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Abstract

Human neuroimaging studies of natural rewards and drugs of abuse frequently assay the brain’s 

response to stimuli that, through Pavlovian learning, have come to be associated with a drug’s 

rewarding properties. This might be characterized as a ‘sensorial’ view of the brain’s reward 

system, insofar as the paradigms are designed to elicit responses to a reward’s (drug’s) sight, 

aroma, or flavor. A different field of research nevertheless suggests that the mesolimbic dopamine 

system may also be critically involved in the motor behaviors provoked by such stimuli. This brief 

review and commentary surveys some of the preclinical data supporting this more “efferent” 

(motoric) view of the brain’s reward system, and discusses what such findings might mean for 

how human brain imaging studies of natural rewards and drugs of abuse are designed.

The mammalian brain’s reward system is critical in the search for food and survival. 

Distortion of this circuitry is also believed to play a key role in the development of (and 

perhaps resistance to) drug addiction (Haber & Knutson, 2010; Koob & Volkow, 2016). For 

this reason, a large body of research in both human and animal behavioral neuroscience has 

targeted brain reward pathways.

The mesolimbic dopamine system is a central aspect of the brain’s reward circuitry. A 

considerable body of research presumes what might be termed a “sensorial” view of 

dopamine, wherein striatal dopamine transmission is a response to an exogenous stimulus— 

either a drug as the direct result of its pharmacologic actions, or a stimulus that has become 

associated with the drug’s actions via Pavlovian learning. The capacity of a drug- (or even 

non-drug reward) associated stimulus— a sight, smell, or taste— to induce dopamine 

transmission has been interpreted as reflecting drug/reward wanting (the incentive salience 

model Robinson & Berridge, 1993), or as a teaching signal that enables organisms to 

calculate reward probabilities and predict when a reinforcer will be available (the reward 

learning model; Schultz, Dayan, & Montague, 1997). Perhaps more plausibly, a combination 

of these two phenomena may be operative, as Berridge (2012) notes that most studies of 
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mammalian reward prediction and prediction error are conducted during when animals are in 

states of deprivation to heighten wanting and assure that they engage the paradigm.

In the context of these two theoretical views (i.e. incentive salience or reward learning and 

prediction), a large number of human brain imaging studies have examined responses to 

drug, food, or monetary reward “cues.” Using functional magnetic resonance imaging 

(fMRI), and less often positron emission tomography (PET), such work has demonstrated 

that drug and natural reward (food) cues do, indeed, provoke ventral striatal activity (Noori, 

Cosa Linan, & Spanagel, 2016). Consistent with the incentive salience model, many 

clinically oriented studies conceptualize these Pavlovian stimuli as tempting individuals into 

reward consumption through this striatal activation. In experiments of this sort, little is 

nevertheless required of subjects but to observe and detect the presence of the reward cues. 

However, another body of findings suggests that this “sensorial” view may not capture the 

entire picture of striatal activity.

An alternate (or much more likely, complementary) line of thinking derived from largely 

animal work indicates that mesolimbic dopamine is critical to the execution of motivated 

behaviors. This preclinical work suggests that it may therefore be important to separate 

responses to reward-related cues from responses related to the effortful behavior to acquire 

rewards. Indeed, the midbrain’s dopaminergic input into the telencephalon targets what are 

commonly understood to be key elements of the motor system: the basal ganglia, of which 

the ventral striatum is a part. As designed (and perhaps as constrained by the nature of the 

experimental environment and apparatus), many human brain imaging studies are less well 

equipped to account for the motoric aspect of reward related behavior.

In this manuscript I will first briefly review the relevant anatomic pathways. I will then 

review the preclinical data supporting this more “efferent” (motor) view of the brain’s 

mesolimbic dopamine system in reward, focusing in particular on food and alcohol, although 

the concepts should, in principle, extend to any addictive drug. I will then discuss how these 

data might be considered when designing human brain imaging experiments to 

accommodate this more efferent theory of the brain’s reward system.

Reward system anatomy

Excellent in-depth reviews of the primate and human reward system are available elsewhere 

(e.g., Haber & Knutson, 2010). For brief context, and in broad overview, midbrain dopamine 

neurons in the substantia nigra (SN), ventral tegmental area (VTA), and retrorubral area 

(RRA) project to the striatum (caudate and putamen; Figure 1).

The ventrolateral tier of the SN projects to the lateral sensorimotor striatum (putamen). The 

SN’s dorsal tier targets the ventral caudate and putamen, while the adjacent VTA sends 

axons to the nucleus accumbens (Haber, Fudge, & McFarland, 2000). Several regions of 

frontal cortex also receive dopamine afferents from the dorsolateral SN (dorsolateral/

dorsomedial prefrontal) and VTA (medial, ventromedial frontal); RRA regions send 

afferents to these same cortical areas with a similar topological orientation (Williams & 

Goldman-Rakic, 1998).
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In turn, limbic and frontal association cortices project back to the striatum, with 

ventromedial orbital (particularly important in the representation of a reward's subjective 

value; see Hare, Camerer, & Rangel, 2009; Hare, Malmaud, & Rangel, 2011) and lateral 

orbitofrontal cortices targeting the ventromedial striatum. The dorsal anterior cingulate 

targets medial caudate and putamen, while dorsolateral prefrontal cortex projects to 

dorsomedial and dorsolateral (caudate and putamen) striatal areas (Haber, et al. 2006). 

Along with input from other regions not covered here (e.g., amygdala, insula, hippocampus, 

hypothalamus), this system is thus poised to assimilate information regarding stimulus 

salience, reward value, and perceived reward probability— all consistent with the abundance 

of literature showing that drugs and drug-related stimuli evoke dopaminergic transmission in 

the ventral striatum (Koob & Volkow, 2016).

The ventral striatum does not, however, rest afferent to frontal cortex in this isolated 

geography. First, intrastriatal integration is accomplished via a series of spiraling straito-

nigro-striatal connections, through which information within limbic, association, and motor 

striatum can be exchanged (Haber et al., 2000). Second, the ventral striatum sends efferent 

projections to frontal regions via the ventral pallidum, subthalamic nucleus, dopaminergic 

midbrain, and dorsomedial thalamus (see Sesack & Grace, 2010 for detail on the pathways). 

Thus, as a whole, the ventral striatum is poised to function in both sensory and motor 

domains.

Mesolimbic dopamine and reward-related motor behaviors

In the environment, problems often lie not just in the elevated state of desire evoked by food 

and drug-related stimuli, but in the relentless behavior engendered by these provocative 

cues, such as persistent drug seeking pursued to the exclusion of more constructive actions 

(i.e., criterion 3 for an alcohol use disorder; American Psychiatric Association, 2013). In this 

vein, pre-clinical studies show that striatal dopamine is linked to more than simply a 

response to rewards or their related sensory properties. Rather, ventral striatal (i.e., nucleus 

accumbens) dopamine release also appears to be closely associated with the goal-directed 
motor behavior needed to procure rewards (Salamone, Correa, Nunes, Randall, & Pardo, 

2012).

A compelling preclinical example of this phenomenon comes from Roitman and colleagues 

(Roitman, Stuber, Phillips, Wightman, & Carelli, 2004). In this study using the high-

temporal resolution technique of fast-scanning cyclic voltammetry (FSCV) in behaving 

rodents, ventral striatal dopamine was released in response to food associated cues. 

However, the authors also showed that ventral striatal dopamine transients peaked at, and 

were tightly time-locked to, the animal’s goal-directed behaviors to obtain the food reward. 

In a separate study using in vivo microdialysis (a recording technique with less temporal 

resolution than FSCV), Ostlund et al (2011) isolated food seeking behaviors from food 

receipt/consumption, and similarly showed that accumbens dopamine release was related to 

lever pressing behaviors to obtain reward. Although dopamine did not track lever-pressing 

(food seeking) rate, or number of lever presses/rewards earned, there was a significant 

reduction in lever-press related dopamine release after eating to satiety (Ostlund et al., 

2011).
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Using FSCV with an addictive drug rather than food, Phillips et al. (2003) also showed that 

dopamine release in nucleus accumbens peaked when animals lever-pressed for cocaine 

(also see Owesson-White et al., 2009 for a similar result). Compellingly, electrical 

stimulation of the VTA, which induced dopamine release in nucleus accumbens, led to 

spontaneous lever pressing for cocaine. Similarly, Adamantidis and colleagues (2011) found 

that optogenetic stimulation of the VTA reactivated previously extinguished food-seeking 

behaviors. Further underscoring the dopaminergic origins of such goal directed behaviors, 

pharmacologic inactivation of burst firing in the VTA slows goal-directed sucrose seeking 

and attenuates nucleus accumbens dopamine transients during seeking (Cacciapaglia, 

Wightman, & Carelli, 2011). Conversely, dopamine D2 receptor over-expression in nucleus 

accumbens enhances food seeking and acquisition behaviors without affecting satiety 

(Trifilieff et al., 2013).

Thus, the animal literature makes clear that, in addition to responding to cues of reward’s 

presence, ventral striatal dopamine transmission is also tightly linked to reward-seeking 

behaviors, themselves.

Effortful behavior

Although simple instrumental behaviors (e.g. an isolated lever press) to obtain reward are 

associated with ventral striatal dopamine release, a body of preclinical literature further 

suggests that accumbal dopamine is critical to surmount more imposing obstacles that 

interfere with access to food and rewards (Salamone, Correa, Farrar, & Mingote, 2007).

In contrast to the studies that measure dopamine transmission, an alternate technique is to 

test for effortful behaviors after dopamine depletion. Dopamine depletion in animals does 

not change food liking behaviors or appetite, but it does change how effort is deployed 

(Salamone et al., 2012). For example, selective dopamine depletion with 6-

hydroxydopamine (6-OHDA) lesions in nucleus accumbens does not alter responding for 

food reward when a low ratio response (low effort) is required, but dopamine depletion does 

dampen responding at higher (more difficult) response ratios, and shifts choices to a less 

preferred, yet more easily obtained, food (Cousins & Salamone, 1994). Similarly, the effects 

of dopamine antagonism on effort are particularly evident when work-related requirements 

increase unexpectedly (Ostlund, Kosheleff, & Maidment, 2012). St. Onge and Floresco 

(2009) found that dopamine receptor (D1, D2) antagonism in rodents decreased choices for 

larger, riskier food rewards, while amphetamine (which increases synaptic dopamine) 

augmented preference for the larger/riskier reward. Dopamine antagonism in rat nucleus 

accumbens also has greater effects on efforts to gain access to alcohol than on alcohol 

consumption itself (Czachowski, Chappell, & Samson, 2001; Czachowski, Santini, Legg, & 

Samson, 2002). Similar human phenomena have been observed, with dopamine depletion 

depressing effort to obtain cigarettes (Venugopalan et al., 2011), and amphetamine 

increasing effort to work for money (Wardle, Treadway, Mayo, Zald, & de Wit, 2011).

In neurophysiological studies, the magnitude of mesolimbic dopamine release predicts the 

speed with which animals initiate action sequences to obtain sucrose reward (Wassum, 

Ostlund, & Maidment, 2012)— data consistent with dopamine’s importance to motivational 
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‘vigor’ (Niv, Daw, Joel, & Dayan, 2007). Midbrain dopamine neuron spiking activity also 

declines with increasing fatigue and decreasing effort (Pasquereau & Turner, 2013), while 

striatal dopamine progressively ‘ramps’ as animals navigate to move closer to obtaining a 

sweet reward (Howe, Tierney, Sandberg, Phillips, & Graybiel, 2013). In humans, the 

magnitude of amphetamine-provoked dopamine release is correlated with a willingness to 

exert effort for larger rewards (Treadway et al., 2012).

Not all data in this area are consistent. In a study where cues signaled varying effort, Day et 

al. (2010) did not observe accumbal dopamine release during lever presses for sucrose 

pellets. Gan, et al. (2010) also did not find accumbal dopamine release during increased 

effort demand when animals decided between a reference choice and choices between 

alternatives differing in reward value or effort. At least in this particular behavioral choice 

paradigm, accumbal dopamine increased when the alternate choice involved unexpectedly 

low effort.

Collectively, a number of findings nevertheless strongly suggest that mesolimbic dopamine 

is important to overcoming response costs in the search for rewards (Phillips, Walton, & 

Jhou, 2007). In this way, dopamine likely functions not only to facilitate learning the 

incentive value that reward cues eventually come to possess (Berridge, 2012), but also to 

translate such information into the motivated effort required to “seal the deal” (Westbrook & 

Braver, 2016).

Human brain imaging

As previously noted, a substantial proportion of human brain imaging work in the field of 

alcohol and addiction has been devoted to the ventral striatal response to reward-associated 

stimuli. A much smaller literature has been devoted to examining the motoric aspects of 

reward related behaviors, where some findings resemble those in animals. As one example, 

the monetary incentive delay task (Knutson, Westdorp, Kaiser, & Hommer, 2000) pairs a 

symbol with the chance to win amounts of money, contingent upon a successfully timed 

behavior (button press). The brain response often studied (ventral striatal activation) is that 

to the reward cue, just prior to the motor response. However, at least two studies found that 

when this motor requirement was omitted, ventral striatal responses to passive (non-

instrumental) monetary reward anticipation were either absent or weak (Bjork & Hommer, 

2007; Bjork, Smith, Chen, & Hommer, 2012, although two studies do not support this idea; 

Delgado, Gillis, & Phelps, 2008; Lewis, Porcelli, & Delgado, 2014). Kroemer et al. (2014) 

also used fMRI to show that higher than average effort was associated with stronger 

anticipatory cue responses in the ventral striatum.

Our lab’s experiments with PET and the tracer [11C] raclopride to examine dopamine release 

are also suggestive in this regard. As endogenous dopamine release displaces raclopride, 

changes in the tracer’s measured binding potential are used to infer dopamine release as a 

function of behavioral state (Dewey et al., 1993). First, our early work showed no significant 

striatal dopamine release when alcohol was infused intravenously while healthy subjects 

were at rest (Yoder et al., 2007), although an effect did occur when alcohol was infused 

unexpectedly, consistent with the anticipated effects of a prediction error (Yoder et al., 
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2009). Ramchandani et al (2011) reported significant striatal dopamine release from passive 

(non-instrumental) intravenous IV alcohol infusion, but only in those who possessed the rare 

‘G’ allele of the OPRM1 μ–opioid receptor gene. In a larger, more recent study, we did 

detect right unilateral dopamine release from passive IV infusion in non-treatment seeking 

alcoholics, but not healthy controls (Yoder et al., 2016). Subjects were, however, aware that 

the baseline condition involved no infusion of any sort, and that alcohol infusion was 

imminent in the subsequently planned challenge condition. Stimulus salience and 

anticipation could thus affect these results.

With regard to alcohol-related cues, we recently reported spatially limited (unilateral) 
alcohol flavor cue-induced ventral striatal dopamine release without (i) instrumental self-

administration behaviors (effort), (ii) any expectation of intoxication, and (iii) alcohol 

intoxication (Figure 2A and Oberlin et al., 2013). However, we showed bilateral ventral 

striatal dopamine release using an operant self-administration (instrumental) paradigm that 

delivered alcohol flavor cues in the context of expected and received alcohol intoxication 

(Figure 2B and Oberlin et al., 2014). This at least suggests that the instrumental behaviors 

required in this paradigm may be adding to the observed signal.

Other studies reporting significant ventral striatal dopamine release from alcohol (Boileau et 

al., 2003; Setiawan et al., 2014; Urban et al., 2010) also involved traditional instrumental 

self-administration behaviors through oral ingestion. Clearly our own data leave other 

possibilities open, such as the expectation of intoxication. Thus, while far from dispositive, 

the body of findings implies that goal-directed (self-administration) behaviors may well 

contribute to human ventral striatal dopamine release.

Testable Predictions

In accordance with some approaches to studying animals (e.g., Czachowski & Samson, 

2002; Czachowski et al., 2002), reward paradigms for human brain imaging experiments 

may need to pay much greater attention to dissociating effects that are due to a reward’s 

Pavlovian associations, and those that might be due to motoric elements involved in either 

procuring reward or in the behaviors of drug self-administration. In some cases, and as done 

with animals, this might most cleanly entail separate brain imaging paradigms (imaging 

data) involving cue exposure and reward seeking/acquisition behaviors so as to minimize 

any signal overlap between the two. Any act of self-administration would, however, need to 

be accomplished so as to not measure responses to the drug itself. This latter consideration is 

not straightforward, as it necessitates avoiding responses related to reward prediction errors 

(i.e., declines in striatal or midbrain responses related to the unexpected absence of a drug 

effect; Schultz et al., 1997).

Given the findings reviewed above, and with such a framework in mind, one might then 

hypothesize a gradient of ventral striatal activity as depicted in Figure 3. With passive 

exposure to a cue representative of a valued drug or food reward, some degree of ventral 

striatal activation (a BOLD contrast difference in fMRI or dopamine release measured in 

PET) should indeed occur, as previously established. This is the “sensory” stage at which 

most human studies of drug stimuli operate (i.e., Figure 3, top). However, significantly 
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greater ventral striatal activation should become apparent when subjects act to acquire the 

reward via some instrumental behavior (Figure 3, middle). With rising effort expenditure to 

overcome obstacles to reward acquisition (such as a greater need for attention, speed, or 

endurance; Figure 3, bottom), a parametrically greater degree of ventral striatal activation 

should ensue. Finally, a concomitant prediction would be a corresponding (and correlated) 

gradient of increasing activity in frontal cortices (motor, premotor, dorsolateral prefrontal) 

related to the instrumental behaviors, as well their antecedent planning. As suggested by 

work in animals, however, ventral striatal activation as measured in these circumstances 

should not predict reward consumption, itself (Czachowski et al., 2001; Czachowski & 

Samson, 2002; Salamone & Correa, 2002).

Conclusions and future directions

The human brain’s response to drug-associated cues is a frequently employed approach in 

neuroimaging studies of drug and alcohol use disorders, and in the risk for their 

development. However, the reactive response to a drug-associated cue in the brain’s striatal 

reward areas may capture only part of the dynamic, and ignore (or depending on the 

paradigm, blur) striatal aspects of motivated motor behaviors and effort. Separating the 

effects of reward-related cues from responses related to the effortful behavior to acquire 

rewards may be important to a broader and more complete understanding of the 

neurocircuitry changes comprised by addiction and its attendant risk factors for both disease 

development and treatment relapse.
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Figure 1. 
Schematic of approximate reward pathways between cortex and striatum, as adapted from 

Haber et al (2000, 2006), Haber & Knutson (2010), and Sesack and Grace (2010). See the 

respective publications for more detail.
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Figure 2. 
(A) Unilateral beer flavor-induced ventral striatal dopamine release (compared to control 

flavor) with no instrumental self-administration behaviors, no expected intoxication, and no 

alcohol intoxication. (B) Bilateral ventral striatal dopamine release during instrumental self-

administration of beer flavor, expected intoxication, and intravenous alcohol (compared to 

self-administration of a control flavor, no expected intoxication, and saline infusion).
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Figure 3. 
Hypothetical pathways and effects related to (top) passive viewing of reward conditioned 

stimuli (cues) without opportunity for reward acquisition, (middle) reward cues with 

consequent instrumental behaviors in service of reward acquisition, and (bottom) reward 

cues with instrumental reward acquisition behaviors that require effort expenditure, such as 

to circumvent obstacles. Subjective value of the reward (here presumed constant across 

rows) is represented in ventromedial prefrontal cortex (vmPFC; green shading), and made 

available to the ventral striatum (VST; afferent projections as red arrows; see Figure 1 for 

more detail). Greater activation of the VST (represented as progressively brighter shades of 

red) should be observed with greater instrumental effort, and thus induce greater activation 

of prefrontal, premotor, and motor cortex (progressively brighter shades of light blue) via 

VST efferents (dark blue arrows) to frontal regions (see Figure 1 and Sesack & Grace, 2010 

for a hypothetical model of efferent projections).
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