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Abstract: Quantum entanglement is a resource in quantum metrology that can be distributed to
two conjugate physical quantities for the enhancement of their measurement sensitivity. This is
demonstrated in the joint measurement of phase and amplitude modulation signals in quantum
dense metrology schemes. We can also devote all the quantum resource to phase measurement
only, leading to the optimum sensitivity enhancement. In this paper, we experimentally implement
a dual-beam sensing scheme in an SU(1,1) interferometer for the optimum quantum enhancement
of phase measurement sensitivity. We demonstrate a 3.9-dB improvement in signal-to-noise
ratio over the optimum classical method, and this is 3-dB better than the traditional single-beam
scheme. Furthermore, such a scheme also realizes a quantum optical tap of quantum entangled
fields and has the full advantages of an SU(1,1) interferometer, such as detection loss tolerance,
making it more suitable for practical applications in quantummetrology and quantum information.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phasemeasurement sensitivity has been a topic of constant interest ever since optical interferometry
technique was invented more than one hundred years ago [1]. The employment of quantum states
of light in interferometry has now pushed the measurement sensitivity to a new limit, beyond what
is allowed with classical coherent sources of light [2,3]. Squeezed states, because of the property
of quantum noise reduction, are usually applied to a traditional interferometer for sensitivity
enhancement in phase measurement [2, 4, 5]. Quantum entanglement, as a quantum resource,
can also be applied to enhance phase measurement sensitivity by quantum noise cancelation via
quantum correlation [6, 7].
Recently, SU(1,1) interferometer (SUI) was demonstrated to exhibit sensitivity enhancement

in phase measurement [8–21] and in the meantime possesses detection loss tolerance property
[11, 13, 15], which is a huge advantage over the squeezed state schemes. Although the hardware
of the new interferometer changes from beam splitters to parametric amplifiers, the underlining
physics is still quantum noise cancelation through quantum entanglement [14, 22–24], similar to
works in [6]. However, it was shown in [24] that these quantum entanglement-based schemes
can only give rise to half the sensitivity enhancement in phase measurement as compared to the
squeezed state schemes with the same power strength defined through the gain of the parametric
processes for their generations. The study discovered that these schemes are also able to increase
the sensitivity of the amplitude measurement concurrently with the phase measurement in the
name of "quantum dense metrology" [24–27]. Therefore, the quantum resource of entanglement
is split between phase and amplitude measurement.

To increase the sensitivity enhancement factor, on par with the squeezed state schemes, we need
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to devote all the quantum resource to phase measurement only. In this paper, we experimentally
implement a variation of the SUI which employs both the signal and the idler beams to probe a
common phase shift. We find this dual beam sensing scheme can double the sensitivity of the
original single-beam sensing scheme, making full use of the quantum resource of entanglement
for phase measurement.

2. Theory

Traditionally, phase is measured by an interferometer where one of its arms probes the phase
change while the other serves as a reference. This is precisely the principle of homodyne detection
shown in Fig. 1(a). When a probe beam in coherent state |α〉 with α = |α |eiφ0 propagates
through a phase modulator (PM) and carries the weak phase modulation signal δ, the field to
be measured is then written as â = â0eiδ ≈ â0 (1 + iδ), where â0 is the annihilation operator for
probe beam and φ0 is the initial phase of probe. A direct homodyne detection of the modulated
beam measures the quadrature amplitude X̂ (θ) = âe−iθ + â†eiθ , where θ is the difference
between the phase of probe field and the local oscillator. Defining X̂ = X̂(0) = â + â† and
Ŷ = X̂(π/2) = i

(
â† − â

)
as two conjugate observables, we can obtain the power of modulation

signal:
〈
Ŷ
〉2
= 4 |α |2 δ2 when the quadrature amplitude Ŷ is measured. Since the noise of the

coherent state is
〈
∆2 X̂ (θ)

〉
= 1 , it is straightforward to show that the signal-to-noise ratio (SNR)

of phase modulation signal is:

SNRHD = 4|α |2δ2 = 4Ipsδ2, (1)

where Ips ≡ |α |2 with α denoting a complex number is the intensity of the phase sensing probe
beam. Since the ideal homodyne detection is free of classical noise, its sensitivity is only limited
by the quantum noise in the probe field. Equation (1) gives the optimum SNR for a probe field
based on classical light source such as a laser beam in coherent state. It should be mentioned that
a traditional Michelson or Mach-Zehnder interferometer with balanced intensities at two arms
and work at dark fringe only produces half the classical optimum SNR in Eq. (1) [11, 28, 29].
This is because for these traditional interferometers, the power of modulated signal is equally
distributed to two outputs, while the measurement noise is still the vacuum noise (the same as the
noise of coherent states). In the following, we will compare all our results of dual-beam sensing
schemes to the optimum classical SNR in Eq. (1).
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Fig. 1. Typical phase measurement by homodyne detection with (a) classical coherent
state and (b) coherent squeezed state. OPA, optical parametric amplifier; PM, phase
modulator; HD, homodyne detection; Ips , phase sensing field intensity; BS, beam splitter
with transmission efficiency of 1 − η is used to model non-ideal detection efficiency.

With a quantum light source such as a coherent squeezed state as the probe (see Fig. 1(b)),
quantum noise can be reduced and the SNR can be improved to

SNRSQ = 4|α |2δ2/S = 4Ipsδ2(G + g)2 (2)
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by a factor of 1/S ≡ (G + g)2 as compared to the classical optimum SNR in Eq. (1), where
the parameter S is the so-called squeezing degree. The amplitude gains G and g, satisfying the
relation G2 − g2 = 1, can be expressed as G = cosh(r) and g = sinh(r), where the parameter
r denotes the nonlinear coupling coefficient of the parametric process in optical parametric
amplifier (OPA) [9, 30]. However, transmission and detection losses introduce vacuum noise and
degrade the enhancement factor to

1/S1 = 1/[S + η/(1 − η)] (3)

with η denoting the overall loss (modeled as a beam splitter (BS) with transmission efficiency
1 − η in Fig. 1(b)).

IpsSeed Signal

Idler

Signal out

Idler out

Signal out

Idler out

Signal out

Idler out

OPA1

G
1
, g

1

OPA2

G
2
, g

2

Entangled source

d

PM

Ips
HD1

JM ki

HD2

Seed
Signal

Idler

OPA1

G
1
, g

1

OPA2

G
2
, g

2

Entangled source
d

PM

HD1

HD2

IpsSeed Signal

Idler

OPA1

G
1
, g

1

Entangled source
d

BS
(a)

(b)

(c)

1-h
BS

1-h

BS

1-h

BS

1-h

BS

1-h

BS

1-h

1
ˆ
HD
Y

1
ˆ
HD
Y

2
ˆ
HD
Y

2
ˆ
HD
Y

ˆ
JM
Y

HD1

JM ki

HD2

1
ˆ
HD
Y

2
ˆ
HD
Y

ˆ
JM
YPM

Fig. 2. Phase measurement schemes with entangled source generated from an optical
parametric amplifier (OPA1). (a), single-beam sensing SU(1,1) interferometer; (b), dual-
beam sensing SU(1,1) interferometer; (c), direct joint measurement scheme. PM, phase
modulator; HD1-2, homodyne detection; Ips , phase sensing field intensity. BS, beam splitter
with transmission efficiency of 1 − η is used to model non-ideal detection efficiency; ki ,
electronic variable gain; JM, joint measurement.

Quantum enhanced phasemeasurement can also be achievedwith SUI,which utilizes parametric
amplifiers for wave splitting and superposition, as shown in Fig. 2(a). Variations of SUI include
the scheme with the second parametric amplifier replaced by a beam splitter [22] and a truncated
scheme where homodyne measurements are performed directly on the modulated beam, and the
resulting photo-currents are added or subtracted for quantum noise cancellation [14,16, 23]. It
was shown in [24] that all these previous used SUI schemes have an optimum phase measurement
sensitivity characterized by the SNR as

SNRSUI = 2Ipsδ2(G1 + g1)2. (4)

For the scheme in Fig. 2(a), Eq. (4) is obtained for G2 � G1 and locking the OPA2 at the
de-amplification condition, where G1 and G2 are the amplitude gains for OPA1 and OPA2,
respectively. The de-amplification condition is realized by setting the phase relation [31]:

φSUI = φs + φi − 2φp (5)

at φSUI = π, where φs ,φi and φp are the phase of signal, idler and pump field injected into OPA2
respectively. This, however, has an improvement factor of 1/S2 = (G1 + g1)2/2, which is only
half of that given in Eq. (2) with equivalent G1 = G.
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We now explore the reason for the difference between the two results in Eqs. (2) and (4). It
was demonstrated recently [24, 27] that the scheme in Fig. 2(a) can also be used to measure
amplitude modulation on the probe beam at the other output port (HD2) of the second amplifier
of the SUI with the same SNR given in Eq. (4). Since the phase measurement and the amplitude
measurement are performed at different ports of the OPA2, they can be done simultaneously,
sharing the same resource of quantum entanglement generated by OPA1 [24]. Because of this, the
quantum resource is split between the phase and amplitude measurement, reducing the quantum
enhancement effect by half for each measurement.

Realizing this difference, we now construct a variation of SUI to place all the quantum resource
to phase measurement. Different from Fig. 2(a), in which the signal beam between two OPAs
functions as the probe, our new measurement scheme involves both correlated signal and idler
fields for probing the phase change, as shown in Fig. 2(b). A quick comparison of the new
scheme with the traditional interferometer may lead to the concern that the phase signal would be
cancelled in phase difference, a phenomenon known as "common mode rejection" in traditional
interferometer. In traditional interferometers, the interference fringe is determined by the phase
difference φ1 − φ2 between two arms of interferometer. When phase modulation is applied on
both arms, the modulation signal at the output port will be cancelled out by the subtraction
process. Fortunately, the working principle of SUI is totally different from that of a traditional
interferometer [10,32]. The OPA2 in SUI is a phase sensitive amplifier and its output intensity is
decided by the phase relation in Eq. (5). Hence, for SUI locked at the de-amplification condition,
its output depends on the sum of the phase of the two arms rather than the difference for a
traditional interferometer.
Equation (4) shows that the quantum enhanced measurement is originated from the two

entangled outputs of OPA1 that have the quantum correlation [33]:
〈
∆(X̂1 − X̂2)2

〉
/2 < 1 and〈

∆(Ŷ1 + Ŷ2)2
〉
/2 < 1, where X̂1(2) and Ŷ1(2) are the two conjugate quadrature amplitudes of signal

(idler) field out of OPA1. When the SUI is working at the dark fringe, the noise at each output is
reduced due to quantum noise cancellation occurred in OPA2 [34]. If the dual beams co-propagate
through a PM, the phase signal carried by each beam will add up coherently at each output of
SUI because of the negative correlation between Ŷ1 and Ŷ2. Therefore, the detected power of
modulation signal δ will be quadrupled as compared to the single beam sensing SUI scheme in
Fig. 2(a), but Ips will also double because of the dual-beam probing (under the condition of
G1 � 1,G1 ≈ g1). As a result, there is an increase of the SNR by a factor of 2, recovering the
SNR in Eq. (2). The SNR of phase signal measured by homodyne detection (HD) at each output
of SUI is given by:

SNRHD1 =
4(G1G2 + g1g2)2 |α |2δ2

(G2G1 − g2g1)2 + (G2g1 − g2G1)2

SNRHD2 =
4(G1g2 + g1G2)2 |α |2δ2

(G2G1 − g2g1)2 + (G2g1 − g2G1)2
(6)

which reach the optimum value when G2 →∞:

SNR(op)
HD1 = SNR(op)

HD2 = 2(G1 + g1)4Ipsδ2/(G2
1 + g

2
1)

≈ 4(G1 + g1)2Ipsδ2 for g1 � 1 (7)

where Ips ≡ (G2
1 + g

2
1)|α |

2 (|α |2 � 1) is the phase sensing probe intensity.
The results in Eq. (7) are in exactly the same form as Eq. (2), which is twice of that in Eq.

(4) for single beam sensing scheme. On the other hand, the "common mode rejection effect"
does apply to amplitude modulation. If an amplitude modulation signal ε is encoded by passing
both the signal and idler beams through an amplitude modulator, the signal size measured at
one output of SUI (4 (G1g2 − g1G2)2 Ipsε2/(G2

1 + g2
1)) is much less than that of phase signal
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(4 (G1G2 + g1g2)2 Ipsδ2/(G2
1 + g2

1)) because of the positive correlation relation between the
quadrature amplitudes of signal and idler inputs (X̂1 and X̂2) for OPA2 [24]. So, this scheme
cannot be used for quantum enhanced amplitude measurement at all. From this analysis, we
find all the quantum resource is used for phase measurement alone and this scheme recovers the
enhancement factor lost due to quantum resource sharing in single beam sensing scheme [24,27].
It should be noted that in addition to the homodyne detection that realize measurement on

ŶHD1 or ŶHD2 at each output of OPA2, joint measurement

ŶJM = ŶHD1 + kiŶHD2 (8)

can be performed by adding up the photo-currents out of HD1 and HD2, as shown in Fig. 2(b),
where ki is a variable gain parameter for maximizing the SNR of ŶJM . Although optimum
performance of SUI can be achieved by the direct homodyne measurement of ŶHD1 or ŶHD2 at
the signal or idler output of SUI when G2 →∞,G1 � 1, it is shown that the joint measurement
can give rise to the optimum quantum enhancement in Eq. (7) by properly adjusting the electronic
gain parameter ki in the joint measurement circuit even at finite gains of G2 [34].

It is worth noting that when the gain coefficient of OPA2 is G2 = 1 (or g2 = 0), OPA2 function
as an ideal transmission media for signal and idler beams. In this case, Fig. 2(b) is equivalent to
Fig. 2(c) when the joint measurement is performed to extract the phase information encoded
on dual beams. For Fig. 2(c), it is straightforward to show that the SNR in the measurement
of the joint quantity YJM is the same as that given in Eq. (2) with equivalent G = G1 when the
gain parameter ki in Eq. (8) takes the optimized value of ki = 1 [16, 24]. However, the scheme
shown in Fig. 2(c) is sensitive to detection losses, and the dependence of the enhancement
degradation on loss is exactly the same as the squeezed state scheme in Fig. 1(b) discussed earlier
(see Eq. (3)). This similarity between the two schemes is because the co-propagate signal and
idler entangled fields in Fig. 2(c) are nearly degenerate, while the squeezed state in Fig. 1(b) is
indeed formed by two degenerated fields out of OPA. When both the entangled signal and idler
fields from OPA1 are used to probe the phase shift introduced by PM, the phase information
carried by the dual beams is similar to that by squeezed state as long as the gain of OPA in the
two cases is the same. For the SUIs in Figs. 2(a) and 2(b), however, it is another story [24].
With the presence detection losses (denoted as BS with transmission 1 − η before detection), the
improvement factor changes to

1/S3 ≈ 1/[S + η/2G2
2(1 − η)] (9)

for the result measured by HD1/HD2 at one output of OPA2, or

1/S3 ≈ 1/[S + η/4G2
2(1 − η)] (10)

for the result jointly measured by two HDs, and we approximately have 1/S3 ≈ 1/S when
G2 � G1 and G2 ≈ g2. So, the scheme of SUI using OPA2 to coherently combine the entangled
signal and idler fields is tolerant to detection losses. This is because the output noise of OPA2
is much larger than vacuum noise so that the vacuum noise coupled in through loss channel is
negligible.

Another interesting application of the dual-beam sensing scheme in Fig. 2(b) is the realization
of a quantum information tap [35, 36]. In this case, OPA2 is regarded as the information splitter
for the input, which is the entangled fields from OPA1 with weak phase signal encoded by PM.
The input SNR corresponding to the direct joint measurement result in Fig. 2(c) is:

SNRin = 4Ipsδ2(G1 + g1)2, (11)

for lossless case. With output SNRs at the two output of OPA2 given in Eq. (7), we have the
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optimum transfer coefficients as

THD1,HD2 ≡
SNR(op)

HD1,HD2

SNRin
=
(G1 + g1)2

2(G2
1 + g

2
1)

≈ 1 for g1 � 1, (12)

which means that the signal encoded in the entangled fields can be split into two by the amplifier
without adding noise in the ideal case of g1 � 1. In general, we have THD1 + THD2 =
(G1 + g1)2/(G2

1 + g
2
1) > 1, satisfying the condition for quantum optical tapping [35].

3. Experiment setup
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Fig. 3. Experiment setup. OPA1-2, optical parametric amplifiers; P1-2, pump for OPA1-2;
F1-3, band-reflection filter centering at 1550 nm; DSF1-2. dispersion shifted fiber; PM, phase
modulator; CWDM, coarse wavelength division multiplexer; HD1-2, homodyne detectors;
LOs(LOi), local oscillator for signal (idler) field; PZT1-3, piezo-electric transducer; ki ,
electronic variable gain; JM, joint measurement.

We implement experimentally the dual-beam schemes in Figs. 2(b) and 2(c), in which the
OPAs are realized by using fiber-based OPAs. The experimental setup for measuring the weak
phase modulation by using the dual-beam sensing SUI is shown in Fig. 3. The nonlinear media
for OPA1 and OPA2 are two pieces of identical dispersion shifted fibers (DSF1 and DSF2). The
length and zero dispersion wavelength of each DSF are about 150 m and 1548.5 nm, respectively.
The pump for each OPA, P1/P2, is a mode locked pulse train. Each pulsed pump with full width
at half maximum (FWHM) of 0.4 nm is centered at 1549 nm to ensure the phase matching
of four wave mixing (FWM) parametric process is satisfied in DSF [37]. OPA1 generates the
entangled signal and idler beams [33,38]. When the strong pump P1 and weak seed injection
centering at 1533 nm are combined by a wavelength division multiplexer (WDM) filter (F1)
and simultaneously launched into DSF1, we obtain the amplified signal beam and generated
idler beam via FWM. By passing the output of OPA1 through a WDM filter (F2), we isolate
the residual power of pump P1 and select out the entangled signal and idler beams, which are
centering at 1533 and 1566 nm, respectively, and co-propagate in space. The weak phase signal
is encoded by propagating both the signal and idler beams through a phase modulator modulated
at the frequencies of 1.56 MHz. The encoded dual beams are combined with the pump P2 and
simultaneously launched into DSF2 for signal amplification and noise suppression. At the output
of OPA2, we exploit a 2-channel course wavelength division multiplexer (CWDM) to isolate the
pump P2 and to select the signal and idler fields with high efficiency. For the two channels of
CWDMs, the isolation degrees to the pump are greater than 40 dB. At the two outputs of OPA2,
the signal and idler fields are respectively measured by the homodyne detection systems HD1
and HD2. The local oscillator (LOs/LOi) of each homodyne detection HD1/HD2 is properly
locked to measure the quadrature amplitude ŶHD1/HD2 at signal/idler output port. When the
joint measurement is performed, we mix the photo-currents iHD1 and iHD2 of HD1 and HD2,
respectively, with a mixer to obtain iJM = iHD1 + kiiHD2, where the output of HD2 is adjusted
by the electrical gain ki to optimize the measured SNR. The power spectrum of measurement

                                                                                    Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 11297

 



result is analyzed by sending the photon-currents directly out of each individual homodyne
detector and joint measurement of HD1 and HD2, which are iHD1, iHD2 and iJM , into a data
acquisition system (DAQ).

To ensure the phase signal encoded on the dual-beam can be measured at each output of SUI
with high SNR, the power gain of OPA2 should be much higher than that of OPA1. During the
measurement, the powers of P1 and P2 are 2 mW and 4 mW, respectively. In this condition,
the power gains of OPA1 and OPA2 are about 2.5 and 12, respectively. Moreover, to obtain the
best noise cancelation effect, OPA2 is operated at the de-amplification condition by locking the
phase relative in Eq. (5) to φSUI = π. This is realized by controlling the phase of P2 with the
piezoelectric transducer (PZT1).
To clearly demonstrate the quantum enhancement, we need to compare the SNR measured

by the dual-beam sensing SUI with that obtained by classical method. The classical method,
corresponding to the homodyne detection in Fig. 1(a), is realized by setting the powers of two
pumps (P1 and P2) to zero so that the two DSFs simply function as transmission media. On the
other hand, to illustrate the loss tolerance feature, we should compare the measurement results
of dual-beam sensing SUI with that obtained by using entanglement out of OPA1 (the pump of
OPA1 is on, while that of OPA2 is off) and by directly performing joint measurement, which
is equivalent to the scheme in Fig. 2(c). It is worth noting that in each case, the probe beam
intensity Ips is adjusted to be the same for fair comparison. The measurement results presented
in Sec. 4 are obtained for Ips = 200 pW.
In the experiment, the two pumps (P1 and P2) are obtained by carving the output of a

femto-second laser with repetition rate and central wavelength of about 36.9 MHz and 1550
nm, respectively. The preparation of other optical fields, including the seed injection and local
oscillators of HDs, and the realization of mode matching between two OPAs are described
in [27]. The technical details for locking the phase of OPA2 and two sets of HDs by loading the
feedback signals on PZTs are given in our previous publications (see [27,30] for details). The
transmission efficiency between OPA1 and OPA2 is about 70%. The total detection efficiency of
the signal/idler output is about 78%/73%.

4. Results

A typical set of data is presented in Fig. 4. The black trace in Fig. 4(a) shows the output spectrum
of HD1 when the experimental setup in Fig. 3 is reconfigured as the optimum classical homodyne
detection scheme in Fig. 1(a) by setting P1=P2=0. The peak at 1.56 MHz corresponds to the
measured power of phase modulation signals. One sees that the SNR is 17.8 ± 0.2 dB, which is
the benchmark SNR for the classical phase measurement that we will compare to. Note that the
power in all the plots in Fig. 4 is normalized to the shot noise level of HD1 for the sake of easy
comparison.
Figure 4(b) shows the result of dual-beam sensing SUI. From the measurement of HD1 and

HD2, which are the individual homodyne detections at signal and idler outputs, respectively, one
sees that the SNRs of phase signal at 1.56 MHz reads 21.5 ± 0.2 dB and 21.3 ± 0.2 dB. These
are 3.7 ± 0.3 dB and 3.5 ± 0.3 dB improvement over the classical measurement result in Fig.
4(a). From the joint measurement of HD1 and HD2 with an optimized electronic gain ki = 1, we
find the SNR of measured phase signal is 21.7 ± 0.2 dB, which corresponds to an improvement
of 3.9 ± 0.3 dB over the classical result. If the classical limit of the phase measurement were
defined the same as that of the single-beam sensing SUI reported in [27,30], the improvement
obtained for the JM case in Fig. 4(b) would be 6.9 dB. This result therefore demonstrates the
advantage of dual-beam sensing SUI over the single-beam sensing SUI scheme. Notice that the
SNR from joint measurement is slightly higher than those from individual measurement of HD1
or HD2. This is because the gains of OPA1 and OPA2 are finite in our experiment. So the SNRs
at each output of SUI are not optimized as described by Eqs. (6) and (7). However, the joint
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Fig. 4. The spectrums from HD1, HD2 and joint measurement (JM) for the measurement of
a phase modulation signal at 1.56 MHz. The noise levels are all normalized to the shot noise
level of HD1 at 0 dB. (a) Direct measurement by HD1 with a coherent probe beam when P1
= P2 = 0; (b): Measurement from SUI when P1 = 2mW and P2 = 4mW; (c): Measurement
with entangled probe beams (truncated SUI scheme) when P1=2mW and P2=0. The black
line in JM of (c) is the shot noise level SNRsi of the joint quantity ∆i = is + kiii (ki = 1),
which is exactly 3 dB above the shot noise level at 0 dB for individual HD1.

measurement always gives the optimized value (only determined by the entanglement degree)
irrespective of the gain of OPA2 .
To measure the information encoded on the entangled state, we implement the dual-beam

sensing phase measurement scheme in Fig. 2(c). In this experiment, the experimental setup
in Fig. 3 is reconfigured by turning off OPA2 with P2 = 0. During the measurement, P1 and
incident seed are the same as those in Fig. 4(b). The results obtained by HD1 and HD2 and JM
are presented in Fig. 4(c). Although SNRs extracted from HD1 and HD2 individually are much
smaller than the classical measurement result in Fig. 4(a) due to the nature of thermal noise
in the individual signal and idler fields, the joint measurement gives an SNR of 19.7 ± 0.2 dB,
which is 1.9 ± 0.3 dB better than the SNR in Fig. 4(a). The joint measurement of HD1 and HD2
with ki = 1 has the modulated signal coherently added (nearly 6 dB increase) but noise reduced
below joint shot noise level SN Lsi (see the black line in Fig. 4(c)) due to the anti-correlation on
Y quadrature between entangled signal and idler fields [33]. It is interesting to note that had we
used the single-beam sensing scheme in [14, 16], the observed SNR would be about 3 dB (factor
of 2) smaller and we would have SNR worse (about -1 dB) than the optimum classical method
using coherent state as probe.

Moreover, this result also illustrates the loss-tolerant property of SUI. The improvement over
the optimum classical scheme for the JM in Fig. 4(c) is only 1.9 dB, which is lower than the 3.9
dB improvement shown in Fig. 4(b). This is because joint measurement of quantum entanglement
without amplification is prone to propagation and detection losses (about 25%) in our system.
The extra vacuum noise from the loss channels will reduce the effect of quantum correlation
and quantum noise reduction. The dual-beam sensing SUI, on the other hand, is insensitive to
these losses because each output of OPA2 carries the amplified phase signal and its noise level,
lower than a traditional amplifier due to quantum correlated signal and idler inputs, is well above
vacuum noise for G2 � G1. When the vacuum noise is coupled in from the detection loss, both
the power of signal and noise will decrease by a similar ratio at the same [34], leading to no
obvious change in SNR.
On the other hand, Fig. 4(b) also demonstrates the realization of a quantum optical tap by

OPA2. The input fields to OPA2 are the two entangled fields generated from OPA1 (see Fig.
2(c) and Fig. 3), which serve as the quantum signal to be split. The direct joint measurement
of phase signal carried by entangled signal and idler beams gives an SNR of 19.7 ± 0.2 dB,
as shown in Fig. 4(c), which is 1.9 ± 0.3 dB better than the SNR obtained by classical phase
measurement in Fig. 4(a) due to noise reduction originated from the quantum correlation of two
entangled fields. However, as we mentioned in theory part, the direct joint measurement scheme
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is sensitive to losses in transmission and detection. After correcting these losses, the SNR of
phase signal encoded on the signal and idler entangled fields is deduced to be 22.9 ± 0.2 dB.
So we take SNR of input quantum signal as SNRin = 22.9 ± 0.2 dB, while the split fields are
the signal and idler outputs of OPA2, which are respectively measured by HD1, HD2. From
the result acquired by HD1 and HD2 shown in Fig. 4(c), we find the SNRs of two outputs are
SNRs = 21.5 ± 0.2 dB and SNRi = 21.3 ± 0.2 dB, respectively. These results lead to transfer
coefficients of Ts = SNRs/SNRin = 0.72 ± 0.06 and Ti = SNRi/SNRin = 0.69 ± 0.06, with
Ts + Ti = 1.41 ± 0.09, which is larger than the classical limit of 1. There are two reasons that
deviate the transfer coefficients Ts and Ti from the ideal result Ts = Ti = 1 (see Eq. (12)). One is
the finite gain of OPA2, the other is the transmission loss and mode mismatching loss occurred
when the entangled signal and idler beams are coupled into OPA2.

5. Summary and discussion

In summary, we construct a dual-beam sensing SUI and demonstrate its advantages in both phase
detection sensitivity and loss tolerance. The measurement results show that SNR is 3.9 ± 0.3 dB
higher than that obtained by the optimum classical counterpart in phase measurement. Using the
dual-beam sensing SUI, we also realize for the first time the quantum information splitting for
phase signal encoded on two entangled fields with transfer coefficients of Ts + Ti = 1.41 > 1,
satisfying the condition for quantum optical tapping. Compared to previous methods, dual-beam
sensing SUI not only makes full use of the quantum resource for phase measurement, but also
is insensitive to propagation and detection losses and thus lifts the barrier for the quantum
enhanced metrology and quantum communication in practical applications. The loss tolerance
property shows that dual-beam sensing SUI has great potential in those situations where quantum
efficiency of detection system limits the implementation of quantum enhanced measurement,
such as those working at wavelength that lacks efficient photo-detectors (for example, wavelength
longer than 2 µm or ultra violet region).
It is interesting to note that the increase in the sensitivity of phase measurement is the result

of quantum resource distribution between two conjugate observables [24]. Under the high gain
condition of G2,G1 � 1, all the quantum resource is devoted to phase measurement. However,
for the finite gain of G1 but G2 →∞ for optimum operation, we find from Eqs. (1) and (7) that
the enhancement factor is 2(G1 + g1)4/(G2

1 + g
2
1), which is smaller than the full enhancement

factor of (G1 + g1)2. This is because, for finite G1, the SNR of amplitude measurement at HD2 is
actually non-zero. It can be shown [24] that for amplitude modulation ε and the measurement of
X̂ = â + â† by HD2, we have

SNR(op)
HD2(AM) = 2Ipsε2/(G2

1 + g
2
1). (13)

Together with Eq. (7) for phase measurement, we find with δ = ε

SNR(op)
HD1(PM) + SNR(op)

HD1(AM) = 4(G1 + g1)2Ipsδ2. (14)

So, the sum of the enhancement factors for simultaneous phase and amplitude is conserved and
equals to (G1 + g1)2. Here, we once again demonstrate the principle of quantum resource sharing
between the measurement of conjugate variables even in the non-ideal case of finite gain of G1.

Although the dual-beam sensing scheme has twice the SNR as the single-beam sensing scheme,
its implementation requires the frequency and propagation path of two correlated beams to be
nearly the same so as to probe the same phase change. Very often SUI is realized with different
types of quantum states as in the atom-light hybrid interferometer [32] where the phases involved
belong to light and atom separately. In this case the dual beam scheme wouldn’t work.
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