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Abstract

Background and aims: Few studies have explored how polygenic propensity to cannabis use 

unfolds across development, and no studies have yet examined this question in the context of 

environmental contributions such as peer cannabis use. Outlining the factors that contribute to 

progression from cannabis initiation to problem use over time may ultimately provide insights into 

mechanisms for targeted interventions. We sought to examine the relationships between polygenic 

liability for cannabis use, cannabis use trajectories across ages 12–30, and perceived peer cannabis 

use at ages 12–17.

Corresponding author: Emma C Johnson, emma.c.johnson@wustl.edu, 314-273-1873, Department of Psychiatry, Washington 
University School of Medicine, 660 S. Euclid, CB 8134, St. Louis, MO 63110. 

The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Addiction. Author manuscript; available in PMC 2020 April 01.

Published in final edited form as:
Addiction. 2019 April ; 114(4): 687–697. doi:10.1111/add.14512.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IUPUIScholarWorks

https://core.ac.uk/display/333956873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Design: Mixed effect logistic and linear regressions were used to examine associations between 

polygenic risk scores, cannabis use trajectory membership, and perceived peer cannabis use.

Setting: USA

Participants: From the Collaborative Study on the Genetics of Alcoholism (COGA) study, a 

cohort of 1,167 individuals aged 12–26 years at their baseline (i.e., first) interview.

Measurements: Key measurements included lifetime cannabis use (yes/no), frequency of past 

12-month cannabis use, maximum lifetime frequency of cannabis use, cannabis use disorder 

(using DSM-5 criteria), and perceived peer cannabis use. Polygenic risk scores (PRS) were created 

using summary statistics from a large (N = 162,082) genome-wide association study (GWAS) of 

cannabis use.

Findings: Three trajectories reflecting no/low (n=844), moderate (n=137) and high (n=186) use 

were identified. PRS were significantly associated with trajectory membership (p=0.002 – 0.006, 

maximum conditional R2 = 0.014, ORs = 1.40 – 1.49). Individuals who reported that most/all of 

their best friends used cannabis had significantly higher PRS than those who reported that none of 

their friends were users (OR = 1.35, 95% C.I. = [1.04, 1.75], p = 0.023). Perceived peer use itself 

explained up to 11.3% of the variance in trajectory class membership (OR: 1.50 – 4.65). When 

peer cannabis use and the cannabis use PRS were entered into the model simultaneously, both the 

PRS and peer use continued to be significantly associated with class membership (p < 0.01).

Conclusions: Genetic propensity to cannabis use derived from heterogeneous samples appears 

to correlate with longitudinal increases in cannabis use frequency in young adults.

Introduction

The growing controversy regarding cannabis legalization in the United States1 is based in 

part on the question of whether increased access is associated with escalations of both use 

and misuse2, with the latter currently affecting about 6% of the population3. Longitudinal 

studies have classified young cannabis users into those who remain casual users, those who 

transition to moderate levels of use and remain stable, those who show initial increases 

followed by declines in use and, importantly, those who demonstrate accelerated use and 

progression to problem use4–11. Outlining the factors that contribute to the likelihood of 

progression to problem use might provide insights into targets for intervention.

Cannabis use and misuse are heritable (h2=50–70% of the variation). Several genomewide 

association studies (GWAS) have attempted to identify loci that might contribute to this 

heritable variation12–18. For cannabis use, the largest published study to date (N = 184,765 

individuals of European descent19; results used here on n=162,082; see Supplemental 

Materials for details) identified four independent genomewide significant loci and found a 

genomewide single nucleotide polymorphism (SNP) heritability of 10%, suggesting that the 

aggregated effects of common SNPs captured a sizeable portion of the heritability of 

cannabis use. Polygenic risk scores (PRS) offer a complementary approach to the study of 

such aggregated effects20. In brief, a PRS is a person-specific index of genetic propensity to 

a trait (e.g., cannabis use); PRS are constructed by multiplying the effect size from a 

discovery GWAS by the number of risk alleles that an individual possesses at that SNP. PRS 
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approaches are widely used in psychiatric genetics, including substance use and dependence, 

and can be used to assess whether genetic risk for one disorder or trait is associated with 

aspects of the same trait, or with a correlated disorder/trait21,22. For instance, one study 

found that PRS for schizophrenia risk predicted cannabis use in individuals with bipolar 

disorder23. However, few studies have explored how genetic propensity to cannabis initiation 

(i.e., cannabis PRS) influences patterns of cannabis use across development.

In addition to genetic risk, affiliations with cannabis-using peers are believed to be amongst 

the leading contributors to persistent cannabis use8,11,24,25. However, results from 

longitudinal samples remain mixed (e.g.,7). While peer use is readily viewed as an 

“environmental” agent of risk, it can also represent heritable aspects of underlying behavior, 

with at least one study suggesting a heritability of 25–28% for general peer group deviance, 

a broad measure including peer marijuana use26. That study also found that about 50–78% 

of the genetic variance in peer group deviance was attributable to genetic factors related to 

cannabis use27–29. Another study30 reported that the heritability of perceived peer alcohol 

use ranged from 7% at age 12–14 up to 38% by age 18, and that the relationship between 

peer alcohol use and one’s own alcohol use was attributable to genetic factors with a 

correlation of 0.83. Taken together, these observations raise the possibility that polygenic 

risk for cannabis use may interface with peer cannabis use in several possible ways, ranging 

from a main effect to a potential interactive effect. To our knowledge, these hypotheses 

remain untested.

To better understand the role of genetic propensity and peer use in the longitudinal course of 

cannabis use, we used data on 1,167 individuals of European descent who were part of a 

large longitudinal study of the genetics of addictions. We first identified trajectories of 

cannabis use frequency, and then examined whether trajectory class membership was related 

to (a) cannabis use PRS and/or (b) perceived peer cannabis use when the subject was 12–17 

years old. We also examined whether the relationship between polygenic risk, perceived peer 

use and trajectory membership could be explained by an interaction model where perceived 

peer use moderated the influence of polygenic risk on trajectory membership. Results from 

these analyses can provide a framework for how genetic liability and peer use might 

interface to shape the developmental unfolding of cannabis use.

Methods

Participants

The Collaborative Study on the Genetics of Alcoholism (COGA) study recruited alcohol 

dependent probands through substance use treatment programs at 7 sites across the United 

States. Probands and their family members were invited to participate, resulting in an 

overrepresentation of densely affected multiplex pedigrees. Control families (2 parents and 3 

or more offspring over the age of 14) were also selected from a variety of community 

sources (e.g., driver license registries). The institutional review boards for all 7 data 

collection sites, and additional data analysis sites, approved the study31.

For the current analyses, data from a cohort of 3,618 individuals (“September 2017” data 

freeze), who were aged 12–26 years at their baseline (i.e., first) interview, and comprised the 
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longitudinal component of COGA, were used32. Briefly, participants were offspring of 

COGA families, with 61.6% having one parent with alcohol use disorder. Since 2004, 

participants have been interviewed every 2 years with the same structured interview; follow-

up interviews are ongoing. We included only subjects with GWAS data and of European-

American (EA; as verified by genotype) descent to match the ethnicity of the discovery 

GWAS13 (n=1,897); of these individuals, 1,840 had non-missing data for relevant variables. 

For the longitudinal growth curve analyses, a further reduction in sample size resulted from 

sub-setting on those who were EA, had GWAS data, and had 3 or more assessments, 

including the baseline assessment (final analytic n = 1,167). When compared to the larger 

subset of 1,840 individuals, those with 3 or more assessments did not vary of any 

demographic or cannabis-related characteristics, suggesting that selection for those with ≥3 

assessments did not significantly bias findings (Table S1).

Assessment: All individuals were interviewed using a version of the Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA33,34) with individuals aged <18 years 

administered a child version (C-SSAGA33,34).

Lifetime cannabis use was coded using all assessment responses to an item on whether they 

had ever used cannabis (response: yes or no).

Frequency of past 12 month cannabis use was also recorded as the response at each 

interview to an item querying how often the participant had used cannabis in the past 12 

months; the range was from 0 to 935. Data were winsorized to remove outliers (>3 standard 

deviations) at each age and were binned into 31 categories in 20-unit intervals. The interval 

length was chosen to capture variation in the data and allow for model optimization 

(sensitivity analyses with a 10-unit interval were also conducted; see Supplemental 

Materials).

Maximum lifetime frequency of cannabis use was the maximum reported frequency of past 

12 month cannabis use; this variable was log-transformed before analysis due to being right-

skewed.

Cannabis Use Disorder (CUD) was coded using DSM-5 criteria35 (without the requirement 

for clustering of symptoms).

Perceived peer cannabis use was coded as the response to an item: When you were 12–17, 

how many of your best friends used marijuana? (0 = none, 1 = a few, 2 = most, 3 = all; 

categories representing “most” and “all” were combined as the latter was only endorsed by 

35 individuals); To minimize recall bias, peer use reported at the last assessment was used 

for those aged 12–17 (n=818), and at the assessment closest to age 12–17 for subjects aged 

18 and older (349, although 91% were 18–21 years of age).

Genotypic data:

Members of COGA’s prospective cohort were genotyped as a part of multiple initiatives on 

different Illumina and Affymetrix arrays. The reported pedigree structure was assessed using 
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a pruned set of 1,519,440 SNPs. In total, 6,881,872 SNPs passed quality control and data 

cleaning thresholds and were available for analysis (details in Supplemental Materials).

Polygenic risk for cannabis use: Effect sizes and effect alleles were derived from 

genome-wide summary statistics from a large GWAS meta-analysis of 162,082 individuals, 

all of European ancestry (characteristics of discovery GWAS19 in Supplemental Materials). 

PRS were created for each COGA individual of genetically verified European descent with 

SNPs meeting increasingly lenient p-value thresholds from the discovery GWAS (from pT 

<0.0001 to pT <0.50). Details are provided in Supplementary Materials but briefly, for each 

COGA individual, effect sizes from the discovery GWAS by Pasman et al., were multiplied 

by the number of effect alleles for each SNP, and then averaged across all SNPs within a 

certain p-value threshold (e.g,. pT <0.10) (e.g., tuning parameter36) in the discovery GWAS 

to create one score per individual for that pT. This pT threshold is not reflective of 

significance of the PRS in a traditional statistical sense (i.e., p < 0.05). Instead, it is 

predicated on the assumption of a high degree of polygenicity, which has been found to be 

true for most complex traits37; therefore, SNPs that do not reach stringent genome-wide 

significance cutoffs (typically p < 5e-8) in the discovery GWAS are still predicted to make 

small but incremental and additive contributions to risk liability for the outcome20,38,39.

Covariates: Sex, age at first (i.e., baseline) and last interview were included as covariates. 

Two additional covariates were also included. First, three principal components, reflecting 

continuous variation in genetic ancestry were derived from all the GWAS data (details in 

Supplemental Materials) and included to account for subtle ancestral differences40. Second, 

the type of genotyping array used for each individual was included as a covariate in order to 

control for potential differences in genomic content, quality control or imputation (Table S1 

for descriptive data).

Statistical Analyses

Estimation of Trajectories: Only subjects with GWAS data and cannabis frequency of 

use data available at 3 or more assessment waves (N=1,167) were included in the growth 

mixture models. Latent class growth analysis (LCGA) with a zero-inflated Poisson model in 

MPlus v841 was used to assign these individuals to classes that were derived using cannabis 

past year frequency of use categories from each of the up to 7 interviews (baseline through 

12 - year follow-up). Age at assessment was used as the analytic unit (i.e., the x-axis). 

Analysis details are available in Supplemental Materials.

PRS analyses: The PRS were standardized (using the ‘scale’ function in R) before 

analysis. Mixed effect logistic regression models were used to test the association between 

PRS (at varying pT) and trajectory class membership (using pairwise comparisons between 

classes), the associations between peer use and trajectory class membership,between the 

PRS and peer use and also to test whether an interaction between PRS and peer cannabis use 

predicted trajectory membership, while accounting for all second order interaction terms 

(see42). All analyses included the family identifier and recruitment site as random effects 

(family nested within site).
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All of the above analyses were conducted in R43. To assess model fit and the relative amount 

of variance explained by the PRS, we used the ‘MuMIn’ package in R to calculate both 

marginal and conditional R2 for each mixed model43. We use the conditional R2 to select the 

most predictive pT (see Supplemental Materials), but report both statistics for the most 

predictive PRS threshold. The proportion of variance attributable to the PRS (Δconditional 

R2) was estimated as the difference between the conditional R2 for a model with covariates 

alone and the model that included covariates and the PRS (i.e. conditional R2(full model) - 

conditional R2(model without PRS)). The use of ΔR2 (typically Nagelkerke’s pseudo-R2 for 

binary traits20) as an index of the most predictive PRS relates to its role as an index of 

predictor efficacy38,39,44, such that the addition of the PRS to a model improves the fit of the 

model, thus indicating unique variance attributable to the PRS, over and above covariates. 

As peer use was restricted to recall at age 12–17, we did not test whether trajectory 

membership influenced future peer use. The Bonferroni-corrected significance threshold for 

the PRS analyses was set at 0.0019 (corrected for 27 tests: 3 class comparisons x 9 PRS 

thresholds), while the significance threshold was set at α < 0.05 for the remaining analyses. 

In addition, to overcome concerns that uncertainty in class membership might have 

influenced results, we reran analyses for the most predictive PRS threshold using the BCH 

approach in MPlus45. In this approach, the LCGA model is fitted to data and weights are 

assigned to likelihood of membership in each class while simultaneously examining 

between-class differences in PRS and accounting for the effect of covariates on class 

membership (see Supplemental Materials).

Role of externalizing behaviors: To examine whether cannabis use PRS represented a 

general propensity to externalizing behaviors, we examined their association with (a) the 

thrill/adventure-seeking and the disinhibition subscales from Zuckerman’s sensation-scale 

(from baseline assessments; for adults46; Russo’s modified sensation-seeking scale for 

children47; standardized) and (b) with a lifetime diagnosis of conduct disorder from the 

SSAGA.

Negative control analyses: As a negative control, we also tested whether the PRS 

significantly predicted height at baseline, a trait not expected to be genetically associated 

with cannabis use.

Results

Trajectories of recent cannabis use

As shown in Figure S1, three classes were identified as the three-class model had a lower 

Bayesian Information Criterion (BIC) than the two-class solution, the Lo-Mendel-Rubin 

Adjusted Likelihood Ratio Test (LMR-ALRT) p-value for the 4 class solution (p = 0.1002) 

was not significant, and the entropy for the 3 class solution (0.917) was high (fit statistics in 

Table S2; parameter estimates for the best-fitting model in Table S3). Classification 

probabilities were high (0.975, 0.928, 0.977). Sensitivity analyses with 10-unit intervals of 

cannabis use frequency were similar (Table S2; Supplemental Materials). Broadly 

speaking (Table 1), the classes represented (a) users who consistently used cannabis 

infrequently during the entire period of follow-up, and included never users of cannabis, that 
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we termed the “no-low” use class (N = 844); (b) another class that included individuals with 

very high frequency of initial use that continued to escalate during the follow-up period and 

remained elevated at the final assessment, that we termed the “high” use class (n=186); and 

(c) a class that included escalating use that involved similar high use at baseline but a less 

steep increase in use during the follow-up, that we termed the “moderate” use class (N = 

137). Also, as shown in Table 1, those in the high and the moderate use trajectories were 

significantly more likely to be male, have used cannabis at an earlier age, and meet criteria 

for a lifetime history of cannabis use disorder (CUD) as well as conduct disorder.

Associations between cannabis use PRS and overall cannabis use in the sample

In the analytic sample (n=1,167), we found no evidence that the cannabis PRS was 

associated with a binary measure of lifetime cannabis use (p = 0.111), nor with frequency of 

use at baseline (in ever-users, p = 0.390), frequency of use at last assessment (in ever-users, 

p = 0.513), or maximum frequency of cannabis use (in ever-users, p = 0.090). However, the 

cannabis use PRS was associated with lifetime history of DSM5 CUD (p = 0.028) but was 

no longer significant in the subset of ever-users (p = 0.090, Table S4). The pattern of 

association with cannabis use was similar when individuals with <3 assessments (n=1,840) 

were studied, although in this larger sample the PRS was associated with maximum 

frequency of cannabis use (p = 0.013), and with DSM5 cannabis use disorder in both the full 

sample (p = 0.005) including in ever-users (n = 1,144, p = 0.014).

Cannabis use PRS predicting cannabis use trajectories

The cannabis use PRS was significantly associated with cannabis use trajectory class 

membership (Table 2). At the most significantly-associated PRS threshold of pT < 0.1, the 

cannabis use PRS explained approximately 1.4% of the conditional variance in high vs. no-

low class membership (2.30% of the marginal variance); for every unit increase in PRS, 

membership in the high vs. no-low class increased by an odds of 1.40 (95% CI = [1.13, 

1.74]) (Figure S2; full results for all thresholds in Table 2, all covariates in Table 3). 

Cannabis PRS also explained 3.6% of the conditional variance in high vs. moderate class 

membership, although this comparison did not survive Bonferroni correction (OR = 1.49, 

95% CI = [1.12, 1.97], p = 0.006). There was no evidence that cannabis use PRS was 

associated with height at baseline (p = 0.730). Results from the BCH approach identified 

identically significant differences in mean PRS across the high class when compared with 

the moderate and the no-low class (Table S5).

Peer cannabis use predicting cannabis use trajectories

Of the 1,162 individuals with peer use data available, 57.5, 28.3 and 14.2% reported that 

none, few and most-all of their close peers used cannabis. Perceived peer cannabis use 

explained up to 11.3% of the variance in trajectory class membership (ORs = 1.50 – 4.65). 

When peer cannabis use and the cannabis use PRS were entered into the model 

simultaneously, the association between the cannabis use PRS and membership in high vs. 

moderate class was only slightly attenuated (OR: 1.46 [95% C.I. = [1.09, 1.94]; p = 0.010), 

as was the association with the high vs. no-low class comparison (OR: 1.34 [95% C.I. = 

[1.07, 1.68]; p = 0.012). Peer cannabis use was independently and significantly associated 
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with all three comparisons in these models that also included the PRS as a predictor (both 

high vs. no-low and moderate vs. no-low p < 0.001, high vs. moderate p = 0.017).

Cannabis use PRS predicting peer cannabis use

Those who reported that most-all of their best friends used cannabis had significantly higher 

PRS than those who reported that “none” of their best friends used cannabis (most 

significant OR = 1.38, 95% C.I. = [1.07, 1.78], p = 0.012). Other comparisons (e.g., none vs. 

few: p = 0.799; few vs. most-all, p = 0.096) did not significantly differ from each other on 

cannabis PRS (details in Supplemental Material).

Role of externalizing behaviors:

The disinhibition scale score was significantly associated with both trajectory membership 

and all peer cannabis use comparisons, while thrill-seeking was only significantly associated 

with belonging to the high trajectory class vs.no-low class and with the peer cannabis use 

comparison between none vs. a few (details in Table S6). Cannabis use PRS did not 

significantly predict either scale, but was significantly associated with conduct disorder 

diagnosis, as were peer use and all three of the trajectory class comparisons (Table S6). The 

association between peer use and trajectory membership (high vs. no-low class: p < 0.001; 

high vs. moderate: p = 0.037; moderate vs. no-low: p = < 0.001) was only somewhat 

attenuated when including conduct disorder as a covariate. Inclusion of conduct disorder 

also modestly attenuated the association between PRS and class membership (e.g., high vs. 

no-low class: ORconduct = 1.37, 95% CI = [1.11, 1.69], p = 0.003; vs ORno-conduct: 1.40, 95% 

CI = [1.13, 1.74], p = 0.002; high vs. moderate ORconduct = 1.45, 95% CI = [1.10, 1.90], p = 

0.008 vs. ORno-conduct= 1.49, 95% CI = [1.12, 1.97], p = 0.006).

PRS x peer use predicting cannabis use trajectories

PRS-by-peer use interaction was not significant (Table S7), suggesting independent effects 

of PRS and peer use on trajectory membership.

Discussion

There are three key implications from our study. First, we found a statistically significant 

association between cannabis PRS and trajectory membership, and the effect size (Δ 

conditional R2 up to 3.6%) was consistent with other PRS analyses21. Thus, genetic 

propensity to cannabis initiation derived from a large, heterogeneous discovery sample 

appears to differentiate between classes derived from frequency of cannabis use in an 

ascertained, longitudinal cohort. Interestingly, lifetime cannabis use was not significantly 

related to PRS. However, maximum frequency of use and DSM5 CUD were associated with 

PRS in the larger sample of 1,840. It is possible that even though the discovery GWAS was 

aimed at assessing genetic propensity to lifetime use, that polygenic liability is better 

captured along a developmental spectrum in these data. While, to some extent, the classes 

differed in severity of use (e.g., CUD), associations with class membership (e.g., high vs. 

no-low) far exceeded cross-sectional associations with CUD, suggesting that class 

membership in this young and ascertained sample may be a superior index of genetic 

propensity than cross-sectional indices alone.

Johnson et al. Page 8

Addiction. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, the “environmental” risk factor in our study, perceived peer cannabis use explained 

up to 11.3% of the variance in trajectory membership. This suggests that, although genetics 

certainly plays a role in the progression of cannabis use, established environmental 

influences such as peer use are better predictors of cannabis use than PRS at the moment, 

and this is likely to be true for other complex behavioral traits as well. Uniquely, genetic 

propensity to cannabis use was also associated with greater perceived peer engagement in 

cannabis use. Consistent with prior heritability studies, this finding of genetic contributions 

to perceived peer use might reflect gene-environment correlation48,49 or causal processes, 

such as Mendelian randomization50. However, both PRS and peer use remained significantly 

associated with class membership when simultaneously modeled suggesting some 

independent effects.

Third, we found no evidence that peer cannabis use is a moderator of polygenic 

contributions to cannabis use trajectories. Previous studies have found some evidence for 

interaction effects between peer substance use and genetic liabilities for substance use48 but 

few have used genomewide PRS to do so.

Although results from the discovery GWAS for cannabis use were genetically correlated 

with risk-taking (SNP-rg =0.425, p=3.4e-42)19, we found no evidence that our measures of 

risk-taking were consistently related to the cannabis use PRS. Even though PRS were 

correlated with conduct disorder, associations between the PRS and trajectory membership 

persisted even after controlling for conduct disorder. Thus, general deviance does not appear 

to fully account for these associations.

Our study had several limitations, including a modest target sample size (target N = 1,167, 

discovery sample size N = 162,082; given the current sample size and a significance level of 

α = 0.05, our study had 80% power51 to detect an effect size of R2 ≥ 0.0068.). Further 

replication studies in larger, independent samples are warranted. Also, the current analyses 

were restricted to individuals of European ancestry, so we cannot confidently extrapolate our 

conclusions to other populations. Third, COGA is ascertained for genetic liability to 

addiction, which may have influenced findings. Our “high” group (16%) is somewhat larger 

than those noted in two prior general-population longitudinal studies6,8 but similar to one 

study that oversampled for tobacco4 smoking and lower than a study with overrepresentation 

of individuals from high-crime neighborhoods7. Thus, similar classes have been noted, 

although there is much variability in their class size. Fourth, while self-report of perceived 

peer use is commonly studied, and does not significantly differ from actual peer use52, it is 

possible that it is less objective than reports by peer nominees53. Furthermore, as we did not 

have reports of concurrent peer cannabis use at older ages (and the sample has a diverse age 

range at final assessment), we cannot speculate whether trajectory membership was 

associated with subsequent affiliations with cannabis-using peers. Fourth, we binned 

frequency of use data into 20-unit intervals and this may have obscured the identification of 

smaller classes. For instance, our method combined those using 1–2 times in the past year 

with those who may have used cannabis 15–20 times. However, sensitivity analyses with 10-

unit intervals provided similar results. It is also possible that reported frequency at the upper 

end of use was imprecise (e.g., using 550 vs. 600 times).
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It is hoped that with larger discovery efforts of both cannabis use54 and of cannabis use 

disorders, the predictive quality of PRS, not merely in terms of what they predict, but also 

when and how they do so, will be better elucidated. However, this study highlights that even 

as discovery GWAS sample sizes grow and PRS begin to attain a greater level of 

precision21,39, it will be of paramount importance to consider not only how genetic liability 

shapes health and behavior, but also the environmental context within which such behavior 

unfolds (e.g.,55).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SUNY Downstate (B. Porjesz); Washington University in St. Louis (L. Bierut, J. Rice, K. Bucholz, A. Agrawal); 
University of California at San Diego (M. Schuckit); Rutgers University (J. Tischfield, A. Brooks); Department of 
Biomedical and Health Informatics, The Children’s Hospital of Philadelphia; Department of Genetics, Perelman 
School of Medicine, University of Pennsylvania, Philadelphia PA (L. Almasy), Virginia Commonwealth University 
(D. Dick), Icahn School of Medicine at Mount Sinai (A. Goate), and Howard University (R. Taylor). Other COGA 
collaborators include: L. Bauer (University of Connecticut); J. McClintick, L. Wetherill, X. Xuei, Y. Liu, D. Lai, S. 
O’Connor, M. Plawecki, S. Lourens (Indiana University); G. Chan (University of Iowa; University of Connecticut); 
J. Meyers, D. Chorlian, C. Kamarajan, A. Pandey, J. Zhang (SUNY Downstate); J.-C. Wang, M. Kapoor, S. 
Bertelsen (Icahn School of Medicine at Mount Sinai); A. Anokhin, V. McCutcheon, S. Saccone (Washington 
University); J. Salvatore, F. Aliev, B. Cho (Virginia Commonwealth University); and Mark Kos (University of Texas 
Rio Grande Valley). A. Parsian and H. Chen are the NIAAA Staff Collaborators.

We continue to be inspired by our memories of Henri Begleiter and Theodore Reich, founding PI and Co-PI of 
COGA, and also owe a debt of gratitude to other past organizers of COGA, including Ting-Kai Li, P. Michael 
Conneally, Raymond Crowe, and Wendy Reich, for their critical contributions. This national collaborative study is 
supported by NIH Grant U10AA008401 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) 
and the National Institute on Drug Abuse (NIDA).

This study included summary statistics of a genetic study on cannabis use (Pasman et al, in press Nature 
Neuroscience). We would like to acknowledge all participating groups of the International Cannabis Consortium, 
and in particular the members of the working group including Joelle Pasman, Karin Verweij, Nathan Gillespie, Eske 
Derks, and Jacqueline Vink. Pasman et al, (2018) included data from the UK Biobank resource under application 
numbers 9905, 16406 and 25331.

References

1. Arnott D The impact diverging public opinion on cannabis and tobacco regulation has on 
constructive engagement between advocates. Addiction (2017).

2. Hasin DS et al. US adult illicit cannabis use, cannabis use disorder, and medical marijuana laws: 
1991–1992 to 2012–2013. JAMA Psychiatry 74, 579–588 (2017). [PubMed: 28445557] 

3. Hasin DS et al. Prevalence and Correlates of DSM-5 Cannabis Use Disorder, 2012–2013: Findings 
from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Am. J. Psychiatry 
appiajp201515070907 (2016). doi:10.1176/appi.ajp.2015.15070907

4. Passarotti AM, Crane NA, Hedeker D & Mermelstein RJ Longitudinal trajectories of marijuana use 
from adolescence to young adulthood. Addict. Behav 45, 301–308 (2015). [PubMed: 25792233] 

Johnson et al. Page 10

Addiction. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. D’Amico EJ et al. Alcohol and marijuana use trajectories in a diverse longitudinal sample of 
adolescents: examining use patterns from age 11 to 17 years. Addiction 111, 1825–1835 (2016). 
[PubMed: 27130360] 

6. Brook JS, Zhang C & Brook DW Developmental trajectories of marijuana use from adolescence to 
adulthood: personal predictors. Arch. Pediatr. Adolesc. Med 165, 55–60 (2011). [PubMed: 
21199981] 

7. Epstein M et al. Trajectories of marijuana use from adolescence into adulthood: Environmental and 
individual correlates. Dev. Psychol 51, 1650–1663 (2015). [PubMed: 26389603] 

8. Windle M & Wiesner M Trajectories of marijuana use from adolescence to young adulthood: 
Predictors and outcomes. Dev. Psychopathol 16, 1007–1027 (2004). [PubMed: 15704825] 

9. Taylor M et al. Patterns of cannabis use during adolescence and their association with harmful 
substance use behaviour: Findings from a UK birth cohort. J. Epidemiol. Community Health 71, 
764–770 (2017). [PubMed: 28592420] 

10. Juon HS, Fothergill KE, Green KM, Doherty EE & Ensminger ME Antecedents and consequences 
of marijuana use trajectories over the life course in an African American population. Drug Alcohol 
Depend. 118, 216–223 (2011). [PubMed: 21514749] 

11. Kandel DB & Chen K Types of marijuana users by longitudinal course. J. Stud. Alcohol 61, 367–
78 (2000). [PubMed: 10807207] 

12. Sherva R et al. Genome-wide association study of cannabis dependence severity, novel risk 
variants, and shared genetic risks. JAMA psychiatry 73, 472–480 (2016). [PubMed: 27028160] 

13. Stringer S et al. Genome-wide association study of lifetime cannabis use based on a large meta-
analytic sample of 32 330 subjects from the International Cannabis Consortium. Transl. Psychiatry 
6, e769 (2017).

14. Demontis D et al. Genome-wide association study implicates CHRNA2 in cannabis use disorder. 
bioRxiv (2017).

15. Agrawal A et al. A genome-wide association study of DSM-IV: Cannabis dependence. Addict. 
Biol 16, 514–518 (2011). [PubMed: 21668797] 

16. Agrawal A et al. DSM-5 cannabis use disorder: A phenotypic and genomic perspective. Drug 
Alcohol Depend. 134, 362–369 (2014). [PubMed: 24315570] 

17. Verweij KJH et al. The genetic aetiology of cannabis use initiation: A meta-analysis of genome-
wide association studies and a SNP-based heritability estimation. Addict. Biol 18, 846–850 (2013). 
[PubMed: 22823124] 

18. Minică CC et al. Heritability, SNP- and Gene-Based Analyses of Cannabis Use Initiation and Age 
at Onset. Behav. Genet 45, 503–513 (2015). [PubMed: 25987507] 

19. Pasman JA et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with 
psychiatric traits, and a causal influence of schizophrenia. Nat. Neurosci 21, 1161–1170 (2018). 
[PubMed: 30150663] 

20. Purcell SM et al. Common polygenic variation contributes to risk of schizophrenia and bipolar 
disorder. Nature 10, 8192–8192 (2009).

21. Wray NR et al. Research Review: Polygenic methods and their application to psychiatric traits. 
Journal of Child Psychology and Psychiatry and Allied Disciplines 55, 1068–1087 (2014).

22. Bogdan R, Baranger DAA & Agrawal A Polygenic Risk Scores in Clinical Psychology: Bridging 
Genomic Risk to Individual Differences. Annu. Rev. Clin. Psychol 14, 119–157 (2018). [PubMed: 
29579395] 

23. Adorjan K et al. Polygenic Risk Scores And Substance Abuse Comorbidity In Patients With 
Schizophrenia And Bipolar Disorders. Eur. Neuropsychopharmacol 27, S409 (2018).

24. Kuntsche E & Jordan MD Adolescent alcohol and cannabis use in relation to peer and school 
factors. Results of multilevel analyses. Drug Alcohol Depend. 84, 167–174 (2006). [PubMed: 
16542799] 

25. Whitesell NR et al. Trajectories of Substance Use Among Young American Indian Adolescents: 
Patterns and Predictors. J. Youth Adolesc. 43, 437–453 (2014). [PubMed: 24136376] 

26. Gillespie NA, Neale MC, Jacobson K & Kendler KS Modeling the genetic and environmental 
association between peer group deviance and cannabis use in male twins. Addiction 104, 420–429 
(2009). [PubMed: 19207350] 

Johnson et al. Page 11

Addiction. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Mathys C, Burk WJ & Cillessen AH N. Popularity as a moderator of peer selection and 
socialization of adolescent alcohol, marijuana, and tobacco use. J. Res. Adolesc 23, 513–523 
(2013).

28. Ali MM, Amialchuk A & Dwyer DS The social contagion effect of marijuana use among 
adolescents. PLoS One 6, (2011).

29. Dishion TJ & Tipsord JM Peer Contagion in Child and Adolescent Social and Emotional 
Development. Annu. Rev. Psychol 62, 189–214 (2011). [PubMed: 19575606] 

30. Edwards AC, Maesr HH, Prescott CA & Kendler KS Multiple mechanisms influencing the 
relationship between alcohol consumption and peer alcohol use. Alcohol. Clin. Exp. Res 39, 324–
332 (2015). [PubMed: 25597346] 

31. Reich T et al. Genome-wide search for genes affecting the risk for alcohol dependence. Am. J. 
Med. Genet 81, 207–15 (1998). [PubMed: 9603606] 

32. Bucholz KK et al. Comparison of Parent, Peer, Psychiatric, and Cannabis Use Influences Across 
Stages of Offspring Alcohol Involvement: Evidence from the COGA Prospective Study. Alcohol. 
Clin. Exp. Res 41, 359–368 (2017). [PubMed: 28073157] 

33. Bucholz KK et al. A new, semi-structured psychiatric interview for use in genetic linkage studies: a 
report on the reliability of the SSAGA. J. Stud. Alcohol 55, 149–158 (1994). [PubMed: 8189735] 

34. Hesselbrock M et al. A validity study of the SSAGA - A comparison with the SCAN. Addiction 
94, 1361–1370 (1999). [PubMed: 10615721] 

35. Association AP Diagnostic and statistical manual of mental disorders (DSM-5®). (American 
Psychiatric Pub, 2013).

36. So H-C & Sham PC Improving polygenic risk prediction from summary statistics by an empirical 
Bayes approach. Sci. Rep 7, 41262 (2017). [PubMed: 28145530] 

37. Gratten J, Wray NR, Keller MC & Visscher PM Large-scale genomics unveils the genetic 
architecture of psychiatric disorders. Nat. Neurosci 17, 782 (2014). [PubMed: 24866044] 

38. Wray NR et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet 14, 507 (2013). 
[PubMed: 23774735] 

39. Dudbridge F Power and Predictive Accuracy of Polygenic Risk Scores. PLOS Genet. 9, e1003348 
(2013). [PubMed: 23555274] 

40. Price AL et al. Principal components analysis corrects for stratification in genome-wide association 
studies. Nat. Genet 38, 904 (2006). [PubMed: 16862161] 

41. Muthén L & Muthén B Mplus user’s guide (version 7.4). Los Angeles: Author (2012). doi:
10.1111/j.1600-0447.2011.01711.x

42. Keller MC Gene x environment interaction studies have not properly controlled for potential 
confounders: The problem and the (simple) solution. Biological Psychiatry 75, 18–24 (2014). 
[PubMed: 24135711] 

43. R Core Team. R: A language and environment for statistical computing. (2017).

44. Hartz SM et al. Association Between Substance Use Disorder and Polygenic Liability to 
Schizophrenia. Biol. Psychiatry 82, 709–715 (2017). [PubMed: 28739213] 

45. Asparouhov T & Muthén B Auxiliary variables in mixture modeling: Using the BCH method in 
Mplus to estimate a distal outcome model and an arbitrary secondary model. Mplus Web Notes 21, 
1–22 (2014).

46. Zuckerman M, Kolin EA, Price L & Zoob I Development of a sensation-seeking scale. J. Consult. 
Psychol 28, 477–482 (1964). [PubMed: 14242306] 

47. Russo MF et al. A sensation seeking scale for children: Further refinement and psychometric 
development. J. Psychopathol. Behav. Assess 15, 69–86 (1993).

48. Harden KP, Hill JE, Turkheimer E & Emery RE Gene-environment correlation and interaction in 
peer effects on adolescent alcohol and tobacco use. Behav. Genet 38, 339–347 (2008). [PubMed: 
18368474] 

49. Eaves L., Last K, Martin NG & Jinks JL A progressive approach to non-additivity and genotype-
environmentaI covariance in the analysis of human differences. Br. J. Math. Stat. Psychol 30, 1–42 
(1977).

Johnson et al. Page 12

Addiction. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Smith GD & Ebrahim S ‘Mendelian randomization’: Can genetic epidemiology contribute to 
understanding environmental determinants of disease? International Journal of Epidemiology 32, 
1–22 (2003). [PubMed: 12689998] 

51. Erdfelder E, FAul F, Buchner A & Lang AG Statistical power analyses using G*Power 3.1: Tests 
for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009). [PubMed: 
19897823] 

52. Deutsch AR, Chernyavskiy P, Steinley D & Slutske WS Measuring Peer Socialization for 
Adolescent Substance Use: A Comparison of Perceived and Actual Friends’ Substance Use 
Effects. J. Stud. Alcohol Drugs 76, 267–277 (2015). [PubMed: 25785802] 

53. Watson CG Do alcoholics give valid self-reports? J. Stud. Alcohol 45, 344–348 (1984). [PubMed: 
6482438] 

54. Pasman JA et al. Genome-wide association analysis of lifetime cannabis use (N=184,765) 
identifies new risk loci, genetic overlap with mental health, and a causal influence of schizophrenia 
on cannabis use. bioRxiv (2018).

55. Paksarian D et al. The role of genetic liability in the association of urbanicity at birth and during 
upbringing with schizophrenia in Denmark. Psychol. Med 48, 305–314 (2018). [PubMed: 
28659227] 

Johnson et al. Page 13

Addiction. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 14

Ta
b

le
 1

.

C
ha

ra
ct

er
is

tic
s 

of
 E

ur
op

ea
n-

A
m

er
ic

an
 in

di
vi

du
al

s 
in

 c
la

ss
es

 r
ep

re
se

nt
in

g 
hi

gh
, m

od
er

at
e 

an
d 

no
-l

ow
 c

an
na

bi
s 

us
e 

fr
eq

ue
nc

y.

H
ig

h-
us

e 
cl

as
s

(N
=1

86
)

M
od

er
at

e-
us

e 
cl

as
s

(N
=1

37
)

N
o-

L
ow

-u
se

 c
la

ss
(N

=8
44

)
H

ig
h 

vs
. N

o-
L

ow
H

ig
h 

vs
. M

od
er

at
e

M
od

er
at

e 
vs

. N
o-

L
ow

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

O
R

 (
95

%
 C

I)
O

R
 (

95
%

 C
I)

O
R

 (
95

%
 C

I)

B
as

el
in

e 
ag

e
15

.7
4

3.
00

16
.1

4
3.

29
15

.4
3

3.
12

1.
01

 (
0.

96
, 1

.0
7)

0.
96

 (
0.

89
, 1

.0
3)

1.
07

 (
1.

00
, 1

.1
3)

*

A
ge

 a
t 

la
st

 a
ss

es
sm

en
t

23
.7

1
4.

07
25

.0
4

4.
05

23
.9

1
4.

38
0.

97
 (

0.
93

, 1
.0

1)
0.

92
 (

0.
87

, 0
.9

8)
**

1.
06

 (
1.

01
, 1

.1
1)

*

A
ge

 a
t 

fi
rs

t 
ca

nn
ab

is
 u

se
15

.0
8

2.
08

15
.9

8
1.

99
17

.8
7

2.
76

0.
61

 (
0.

56
, 0

.6
8)

**
0.

80
 (

0.
71

, 0
.9

0)
**

0.
71

 (
0.

70
8,

 0
.7

15
)*

*

F
re

qu
en

cy
 o

f 
us

e 
at

 b
as

el
in

e
87

.6
6

15
3.

63
32

.1
2

89
.6

2
0.

72
4.

15
1.

07
 (

1.
04

, 1
.1

0)
**

1.
00

4 
(1

.0
02

, 1
.0

07
)*

*
1.

11
 (

1.
07

, 1
.1

5)
**

F
re

qu
en

cy
 o

f 
us

e 
at

 la
st

 a
ss

es
sm

en
t

27
8.

28
19

3.
02

12
0.

57
13

9.
19

5.
21

25
.5

8
1.

08
 (

1.
06

, 1
.1

0)
**

1.
00

7 
(1

.0
05

, 1
.0

09
)*

*
1.

03
3 

(1
.0

26
, 1

.0
41

)*
*

%
N

%
N

%
N

O
R

 (
95

%
 C

I)
O

R
 (

95
%

 C
I)

O
R

 (
95

%
 C

I)

M
al

e 
ge

nd
er

67
.2

0
12

5
64

.9
6

89
41

.9
4

35
4

3.
00

 (
2.

99
, 3

.0
0)

**
1.

10
 (

0.
68

, 1
.7

7)
2.

90
 (

1.
90

, 4
.4

3)
**

L
if

et
im

e 
ca

nn
ab

is
 u

se
10

0.
00

18
6

10
0.

00
13

7
51

.6
6

43
6

--
--

--

C
an

na
bi

s 
us

e 
di

so
rd

er
84

.4
0

15
7

69
.3

4
95

7.
10

60
12

7.
14

 (
41

.1
9,

 3
92

.4
1)

**
2.

45
 (

1.
39

, 4
.3

1)
**

39
.7

3 
(1

9.
40

, 8
1.

37
)*

*

C
on

du
ct

 d
is

or
de

r 
di

ag
no

si
s

34
.4

1
64

21
.1

7
29

7.
23

61
7.

38
 (

4.
61

, 1
1.

80
)*

*
1.

96
 (

1.
17

, 3
.2

8)
*

4.
09

 (
2.

28
, 7

.3
1)

**

* p<
0.

05

**
p<

0.
01

Addiction. Author manuscript; available in PMC 2020 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 15

Ta
b

le
 2

.
R

es
ul

ts
 f

ro
m

 m
ix

ed
 e

ff
ec

t 
lo

gi
st

ic
 r

eg
re

ss
io

n 
m

od
el

s 
pr

ed
ic

ti
ng

 c
an

na
bi

s 
us

e 
tr

aj
ec

to
ry

 c
la

ss
 m

em
be

rs
hi

p 
by

 p
ol

yg
en

ic
 r

is
k 

sc
or

es
 fo

r 
ca

nn
ab

is
 in

it
ia

ti
on

.

A
ll 

m
od

el
s 

co
nt

ro
lle

d 
fo

r 
ag

e 
at

 b
as

el
in

e,
 a

ge
 a

t l
as

t a
ss

es
sm

en
t, 

se
x,

 th
e 

fi
rs

t t
hr

ee
 a

nc
es

tr
y 

pr
in

ci
pa

l c
om

po
ne

nt
s,

 a
nd

 a
rr

ay
 ty

pe
, a

nd
 s

ite
 a

nd
 f

am
ily

 id
 

w
er

e 
in

cl
ud

ed
 a

s 
ne

st
ed

 r
an

do
m

 e
ff

ec
ts

. T
he

 N
 S

N
Ps

 c
ol

um
n 

is
 th

e 
m

in
im

um
 n

um
be

r 
of

 S
N

Ps
 in

cl
ud

ed
 in

 e
ac

h 
PR

S 
th

re
sh

ol
d 

(s
om

e 
in

di
vi

du
al

s 
ha

d 

fe
w

er
 S

N
Ps

 in
cl

ud
ed

 in
 th

e 
sc

or
e 

du
e 

to
 m

is
si

ng
 g

en
ot

yp
es

).
 T

he
 P

R
S 

p-
va

lu
e 

th
re

sh
ol

d 
of

 p
T
 <

 0
.1

 is
 b

ol
de

d,
 a

s 
th

is
 P

R
S 

w
as

 th
e 

m
os

t s
ig

ni
fi

ca
nt

ly
 

th
re

sh
ol

d 
as

so
ci

at
ed

 w
ith

 b
el

on
gi

ng
 to

 th
e 

hi
gh

 u
se

 c
la

ss
 c

om
pa

re
d 

to
 b

ot
h 

th
e 

no
-l

ow
 u

se
 c

la
ss

 a
nd

 th
e 

m
od

er
at

e 
us

e 
cl

as
s,

 a
nd

 th
is

 P
R

S 
th

re
sh

ol
d 

ex
pl

ai
ne

d 
th

e 
m

os
t m

ar
gi

na
l v

ar
ia

nc
e 

(s
ee

 F
ig

.S
2 

).
 T

hu
s,

 th
is

 P
R

S 
w

as
 u

se
d 

in
 a

ll 
an

al
ys

es
 r

ep
or

te
d 

in
 th

e 
m

ai
n 

m
an

us
cr

ip
t.

M
od

er
at

e 
cl

as
s 

vs
. n

o-
lo

w
 c

la
ss

H
ig

h 
cl

as
s 

vs
. n

o-
lo

w
 c

la
ss

H
ig

h 
cl

as
s 

vs
. m

od
er

at
e 

cl
as

s

p-
va

lu
e 

th
re

sh
ol

d 
(p

T
)

N
 S

N
P

s
B

et
a

SE
p

B
et

a
SE

p
B

et
a

SE
p

p5
29

8,
67

8
0.

05
4

0.
12

8
0.

67
6

0.
24

2
0.

10
6

0.
02

2
0.

18
5

0.
13

2
0.

16
2

p4
25

8,
73

3
0.

04
2

0.
12

1
0.

72
7

0.
28

4
0.

10
7

0.
00

8
0.

22
2

0.
13

7
0.

10
6

p3
21

1,
70

5
0.

03
4

0.
12

8
0.

79
2

0.
30

6
0.

11
1

0.
00

6
0.

25
6

0.
13

6
0.

06
0

p2
15

7,
49

6
0.

02
2

0.
12

4
0.

85
7

0.
27

1
0.

10
6

0.
01

1
0.

23
9

0.
13

8
0.

08
3

p1
&

92
,5

04
−0

.0
55

0.
12

1
0.

65
1

0.
33

9
0.

10
9

0.
00

18
0.

39
6

0.
14

5
0.

00
6

p0
5

52
,6

56
−

0.
11

6
0.

11
6

0.
31

5
0.

26
3

0.
10

4
0.

01
1

0.
39

0
0.

14
0

0.
00

5

p0
1

14
,1

02
−

0.
12

2
0.

11
5

0.
28

9
0.

01
1

0.
09

7
0.

91
0

0.
10

9
0.

13
2

0.
40

8

p0
01

2,
16

6
0.

06
6

0.
11

1
0.

55
3

−
0.

00
3

0.
09

7
0.

97
8

−
0.

08
1

0.
12

3
0.

50
8

p0
00

1
37

2
0.

13
1

0.
11

1
0.

24
0

0.
07

6
0.

09
9

0.
44

5
−

0.
09

9
0.

13
2

0.
45

1

&
C

or
re

sp
on

di
ng

 r
es

ul
ts

 f
or

 P
R

S 
p T

 <
 0

.1
 u

si
ng

 th
e 

B
C

H
 a

pp
ro

ac
h 

ar
e 

in
 S

up
pl

em
en

ta
l T

ab
le

 S
5.

Addiction. Author manuscript; available in PMC 2020 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 16

Ta
b

le
 3

.
A

ss
oc

ia
ti

on
s 

be
tw

ee
n 

ca
nn

ab
is

 in
it

ia
ti

on
 p

ol
yg

en
ic

 s
co

re
s 

an
d 

ca
nn

ab
is

 u
se

 t
ra

je
ct

or
ie

s.

T
he

 m
os

t s
ig

ni
fi

ca
nt

 P
R

S 
is

 r
ep

or
te

d,
 w

hi
ch

 w
as

 d
ef

in
ed

 w
ith

 a
 p

-v
al

ue
 th

re
sh

ol
d 

of
 p

T
 <

 0
.1

 (
se

e 
Ta

bl
e 

2 
fo

r 
re

su
lts

 f
or

 a
ll 

th
re

sh
ol

ds
).

 R
es

ul
ts

 in
 b

ol
d 

ar
e 

si
gn

if
ic

an
t p

re
di

ct
or

s 
in

 th
e 

m
od

el
 a

ft
er

 m
ul

tip
le

 te
st

in
g 

co
rr

ec
tio

ns
 (
α
 <

 0
.0

01
9)

.

M
od

er
at

e 
vs

. N
o-

L
ow

H
ig

h 
vs

. N
o-

L
ow

H
ig

h 
vs

. M
od

er
at

e

B
et

a
SE

p
B

et
a

SE
p

B
et

a
SE

p

C
an

na
bi

s 
U

se
 P

R
S

−
0.

05
5

0.
12

1
0.

65
1

0.
33

9
0.

10
9

0.
00

18
0.

39
6

0.
14

5
0.

00
6

Se
x

1.
11

7
0.

22
2

5.
03

e-
07

1.
03

7
0.

19
4

9.
79

e-
08

0.
01

5
0.

25
8

0.
95

5

A
ge

 a
t B

as
el

in
e

−
0.

04
6

0.
06

5
0.

48
2

0.
14

0
0.

05
7

0.
01

4
0.

20
7

0.
07

8
0.

00
8

A
ge

 a
t L

as
t A

ss
es

sm
en

t
0.

10
1

0.
05

0
0.

04
2

−
0.

11
6

0.
04

3
0.

00
7

−0
.2

25
0.

06
4

4.
12

e-
04

Pr
in

ci
pa

l c
om

po
ne

nt
 1

−
27

6.
53

7
12

4.
64

9
0.

02
7

−
22

4.
02

6
12

9.
42

9
0.

08
3

−
51

.3
40

21
9.

12
7

0.
81

5

Pr
in

ci
pa

l c
om

po
ne

nt
 2

−
81

.7
49

82
.3

85
0.

32
1

10
1.

01
9

10
1.

37
5

0.
31

9
69

.9
35

16
8.

78
1

0.
67

9

Pr
in

ci
pa

l c
om

po
ne

nt
 3

−
29

.8
64

49
.3

78
0.

54
5

7.
59

4
48

.6
27

0.
87

6
38

.2
46

70
.1

34
0.

58
6

A
rr

ay
 d

es
ig

n 
1

−
0.

04
3

0.
26

0
0.

86
9

−
0.

50
5

0.
22

8
0.

02
7

−
0.

31
2

0.
27

9
0.

26
5

A
rr

ay
 d

es
ig

n 
2

−
0.

26
8

0.
63

3
0.

67
2

−
0.

43
7

0.
51

8
0.

39
9

−
0.

08
9

0.
71

3
0.

90
0

N
ot

e:
 A

rr
ay

 1
 a

nd
 A

rr
ay

 2
 a

re
 tw

o 
du

m
m

y-
co

de
d 

va
ri

ab
le

s 
in

cl
ud

ed
 in

 th
e 

m
od

el
 to

 c
on

tr
ol

 f
or

 th
e 

ge
no

ty
pi

ng
 a

rr
ay

s.
 P

ri
nc

ip
al

 c
om

po
ne

nt
s 

re
fl

ec
t g

en
et

ic
 a

nc
es

tr
y.

Addiction. Author manuscript; available in PMC 2020 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson et al. Page 17

Ta
b

le
 4

.
A

ss
oc

ia
ti

on
s 

be
tw

ee
n 

ca
nn

ab
is

 in
it

ia
ti

on
 p

ol
yg

en
ic

 s
co

re
 a

nd
 p

er
ce

iv
ed

 p
ee

r 
ca

nn
ab

is
 u

se
.

T
he

 P
R

S 
th

at
 w

as
 m

os
t s

tr
on

gl
y 

as
so

ci
at

ed
 w

ith
 c

an
na

bi
s 

us
e 

tr
aj

ec
to

ri
es

 is
 r

ep
or

te
d 

(p
T
 <

 0
.1

; s
ee

 T
ab

le
 2

).
 R

es
ul

ts
 in

 b
ol

d 
ar

e 
si

gn
if

ic
an

t p
re

di
ct

or
s 

in
 

th
e 

m
od

el
 (
α
 <

 0
.0

5)
.

N
on

e 
vs

. A
 f

ew
N

on
e 

vs
. M

os
t/

A
ll

A
 f

ew
 v

s.
 M

os
t/

A
ll

B
et

a
SE

p
B

et
a

SE
p

B
et

a
SE

p

C
an

na
bi

s 
U

se
 P

R
S

0.
02

1
0.

08
3

0.
79

9
0.

32
4

0.
12

9
0.

01
2

0.
18

4
0.

11
1

0.
09

6

Se
x

0.
41

9
0.

14
5

0.
00

4
0.

52
8

0.
22

2
0.

01
8

0.
07

3
0.

20
1

0.
71

7

A
ge

 a
t B

as
el

in
e

0.
09

9
0.

04
5

0.
02

6
0.

31
5

0.
07

2
<0

.0
01

0.
13

4
0.

06
1

0.
02

8

A
ge

 a
t L

as
t A

ss
es

sm
en

t
−

0.
02

1
0.

03
3

0.
52

9
−0

.1
24

0.
05

2
0.

01
8

−
0.

05
5

0.
04

4
0.

21
2

Pr
in

ci
pa

l c
om

po
ne

nt
 1

−
38

0.
54

4
25

5.
57

5
0.

13
7

−4
07

.2
65

95
.4

35
<0

.0
01

11
6.

51
9

30
9.

08
8

0.
70

6

Pr
in

ci
pa

l c
om

po
ne

nt
 2

−
53

.4
50

13
5.

15
4

0.
69

2
−2

61
.6

39
12

5.
32

0
0.

03
7

−
30

9.
74

0
18

8.
02

7
0.

09
9

Pr
in

ci
pa

l c
om

po
ne

nt
 3

5.
69

2
52

.1
02

0.
91

3
93

.3
02

63
.8

40
0.

14
4

82
.6

89
67

.1
68

0.
21

8

A
rr

ay
 d

es
ig

n 
1

0.
36

5
0.

18
1

0.
04

3
−

0.
41

6
0.

26
9

0.
12

2
−0

.6
31

0.
22

6
0.

00
5

A
rr

ay
 d

es
ig

n 
2

0.
40

2
0.

38
2

0.
29

2
−

0.
84

6
0.

67
2

0.
20

8
−

0.
71

5
0.

58
2

0.
21

9

N
ot

e:
 A

rr
ay

 1
 a

nd
 A

rr
ay

 2
 a

re
 tw

o 
du

m
m

y-
co

de
d 

va
ri

ab
le

s 
in

cl
ud

ed
 in

 th
e 

m
od

el
 to

 c
on

tr
ol

 f
or

 th
e 

ge
no

ty
pi

ng
 a

rr
ay

 ty
pe

s.
 P

ri
nc

ip
al

 c
om

po
ne

nt
s 

re
fl

ec
t g

en
et

ic
 a

nc
es

tr
y.

Addiction. Author manuscript; available in PMC 2020 April 01.


	Abstract
	Introduction
	Methods
	Participants
	Assessment:

	Genotypic data:
	Polygenic risk for cannabis use:
	Covariates:

	Statistical Analyses
	Estimation of Trajectories:
	PRS analyses:
	Role of externalizing behaviors:
	Negative control analyses:


	Results
	Trajectories of recent cannabis use
	Associations between cannabis use PRS and overall cannabis use in the sample
	Cannabis use PRS predicting cannabis use trajectories
	Peer cannabis use predicting cannabis use trajectories
	Cannabis use PRS predicting peer cannabis use
	Role of externalizing behaviors:
	PRS x peer use predicting cannabis use trajectories

	Discussion
	References
	Table 1.
	Table 2.
	Table 3.
	Table 4.

