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29 Abstract

30 Gas-phase ion/ion chemistry was coupled to ion mobility/mass spectrometry analysis to 

31 correlate the structure of gaseous ubiquitin to its solution structures with selective covalent 

32 structural probes. Collision cross section (CCS) distributions were measured to ensure the 

33 ubiquitin ions were not unfolded when they were introduced to the gas phase. Aqueous solutions 

34 stabilizing the native state of ubiquitin yielded folded ubiquitin structures with CCS values 

35 consistent with previously published literature. Denaturing solutions favored several families of 

36 unfolded conformations for most of the charge states evaluated. Gas-phase covalent labeling via 

37 ion/ion reactions was followed by collision induced dissociation of the intact, labeled protein to 

38 determine which residues were labeled.  Ubiquitin 5+ and 6+ electrosprayed from aqueous 

39 conditions were covalently modified preferentially at the lysine 29 and arginine 54 positions, 

40 indicating that elements of three-dimensional structure were maintained in the gas phase. On the 

41 other hand, most ubiquitin ions produced in denaturing conditions were labeled at various other 

42 lysine residues, likely due to the availability of additional sites following methanol and low pH-

43 induced unfolding. These data support the conservation of ubiquitin structural elements in the gas 

44 phase. The research presented here provides the basis for residue-specific characterization of 

45 biomolecules in the gas phase.

46
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47 Introduction

48 Characterization of protein structures is critical for understanding their function.1 The 

49 development of “soft” ionization mass spectrometry in proteomics led to assays capable of 

50 preserving non-covalent bonds as proteins transition from solution to the gas phase.2-3 Therefore, 

51 a branch of biological mass spectrometry referred to as ‘native mass spectrometry’ (native MS) 

52 has rapidly expanded, driven by the implicit hypothesis that specific interactions formed by 

53 biomolecules in solution can be maintained under carefully controlled conditions for MS analysis 

54 in the gas phase.4 Applications of native MS, ion mobility/mass spectrometry (IM/MS), and tandem 

55 MS (MS/MS) involve probing proteins to obtain information such as higher order subunit 

56 architecture, stoichiometry, shape, and sequence information.5-7

57 Ion/ion reaction chemistries have been exploited for analytical applications since the 

58 beginning of the adoption of electrospray ionization (ESI), using mass spectrometers as the gas-

59 phase analog to the chemist’s wet bench.8-11 The increasing use and versatility of ion/ion reactions 

60 within the past half-decade has resulted from the development and commercial availability of 

61 novel instrumentation equipped to perform such experiments.12 Covalent labeling analyzed by 

62 mass spectrometry (CLMS) is an example of a reaction that has been transferred from solution13-15 

63 to the gas phase.16-19 Covalent modification by gas-phase ion/ion reactions relies on long-lived 

64 complex formation between oppositely charged protein and reagent. In addition to containing an 

65 electrostatically ‘sticky’ group (e.g., sulfonate or phosphate), reagents for covalent modification 

66 require a reactive site that will undergo chemical reactions with the analyte ion. Several examples 

67 of nucleophilic addition, utilizing electrophilic reagents such as reactive esters, have been 

68 successfully applied.20  Solution CLMS provides insight about protein conformations,21 dynamics, 

69 and amino acid residue reactivity and microenvironment.22 CLMS, conducted in a tandem mass 

70 spectrometer through ion/ion reactions, has the advantages of independent control/optimization 

71 of reactant species, well-defined reaction conditions, reagent purification through mass-to-charge 

72 isolation, and tandem MS capabilities in conjunction with ion/ion reactions.12 Hence, ion/ion 
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73 covalent labeling coupled to IM-MS/MS can, in principle, provide for the three-dimensional 

74 characterization of gaseous protein ions.23-24

75 Though most CLMS approaches have relied on ‘bottom-up’ proteomics, utilizing 

76 enzymatic digestion to enable the identification of  modification sites, the ‘top-down’ approach in 

77 proteomics was developed in order to obtain primary structural information directly from the gas-

78 phase dissociation of intact protein ions without the need for extensive separations or digestion 

79 prior to MS/MS analysis.25 During a typical ‘top-down’ experiment, protein identification is made 

80 by analyzing the sequence fragments of intact proteins from tandem MS, which allows for the 

81 examination of the entire amino acid sequence, thereby characterizing intact proteins and 

82 identifying the number and type of post-translational and other modifications in various so-called 

83 proteoforms.26

84 Solvent-free, gaseous proteins can maintain their solution structures with careful control 

85 of experimental parameters.27-29 Pioneering studies from the laboratories of David Clemmer and 

86 Michael Bowers revealed that ubiquitin solution structures can be preserved as kinetically trapped 

87 intermediates in the gas phase after evaporative cooling associated with the  electrospray 

88 process. Their data suggested minor structural changes occur during desolvation of low charge 

89 states ions (z ≅ 7) for native-like conformations, and unfolded gas-phase structure happens for 

90 higher charge states (z ≅ 13) caused by rapid unfolding (<10 ms).30 Additional studies evaluated 

91 the abundance of different conformations of ubiquitin in the gas phase as a function of methanol 

92 content in solution, where the native state was favored in aqueous solutions and more elongated 

93 states of ubiquitin were dominant in solutions of 20:80 water:methanol content.31 The importance 

94 in revealing the behavior and overall structure of native proteins in the gas phase is a 

95 consequence of the increasing number of MS-related techniques applied in the field of structural 

96 biology.32 Hence, it is essential to evaluate protein structures in vacuo after their transition from 

97 solution into the gas phase with tools of higher structural specificity than ion mobility alone.
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98 In this study, we focus on the three-dimensional characterization of gaseous protein ions 

99 with CLMS performed completely inside the mass spectrometer. The structures of gaseous 

100 ubiquitin generated from both aqueous and denaturing conditions were evaluated using ion/ion 

101 chemistry, top-down tandem mass spectrometry, and ion mobility-derived collision cross section 

102 measurements. Covalent labeling reactions between ubiquitin and sulfo-benzoyl-1-hydroxy-7-

103 azabenzotriazole ester (HOAt) were performed in the trap cell of a quadrupole IM-MS. The 

104 reaction results in the formation of amide bonds with primary amines and guanidine in the gas-

105 phase. The protein ions are covalently modified by multiple additions of the reagent, separated 

106 by ion mobility, and fragmented with mass analysis of the fragmentation products. Mass shifts in 

107 the sequence fragments due to the covalent addition of the sulfo-benzoyl moiety allow for the 

108 identification of covalently labeled sites. The results demonstrate the power of combining collision 

109 cross section and covalent labeling approach to detect changes induced by solution conditions, 

110 with measurements conducted entirely in the gas phase.

111

112 Experimental

113 Materials. Methanol, N,N-dimethyl formamide (DMF), and formic acid were purchased 

114 from Fisher Scientific (Fairmont, NJ). Ubiquitin from bovine erythrocytes, myoglobin from horse 

115 heart, cytochrome c from equine heart, and ammonium acetate were purchased from Sigma-

116 Aldrich (St. Louis, MO). 1-Hydroxy-7-azabenzonitrazole (HOAt) was purchased from TCI America 

117 (Portland, OR). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) was 

118 purchased from Thermo Scientific (Rockford, IL). 3-Sulfobenzoic acid monosodium salt was 

119 purchased from Alfa Aesar (Ward Hill, MA).

120 Sample Preparation. For the experiments performed in denaturing conditions, ubiquitin 

121 was dissolved in a 50/50/0.1 vol/vol solution of water/methanol/formic acid at 1 μM. For analysis 

122 using aqueous conditions, ubiquitin was dissolved in an aqueous 10 mM ammonium acetate 

123 solution at 1 μM. The reagent used for the ion/ion reactions, sulfobenzoyl-HOAt, was synthesized 
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124 following a  previously published procedure.33 The calibrant mix used for CCS calculations 

125 consisted of 1 μM ubiquitin, cytochrome C, and myoglobin in 50:50:0.1 (v/v) solution of 

126 water/methanol/formic acid.

127 Traveling Wave Ion Mobility Spectrometry – CCS Calibration. Calibration of drift time 

128 measurements to known collision cross section values is necessary for traveling wave-type IM 

129 instruments that use time-varying electric fields within the drift region. Traveling-wave drift times 

130 were calibrated by measuring TWIMS profiles of a calibrant mix for each set of experiments 

131 following a previously published protocol.34-36 A calibration curve (Fig. S3) was obtained by plotting 

132 natural logarithm of the nitrogen CCS to charge ratios versus the calibrant ion drift times.36 The 

133 data was fit with a power function of the form given by Equation 1 where CCSN2 is the calibrant 

134 nitrogen CCS value, z is the charge state of the ion, and td is the drift time.

135    Equation 1𝑙𝑛(𝐶𝐶𝑆𝑁2/𝑧) = 𝑎𝑡𝑏
𝑑

136 Nitrogen TWIMS CCS values were determined from measured drift times according to Equation 

137 2. 

138           Equation 2𝐶𝐶𝑆 = 𝑧 ∗ 𝑒𝑎𝑡𝑏
𝑑

139 The CCS values were reported as the average obtained from triplicate measurements in Table 

140 S1. The instrument settings used in CCS measurements and ion/ion reactions are summarized 

141 in Table S2. All the CCS calibration calculations and results were reported as recommended by 

142 recently introduced criteria.37

143 Mass Spectrometry and Ion/Ion Reactions. Experiments were performed on a Synapt 

144 G2-Si High Definition Mass Spectrometer (Waters Corporation, Wilmslow, U.K.) furnished with 

145 electron transfer dissociation (ETD) and a NanoLockspray source. The instrumental arrangement 

146 for the ion/ion reactions performed has been previously described.38  Briefly, the source contains 

147 two nanoelectrospray (nESI) probes positioned normal to each other and the sampling cone. The 

148 nESI baffle was removed. Sequential anion (sulfobenzoyl-HOAt) and cation (ubiquitin) ionization 
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149 was enabled by a WRENS (Waters Research Enabled Software) script coupled with ETD mode 

150 to synchronize ion injection with the polarity of the instrument optics and ETD refill times (1s each) 

151 for reagent and cation fills, respectively. Infusion flow rates were 500 nl/min or lower. 

152 The control sequence consists of injecting ions through the stepwave region with m/z 

153 isolation in the quadrupole. Anions are trapped in the trap cell in the first step, followed by 

154 introduction of a specific analyte (cationic) charge state (again, m/z isolated by the quadrupole) 

155 into the trap. Next, reaction products are pulsed out of the trap, separated by their mobilities, and 

156 then traverse the transfer cell where the transfer collision energy is increased allowing for collision 

157 induced dissociation after the reaction products exit the mobility cell. Thus, ion/ion reactions 

158 products and their sequence fragments share identical drift times since fragments were not 

159 generated until after IM separation. Ions were mass analyzed by the time-of-flight mass 

160 spectrometer in Resolution Mode (nominal resolving power of 20,000 FWHM). Tandem mass 

161 spectra were internally calibrated against the monoisotopic mass of the y18
2+ fragment ion from 

162 ubiquitin (m/z 1049.0997).

163 Data Analysis. Mobility-selected mass spectra were extracted with the instrument control 

164 software MassLynx V4. Extracted mass spectra were converted into .mgf (Mascot Generic 

165 Format) files and imported into Mash Explorer,39 where spectra were deconvoluted by the 

166 eThrash algorithm40 with a S/N threshold of 3, peak background ratio of 1, peptide minimum 

167 background ratio of 1, and minimum isotopic fit % of 80. The covalently modified and unmodified 

168 CID fragments obtained for all experiments were investigated against the ubiquitin primary 

169 sequence by applying custom PTMs equal to the mass of the covalent modification formed by the 

170 ion/ion reactions (i.e., 182.98 Da) at the N and C termini. Covalently modified peaks were 

171 annotated with a mass error tolerance of 20 ppm.41 The annotations were then manually 

172 confirmed.  

173

174
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175 Results and Discussion

176 Protein Mass Spectra. The ions produced by nESI ionization of ubiquitin from both 

177 aqueous and denaturing conditions exhibit characteristic distributions (Fig. S1) when analyzed 

178 with the “softest” conditions that allowed enough ion transmission to collect mass and mobility 

179 spectra (Table S2). A profile of high m/z signals with lower charge states (i.e., 6 ≥ z ≥ 4) peaks 

180 for ubiquitin was observed for the sample sprayed from aqueous conditions. A distribution of 

181 higher charge state peaks (13 ≥ z ≥ 5) with considerably higher relative intensities was obtained 

182 using denaturing conditions. The charge state distributions suggest that ubiquitin ions 

183 electrosprayed under aqueous conditions have a compact solution structure, as supported by the 

184 literature.32, 42 The compact native state of ubiquitin has a limited number of amino acid residues 

185 accessible for protonation. On the other hand, the higher charge states exhibited for denaturing 

186 conditions are evidence of the disruption of the tertiary structure of ubiquitin.43-45 The observed 

187 transition in charge state distributions indicates that methanol induces structural transitions for 

188 ubiquitin.

189 Gas-Phase Ubiquitin Conformations in the Trap Cell from Native and Denaturing 

190 Conditions. To compare ubiquitin conformations generated from different solution conditions, 

191 calibrated collision cross sections were measured for each of the charge states that was 

192 investigated by covalent labeling with both denaturing and aqueous conditions (Table S1). The 

193 experimental conditions applied for CCS calibration and ion/ion reactions were identical (with 

194 exception of the gas flows into the helium and mobility cells) and are summarized in Table S2. 

195 Ubiquitin conformers originating from aqueous and denaturing conditions were assessed by 

196 converting the peaks in the ion mobility arrival time distributions (ATDs) to CCS values, allowing 

197 for the characterization of ubiquitin populations that undergo ion/ion reaction chemistry. Thus, we 

198 are chiefly concerned with the ion populations present in the trap cell prior to the ion mobility 

199 separation, as these are the populations directly probed by the ion/ion reactions. Therefore, we 
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200 minimized the trap and mobility voltages to prevent unintended activation. The %CV values for 

201 the calibrated CCS values measured on three different days were less than 2.5%. Figures 1A and 

202 1B show the ATDs for ubiquitin 5+ and 6+ in aqueous and denaturing conditions. In solution, 

203 aqueous conditions of ubiquitin favor the N-state (native state) while the partially unfolded so-

204 called A-state is dominant in solutions containing 40% methanol or more.46-48 Ions generated from 

205 aqueous conditions presented a narrow structural region with similar cross section values 

206 (TWCCSN2 – 1193 Å2 and 1233 Å2, for ubiquitin 5+ and 6+, respectively) corresponding to compact 

207 conformations.49 For aqueous ubiquitin 6+ a minor peak is present at ~1371 Å2, which is likely 

208 composed of partially folded states. Previous reports of the 6+ charge state generated from 

209 solutions of ubiquitin in aqueous ammonium acetate with ATDs measured by both drift tube and 

210 TWIMS instruments also display this feature.34, 50 The presence of these states is best explained 

211 by the increase in Coulombic repulsion from the additional proton bound to the 6+ charge state 

212 versus the 5+, as the 5+ charge state lacks this more extended feature.31 Similarly, the distribution 

213 for ubiquitin 5+ in  denaturing conditions (Fig. 1) displays a distribution of compact ions (~1228 Å2) 

214 that extends into the region corresponding to partially folded ions (~1333 Å2). Ubiquitin 6+ in 

215 denaturing conditions gives a broad distribution (from ~1300 Å2 to 1900 Å2) that can be related to 

216 multiple stable, elongated forms. Although this distribution is broad, there are 2 features with 

217 maxima at ~1398 Å2 and ~1676 Å2, corresponding to a partially unfolded intermediate state and 

218 partially unfolded structure arising from the A state, respectively. Figure S2 presents the CCS 

219 distributions for all charge states of electrosprayed ubiquitin ions from aqueous and denaturing 

220 solutions. The distributions for ubiquitin 7+ and 8+ prepared in denaturing conditions are dominated 

221 by relatively sharper features at ~1834 Å2 and ~1906 Å2, respectively. Sharper features in protein 

222 ATDs indicate that the ion conformer population is collapsed into relatively few stable structures 

223 that exist over a narrow region of the available cross section space and appear as a result of 

224 protein unfolding.50

225
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226 Characterization of Gaseous Ubiquitin Structures with Ion/Ion Reactions.

227 Covalent modification of ubiquitin via ion/ion reaction in the gas phase. Covalent bond 

228 formation occurs via ion/ion reactions by a three-step process: 1) Formation of a stable, long-lived 

229 electrostatically bound complex; 2) Activation of the complex; and 3) Dissociation of the leaving 

230 group from the complex. The first step is completed by trapping both reagent anions and protein 

231 cations in the trap cell. A minimal amplitude trap traveling wave (< 0.2 V) is used to promote better 

232 mixing and, in effect, increases the effective reaction time.51 The product is observed by a shift in 

233 m/z equal to a reduction in charge by the number of reagents electrostatically attached and an 

234 increase in mass equal to the molecular mass of the reagent. Next, the complex is activated. The 

235 pressures and voltages from the source and into the trap cell were kept identical to the conditions 

236 used for our CCS measurements to prevent gas-phase unfolding prior to the ion/ion reaction. 

237 Thus, the protein ions that were labeled structurally correlate with the observed arrival time 

238 distributions and CCS values. The transition state for a covalent reaction between a model amine 

239 and sulfobenzoyl-HOAt has been calculated to be 17.4 kcal/mol higher in energy than the 

240 electrostatic product.33 The sulfonate is expected to be electrostatically attached to a protonated 

241 arginine, lysine, or histidine residue. The proton transfer barrier for transfer from guanidinium to 

242 sulfonate was calculated to be 61 kcal/mol and for transfer from ammonium to sulfonate was 

243 calculated to be 28 kcal/mol higher in energy than the complex. Since collisional activation on a 

244 mass spectrometry timescale is kinetically controlled, enough collisional energy must be applied 

245 to form the covalent reaction transition state but not high enough to result in proton transfer without 

246 covalent bond formation or fragmentation of the protein. 

247 Though the application of this energy may lead to coulombically-driven unfolding of the 

248 protein, the strong electrostatic “anchor” holds the reagent in place. The through-bond distance 

249 from the reactive carbonyl carbon to the sulfonate oxygens in the reagent is approximately 6.4 Å. 

250 Thus, the reactive side chain must be close by the charged anchoring residue (i.e., on the surface 

251 of the protein) and a reactive nucleophile. Therefore, though collision-induced unfolding or 
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252 intramolecular proton transfer may occur during the activation of the complex,  these processes 

253 are not expected to affect the ability of the ion/ion reaction to report on  surface accessible regions 

254 of the protein that are nearby external, protonated side chains. The fact that the reagent to 

255 protonated side chain noncovalent bond is not fragmented under these conditions illustrates that 

256 the applied activation to form the covalent product is mild. The applied collisional energy will drive 

257 off the weakly-bound leaving group after the covalent product is formed. The covalent reaction is 

258 observed by a decrease in m/z equal to neutral loss of the leaving group.

259 Ion/ion reactions were used to probe the gas phase microenvironment and relative 

260 reactivity of lysine and arginine side chains in ubiquitin cations formed from the aqueous and 

261 denaturing solutions. Previously, histidine was found to only react with low energy activation 

262 applied over long time periods.33 These conditions cannot be accessed with the instrument used 

263 in this study as CID is performed in transmission mode (beam-type CID). Therefore, we do not 

264 expect to observe histidine modification. Ion/ion reactions were performed under similar ion optics 

265 voltage conditions as the CCS measurements from the source up to and including the trap cell 

266 (vide supra). The choice of the sulfobenzoyl-HOAt reagent (versus, e.g., sulfobenzoyl-N-

267 hydroxysuccinimide) was based on its relatively low activation energy for covalent reactions in 

268 the gas phase, its simple and one-pot synthesis, and the ability of sulfo-benzoyl-HOAt to react 

269 with amino acids side chains such as arginine and lysine.33 

270 Figure 2A displays the ion/ion reaction of ubiquitin 6+ electrosprayed from aqueous 

271 conditions and sulfobenzoyl-HOAt-. The amide bond formation between ubiquitin and 3-

272 sulfobenzoate is characterized by the neutral loss of HOAt (Molecular mass = 135.1235 g/mol) 

273 from the ion/ion reaction product. The peak [M+6H+♦]5+ represents the electrostatic product 

274 formed between ubiquitin 6+ and the reagent, [M+5H+*]5+ is covalently modified ubiquitin, and the 

275 [M + 5H]5+ peak is the proton transfer product corresponding to the loss of the electrostatically 

276 attached reagent. In order to favor covalent product formation (as opposed to proton transfer) 

277 several parameters were optimized aiming to apply energy below the threshold for proton transfer 
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278 product formation but above the transition state energy for covalent bond formation.52 With the 

279 helium cell and IM pressures used to measure CCS, the only observed product upon collisional 

280 activation was loss of the reagent from the ion/ion product complex. This is due to intentional rapid 

281 thermalization of ions by many low-energy collisions as they enter the mobility cell, preventing 

282 unintended activation of ions.53 However, rapid thermalization results in the need to use much 

283 higher voltages to achieve ion activation, with the consequence of not being able to access the 

284 neutral loss of HOAt channel, as the loss of the entire reagent is kinetically favorable. Previous 

285 work has shown that the transition state for loss of an electrostatically bound reagent is very loose 

286 compared the transition state for covalent reaction,54 restraining the appearance of the covalent 

287 reaction to activation energies below the threshold for loss of the entire reagent. Therefore, the 

288 gas flows into the helium and IM cells were set to 20 mL/min each (0.59 and 0.66 mbar pressures 

289 for each of the cells. respectively). This way, the injection energy into the mobility cell was able to 

290 be reduced (center of mass energy of 3.6 kcal/mol for 5+, Table S4) and fewer energizing 

291 collisions occur. The result is efficient formation of the -HOAt without a dominant channel for loss 

292 of the entire reagent. The tune parameters used during ion/ion reactions are presented in Table 

293 S2. The trap pressure was kept the same. In this way, the ratio of the covalently modified product 

294 to the proton transfer (reagent loss) peak was maximized to yield the mass spectrum in Figure 

295 2A.38  The ATD in Figure 2B was obtained under these conditions and represents the ion mobility 

296 separation of different numbers of sequential ion/ion reactions between ubiquitin 6+ and sulfo-

297 benzoyl-HOAt-. The peak at 65 ms is related to the precursor ubiquitin 6+, the peak at ~78 ms 

298 corresponds to the attachment of one sulfobenzoyl-HOAt, and the peaks at ~96 and 120 ms 

299 correspond to attachment of two and three sulfobenzoyl-HOAt, respectively. Figure 2C displays 

300 the mass spectrum at extracted from drift time 72 – 83 ms resulting from CID of the ion/ion reaction 

301 covalent modified product. Figure 3 shows the mass spectra related to the peaks in the ATD which 

302 correspond to the ion/ion reactions products obtained for ubiquitin 7+ in denaturing conditions, 

303 with up to three covalent additions of sulfobenzoyl-HOAt reagents. Fragments from CID of the 
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304 labeled protein ions were only investigated for addition of a single label to help prevent label-

305 induced structural changes from affecting our analysis.15

306 The charge states 5+ and 6+ ionized from aqueous conditions and 5+, 6+, 7+, and 8+ all 

307 displayed a neutral loss of m/z 136 (the mass of the leaving group, HOAT) following ion/ion 

308 reactions with sulfobenzoyl-HOAt. However, 7+ and 8+ from aqueous conditions and 9+ from 

309 denaturing conditions did not show neutral loss of HOAt. The only products were the electrostatic 

310 addition of sulfobenzoyl-HOAt and loss of the entire reagent. This observation is attributed to the 

311 lack of unprotonated lysine or arginine residues available on the exterior of the protein with 7+ and 

312 8+ ionized from aqueous conditions and 9+ ionized from denaturing conditions. The difference in 

313 reactivity between the 7+ and 8+ charge states ionized from aqueous solution and 7+ and 8+ from 

314 denaturing solution indicate that their protonation sites and gas-phase structures are likely 

315 different. The injection energy was controlled to prevent fragmentation of the protein backbone. 

316 No fragments other than the loss of HOAt or the entire reagent were observed without adding 

317 collisional energy in the transfer cell. 

318 Comparison and characterization of the ubiquitin ion structures obtained from aqueous 

319 and denaturing solutions. CID was performed upon injection into the transfer cell to form covalent 

320 modification sequence fragments originating from different charge states of ubiquitin in both 

321 aqueous  (ubiquitin 5+ and 6+) and  denaturing (ubiquitin 5+ to 8+) conditions. Table S3 summarizes 

322 the collision energy voltages applied to the transfer cell for each CID experiment. The covalent 

323 product ions generated b (N-terminal) and y (C-terminal) fragment ions that matched drift times 

324 of their precursors. Figure 2C shows the fragment mass spectrum resulting from CID of the 

325 covalent product [M+5H+*]5+ that was used to determine the sites of covalent modification. The 

326 fragment ion annotations from the solution condition and charge state-dependent ion/ion gas-

327 phase covalent modification of ubiquitin are shown in Tables 1 and 2. 

328 For ubiquitin 5+ and 6+ electrosprayed from aqueous conditions the modified fragment ions 

329 generated suggested covalent modifications to lysine 29 (modified b29) and arginine 54 (modified 
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330 y24) which is in agreement with previously published work.38 The residues available for covalent 

331 modification must be accessible to the reagent – which excludes side chains buried in the interior 

332 of the protein – and reactive towards the reagent, precluding protonated and non-nucleophilic 

333 sites. Modification sites were annotated based on the smallest terminal (b- or y-ion) fragment that 

334 has a m/z shift corresponding to covalent addition. The process of assigning labeled sites is as 

335 follows: b- and y-ions that matched the m/z of sequence fragments plus the mass of the covalent 

336 label were annotated as covalently labeled fragments and manually validated. Next, the mass 

337 spectra were manually compared against spectra resulting from CID of unmodified ubiquitin at 

338 the same charge. Fragments that were originally annotated as covalently labeled that matched 

339 the m/z and isotopic distribution of fragments resulting from CID of unmodified ubiquitin were 

340 thrown out and considered false positives. Side chains were assigned as covalently labeled only 

341 if there was no evidence for covalent labeling of amino acid residues N-terminal (for b-ions) or C-

342 terminal (for y-ions) to the assigned site (i.e., no labeled sequence fragments that include these 

343 residues). For example, Table 1 shows that the smallest labeled b-ion was modified b29, but 

344 unmodified fragments are observed for b27 and b28, ions that include the N-terminus, K6, K11, and 

345 K27, but not K29. Therefore, there is no evidence for labeling of any of these amino acids, but the 

346 observation of b-ions matching the mass of the addition of the covalent label that include K29 

347 suggests that K29 is the labeled side chain. These results correlate to the crystal structure of 

348 ubiquitin (PDB 1UBQ)55 where the suggested modified residues are exposed and accessible to 

349 the reagent (Figure 4). Recently, results from 193 nm ultraviolet photodissociation (UVPD) were 

350 used to determine the protonation sites for different native charge states of ubiquitin in the gas 

351 phase.56 The possible protonation sites for the 5+ and 6+ charge state were determined to be Q2, 

352 P19, K33, R42, K48, K63, and R74. For both charge states, K29 and R54 are not protonated, 

353 rendering them reactive to sulfobenzoyl-HOAt. The solvent-accessible surface area (SASA) was 

354 calculated from the crystal structure with a probe size of 1.4 Å (i.e., the van der Waals radius of 

355 water) with the GETAREA program.57 Side chains with a SASA ratio above 30% were considered 
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356 solvent accessible.58 Including the accessible arginine and lysine side chains from the SASA 

357 calculation and excluding the UVPD-determined protonated side chains limits the remaining 

358 available sites for labeling by sulfobenzoyl-HOAt to K6, K11, K29, R54, and R72, although K11 

359 (and K27) participates in a salt bridge and thus may not be labeled if these salt bridges are not 

360 disrupted under our labeling conditions.59 The observed labeling of K29 and R54 (Fig. 4) suggests 

361 that ubiquitin structures electrosprayed from aqueous conditions retain elements of solution 

362 structure, as predicted by molecular dynamics60 and the structure relaxation approximation60-61. 

363 K27 is not labeled, although it is only two residues away from K29, and is also not protonated. 

364 This may be evidence that elements of solution structure can be maintained, as K27 and K29 are 

365 in an alpha helix. Although the side chain of K27 faces the interior of the protein, the alpha helix 

366 positions K29 to be oriented outwards.55 Another interpretation of these results could suggest that 

367 the label is electrostatically bound to a side chain that is greater than 6.4 Å from the primary amine 

368 of the K27 side chain. Nonetheless, the labeling of K29 and K27 is not random (it occurs 

369 repeatably for both 5+ and 6+ charge states electrosprayed from aqueous solution) and does 

370 correlate with the region of the protein including K29 being accessible. The combination of CCS 

371 data, mass spectra, identified covalently modified residues, and modeling for native ubiquitin 5+ 

372 and 6+ suggests that ubiquitin structures remain compact in the gas phase when electrosprayed 

373 from aqueous conditions.60

374 Ubiquitin has been shown to undergo an alcohol-induced transition to a partially folded 

375 state (A state). For the A state, NMR experiments performed in a 40:60 water:methanol solution 

376 suggested that it retains a majority of its native secondary structural elements in the N-terminal 

377 half, whereas the structure of the C-terminal half unfolds to a highly helical more elongated 

378 state.31, 62-64 For the 5+ ion sprayed from a denaturing solution, our ion/ion reaction results show 

379 that K29 and R54 are labeled (Table 2), the same results as determined for the 5+ ions from 

380 aqueous conditions, consistent with CCS distribution being very similar between the 5+ sprayed 

381 from denaturing conditions and the 5+ and 6+ sprayed from native conditions. The ion/ion covalent 
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382 labeling also illustrates that the peak around 1400 Å in the aqueous 6+ and denaturing 5+ likely 

383 reflects compact structures, since the labeled sites are identical for native 5+/6+ and denaturing 

384 5+. This is consistent with molecular dynamics data that show reversible unfolding and folding for 

385 ubiquitin 6+ ions generated from native conditions for 1 s in the gas phase.60  Additionally, the 6+ 

386 and 7+ charge state fragments include modified y24, also indicating that R54 was labeled. The 

387 labeling of R54 under various conditions indicates that for charge states 5+-7+, R54 is 

388 unprotonated, accessible, and sufficiently reactive under all these conditions.

389 However, the 6+, 7+, and 8+ charge states of ubiquitin sprayed from denaturing solution 

390 were all labeled at different lysine residues, with no evidence for labeling at the K29 residue. As 

391 previously illustrated, these ions all produced ATDs showing more extended conformations. This 

392 suggests that K29 is no longer the most reactive accessible lysine side chain for these charge 

393 states. The 6+ fragmentation data shows that K48 is likely labeled (modified b52),  the 7+ 

394 fragmentation data shows labeling likely occurs on K33 (modified b36), and the 8+
 data may provide 

395 evidence for the labeling of K27, though the lack of labeled b-ions for the 8+ charge state gives 

396 some ambiguity to this assignment. The reduced number of labeled sequence fragments for the 

397 8+ ions is likely a consequence of most of the reactive residues in ubiquitin being protonated, 

398 diminishing the overall reactivity and the number of available sites for labeling. The labeling of 6+ 

399 at K48 and 7+ at K33 is likely due to changes in preferred protonation sites following the unfolding 

400 of the protein, as are K33 and K48 can both be protonated when sprayed from aqueous 

401 conditions. NMR measurements have demonstrated that a characteristic of the A-state is that the 

402 solution salt bridge between K27 and D52, which stabilizes the fold of the protein and buries K27 

403 in the interior of the protein, is disrupted.63-64 Therefore, our results for 6+ and 7+ ionized from 

404 denaturing conditions correlate with at least partially disrupted solution states.  Covalent labeling 

405 by ion/ion reactions is expected to be a powerful tool for protein structural analysis.

406

407
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408 Conclusions

409 Ubiquitin ions electrosprayed from aqueous and denaturing solutions have been analyzed 

410 by IM-MS/MS and covalent structural probes delivered by ion/ion reactions inside of the mass 

411 spectrometer. Ubiquitin conformational populations were evaluated prior to performing ion/ion 

412 reactions by IM-MS, ensuring that energy imparted on the ions between the source and trap cell 

413 did not lead to collision induced unfolding. Examination of the conformation types as function of 

414 the solution conditions and charge states allowed for solution structures to be correlated to gas-

415 phase measurements, suggesting the preservation of solution-like structures in the gas phase. 

416 Ions generated from aqueous solution had CCS values corresponding to compact conformations 

417 while ubiquitin 6+ also exhibited a minor peak at ~1371 Å2, which has been attributed to partially 

418 folded states due to the increase in Coulombic repulsion over the 5+ charge state. On the other 

419 hand, arrival time distributions for ubiquitin in denaturing conditions presented much higher CCS 

420 values which have been previously correlated to multiple elongated stable conformations.44-45, 65

421 The covalent modification data revealed distinct characteristics for ions originating from 

422 either aqueous or denaturing conditions. For aqueous conditions, the modified fragment ions 

423 suggested covalent modifications to lysine 29 (modified b32) and arginine 54 (modified y24) It is 

424 possible that elements of secondary structure as well as tertiary structure are conserved 

425 explained by the covalent modification of K29 instead of the buried and salt-bridged K27.51-52 

426 These results correlate to the crystal structure of ubiquitin (PDB 1UBQ)55, molecular dynamics 

427 results57, and UVPD data,48 where the modified residues are exposed and accessible to the 

428 reagent. Ion/ion reaction results for ubiquitin 5+ sprayed from denaturing solutions also reveal the 

429 labeling of K29 and R54, agreeing with the CCS data, and suggesting that aqueous 6+ and 

430 denaturing 5+ are structurally very similar. Therefore, the denaturing 5+ ion is produced from the 

431 remaining compact ubiquitin population in denaturing solutions. The 6+, 7+, and 8+ charge states 

432 of ubiquitin sprayed from denaturing solutions were labeled at various lysines, accessible most 

433 likely due to the changes in possible protonation sites as a result disruption of the salt bridge 
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434 between K27 and D52 after methanol-induced unfolding.55-56 Overall, the analysis of protein 

435 structures by covalent modification in the gas phase analyzed by IM-MS/MS suggests that the 

436 gas phase is a suitable environment for probing protein structure if care is taken to ensure gentle 

437 ion introduction.

438
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631

632

633

634

635

Figure 1. Intensity normalized 
arrival time distributions (ATDs) 
of ubiquitin 5+ (A) and 6+ (B) 
charge states sprayed from 
native (black trace) and 
denaturing (red trace) 
conditions.
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636

637

638

Figure 2. Covalent modification of 
[ubiquitin+6H]6+ ionized from native conditions 
with [sulfo-HOAt]-. (A) Product ion spectrum of 
the ion/ion reaction between [ubiquitin + 6H] 6+ 
and [sulfo-HOAt – H]- prior to activation. ♦ refers 
to electrostatic attachment of the reagent and * 
refers to covalent modification. (B) ATD of the 
full scan (mass range of 100 to 500 m/z) 
corresponding to ion/ion reactions between 
[ubiquitin + 6H]6+ and [sulfo-HOAt – H]- 
revealing the mobility separation of covalently 
modified products generated with different 
extents of modification. (C) Mass spectrum 
resulting from CID of the ion/ion reaction 
product (corresponding to 72 – 83 ms in the 
ATD).

Figure 3. (A) Post-ion/ion 
reaction IM spectrum and mass 
spectra from zero (B), one (C), 
two (D), and three (E) anion 
attachments. ♦ refers to 
electrostatic attachment of the 
reagent and * refers to covalent 
modification.
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639  

640 Figure 4. X-ray structure of ubiquitin (1ubq). The blue residues (K29, R54) are labeled under 
641 native conditions and the red (K33, K48) and green residue (K27) are labeled only under 
642 denaturing conditions. The red residues are protonated under native conditions and the green 
643 residue is buried and participates in a salt bridge with D52 (black). K11 is black as it participates 
644 in a salt bridge but in not labeled under any conditions. The black line between K27 and D52 
645 represents the salt bridge.
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647 Table 1. Sequence Ladder for Aqueous Ubiquitin in different charge states displaying the 
648 covalently modified fragmentation sites and the modified residues.

649
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656

657 Table 2. Sequence Ladder for Denatured Ubiquitin in different charge states displaying the 
658 covalently modified fragmentation sites and the modified residues.

659

660

661

662

663

664

Page 26 of 28

ACS Paragon Plus Environment

Journal of the American Society for Mass Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

665 Graphical Abstract

666

667 Caption: A gas-phase ion/ion reaction covalent modification and ion mobility/mass spectrometry 
668 workflow for determining three-dimensional structural information.
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