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Abstract—Mobile payment has drawn considerable attention
due to its convenience of paying via personal mobile devices at
anytime and anywhere, and passcodes (i.e., PINs or patterns) are
the first choice of most consumers to authorize the payment. This
paper demonstrates a serious security breach and aims to raise
the awareness of the public that the passcodes for authorizing
transactions in mobile payments can be leaked by exploiting the
embedded sensors in wearable devices (e.g., smartwatches). We
present a passcode inference system, WristSpy, which examines
to what extent the user’s PIN/pattern during the mobile payment
could be revealed from a single wrist-worn wearable device under
different passcode input scenarios involving either two hands
or a single hand. In particular, WristSpy has the capability to
accurately reconstruct fine-grained hand movement trajectories
and infer PINs/patterns when mobile and wearable devices are
on two hands through building a Euclidean distance-based model
and developing a training-free parallel PIN/pattern inference
algorithm. When both devices are on the same single hand,
a highly challenging case, WristSpy extracts multi-dimensional
features by capturing the dynamics of minute hand vibrations
and performs machine-learning based classification to identify
PIN entries. Extensive experiments with 15 volunteers and 1600

passcode inputs demonstrate that an adversary is able to recover
a user’s PIN/pattern with up to 92% success rate within 5 tries
under various input scenarios.

I. INTRODUCTION

With the prevalent use of mobile devices (e.g., smart-
phones), mobile payments become increasingly attractive be-
cause they allow users to perform near real-time transactions
anytime and anywhere conveniently. As illustrated in Fig-
ure 1(a), users can easily use their digital wallets for in-store
payments, make online purchases via in-app payments, and
perform money transfer between two accounts using mobile
money transfer. Thus, mobile payments bring users complete
freedom from the shackles of currency and credit cards in
transactions. The latest forecast [1] shows that the US in-store
mobile payments volume will reach $800 billion by 2019.

The extreme convenient utility of mobile payments also
makes it an attractive target for adversaries. As reported by
the recent U.S. Consumer Payment Study, passcodes are the
first choice for 66% consumers during mobile payment [2].
Currently, the passcodes used by mobile payment are either
PIN or pattern entries. Investigations have shown that the
accelerations or timing information on the smartphone can be
utilized to reveal the user’s PIN/pattern [3], [4], indicating
the leakage of smartphone sensing data could cause privacy
breach. However, the smartphone sensor-based studies suffer

Fig. 1. Mobile payment examples and representative passcode input scenarios.

from moderate accuracy (< 10% in 5 tries) because it is hard
to capture fine-grained hand movements of the user. Recent
studies [5]–[7] demonstrate that motion sensors embedded in
the increasingly popular wearable devices (e.g., smartwatches
and fitness trackers) possess a more severe threat. For example,
wearable devices can track the user’s arm movements [5], or,
more surprisingly, reveal the user’s PIN when he/she accesses
an ATM [7] or POS machine [6] using the hand wearing the
wearable device. In this work, we raise a more challenging
question: can the attacker infer the user’s passcode on the

small-sized smartphone screen from the wearable device in

the practical scenarios, where no restrictions are imposed on

their passcode inputting ways?

We classify the passcode input scenarios into two categories,
namely two-hand and one-hand, based on which hand is hold-
ing the mobile device and which wrist is wearing the wearable
device during the mobile payment process. In the two-hand
scenario, the user has the mobile and wearable devices on two
hands respectively when he/she enters the PIN or pattern (i.e.,
Figure 1(b)). Whereas in the one-hand scenario, the user holds
the mobile device with same hand wearing the wearable device
(i.e., Figure 1(c)). Note that the one-hand scenario is more
challenging than the two-hand scenario because both cases in
Figure 1(c) result in weak sensor readings on the wearable
device. Although existing work [8], [9] has shown that single
key input on the smartphone screen can be classified by using
the sensor data from the smartwatch, they only consider one-
hand scenario and are hard to reveal complete PINs due to
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moderate accuracy. The unrestricted various passcode input
scenarios and the fine-grained wrist motion dynamics behind
are still left unexplored. Hence, the attacker’s capability of
using the wearable device to infer the user’s passcodes needs
a comprehensive and deeper investigation.

To fully understand the extent of privacy leakage through
embedded sensors on wearables during the mobile payment
process, we need to address the challenges in the following
aspects: 1) The hand movement involved in the passcode input
is restricted by the small-sized screen of the mobile device.
Therefore, we need the mm-level accuracy to reconstruct the
fine-grained hand movement trajectories. 2) Reconstructing a
complete passcode from low fidelity wearable sensor readings
could encounter large accumulated errors. 3) The freely hand-
held mobile device incurs additional noises and input scenario
uncertainties when recovering the passcode on its keypad. 4)
The intensity of the taps on the smartphone screen is much
smaller than it is with all keyboards. 5) The pattern inference
based on non-vision-based technology is still an open area.

Toward this end, we propose a passcode inference system,
named WristSpy, which can infer the user’s passcode inputs on
the small-sized mobile device screen under different passcode
input scenarios. WristSpy examines the inherent physics mean-
ings associated with the user’s taps or pattern swipes when
fingers are moving on the touchscreen. For two-hand scenarios,
it employs the unique on-screen tap detection scheme and the
turning-detection method to recognize the weak finger taps
and pattern swipe segments based on the physics concepts
behind finger tapping and swiping. It then utilizes the co-
ordinate alignment method via quaternion to align the two
free-moving coordinates of the smartphone and wearable. We
further build a training-free Euclidean distance-based passcode
inference model to leverage the recovered fine-grained hand
movements and develop two lightweight algorithms without
training, Parallel PIN decoding and Parallel Pattern Inference,
to decode PIN or pattern entries. The algorithms start from ev-
ery possible starting key press simultaneously and recursively
search for the most likely PIN or pattern entry in parallel
within the model. Additionally, pattern rules are embedded
in the parallel algorithm to guide the right searching path for
pattern inference. In the more challenging one-hand scenarios,
WristSpy extracts the unique spatial-temporal features of each
key tap on the screen to distinguish the minute wrist motions
in response to different finger taps, no matter the wearable
is on the input hand or non-input hand. By extracting the
multi-dimensional features in time series, WristSpy resorts to
machine-learning techniques to recover PINs. We summarize
our main contributions as follows:

• We develop a system WristSpy to examine to what extent
the user’s private information (e.g., passcode entered on
smartphones) could be leaked via wrist-worn wearables in
the mobile payment process under various hand-input ways.

• WristSpy develops the training-free Euclidean distance-
based model and the parallel PIN/pattern inference algo-
rithms that can infer the user’s PIN and pattern entries
in the two-hand scenarios. The algorithms can accurately
derive the user’s PIN/pattern entered on the small on-screen

keypad by reconstructing the fine-grained hand movement
trajectories.

• WristSpy extracts unique features over the time duration of
each tap in the one-hand scenarios. The multi-dimensional
features in time series can well capture the weak wrist vibra-
tions in response to PIN entries and classify taps leveraging
machine learning techniques. WristSpy demonstrates that
even wearing the wearable on the non-input hand poses a
high risk of leaking the PINs.

• We develop a unique differential-based tap-detection scheme
to capture the weak on-screen taps and a turning-detection
scheme to separate the pattern segments based on examining
the physical meanings of key taps and pattern swipes.

• Extensive experiments with 15 volunteers and over 1600
PIN/pattern entries are conducted to evaluate WristSpy un-
der various input scenarios in mobile payment. We show that
WristSpy can achieve up to 92% success rate of inferring
PINs and patterns within five tries and 67% success rate
with only one try.

II. RELATED WORK

Existing studies such as TouchLogger [10], Accessory [3]
and TapPrints [11] have shown that the inertial sensors (e.g.,
accelerometer and gyroscope) on mobile devices can be used
to infer user’s keystroke sequences on the virtual keyboard.
However, these studies based on the motion of mobile devices
can hardly recover the input hand trajectory, resulting in
moderate accuracy.

Additionally, the powerful embedded sensors on the wear-
able devices facilitate revealing the motion information of
the input hand when the users enter sensitive information on
real keypads (e.g., real keyboard, ATM keypad) [6], [7], [12].
However, it is still unknown how wearables could leak users’
sensitive mobile payment information entered on the mobile
devices, which is a more challenging scenario not covered
by existing approaches but arouses the attackers’ interest.
Compared with the key clicks on physical keypads, the finger
taps on mobile devices are confined by small screens and result
in much smaller wrist motion and lighter tapping strength
that are hard to be distinguished by the low fidelity motion
sensors. Besides, the flexible ways to hold/wear the mobile
and wearable devices increase the difficulties to study the
hand movement dynamics during passcode inputs. The shifting
coordinates of both devices even cause more uncertainties to
the passcode input inference.

Recent researches show the initial success in localizing
screen-click positions on a mobile device by leveraging smart-
phone touch events and smartwatch sensors when the phone
and smartwatch are both on the same hand [8], [9]. These
studies only focuses on one single-hand scenario and achieves
even less accuracy than directly using the smartphone sensors.
Thus, the security breach introduced by the wearable is under-
estimated, and the rich information provided by the wearable
and the various practical input scenarios associated are still
unexplored. In this work, we explore to what extent a users’
mobile payment privacy, such as the PIN and pattern, could be
leaked from a wearable under four practical input scenarios.
We show that the user’s key taps and pattern swipe on the small
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(a)Input PIN to confirm 

mobile payment

(b) Input PIN with an “Enter/OK” 

to confirm mobile payment
(c) Input pattern to confirm 

mobile payment

Enter Key

Fig. 2. Three keypad layout examples for PIN/pattern input.

on-screen keypad can be distinguished by wearable sensors.
Moreover, we demonstrate that the fine-grained PIN/pattern
input trajectory can be reconstructed from the wearable in the
two-hand scenarios without training. Additionally, we show
that the PINs used in mobile payments could be revealed in
the one-hand scenarios, even when the user has the wearable
on the non-input hand.

III. APPROACH OVERVIEW

A. Hand Movements in Passcode Entries

We focus on passcodes in this paper, because a recent
report shows that passcodes are still the first choice for most
consumers over other authentication methods [2]. As shown
in Table I, nearly all the Apps (25/26) support authentication
via PINs. 24 of them accept 4-digit PINs and three of them
further support using patterns for authentication. In addition,
we find that 18 out of 26 Apps do not provide an “Enter”
key in the keypad interfaces as shown in Figure 2(a). This
setting increases the difficulty of inferring users’ passcode
inputs because the estimated hand movement trajectories can
no longer be mapped to the on-screen keypad from a fixed
ending point.

Ideally, when a user enters a PIN/pattern on the mobile
device, the wrist moves along with the hand from one key/dot
to another. Such movements exhibit unique acceleration and
deceleration patterns in the plane of the software keypad,
which could be utilized to identify hand movements between
keys/dots and infer the PIN/pattern entries in mobile pay-
ments. However, inferring the PIN/pattern entries on mobile
devices are much more challenging compared with typing
on a physical keyboard. The screen sizes of mobile devices
are much smaller and the corresponding hand movements are
confined within a small range. Additionally, the flexible ways
to hold/wear the mobile and wearable devices result in various
input scenarios and different hand movement dynamics. More-
over, the coordinates of both devices shift during key taps,
which brings more uncertainties and noises when inferring the
passcodes on the mobile device.

B. Threat Models

We assume that the adversary has the knowledge of which
mobile payment App is used by the legitimate user and when
the mobile payment activities start. This information could be
obtained through the embedded malware or by analyzing the
user’s surrounding WiFi metadata [13]. With such information,
the adversary knows the keypad layout and when to launch the
attack. We also assume that the legitimate user wears wear-
able devices (e.g., smartwatches) when entering PINs/patterns

TABLE I
THE AUTHENTICATION METHOD REVIEW OF MOBILE PAYMENT APPS (“E”

FOR WITH “ENTER” KEY)

AppName Samsung pay Alipay Capital One Apple pay GoogleWallet Citypay Softcard Cimbal Mymoid

PIN Y Y Y(E) Y Y Y Y Y

Pattern Y

AppName Android pay Paypal Wechat Venmo Master pass PayZapp Paynow Nordea Bancontact

PIN Y Y Y Y Y(E) Y Y Y Y(E)

Pattern Y

AppName Zync wallet Allpay Paytm CommBack Payment pebble P&Nback IMBbank BHIM

PIN Y Y Y Y Y(E) Y(E) Y(E) Y(E)

Pattern Y

during his/her mobile payment process. Next, we summarize
three threat models, in which an adversary could obtain sensor
readings from wearable devices to infer users’ passcodes:

Compromised Mobile or Wearable Devices. The sensor
data collected by a wearable device are usually available on
both the wearable device and the mobile device which it is
paired with. An adversary can compromise (e.g., install a
malware on) either the mobile device or the wearable to obtain
the sensor data.

Wireless Sniffing Attack. The Bluetooth Low Energy
(BLE) commonly used for communications between mobile
and wearable devices has relatively light-weight security build-
ing blocks and could be practically broken [14]. An adversary
could thus put wireless sniffers at the locations where mobile
payments often occur (e.g., stores, offices, or restaurants) and
sniff the BLE packets, which contain the sensor readings
transmitted from users’ wearable devices.

Spoofing Attack. An adversary can launch spoofing attacks
by mimicking a user’s mobile device and build connections
to the user’s wearable devices using the adversary’s mobile
device [15]. If success, the adversary could use his own mobile
device to directly access the sensor data from the target user’s
wearable devices.

C. Overview

The basic idea of WristSpy is to examine the acceler-
ations of users’ hand movements when they are entering
PINs/patterns in mobile payments and capture the unique
patterns resulted from key-tapping and pattern-swiping events.
Such acceleration patterns could be exploited to estimate hand
movement distances and directions, which are further utilized
to construct fine-grained hand moving trajectories and infer
the PIN and pattern entries.

Figure 3 shows the flow of our system, which consists
of two major building blocks: 1) Devices on Two Hands

utilizes the sensor data to track fine-grained hand movement
trajectories and infers users’ passcodes when the mobile and
the wearable devices are on two different hands; 2) Devices

on a Single Hand identifies users’ passcode entries when
the devices are on the same hand. WristSpy first determines
victims’ input scenarios (i.e., two-hand or one-hand) and then
picks the corresponding building block to infer the victims’
passcodes. Specifically, the system exploits the quaternions
from the victims’ mobile and wearable devices to determine
the spatial relationships between the two devices and utilizes
a threshold-based method to determine the input scenario.

Devices on Two Hands. After obtaining the motion sensor
readings (e.g., Acceleration, Quaternion) from the wearable
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Fig. 3. Mobile payment passcode inference framework.

device, the system first performs the Noise Reduction and

Coordinate Alignment. It removes high-frequency noises from
the raw sensor readings and exploits quaternion measurements
to align the coordinates of the two free-axis devices. Then
the Point-to-point Segmentation examines the translated ac-
celeration to determine the point-to-point segments either by
detecting the key taps of a PIN entry based on differential Z
acceleration or by detecting the direction changes of a pattern
entry. Next, the Fine-grained Point-to-point Reconstruction

estimates the distance and direction of the hand movement in
each segment and reconstructs the point-to-point trajectory. A
point-to-point trajectory reflects the hand movement between
two consecutive key taps or that of a pattern swipe. For in-
ferring passcode entries, WristSpy builds a Euclidean-distance
based model to describe the practical geometric relationships
between real keys. The Parallel PIN Decoding Algorithm and
Parallel Pattern Inference Algorithm are designed to integrate
the point-to-point trajectories in the model and search for the
most likely PIN and pattern entries, respectively.

Devices on a Single Hand. Different from the two-hand
scenarios, it is hard to recover the hand movement trajectory
if both the phone and the wearable are on the input hand.
Moreover, it is even harder if the wearable is on the non-input
hand. We resort to capture the minute wrist movement differ-
ences that result from the various finger tapping positions on
the on-screen keypad to recognize each tapped key. When the
two devices are on the input hand, the movement of the thumb
during tapping can be passed by the tendon to cause minute
wrist movement. When the two devices are both on the non-
input hand, the key tap on the phone can cause vibrations on
the phone that can be passed down to vibrate the wrist slightly.
WristSpy utilizes a machine learning-based method to classify
the tapping positions based on the unique derived features. In
particular, our system first performs Key Tap Detection Using

Differential Z to detect tapping actions based on differential
Z acceleration and extract the data segment within a short
time around each tap. The Multi-dimensional Feature Time-

series Extraction further divides each tap segment into small
pieces and extract unique features in time series from both
the coordinate aligned and non-aligned sensor data. The non-
aligned sensor data (e.g., acceleration and gyroscope readings)

 !"#$%&  !"#$%'  !"#$%(  !"#$%)

*+,-+./%& *+,-+./%' *+,-+./%(

*/01/%23"./

4.5%23"./

Fig. 4. Segmentation based on the differential acceleration on Z axis.

describes the movement of the wearable itself and the aligned
sensor data (e.g., accelerations aligned with the mobile device
coordinate) shows the relative position change between the
wearable and the smartphone. Based on the unique features,
Machine Learning-based Classifier classifies the finger taps to
each key position to infer a complete PIN.

IV. TWO HANDS: PIN INFERENCE

WristSpy applies a training-free approach to reconstruct
fine-grained hand movement trajectories to infer the user’s
PIN entries. Note that WristSpy first translates the acceleration
readings on the wearable’s coordinate to the keypad coordi-
nate system by Coordinate Alignment, which is introduced
in Section VII. The translated X and Y accelerations are
further processed by a Savitzky-Golay filter to remove the high
frequency noise. The translated Z accelerations are processed
by a Hampel filter to facilitate the detection of the key taps.
In the rest of this section, we assume all the sensor data have
been preprocessed in this way.

A. Segmentation and Point-to-point Reconstruction

Different from the clicking on fixed physical keypads (Fig-
ure 4(a)), the acceleration changes of tapping on on-screen
keypads are far less observable as shown in Figure 4(b). This
is because the tapping on an on-screen keypad requires less
strength and hand movement compared with those on the phys-
ical key buttons. To capture the acceleration changes caused by
key taps, we propose to examine the differential accelerations
on the Z axis by calculating Diffaz (k) = az (k + 1) −
az (k) , where k is the sample index. Figure 4(c) shows the
differential Z accelerations calculated from Figure 4(b). We
observe the taps are corresponding to large peaks on the
differential Z accelerations. Therefore, WristSpy performs a
threshold-based method to capture the key taps and segments
the sensor readings between every two consecutive key taps.
In each segment, our system extracts the accelerations on X
and Y axes between the first zero-crossing points before and
after the hand movement acceleration pattern (as shown in
Figure 4(d)). This part of accelerations corresponds to a more
precise hand motion between keys proved by the existing re-
search [7]. Then the system computes the double integral over
accelerations to calculate the point-to-point distance based on
trapezoidal rule. Moreover, it determines the moving direction
of each point-to-point movement based on the ratio of the
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Fig. 5. Parallel PIN decoding algorithm (inferring PIN “2489” as an example).

estimated distances on X and Y axes, which is converted to
a slope angle on the keypad coordinate [6], [7].

B. Parallel PIN Decoding Algorithm

Due to the low-fidelity sensors and the unstable keypad co-
ordinate, every reconstructed point-to-point trajectory contains
errors and simply connecting them end-to-end for inference
could generate large accumulated errors. We thus develop the
Parallel PIN Decoding Algorithm to decode each point-to-
point trajectory recursively.

Euclidean Distance-based PIN Inference Model. We
model the PIN inference problem as a Trellis decoding prob-
lem [16] and utilize the Euclidean distance between keys to
build a training-free model. Figure 5 gives an example of our
model based on inferring the PIN “2,4,8,9”. In particular, the
number of columns in the trellis diagram corresponds to the
length of the PIN, denoted as N . Each column contains m
nodes corresponding to the choices of keys on a keypad (e.g.,
m = 10). Each current node has m predecessor nodes in
the previous column and m next nodes in the next column
that it can transit to, except for those in the first and the
last column. The directional line segment connecting any two
consecutive nodes is a branch. The branches concatenating the
nodes through columns form a path. We define a state Ki as
the key pressed at the ith tap, which can be one of the m
nodes as Ki = 0, 1, 2, ..., 9. Thus, the goal of our algorithm
is to find the most likely path: path (K1,K2,K3, ...,KN )
(e.g., the red solid line path (2, 4, 8, 9) in Figure 5). The
basic idea is to recursively match the reconstructed point-
to-point trajectories to the real geometries between every
two consecutive keys following the sequential order of key
taps. To measure this matching likelihood between every two
consecutive key taps (e.g., tap i and i + 1), we define the
branch cost(BMi) as the Euclidean distance between the
estimated point-to-point trajectory ~p2pti and the real distance

between two keys ~KiKi+1. The branch cost is calculated

as BMi (Ki,Ki+1) =
∣

∣

∣

~KiKi+1 − ~p2pti

∣

∣

∣
. The branch costs

summed up along a path represents the accumulated Euclidean
distance of the path in the model, which shows the likelihood
of the corresponding PIN candidate. Note that there are mN

possible paths (i.e., PIN candidates) in total to concatenate the
nodes in the trellis diagram.

Parallel PIN Decoding: Basic. Different from the PIN on
ATM machine or POS terminals, which have ”Enter” as the

last tap, most PINs in mobile payment have no ”Enter”. Then,
it is not known which node to start or end the searching process
in the model. Thus, we develop the Parallel PIN Decoding,
which starts from all the m nodes in the first column as
possible first tap and only keeps the most likely paths for each
recursion based on Viterbi [17], [18]. In particular, we define
a path cost to describe the likelihood of the path from the
initial state K1 (e.g., at 1st tap) to the current state Ki (e.g.,
ith tap) in the trellis, which can be described by equation 1:

PMi (Ki) = min
Ki−1

(PMi−1 (Ki−1) + BMi−1 (Ki−1,Ki)) . (1)

The path cost PMi (Ki) means that only the shortest path
from the initial state that arrives at the current state Ki is
selected and kept. And in total a set of m path costs are saved
at current state as shown in equation 2, because the current
state could be one of the m nodes. Compared to brutal force,
our parallel PIN decoding algorithm greatly reduces the saved
path from mi to m for each state.

PMi = {PMi (Ki) |Ki = 0, 1, 2, ...,m} . (2)

Accordingly, our parallel PIN inference algorithm consists
of N−1 recursions, and each recursion has two main tasks: (1)
calculating the branch costs of all the m2 node pairs between
the previous and the current column; (2) computing the path
costs and keeping only the shortest path for each node at the
current state. The resulted paths are then compared to find the
most likely PIN. Figure 5 shows an example of revealing PIN
“2489”, where the solid lines are saved for each column.

Parallel PIN Decoding: with Extended Candidate List.

Mobile payment systems usually allow trying wrong PINs
multiple times (e.g., 5 times) before locking out. In order to
explore the attacker’s best capability of breaking the user’s
PIN in practical mobile payment applications, we extend the
parallel PIN decoding algorithm to path-oriented optimization,
in which all the paths at each recursion are compared and
multiple best paths are selected and saved for each recursion.
In particular, the number of paths to be saved at each recursion
between i − 1th and ith columns can be expanded from m
paths to min

(

q,mi
)

paths, where mN ≥ q ≥ m. For each
recursion, we sort all the paths that arrive at the ith column
based on their path costs and keep the top n path costs in the
set PMi for the next recursion. Then the saved path costs for
each recursion can be expressed by equation 3:

PMi =
top n

min
Ki−1,Ki

(PMi−1 (Ki−1) + BMi−1 (Ki−1,Ki)) . (3)

Our parallel PIN decoding algorithm utilizes a limited
number of searching paths to generate a nearly optimal top-k
candidate list, which reflects an adversary’s best capability to
reveal the PIN with multiple tries.

PIN Entry with “Enter” as a Special Case. Note that our
parallel PIN inference algorithm can be applied to the PIN
entries that require an “Enter” tap at last to confirm (e.g., as
shown in Figure 2(b)). For this case, the ending state KN+1

is fixed to “Enter” key and thus we can modify our algorithm
to go backward from a single fixed key “Enter” to the first
column, which has a similar form to the backward Viterbi
algorithm but different path keeping strategy at each recursion.

5



D
if

fe
re

n
ti

a
l

A
c

c
e

le
ra

ti
o

n
-2

0

2

(a) Differential Z Acceleration

Diff Z

Sample Index

200 400 600 800 1000 1200 1400

A
c

c
e

le
ra

ti
o

n

-2

0

2

(b) Swiping between Turns

X

Y

Envelop

Starting Point

End Point

Fig. 6. Pattern segmentation based on turning-detection.

With the additional knowledge of ending state, decoding the
PINs with “Enter” usually shows higher accuracy than the
more general PINs without “Enter”.

V. TWO HANDS: PATTERN INFERENCE

A. Pattern Segmentation and Reconstruction

Different from entering PINs, drawing a pattern on the
touch screen does not require vertical hand movements to
the screen. We define the pattern segment as one straight-line
swipe between two turns, and the pattern trajectory as the
cascaded pattern segments. Thus, our tap detection method
cannot be directly applied to separate each pattern segment as
shown in Figure 6(a). We find that when drawing a pattern, the
finger needs to make a turn (i.e., change of moving direction)
between two adjacent pattern segments. Such turns can be
captured as the short time stops on the X-Y plane parallel to
the smartphone screen.

Figure 6(b) shows the X and Y accelerations of a six-
segment pattern. To capture the turns, we compute the root-
sum of the accelerations on X and Y axis as axy (k) =
√

a2x (k) + a2x (k) and then extract the envelop of axy (k)
(e.g., red curve shown in Figure 6(b)) to differentiate finger
movements and turns. The triangle-like waves of the envelop
correspond to the accelerations carrying the hand motion
information for each pattern segment. We then derive both the
distance and direction of each pattern segment (i.e., point-to-
point trajectory) using the similar point-to-point reconstruction
method in Section IV-A. Based on the reconstructed pattern
segments, we apply the Euclidean distance based model to
describe the real geometry between the pattern dots and
develop the parallel pattern inference scheme to search for
the most likely patterns.

B. Pattern Inference with Pattern Rule Check

Similar to the PIN inference, the pattern can be recovered
by matching the reconstructed pattern segments recursively
with the on-screen virtual grid to find the most matched valid
patterns. Figure 7 shows the Euclidean distance-based model
for decoding the pattern from reconstructed pattern segments,
where each node represents a dot on the 3 × 3 pattern grid.
We compute the same branch costs as in PIN inference and
save top n valid paths at each column with the path costs
computed by equation 3. Note that the nodes at each column
connected by the branches only represent the start and end
dots of a swipe. But one swipe could pass up to three dots
(e.g., “1-2-3”) and only connecting the start and end dots (e.g.,
“1-3”) may miss the middle dot (e.g., “2”). Moreover, because
the pattern rule allows every dot to be recorded at most once,
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Fig. 7. Parallel pattern inference algorithm with pattern rule check.

a branch is valid in the model only if the dots on the branch
have not been recorded in the previous path.

To address these challenges, we apply the Pattern Rule

Check to the branches at each recursion of our algorithm as
shown in Figure 7. In particular, we apply Dot-repeat Check to
each branch at each recursion. If the next dot of the branch has
already been recorded in the previous path (e.g., the branch
connecting “1” and “1”), the branch failed the Dot-repeat
Check and will be deleted. Moreover, we build a middle-dot
supplement table based on the geometric relations between
the grid dots. We perform Middle-dot Supplementation Check

to each branch at each recursion based on the table. Only if
the branch passes three dots and the middle dot has not been
recorded in the previous path, the middle dot will be added
to the path. Finally, the paths reaching the last column are
sorted by the path costs to generate the near optimal pattern
candidate list.

VI. SINGLE HAND: PIN INFERENCE

Compared with two-hand scenarios, less hand motion is
involved in single-hand scenarios, and we need to explore
different approaches to analyze such hand movements from
the wearable.

A. Feasibility of Revealing PINs in the Single Hand Scenarios

Single Input Hand. The left figure of Figure 1(c) shows
one of the single-hand scenarios, where the user wears the
wearable and holds the mobile device using the single input
hand. Note that thumb movements result in movements of
particular muscles in the hand and wrist [19], which could
be captured for estimating the tapping positions. Figure 8(a)
shows two distinguishable acceleration patterns corresponding
to tapping two different locations (i.e., key 4 and key 7) for
three times, respectively. This suggests that we can use a
supervised-learning approach to identify the tapping positions
and reveal the input PIN.

Single Non-input Hand. The right figure of Figure 1(c)
illustrates a more challenging single-hand scenario, where both
the mobile device and the wearable are on the single non-
input hand. We find that the finger taps at different locations
of the screen result in vibrations. Such minute motions could
propagate through the non-input hand and get captured by
the motion sensors of the wearable. Figure 8(b) shows the
accelerations of the wearable on the non-input hand when two
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Fig. 8. Accelerations of three key taps at two locations (i.e., key 4 and 7).

different positions (i.e., key 4 and key 7) are tapped three
times. It is obvious that the acceleration patterns are consistent
for the same location but diverse for different locations. Thus
it is feasible to identify the tapped keys to infer complete PINs
by using a supervised learning approach.

B. PIN Inference in Single Hand Scenarios

Tap Detection and Segmentation. Similar to the two hand
scenarios, we apply the Differential Z-acceleration method
(after coordinate alignment) to detect the key taps in both
single-hand scenarios. After tap detection, WristSpy performs
different segmentation strategies for the two single-hand sce-
narios. The input thumb starts causing the wrist motion before
the thumb tapping on the screen. It further results in significant
wrist movements when the thumb detaches from the screen.
We empirically set the starting and ending point of the segment
window as ±0.5 × R from the tapping point, where R is
the sampling rate. Nevertheless, in the single non-input hand
scenario, wrist movement/vibration starts immediately when
the input finger touches the screen and diminishes rapidly.
We thus segment the data from the detected tap point with
−0.2×R and 0.8×R as the start and the end point.

Machine Learning-based Method. We first derive the
multi-dimensional time-series features to capture the unique
dynamics of each key tap. In particular, we evenly divide
each segment into 10 non-overlapped chunks and extract 12
representative statistical features for each chunk, including
skewness, kurtosis, standard deviation, variance, most fre-

quently appear in the array, median, range, trimmean, mean,

entropy, histogram, RMS. Moreover, we leverage both the
coordinate aligned and non-aligned sensor data. The non-
aligned sensor data describes the movement of the wearable
itself, while the aligned sensor data represents the relative
position change between the wearable and the smartphone.
Thus, these features describe the tap dynamics in time series
as well as the geometric relationships between the two devices.

We then apply machine learning-based techniques to clas-
sify each key tap position based on the derived features. In the
profile construction phase, similar to [20], our system designs
a specific malware-embedded game App to collect training
information from the user’s wearable without notice. In the
later PIN inference phase, the classification results of each key
tap are obtained by combining all pairwise comparisons [21].
The joint probabilities of each key sequence candidates are
examined to generate a list of PIN candidates in the descend
order of candidate probabilities. We use the Support Vector
Machine(SVM) implemented by LIBSVM [22] with linear
kernel for building the classifier.

VII. TRANSLATION OF THE WEARABLE’S SENSOR

READINGS

To leverage the sensor data from the wearable to reveal
the hand movements referring to the smartphone keypad, we
employ quaternion-based alignment method to translate the
wearable’s sensor readings.

Quaternion-based Coordinate Alignment. A quaternion
q can rotate a sensor vector v by the equation v′ = qvq−1

in the 3D space, where v′ is the translated sensor vector in
a new coordinate system. We first convert the acceleration
vector ~ad at each sampling point from the wearable coordinate
to the world coordinate (i.e., ~aw) through ~aw = qdw~adq

−1
dw ,

where qdw is the quaternion used for conversion and it can
be directly extracted from the wearable. Then ~aw can be
further converted to the smartphone keypad coordinate via:
~ap = qwp~awq

−1
wp , where ~ap denotes the acceleration vector

in the phone coordinate, which is used for deriving hand
movement trajectories in this paper. Thus the only question
is to obtain qwp to complete the entire coordinate alignment.
Note that, q−1

wp is the smartphone’s quaternion that describes
the conversion from the smartphone’s coordinate to the world
coordinate. WristSpy can apply two alternative approaches to
obtain or estimate q−1

wp .
Malware Approach. The adversary can directly obtain the

smartphone’s quaternion q−1
wp from the compromised smart-

phone, which is installed a malware without being noticed. In
this case, the malware collects the phone’s quaternion readings
at the back end during mobile payment operation, and sends
them to the adversary.

Imitation Approach. The adversary can also estimate the
phone’s quaternion through an imitation approach when in-
stalling a malware is not applicable. Specifically, a co-location
adversary can glance at how the victim holds the phone for
mobile payment without being noticed. The adversary can then
come to the same place afterward to imitate the pose of the
victim’s phone and estimate the user’s smartphone quaternion
by using the adversary’s own mobile device.

VIII. PERFORMANCE EVALUATION

A. Experimental Setup

Devices. The volunteers are asked to enter passcodes on the
on-screen keypad of multiple smartphones including Google
Nexus one, Google Nexus 6p, Samsung Note 4, Samsung Note
3 while wearing a smartwatch LG W150. We choose three
representative layouts of the on-screen keypad, as shown in
Figure 2. When the volunteers enter passcodes, the smart-
watch’s motion sensor readings are sent to a nearby server
via Bluetooth under 100 samples/sec.

Data Collection. We conduct experiments covering four
passcode input scenarios as shown in Figure 1. In addition,
we evaluate an additional input scenario where the mobile
device is not held by hand but placed on a table, which
is considered as a special case for the two-hand scenarios.
To protect individual privacy and avoid the data bias from
user choice, we provide the participants with PINs/Patterns
from a pool, which is designed to cover most difficulty levels
of recovering the corresponding hand movement trajectories.
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Fig. 10. Performance of Parallel Pattern Inference in the two-hand scenario.

In particular, we divide the 4-digit PINs and patterns into
various categories according to the difficulty levels (e.g., point-
to-point trajectory lengths). The selected PINs/patterns are
evenly distributed in these difficulty-level categories and the
participants are asked to be familiar with their chosen ones
before collecting data. Particularly, 20 distinct 4-digit PIN
combinations and 20 different pattern types are collected from
15 volunteers. In total, 1600 entered passcodes (i.e., 1200 PINs
and 400 graphic patterns) are collected to evaluate WristSpy.

Evaluation Metric. We define the metric Top-k Success

Rate as the percentage that a passcode can be successfully
revealed within the top k candidates provided by WristSpy.
Note that the Top-1 success rate is the accuracy of using the
most likely candidate to reveal the passcode.

B. Two Hands: Performance of Revealing PINs and Patterns

PIN Inference. Figure 9(a) shows the top-k success rate of
inferring PINs on the on-screen keypad with and without “En-
ter” key. In particular, by choosing the top-1 PIN candidate,
our system achieves over 67% success rate for the PINs with
an “Enter”, while the success rate is about 60% for the PINs
without an “Enter”. Furthermore, the success rate to reveal
the two types of PINs increases if the adversary utilizes more
candidates from the top-k candidate list. Specifically, 92%
success rate is achieved to infer the PINs with an “Enter”
by using the top-5 candidates, which is the maximum number
of tries allowed by most mobile payment systems. And the
success rate for the PIN without an “Enter” is 84%. Besides,
we also find that the success rate of inferring the PINs with
an “Enter” has higher accuracy. The reason is that the last
tapped position of the PIN is fixed at the “Enter” key, which
enables our parallel PIN decoding algorithm to start from one
fixed key without guess. Figure 9(b) shows the cumulative
distribution function (CDF) of the top-k success rate when
revealing the PINs with the smartphone on the table or on
the hand. Specifically, when the phone is on the table, the
success rate is around 65% for the PINs with “Enter”, and
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Fig. 11. Classification accuracy of key taps in the one-hand scenarios.

51% for PINs without “Enter”. The success rates increase to
94% and 86% when the adversary has a chance to take ten
tries. Moreover, we find that the accuracy of revealing PINs
with the phone held by hand is higher than that placed on the
table. This is because the user may feel more comfortable to
enter PINs on the phone when it is held close to the body, and
the hand movement trajectory in this pose is more similar to
the PIN input geometry on the on-screen keypad.

Pattern Inference. Figure 10(a) depicts the success rate
of recovering the pattern when the phone is on the table
or is held by hand. We observe that when using the top-1
candidate, our system achieves 62% success rate for the on-
table scenario, and the success rate is 50% for the on-hand
scenario. Moreover, the pattern can be inferred with increasing
success rate when the adversary takes more tries. Specifically,
when using the top-5 pattern candidates, the adversary can
achieve 91% and 81% success rates for on-table and on-hand,
respectively. Furthermore, we observe that the pattern can be
inferred with higher accuracy when the smartphone is on the
table than on hand. The reason is that when swiping a pattern
on the mobile device held by hand, the on-screen keypad
coordinates changes with hand, which brings more errors in
the reconstruction of hand movement trajectory. Figure 10 (b)
further confirms our observation by presenting the cumulative
distribution function of the top-k success rate for both on-hand
and on-table scenarios. In particular, when performing 10 tries,
the pattern decoding success rate is 95% for the phone on the
table case and 90% for that held by hand.
C. Single Hand: Revealing PINs

Key Classification Accuracy. We first investigate the clas-
sification accuracy for 10 different key taps (i.e., key ’0’ to key
’9’) with 10 volunteers conducting over 1, 000 key tap events.
The 10-fold cross-validation accuracies of the single non-input
and input hand scenarios are represented in the confusion
matrix as shown in Figure 11. An entry Mij in the confusion
matrix denotes the percentage of the number of keys i being
predicted as key j, where i, j ∈ ’0’, ’1’, ’2’, . . . ,’8’, ’9’}. We
observe that our method can achieve an average classification
accuracy of 76% in the single input hand scenario, while that
for the non-input hand scenario is even higher which is around
84.7%. The results demonstrate that the wearable is capable
of capturing the minute wrist motions of different key taps in
the single hand scenarios.

PIN Inference Accuracy. Figure 12 shows the PIN in-
ference accuracy for both single-hand scenarios. Specifically,
when the adversary only tries once, the success rates are
around 21% and 30% for the input hand and the non-input
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Fig. 12. 4-digit PIN decoding accuracy in the one-hand scenarios.

hand scenarios respectively. Within five tries, the attacker can
achieve around 50% for the single input hand and 60% success
rates for the non-input hand, which is a non-negligible security
breach. Moreover, if the adversary can try 15 times, over 70%
and 78% accuracies can be achieved for the single input hand
and the single non-input hand scenarios, respectively. The
results show that the wearable can capture the minute wrist
motions in both single hand scenarios to accurately reveal a
user’s PIN on mobile devices.

IX. CONCLUSION & DISCUSSION

In this work, we demonstrate that wrist-worn wearable
devices (e.g., smartwatch) have the risk of revealing a user’s
minute hand movements when the user enters the mobile
payment PIN or pattern. We present WristSpy that is able to
recover the user’s PIN or pattern under various input scenarios
(i.e., mobile and wearable devices are on two hands or on one
hand). Specifically, WristSpy examines the inherent physical
meanings associated with the user’s key taps or pattern swipes
to recover the fine-grained hand movement trajectories when
the devices are on two hands. When the devices are on
one hand, our system captures the minute wrist vibrations
corresponding to various key-tap positions and extracts the
unique multi-dimensional features in time series to identify the
user’s PIN. Extensive experiments involving various passcode-
input scenarios show that WristSpy has the capability to reveal
the entered passcodes with up to 92% in two-hand scenarios
within 5 tries. In the more challenging single-hand scenarios,
WristSpy can achieve up to 60% success rate within 5 tries.

Currently, the proposed passcode leakage requires to obtain
the raw sensor data from the wearable devices to launch
attack. From our wearable devices’ review, we find that the
smartwatches transmit raw sensor data to the paired mobile
device, whereas the fitness trackers only transmit aggregated or
simplified data for basic fitness tracking (e.g., step counting).
We envision that more wearables will possess the capability
to transmit raw sensor readings to the paired smartphone
to brace fine-grained well-being monitoring, activity recog-
nition, and human-computer interaction, etc. Additionally, the
countermeasures need to be further explored. For example,
manufacturers can inject certain types of random noise into the
sensor readings or make the wearable’s system enter a non-
sensing mode when detecting the mobile payment activities.

Acknowledgments. This work was partially supported by
the National Science Foundation Grants CNS-1820624, CNS-
1826647, CNS1814590 and ARO Grant W911NF-18-1-0221.

REFERENCES

[1] J. Heggestuen, “Mobile payments will top $800 billion by 2019, led
by Apple Pay and Android Pay,” 2015, http://www.businessinsider
.com/mobile-payments-to-top-800-billion-by-2019-apple-pay-and-
samsung-pay-2015-6.

[2] TSYS, “2016 U.S. Consumer Payment Study,” 2016, https://www.tsys.
com/Assets/TSYS/downloads/rs 2016-us-consumer-payment-study.pdf.

[3] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory: password
inference using accelerometers on smartphones,” in ACM HotMobile,
2012, pp. 9:1–9:6.

[4] W. Diao, X. Liu, Z. Li, and K. Zhang, “No pardon for the interruption:
New inference attacks on android through interrupt timing analysis,” in
Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp.
414–432.

[5] S. Shen, H. Wang, and R. Roy Choudhury, “I am a smartwatch and i can
track my user’s arm,” in Proceedings of the 14th annual international
conference on Mobile systems, applications, and services. ACM, 2016,
pp. 85–96.

[6] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes
evil: Keystroke inference with smartwatch,” in ACM CCS, 2015, pp.
1273–1285.

[7] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe?: Your
wearable devices reveal your personal pin,” in ACM ASIACCS, 2016,
pp. 189–200.

[8] S. Sen, K. Grover, V. Subbaraju, and A. Misra, “Inferring smartphone
keypress via smartwatch inertial sensing,” in Proceedings of IEEE
International Conference on Pervasive Computing and Communications
Workshops. IEEE, 2017, pp. 685–690.

[9] A. Maiti, M. Jadliwala, J. He, and I. Bilogrevic, “(smart) watch your
taps: side-channel keystroke inference attacks using smartwatches,” in
Proceedings of the 2015 ACM International Symposium on Wearable
Computers. ACM, 2015, pp. 27–30.

[10] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen
from smartphone motion,” in USENIX HotSec, 2011.

[11] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in ACM MobiSys, 2012,
pp. 323–336.

[12] H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks
through smartwatch sensors,” in ACM MobiCom, 2015, pp. 155–166.

[13] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan,
“When csi meets public wifi: Inferring your mobile phone password
via wifi signals,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM CCS, 2016, pp.
1068–1079.

[14] W. Albazrqaoe, J. Huang, and G. Xing, “Practical bluetooth traffic
sniffing: Systems and privacy implications,” in Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and
Services (ACM MobiSys), 2016, pp. 333–345.

[15] X. Pan, Z. Ling, A. Pingley, W. Yu, N. Zhang, and X. Fu, “How
privacy leaks from bluetooth mouse?” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (ACM CCS),
2012, pp. 1013–1015.

[16] S. Lin, T. Kasami, and M. Fossorier, Trellises and Trellis-Based Decod-
ing Algorithms for Linear Block Codes. Kluwer Academic Publishers,
1998.

[17] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE transactions on Information
Theory, pp. 260–269, 1967.

[18] J. Feldman, I. Abou-Faycal, and M. Frigo, “A fast maximum-likelihood
decoder for convolutional codes,” in Proceedings of the IEEE 56th
Vehicular Technology Conference, 2002, pp. 371–375.

[19] C. Xu, P. H. Pathak, and P. Mohapatra, “Finger-writing with smartwatch:
A case for finger and hand gesture recognition using smartwatch,” in
Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications (ACM HotMobile). ACM, 2015, pp. 9–14.

[20] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in ACM WISEC,
2012, pp. 113–124.

[21] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-
class classification by pairwise coupling,” Journal of Machine Learning
Research, vol. 5, no. Aug, pp. 975–1005, 2004.

[22] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

9


