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Abstract

Background: Recent advances in kernel-based Deep Learning models have introduced a new era in medical
research. Originally designed for pattern recognition and image processing, Deep Learning models are now applied
to survival prognosis of cancer patients. Specifically, Deep Learning versions of the Cox proportional hazards models
are trained with transcriptomic data to predict survival outcomes in cancer patients.

Methods: In this study, a broad analysis was performed on TCGA cancers using a variety of Deep Learning-based
models, including Cox-nnet, DeepSurv, and a method proposed by our group named AECOX (AutoEncoder with
Cox regression network). Concordance index and p-value of the log-rank test are used to evaluate the model
performances.

Results: All models show competitive results across 12 cancer types. The last hidden layers of the Deep Learning
approaches are lower dimensional representations of the input data that can be used for feature reduction and
visualization. Furthermore, the prognosis performances reveal a negative correlation between model accuracy,
overall survival time statistics, and tumor mutation burden (TMB), suggesting an association among overall survival
time, TMB, and prognosis prediction accuracy.

Conclusions: Deep Learning based algorithms demonstrate superior performances than traditional machine
learning based models. The cancer prognosis results measured in concordance index are indistinguishable across
models while are highly variable across cancers. These findings shedding some light into the relationships between
patient characteristics and survival learnability on a pan-cancer level.
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Background
With the high prevalence of neural networks and Deep
Learning-based algorithms in the Computational Biol-
ogy, it is clear that the advantages of optimization in a
highly non-linear space are welcomed improvements in
biomedicine [1–7]. In Bioinformatics, significant effort

has been committed to harnessing transcriptomic data
for multiple analyses [7–13] especially cancer survival
prognosis [14, 15]. Faraggi and Simon [16] was the first
study to use clinical information to predict prostate can-
cer survival through an artificial neural network model.
Mobadersany et al. [17] integrated histological features,
Convolutional Neural Networks (CNN), and genomics
data to predict cancer prognosis via Cox regression. Des-
pite of various existed applications on survival analysis
such as [14, 15], the use of Deep-Learning Cox models
was pioneered by Ching et al. [18], who applied Cox
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regression with neural networks (Cox-nnet) to predict
survival using transcriptomic data became prevalent.
Similarly, Katzman et al. [19] used DeepSurv with multi-
layer neural networks for survival prognosis and devel-
oped a personalized treatment recommendation system.
As a new and effective dimensionality reduction tech-

nique, the Autoencoder (AE) framework can lead to effi-
cient lower dimensional representations using unsupervised
or supervised learning [20–24]. In addition, Chaudhary
et al. [25] also applied AE for dimensionality reduction and
then used the low-dimensional representation of data to
perform prognosis prediction using traditional method. In
this paper, besides two recently developed Deep Learning
based methods, namely Cox-nnet and DeepSurv, we also
attempted an Autoencoder-based approach (called
AECOX) for cancer prognosis prediction with simultaneous
learning of lower dimensional representation of inputs. This
approach is similar to Cox-nnet [18] and DeepSurv [19], as
it implements neural networks with Cox regression, though
the network architectures differ. In AECOX (Fig. 1c), the
code from AE will link to a Cox regression layer for the
prognosis. Both losses from the AE networks and Cox re-
gression layer will be counted to train the entire network
weights through back-propagation. AECOX is with sym-
metric structure of the Autoencoder, and can accept any
number of hidden layers. We refer readers to the Add-
itional file 1 for more detailed settings of AECOX.
To evaluate the prediction performance, we adopt two

metrics, namely the concordance index and p-value of
log-rank test. These metrics are used in comparing two
state-of-the-art Deep Learning-based prognosis models
(i.e., Cox-nnet, DeepSurv) with AECOX, in a pan-cancer
study covering 12 TCGA (The Cancer Genome Atlas)
cancers. In addition, we use Partitioning Around Medoids

(PAM) clustering algorithm [26] on the last hidden layer
for each model to evaluates how well the models discrim-
inate subgroups in the lower dimensional space. P-value
of log-rank test based on K groups of Kaplan-Meier sur-
vival curve is the metric used for evaluation [27].
As we compared the prognosis prediction performance

across 12 cancer types, we wonder whether the perform-
ance is related to tumor mutation burden and overall
survival time. Tumor mutation burden (TMB) is a meas-
urement of mutations in tumor [28, 29] and is an im-
portant genomic marker that is closely associate with
immunotherapy and survival prognosis [30–34]. While
incorporating TMB feature into input does not increase
the prediction performances, we found that TMB is
negatively correlated with overall survival time statistics,
and both of them are correlated with the concordance
index for all three models across cancer types, suggest-
ing an association between TMB, overall survival time,
and disease prognosis accuracy.
Overall, we observed comparative results across three

different Deep Learning-based cancer survival prognosis
models in terms of concordance index. We also investi-
gated the lower dimensional representation that con-
veyed by Deep Learning algorithms. By inspecting the
relationship between TMB, overall survival statistics, and
concordance index across 12 cancer types, we confirmed
an association among them, suggesting a future study
direction of patient stratification and integrative analysis.

Method
Integrating Cox proportional hazards model with neural
networks
The neural network architectures of all three Deep
Learning-based approaches are provided in Fig. 1. Cox-

Fig. 1 Neural network architectures of three Deep Learning-based models. a Cox-nnet with a single hidden layer; b DeepSurv with multiple
hidden layers having consistent dimensions; c AECOX with multiple hidden layers in the both encoder and decoder part. Last hidden layers in all
models were indicated in orange and were connect to a Cox regression neural networks with hazard ratios as the outputs
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nnet (Fig. 1a) is the most succinct model with only one
hidden layer, while DeepSurv (Fig. 1b) uses multiple hid-
den layers of consistent dimensions and treats the num-
ber of hidden layers as a hyper-parameter. Similarly,
AECOX also treats the number of hidden layers as a
hyper-parameter, but the hidden layers lay symmetrically
in the encoder and decoder (Fig. 1c). All three models
employed the same Cox proportional hazards model.
However, Cox-nnet and DeepSurv accept the output of
the last hidden layer to the Cox model while AECOX
uses the low-dimensional code as the input. The output
hazard ratio was then compared to the ground truth and
the details of evaluation metrics are provided earlier.
The reason we introduced AECOX is to explore the
feasibility of simultaneously generating a low-
dimensional representation of the data while developing
an effective model for prognosis.
The Cox proportional hazards model, also known as

the Cox model, was developed to models the age specific
failure rate or hazard function [35] at time t for patient i
with covariate vector Xi by.

h tjXið Þ ¼ h0 tð Þ exp
XK

k¼1

βkXik

 !

ð1Þ

The partial likelihood Li for patient i, which is defined
to be the probability of occurrence of a death event at
time Yi for patient i, is found to be

Li βð Þ ¼ h Y ijXið ÞP
j:Y j ≥Y i

h Y ijX j
� � ¼ h0 Y ið ÞθiP

j:Y j ≥Y i
h0 Y ið Þθ j

¼ θiP
j:Y j ≥Y i

θ j

ð2Þ

at time Yi for patient i. Where θi ¼ expðP
K

k¼1
βkXikÞ .

β = (β1, β2,…, βK) are the K parameters to be estimated.
The summation in denominator is carried out over all
patients j (including patient i) for which a death event
did not occur before time Yi. The partial likelihood for
all patients is then defined as

L βð Þ ¼
Y

i:Ci¼1

Li βð Þ ð3Þ

where Ci = 1 indicates the occurrence of a death event.
The log partial likelihood of Cox model is then obtained
as

ℓ βð Þ ¼
X

i:Ci¼1

XK

k¼1

βkXik− log
X

j:Y j ≥Y i
θ j

� � !
ð4Þ

Values of the parameters β = (β1, β2,…, βK) are then
obtained through maximum likelihood estimation
(MLE), that is

β̂ ¼ argmaxβ ℓ βð Þð Þ ð5Þ

Alternatively, since the Cox model utilizes a regression
model that can be implemented as neural network with
weights β = (β1, β2,…, βK), values of these weights were
obtained through back-propagation. This approach was
embedded in all the aforementioned models and was de-
noted by the blue line with caption “Cox-Regression
Neural Network” in Fig. 1.
These models offer several advanced features: (1) a

highly non-linear function is learned, (2) neural net-
works and Cox proportional hazards regression are inte-
grated together enabling the entire weights of the
models to be learned through back-propagation, (3) the
number of hidden layers and hidden layer dimensions
were treated as hyper-parameters that can be fine-tuned,
and (4) dimensionality reduction in conjunction with su-
pervised learning is achieved.
To demonstrate the advantages of Deep Learning-

based prognosis models, we also compared three trad-
itional machine learning based models for prognosis,
they are: Cox proportional hazards model with R pack-
age “glmnet” [36], Random Survival Forest (RSF) [37],
and Support Vector Machine (SVM) [25]. Particularly, in
Chaudhary et al. [25], we implemented their SVM model
according to the top 100 mRNA-seq features selected
from ANOVA (Analysis of variance) [38].

Regularization, loss functions and hyper-parameters
Despite the fact that the aforementioned Deep Learning-
based approaches shared the same Cox regression net-
work and used the hazard ratio as the output (Table 1),
yet certain differences existed among the models. Cur-
rently all three models used the L2 norm regularization
in the final learning after hyper-parameters tuning as it
gave the optimal validation accuracy. While all models
attempted Dropout and the L2 norm regularization
(Ridge Regularization [39]) to penalize the network
weights, AECOX also included L1 norm regularization
(Least Absolute Shrinkage and Selection Operator,
LASSO in short [40]) and elastic net [41].
The structure of loss functions among models shared

a common base formula (Table 1), but each approach
used additional penalization. Specifically, both Cox-nnet
and DeepSurv used the same objective (loss) function:

Θ ¼ argminΘ
X

i:Ci¼1

XK

k¼1

βkXik− log
X

j:Y j ≥Y i
θ j

� � !
þ λ Θk k22

( )
ð6Þ

whereas AECOX took into account the Autoencoder’s
input-output difference:
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Θ̂ ¼ argminΘ λ1MSE Xinput ;Xoutput
� ��

þ 1−λ1ð Þ
X

i:Ci¼1

XK

k¼1

βkXik− log
X

j:Y j ≥Y i
θ j

� � !
þ λ2 Θk k1 þ λ3 Θk k22

�

ð7Þ
Here Θ denotes to the neural networks’ weights to be

learned, including hidden layer weights and Cox regres-
sion neural network weights, Xinput and Xoutput are the
input and output covariate vectors of Autoencoder, re-
spectively. MSE(∙) is the mean squared error function.
The hyper-parameter λ1 balances the loss between Auto-
encoder’s input-output difference which is a measure of
dimensionality reduction and the Cox hazard, which is a
measure of regression based supervised learning. The
combination of λ2 and λ3 permits the utilization of Elas-
tic Net regularization. Forcing λ2 = 0 results in L2
regularization, whereas forcing λ3 = 0 results in L1
regularization. To optimize the objective functions given
above, Cox-nnet, DeepSurv, and AECOX use Nesterov
accelerated gradient descent [42], stochastic gradient
descent (SGD) [43], and adaptive moment estimation

(Adam) optimizer [44], respectively. AECOX adopted
Adam optimizer as it is more computationally efficient
and require little tuning on hyper-parameters.
As shown in Table 1, Cox-nnet has one hyper-

parameter to be fine-tuned, and thus a linear search
technique was adopted, whereas DeepSurv and AECOX
had multiple hyper-parameters in a high dimensional
space. It is thus unrealistic to perform a linear search in
each dimension of the hyper-parameter space as the
computational complexity would be O(np) for p hyper-
parameters. Instead, DeepSurv and AECOX utilize the
Sobol solver [45] in the Optunity python package [46].
Given a search time q (e.g., q = 100), the Sobol solver
samples q points assuming the hyper-parameters are
uniformly distributed in p-dimensional space. This re-
duces the computational complexity to O(nq), regardless
of how large the value of p is.

Data preprocessing and statistics
Genes with lowest 20% absolute expression values and
lowest 10% variance across samples were removed. This

Table 1 Comparison of model architectures and settings across three Deep Learning-based cancer survival prognosis approaches

Properties Models

Cox-nnet DeepSurv AECOX

Deep Learning
Architecture

Single-layer neural
networks

Multi-layer neural networks Multi-layer Autoencoder neural networks

Deep Learning
Programming
Framework

Theano Theano, Lasagne PyTorch

Hyper-parameters L2 regularization
weight λ.

Learning rate; Number of hidden layers; Hidden
layer sizes; Learning rate decay; Momentum; L2
regularization weight λ; Dropout rate.

Learning rate; Autoencoder input-output error weight
λ1; L1 regularization weight λ2; L2 regularization
weight λ3; Dropout rate; Number of hidden layers;
Regularization method.

Hyper-parameters
Searching Methods

Line search Sobol solver Sobol solver

Number of
iterations for
searching hyper-
parameters

12 100 100

Maximum epochs 4000 500 300

Number of Hidden
Layers

1 1, 2, 3, or 4 0, 2, 4, 6, or 8

Last hidden Layer
sizes

Integer value in
range [131, 135]

Integer value in range [30, 50] 16

Regularization
Methods

L1, L2, Dropout L2, Dropout Dropout, L1, L2, Elastic Net

Basic Objective
(Loss) Functions Θ̂ ¼ argminΘf

P
i:Ci¼1ð

PK

k¼1
βkX ik− logðP j:Y j ≥ Yi

θ jÞÞg

Optimization
Methods

Nesterov
accelerated
gradient descent

Stochastic gradient descent (SGD) Adaptive Moment Estimation (Adam)

Network
Architectures

(Input Layer) –
(Hidden Layer)
(tanh) – (Hazard
Ratio)

(Input Layer) – (Hidden Layer) (ReLU/SELU) – … –
(Hidden Layer) (ReLU/SELU) – (Hazard Ratio)

(Input Layer) – (Hidden Layers) (ReLU/Dropout) –
(Code) – (Hidden Layers) (ReLU/Dropout) – (Output
Layer); (Code) (tanh) – (Hazard Ratio)
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denoising step was performed via the TSUNAMI pack-
age (https://apps.medgen.iupui.edu/rsc/tsunami/) [15],
ensuring model robustness and reducing irrelevant
noise.
The expression data were then rescaled with natural

logarithm operation:

Xinput ¼ log Xoriginal þ 1
� � ð8Þ

where Xoriginal was the original non-negative RNA se-
quencing expression values (Illumina Hi-Seq RNA-seq
v2 RSEM normalized), and Xinput was the input covariate
vector for the models. Subsequently each gene expres-
sion at row r in the input data was normalized as

X rð Þ
input ¼

X rð Þ
input− min X rð Þ

input

� �

max X rð Þ
input

� �
− min X rð Þ

input

� � ð9Þ

This step ensured that each row of the gene expression
contributed to the model on an equal scale.
Table 2 provides a summary of the median and range

in terms of age and survival months for the TCGA data.
Each dataset was split into training, validation, and test-
ing sets in a proportion of 60, 20, and 20% respectively.
Confounding effects [47] were minimized by randomly
shuffling the data 1000 times and choosing the 5 pairs of
training/validation/testing sets with lowest correspond-
ing differences. The differences that were minimized is
the summation of (1) standard deviation of male/female
ratio on training/validation/testing sets, (2) standard de-
viation of overall survival time’s standard deviation on
training/validation/testing sets, (3) standard deviation of
overall survival time’s mean on training/validation/

testing sets, (4) standard deviation of the ratio of de-
ceased group to whole population on training/valid-
ation/testing sets, and (5) standard deviation of the ratio
of tumor stages to whole population on training/valid-
ation/testing sets. Thus, survival prognosis was estimated
for each cancer type 5 times.
In this study, TCGA mutation annotation files

(MAFs), containing subsets of the patients for prognosis
tasks, were used to calculate TMB summary statistics,
including mean, median, max, and 20, 10, 5% tail cut
values. These characteristics were used for examining
correlation between TMB and concordance index.

Evaluation metrics
We evaluated model performance with concordance
index and the p-value of log-rank test. Concordance
index had been widely used for evaluating survival prog-
nosis models [48–50]. Its value ranges from 0 to 1 and it
describes how well models differentiated groups (cen-
sored and uncensored groups, or living and deceased
groups) [50–53]. A concordance index of 0.5 indicates
that a model was ineffective and is viewed to have gener-
ated a random prediction with respect to ground truth.
Values above 0.5 indicate improved prediction by a
model, with increased performance being conveyed by a
concordance index approaching 1. Values below 0.5 in-
dicate that a model predicted values that are the oppos-
ite of the ground truth. Higher concordance index
values indicate better capability of model to perform
cancer survival prognosis.
P-values were derived by dichotomizing the hazard ra-

tios through median value and performing log-rank tests
[54–56] between the resulted high-risk and low-risk

Table 2 The Cancer Genome Atlas (TCGA) 12 cancers’ statistics. Cancers were sorted based on averaged concordance index in
descending order according to Fig. 2

TCGA
Cancers

TCGA Cancer
Abbreviations

Total
Cases

Censored
(Living)
Group

Uncensored
(Deceased)
Group

Number
of Genes
After Pre-
processing

Age Overall Survival Months

Median Range Median Range

Kidney KIRP 286 242 44 17,867 61.5 28–88 25.45 0.00–194.65

Kidney KIRC 531 357 174 17,870 61 26–90 38.96 0.00–149.05

Liver LIHC 369 239 130 17,963 61 16–90 19.32 0.00–120.73

Breast BRCA 1083 933 150 18,030 58 26–90 27.56 0.00–282.69

Cervical CESC 302 231 71 17,731 46 20–88 20.93 0.00–210.51

Lung LUAD 495 315 180 17,715 66 38–88 21.55 0.00–238.11

Bladder BLCA 402 225 177 18,008 69 34–90 17.61 0.43–165.90

Head-Neck HNSC 514 296 218 17,968 61 19–90 21.46 0.07–210.81

Pancreatic PAAD 176 83 93 17,150 65 35–88 15.20 0.00–90.05

Ovarian OV 299 119 180 17,635 58 30–87 31.27 0.30–180.06

Stomach STAD 397 244 153 18,172 67 30–90 14.03 0.00–122.21

Lung LUSC 489 283 206 18,030 68 39–90 21.91 0.00–173.69
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groups. Model performance was then assessed wherein a
lower p-value represents an enhanced ability to distin-
guish two patient groups.
To evaluate the performances across cancer types and

across model types, two-way ANOVA [38] is adopted.
Pairwise paired t-test [57, 58] and the linear mixed-
effects models test from the R package “nlme” [59, 60]
are also used. The linear mixed-effects models test is to
test between pairs of models while accounting for ran-
dom effects. The mixed effect model assumed the data
(performances) to be dependent within each cancer type
and independent across cancer types.

Results
The performance comparison was conducted at pan-
cancer level using 12 cancer from The Cancer Genome
Atlas (TCGA). These 12 cancers were chosen due to
their relatively large sample sizes and sufficient informa-
tion about patient outcomes. The specific cancers ana-
lyzed in this paper were (1) Urothelial Bladder
Carcinoma (BLCA); (2) Breast Invasive Carcinoma

(BRCA); (3) Cervical Squamous Cell Carcinoma and
Endocervical Adenocarcinoma (CESC); (4) Head-Neck
Squamous Cell Carcinoma (HNSC); (5) Kidney Renal
Clear Cell Carcinoma (KIRC); (6) Kidney Renal Papillary
Cell Carcinoma (KIRP); (7) Liver Hepatocellular Carcin-
oma (LIHC); (8) Lung Adenocarcinoma (LUAD); (9)
Lung Squamous Cell Carcinoma (LUSC); (10) Ovarian
Cancer (OV); (11) Pancreatic Adenocarcinoma (PAAD);
and (12) Stomach Adenocarcinoma (STAD). In this
paper, we used the expression data of Illumina Hi-Seq
RNA-seq v2 RSEM normalized genes from TCGA.

Performance comparison
Figure 2a and b present concordance indices and p-
values of log-rank tests among the different models and
different cancer datasets, wherein the cancers in x-axis
were sorted based on the averaged concordance index
values among all models and experiments. It is observed
that models for cancers like KIRP, BRCA, and LIHC
yield median concordance indices of at least 0.7, whereas
some cancers like STAD and LUSC yield median

Fig. 2 a, b: Performance comparisons between three Deep Learning-based models across 12 TCGA (The Cancer Genome Atlas) cancers. a
concordance index; b p-value of log-rank test (in −log10 scale). c, d: Performance comparisons between three Deep Learning-based models and
three traditional machine learning models across 12 TCGA (The Cancer Genome Atlas) cancers. c concordance index; d p-value of log-rank test (in
−log10 scale). Cancers were sorted based on averaged concordance index across models and experiments. For detailed cancer names, please
refer to the Additional file 1
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concordance indices of approximately 0.5. This led to
our further investigation with tumor mutation burden
(TMB) and overall survival time as described earlier. We
also made a comparison between three traditional ma-
chine learning models (Fig. 2c, d). Specifically, we pre-
sented the results in Fig. 2 as two parts in order to
directly visualize the comparison between Deep
Learning-based models and traditional machine learning
based models in Fig. 2c and d.
Since five experiments were carried out for each can-

cer type and each model type, we compared the perfor-
mances (via concordance index and p-value of log-rank
test) for all 12 TCGA cancer types using pairwise paired
t-test among all models (Table 3a) and the linear mixed-
effects models test (Table 3b). In this case we considered
a model to be better than another if a higher concord-
ance index or a lower p-value of log-rank test was ob-
served. Thus, a positive t-statistic in Table 3a or a
positive coefficient in Table 3b was used to conclude
that the model (distribution 1) was better than the other
(distribution 2) with respect to the concordance index.
In the case of the p-value of log-rank test, a negative t-
statistic or coefficient was used to reach the same
inference.
As can be observed from Table 3b, all models have a

similar performance since most of the test results of
their linear mixed-effects models are insignificant. Both
Table 3a and Table 3b concluded that among Deep
Learning-based approaches, Cox-nnet provided the over-
all optimal survival prognosis results at pan-cancer level,
with respect to the concordance index and the p-value
of log-rank test. This advantage of Cox-nnet is due to a
simpler neural network architecture and reduced search
space for hyper-parameters. Additional file 1: Table S10-
S11 presented the same quantitative comparison of per-
formances for Deep Learning-based and traditional ma-
chine learning models. All three Deep Learning models
demonstrated superior performance than traditional ma-
chine learning models, suggesting the advantages of
Deep Learning approaches on prognosis prediction.

Lower dimensional representation
The final hidden layer (or the code in AECOX),
highlighted in orange in Fig. 1, produces a lower dimen-
sional representation of the input and is one of the in-
trinsic properties in Deep Learning-based algorithms
[18, 21, 61, 62]. By using the Partitioning Around
Medoids (PAM) clustering algorithm [26] on the output
of the last hidden layer after the network is trained, we
can then inspect the original covariate vector in a lower
dimensional space. The most suitable number of clusters
(ranging from 2 to 10) was determined by maximizing
the averaged silhouette score [63, 64]. As depicted in
Table 4, Cox-nnet appeared to have overall better p-

values of the log-rank test measured between different
clusters, indicating a better capacity of dimensionality
reduction for 9 cancers (KIRP, KIRC, LIHC, BRCA,
CESC, LUAD, HNSC, OV, LUSC).

Relationship between prognosis prediction performances
and tumor mutation burden
From the performances within a cancer type across
models in Fig. 2 and results in Table 3, it appeared that
all models achieve respectable performances measured
by concordance index. We also found that performance
(concordance index) was more significantly associated
with cancer types than algorithms (two-way ANOVA:
Cancer type p-value <2E-16, Model type p-value =
9.57E-02). This observation suggests that intrinsic char-
acteristics of different cancer types have a large influence
on the performance of prognosis models. One such
characteristics is the tumor mutation burden (TMB),

Table 3 Model-wised performances comparison at pan-cancer
level (12 TCGA (The Cancer Genome Atlas) cancer types) by
pairwise paired t-test (A) and linear mixed-effects models test
(B), according to metrics concordance index and p-value of log-
rank test. Note that for concordance index, larger t-statistic/
coefficient indicated better performance at pan-cancer level,
while the p-value of log-rank test was on the contrary

(A) Pairwise Paired T-test

Distribution 2

DeepSurv AECOX

t P t P

Distribution
1

Cox-nnet concordance
index

3.1843 2.32E-
03

3.2281 2.04E-
03

p-value of
log-rank test

−1.4006 1.67E-
01

−0.8962 3.74E-
01

DeepSurv concordance
index

– – −0.6732 5.03E-
01

p-value of
log-rank test

– – 0.5164 6.07E-
01

Notes: t denotes the pairwise paired Student’s t-test statistic, P denotes
the p-value obtained.

(B) Linear Mixed-Effects Models Test

Distribution 2

DeepSurv AECOX

β P β P

Distribution
1

Cox-nnet concordance
index

0.0195 1.97E-
02

0.0142 1.12E-
01

p-value of
log-rank test

−0.0489 2.52E-
01

−0.0294 4.85E-
01

DeepSurv concordance
index

– – −0.0052 5.85E-
01

p-value of
log-rank test

– – 0.0195 6.62E-
01

Notes: β denotes the coefficient (slope) of linear mixed-effects models, P
denotes the p-value obtained.
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which is known to vary largely between different types
of cancers.
TMB was increasingly used as a marker in predicting

efficacy of immunotherapy [33] and was also shown to
be a predictor of prognosis [34]. Since the ability to train
a cancer survival prognosis model across cancer types
varies significantly, we explored whether TMB can be

associated with these changes. By inspecting the muta-
tion information associated with different cancer types,
we observed that the performance of survival prognosis
models was associated with tumor mutation burden
(TMB) characteristics. Specifically, we observed that all
TMB characteristics were negatively correlated with con-
cordance index especially the mean TMB (Mean TMB:
Pearson ρ = − 0.45 (Fig. 3b); Median TMB: Pearson ρ =
− 0.30; Maximum TMB: Pearson ρ = − 0.40; 20% tail
TMB: Pearson ρ = − 0.32; 10% tail TMB: Pearson ρ = −
0.32; 5% tail TMB: Pearson ρ = − 0.30).
One interesting question is then if the incorporating

TMB in the model would enhance the model perform-
ance. To investigate this, we take the joint subset of pa-
tients who have both RNA-seq data and TMB data,
performed survival prognosis with Cox-nnet model (the
method which has the best performance) with and with-
out TMB feature, respectively. As shown in Fig. 4, al-
though there is a slight improvement on concordance
index (average value = 0.003419) after TMB feature is in-
corporated, the correlation between improved concord-
ance index (mean) and mean TMB values is 0.0688
across 12 TCGA cancers, suggesting that introducing
TMB feature into a mRNA-seq based learning model
does not substantially improve the performance for Cox-
nnet.
Next, we found the correlation between the mean of

overall survival times and the mean of TMB values is −
0.6853 (Pearson) and − 0.7133 (Spearman) across 12 can-
cers, and the correlation between the variance of overall
survival times and the variance of TMB values is −
0.6159 (Pearson) and − 0.2448 (Spearman), suggesting a

Table 4 P-value of the log-rank test of lower dimensional
representation, generated by Partitioning Around Medoids (PAM)
clustering algorithm on the last hidden layers of three Deep
Learning-based approaches (testing set only). 12 TCGA (The
Cancer Genome Atlas) cancers are being compared. Bolded
values indicate the smallest p-value among three Deep Learning
approaches, refer to better low dimensional representation

TCGA
Cancers

P-values of log-rank test by models

Cox-nnet DeepSurv AECOX

KIRP 7.71E-02 2.45E-01 1.40E-01

KIRC 2.38E-03 9.79E-02 3.01E-01

LIHC 3.57E-01 6.14E-01 3.86E-01

BRCA 4.45E-01 4.81E-01 4.85E-01

CESC 2.45E-01 3.26E-01 3.92E-01

LUAD 9.58E-02 4.07E-01 1.11E-01

BLCA 3.27E-01 2.67E-01 4.94E-01

HNSC 3.38E-01 4.06E-01 6.19E-01

PAAD 2.97E-01 4.04E-01 2.29E-01

OV 2.80E-01 3.38E-01 4.42E-01

STAD 5.72E-01 2.67E-01 7.01E-01

LUSC 3.10E-01 4.14E-01 6.05E-01

The boldface p-value indicates it is the smallest one among all three algorithms

Fig. 3 Cox-nnet performances with TMB feature input and without TMB feature input across 12 TCGA (The Cancer Genome Atlas) cancers. a
concordance index; b p-value of log-rank test (in −log10 scale). Red diamonds and texts on the boxplot indicate the mean values. Cancers were
ordered based on Fig. 2. Note that the performances are differ from Fig. 2 due to new patient cohorts (intersection of patients who has both
RNA-seq data and TMB data). For detailed cancer names, please refer to the Additional file 1
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strong correlation between higher TMB and shorter
overall survival times statistics. Where the correlation
between the mean of overall survival times and the mean
of concordance index is 0.4271 (Pearson) and 0.4126
(Spearman).

Discussion
Overall our study demonstrated that the Deep Learning
architecture can be effectively applied for cancer progno-
sis prediction with Cox-proportional hazard model in-
corporated. We found that Deep Learning-based model
demonstrated superior performances comparing to trad-
itional machine learning models. Among the three Deep
Learning-based models tested, we observed that Cox-
nnet, which has the most succinct neural network struc-
ture, resulted in better prognosis performances in the
measurement of concordance index and p-value of log-
rank test. We showed that integrating autoencoder with
Cox regression network does not significantly improve
the prognosis performances. These results highlight an
important issue in Deep Learning approaches—namely
simpler models often perform similar or better to more
complex models in biological data.
From the associated fine-tuned hyper-parameters

(Additional file 1: Table S5-S9) during the hyper-
parameters tuning (with optimal validation accuracy), we
found that Deep Learning-based algorithms and trad-
itional machine learning based algorithms, especially
with multiple hyper-parameters, tends to converge into
different local minima with different hyper-parameter
values. For example, the optimal parameter pairs of
AECOX are not consistent in five different folds even

when these experiments are from same cancer (e.g.,
TCGA BRCA cancer). This result can potentially be due
to the curse of dimensionality [65]: with limited number
of different training samples and large number of param-
eters (e.g., the hidden layer weights in Deep Learning-
based models), the optimization may not guarantee to
converge to same local minima. These observations lead
us to rethink the robustness of training procedure – es-
pecially when higher performances are observed on
Cox-nnet where it has the least hyper-parameter tuning
effort.
We also noticed a negative correlation between TMB

values and prognosis prediction performances. The rela-
tionship between TMB and prognosis have been exam-
ined in existing literatures in cancer biology for
individual cancer types. For example, Owada-Ozaki et al.
[66] examined the relationship between individual TMB
and prognosis and concluded that high TMB is a poor
prognostic factor in non-small cell lung cancer
(NSCLC). A similar pattern occurs between TMB and
prognosis specifically for lung adenocarcinomas (a sub-
type of NSCLC) (Naidoo et al. [67]). Our pan-cancer
analyses are agreeing with these findings yet have a dif-
ferent conclusion. We observed that TMB is correlated
with prognosis performances (concordance index), how-
ever, integrating TMB to the Cox-nnet model does not
improve the performances at the pan-cancer level. By
further examining the relationships behind these features
and results, we found that TMB is highly correlated with
overall survival times (both in mean and variance) across
cancer types. Specifically, lower TMB value is associated
with longer mean overall survival time, concluded that

Fig. 4 a Box plot of log2 transformed tumor mutation burden (TMB) values from all available TCGA (The Cancer Genome Atlas) patients with
respect to each cancer type, ordered according to Fig. 2. Texts and diamond symbols in red color indicated the mean values. b Mean TMB versus
averaged concordance index results across 12 cancer types with three survival prognosis models. Pearson ρ = − 0.45 (p-value = 5.79E-03).
Individual model correlations are range from −0.46 to −0.44, described in Additional file 1: Table S4. Other results of TMB statistics versus
concordance index were shown in Additional file 1: Figure S2 – Figure S6.
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TMB is a marker for tumor malignancy. These findings
lead us to speculate that TMB either affect or are af-
fected by overall survival time, but may not directly con-
tribute to prognosis prediction when gene expression
data are used. However, with a strong correlation to
TMB, shorter overall survival times leads to worse prog-
nosis performance, suggesting a direct relationship be-
tween overall survival statistics and prognosis
performances. These findings will guide us to design fu-
ture experiments to further explain the detailed relation-
ships especially the dependency among TMB, survival
times, and prognosis performances at pan-cancer level.

Conclusion
Bringing artificial intelligence into clinical and cancer
studies [6, 68–70] can unravel numerous interpretabil-
ities behind the data. In this paper, we focused on three
different Deep Learning-based cancer prognosis models.
The survival predictions are conducted across 12 TCGA
cancer types with sufficient number of patients and sur-
vival information. We found that Deep Learning based
algorithms demonstrate superior performances than
traditional machine learning based models. We also
found that the cancer prognosis results measured in
concordance index are indistinguishable across models
while are highly variable across cancers by two-way
ANOVA. The highest concordance index that models
can predict is renal papillary cell carcinoma (KIRP),
while the lowest concordance index is observed for lung
squamous cell carcinoma (LUSC). We then examined
the relationships between TMB statistics, overall survival
statistics, and concordance indices across 12 cancers.
We found that although TMB and overall survival times
are negatively correlated with concordance indices
across the cancer types, integrating TMB does not im-
prove the prognosis prediction performance for individ-
ual cancers significantly, whereas TMB has a strong
correlation with overall survival times. These findings
will guide us to explore the relationships between pa-
tient characteristics and survival learnability in a pan-
cancer level in the future work.

Additional file

Additional file 1: Figure S1. An example framework of the AECOX
model with four hidden layers. Table S1. The network design of AECOX.
Table S2. The hyper-parameters of AECOX to be searched. Table S3. Per-
formances of testing set in TCGA Kidney Renal Clear Cell Carcinoma
(KIRC) dataset. Bolded texts indicated optimal results among all models.
Table S4. Individual model correlations (Pearson ρ) of mean TMB (Fig. 2).
Figure S2. Relationship between concordance index and median TMB.
Pearson ρ = − 0.30 (p-value = 7.75E-02). Figure S3. Relationship between
concordance index and max TMB. Pearson ρ = − 0.40 (p-value = 1.68E-02).
Figure S4. Relationship between concordance index and 20% tail TMB.
Pearson ρ = − 0.32 (p-value = 5.51E-02). Figure S5. Relationship between
concordance index and 10% tail TMB. Pearson ρ = − 0.32 (p-value =

5.93E-02). Figure S6. Relationship between concordance index and 5%
tail TMB. Pearson ρ = − 0.30 (p-value = 7.45E-02). Table S5. Fine-tuned
hyper-parameters of Cox-nnet (L2 penalty weight λ) across 12 cancer
types and 5 experiments (folds). Table S6. Fine-tuned hyper-parameters
of DeepSurv across 12 cancer types and 5 experiments (folds). Table S7.
Fine-tuned hyper-parameters of AECOX across 12 cancer types and 5 ex-
periments (folds). Note that we fixed λ2 = 0 to only impose L2 sparsity.
Table S8. Fine-tuned hyper-parameters of Random Survival Forest (RSF)
(number of the trees) across 12 cancer types and 5 experiments (folds).
Table S9. Fine-tuned hyper-parameters of SVM (α, weight of penalizing
the squared hinge loss in the objective function) across 12 cancer types
and 5 experiments (folds). Table S10. Model-wised performances com-
parison at pan-cancer level (12 TCGA (The Cancer Genome Atlas) cancer
types) by pairwise paired t-test, according to metrics concordance index
and p-value of log-rank test. Note that for concordance index, larger t-
statistic/coefficient indicated better performance at pan-cancer level,
while the p-value of log-rank test was on the contrary. Table S11.
Model-wised performances comparison at pan-cancer level (12 TCGA
(The Cancer Genome Atlas) cancer types) by linear mixed-effects models
test, according to metrics concordance index and p-value of log-rank test.
Note that for concordance index, larger t-statistic/coefficient indicated
better performance at pan-cancer level, while the p-value of log-rank test
was on the contrary.
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