Immunol 192: 5821–5829. [PubMed: 24808361] 

118. Wesolowski R, Markowitz J, Carson WE (2013) Myeloid derived suppressor cells: A new 
therapeutic target in the treatment of cancer. J Immunother Cancer 1: 10. [PubMed: 24829747] 

119. Kao J, Ko EC, Einstein S, Sikora AG, Fu S, et al. (2011) Targeting immune suppressing myeloid-
derived suppressor cells in oncology. Crit Rev Oncol Hematol 77: 12–19. [PubMed: 20304669] 

120. Zhao X, Rong L, Zhao X, Li X, Liu X, et al. (2012) TNF signaling drives myeloid-derived 
suppressor cell accumulation. J Clin Invest 122: 4094–4104. [PubMed: 23064360] 

121. Wu YJ, Wu YH, Mo ST, Hsiao HW, He YW, et al. (2015) Cellular FLIP inhibits myeloid cell 
activation by suppressing selective innate signaling. J Immunol 195: 2612–2623. [PubMed: 
26238491] 

122. Fossati S, Ghiso J, Rostagno A (2012) TRAIL death receptors DR4 and DR5 mediate cerebral 
microvascular endothelial cell apoptosis induced by oligomeric Alzheimer’s Aβ. Cell Death Dis 
3: e321. [PubMed: 22695614] 

123. Chiou SH, Chen SJ, Peng CH, Chang YL, Ku HH, et al. (2006) Fluoxetine up-regulates 
expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in 
hippocampus-derived neural stem cell. Biochem Biophys Res Commun 343: 391–400. [PubMed: 
16545775] 

124. Huang M, Liang Y, Chen H, Xu B, Chai C, et al. (2018) The role of fluoxetine in activating Wnt/
β-catenin signaling and repressing β-amyloid production in an Alzheimer mouse model. Front 
Aging Neurosci 10: 164. [PubMed: 29910725] 

125. Aghapour M, Raee P, Moghaddam SJ, Hiemstra PS, Heijink IH (2018) Airway epithelial barrier 
dysfunction in chronic obstructive pulmonary disease: Role of cigarette smoke exposure. Am J 
Respir Cell Mol Biol 58: 157–169. [PubMed: 28933915] 

126. Pouwels SD, Faiz A, Den-Boef LE, Gras R, Berge MVD (2017) Genetic variance is associated 
with susceptibility for cigarette smoke-induced DAMP release in mice. Am J Physiol Lung Cell 
Mol Physiol 313: 559–580.

127. Wu YH, Kuo WC, Wu YJ, Yang KT, Chen ST, et al. (2014) Participation of c-FLIP in NLRP3 
and AIM2 inflammasome activation. Cell Death Differ 21: 451–461. [PubMed: 24270411] 

128. Kim HS, Mendiratta S, Kim J, Pecot CV, Larsen JE, et al. ( 2013) Systematic identification of 
molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155: 552–566. 
[PubMed: 24243015] 

129. Safa AR. C-FLIP: Encyclopedia of signaling molecules, 2018, 1039–1048. Springer International 
Publishing AG, Editor, Sangdun Choi.

Safa et al. Page 18

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
c-FLIP variants as anti-apoptotic proteins control apoptosis and pathways. Binding of 

TRAIL with its receptors DR4 and DR5 or interaction of Fas ligand (CD95L) to Fas 

receptor (CD95) triggers the death receptor (extrinsic) and subsequently mitochondrial 

apoptosis signaling (intrinsic) pathways through FADD-dependent autocatalytic activation of 

caspases-8 and -10 and Bid cleavage to truncated Bid. c-FLIPL and c-FLIPS isoforms 

suppress caspase-8 and -10 activation, therefore preventing the downstream apoptosis 

cascade (Modified from Safa [1]).
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Figure 2. 
Death receptor and mitochondrial apoptosis signaling pathways and blocking TNFR1-

mediated apoptosis by c-FLIP. TNF-α binds to its receptor TNFR1, which results in 

formation of Complex I containing TNFR1, TRADD, TRAF2 and RIP. Complex I mediates 

the NF-κB activation pathway and occurs through the MEKK3-IKK-IκB-NF-κB cascade, 

leading to the expression of c-FLIPL and c-FLIPS isoforms. TNF-α treatment through 

Complex I also activates JNK and ERK through the MAPK signaling pathway. The 

ubiquitin-E3-ligase ITCH promotes the ubiquitylation and proteasomal degradation of c-

FLIP isoforms. As a result of degradation, levels of c-FLIP protein isoforms decrease. 

Complex II consists of RIP, TRADD, FADD, and procaspase-8. Caspase-8 is autoactivated 

and activates caspases-3 and -7, there by triggering apoptosis. Caspase-8 induces cleavage of 

the proapoptotic protein Bid to truncated Bid (tBid) which activates the mitochondrial 

apoptosis pathway that involves the release of cytochrome c and Smac/DIABLO from the 

mitochondria. Cytochrome c binds to Apaf1 to activate caspase-9-mediated executor 

caspases (Modified and updated from Safa).

Safa et al. Page 20

Biomark J. Author manuscript; available in PMC 2020 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Structures of c-FLIP variants and their cleavage products. c-FLIP isoforms (c-FLIPL, c-

FLIPS, and c-FLIPR) have two death effector domains (DED1 and DED2) at their N termini 

which are required for DISC recruitment. In addition to two DEDs, c-FLIPL has a significant 

similarity to caspase-8 and has large (p20) and small (p12) caspase-like domains, which are 

catalytically inactive. c-FLIPS and c-FLIPR consist of two DEDs and a small C terminus. c-

FLIPL can be cleaved by caspase-8 generating the N-terminal fragments p43-FLIP or p22-

FLIP. The phosphorylation (P) and ubiquitination (U) sites are indicated [1]. The p20/p12 

regions interact with TRAF2 and RIP1, respectively, and Ku70 binds to DED2 (Modified 

and updated from Safa [1]).
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Figure 4. 
Roles of c-FLIPL on cell survival and cell proliferation. As discussed in the text, in addition 

to its functional role in inhibiting apoptosis by binding to procaspases-8 and -10 and 

inhibiting their activation, c-FLIPL activates cell survival and cell proliferation by 

controlling MAPK, AKT, mTOR, Wnt/β-catenin, NF-κB, and STAT3 signaling pathways.
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