CrossMark

Advance Care Planning in A Preoperative Clinic: A Retrospective Chart Review

Shilpee Sinha, MD, FACP^{1,2,3,4,5}, Rachel N. Gruber, MS^{1,6,7}, Ann H. Cottingham, MAR, MA^{1,3,6,7}, Barb Nation, RN, CHPN^{2,3}, Kathleen A. Lane, MS^{3,6,8}, Na Bo, MSPH^{3,6,8}, and Alexia Torke, MD, MS^{2,5,6,9,10,11}

¹Advanced Scholars Program for Internists in Research and Education (ASPIRE), Indiana University (IU) School of Medicine, Indianapolis, IN, USA; ², IU Health Physicians, Indianapolis, IN, USA; ³, Indiana University School of Medicine, Indianapolis, IN, USA; ⁴IUH Department of Palliative Care, Academic Health Center, Indiana University School of Medicine, Indianapolis, IN, USA; ⁶Division of General Internal Medicine and Geriatrics, School of Medicine, Indianapolis, IN, USA; ⁶NA Health Services Research and Development Center for Health Information and Communication, Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA; ⁷Indiana University Center for Health Services and Outcomes Research, Regenstrief Institute, Inc., Indianapolis, IN, USA; ⁸Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA; ⁹Indiana University Center for Aging Research, Regenstrief Institute, Inc., Indianapolis, IN, USA; ¹⁰Fairbanks Center for Medical Ethics, IU Health, Indianapolis, IN, USA; ¹¹Daniel F. Evans Center for Spiritual and Religious Values in Healthcare, IU Health, Indianapolis, IN, USA.

J Gen Intern Med 34(4):523–5 DOI: 10.1007/s11606-018-4744-8 © Society of General Internal Medicine 2019

INTRODUCTION

Patients seen in preoperative testing clinics are at an increased risk of surgical complications and most are incapacitated for during anesthesia. Advance directives (ADs) are important to guide care in the event of emergencies when patients are unable to speak for themselves. The goal of this study was to determine the frequency with which ADs are completed for patients seen in preoperative clinics prior to elective surgery and identify demographic and clinical characteristics associated with having ADs available in the electronic medical record (EMR).

METHODS

Study Design

A retrospective EMR chart review was conducted on 400 consecutive patients who underwent a preoperative evaluation in a preoperative clinic from February 1 through early March 2017 at two high-volume hospitals in a midwestern urban academic tertiary referral center.

Data Collection

All raters first completed chart reviews of the same 30 patients to calculate interrater reliability.

We collected demographic variables, elevated perioperative risk of surgery,¹ Revised Cardiac Risk Index (RCRI) > 1%,² and presence of revised Charleston comorbid conditions.³ Functional capacity was reported in the EMR as either metabolic equivalents (METS) scale (1 through 4) or as "good," "borderline," or "poor." We dichotomized

Published online January 2, 2019

patients' functional capacity as "good" or 4 METS versus and "other" or 1–3 METS.

Reviewers assessed the presence of AD documents scanned into the EMR, including an SDM, a living will, or either (any AD). The study was approved by the Indiana University Institutional Review Board.

Statistical Analysis

Patient characteristics were compared based upon the presence of having either type of AD documents in the EMR using two sample *t* tests for the continuous variables and Fisher's exact tests for the categorical variables. All preoperative patient clinical and demographic variables significant in the univariate model at the alpha = 0.15 level were included in multiple logistic regression modeling of the AD outcome. Both stepwise and backward methods were used to identify a final parsimonious model with all variables significant at the alpha = 0.05 level.

RESULTS

Interrater reliability for the Charlson³ score showed interclass correlations from 0.76–0.97. The range for Cohen's kappa coefficients on categorical data ranged from 0.37 to 1, and percentage agreement ranged from 67 to 100% for pairwise comparisons.

We found 64 (16.0%) of patients had evidence of either AD scanned into the EMR, 43 (10.8%) had an SDM, and 46 (11.5%) had a living will. In a bivariate analysis, age 54.7 vs. 31.3%, p = 0.0005) and higher functional status (17.7 vs. 7.0%, p = 0.0118) were associated with the presence of any AD. There were no differences between those with and without ADs with complications or death (Table 1).

Multiple logistic regression examining preoperative characteristics associated with any AD found patients age 65 and older (odds ratio (OR), 2.85; 95% confidence interval (CI),

Table 1 Comparison of Patient Characteristics and Hospital Events by Presence of any Advance Directive (Surrogate Decision Maker or Living Will) in the Electronic Medical Record

		Advance directive in EMR		
	Total N=400	Yes	No	p value
		N=64 (16.0%)	N=336 (84.0%)	
Preoperative patient characteristics				
Age $\geq 65, n$ (%)	140 (35.0)	35 (54.7)	105 (31.3)	0.0005
Sex, male n (%)	193 (48.3)	24 (37.5)	169 (50.3)	0.0756
Race, white vs. non-white, n (%)	339 (84.8)	56 (87.5)	283 (84.2)	0.5744
Hospital 1 vs. hospital 2, n (%)	199 (49.8)	36 (56.3)	163 (48.5)	0.2772
Insurance: Medicaid, n (%)	46 (11.5)	7 (10.9)	39 (11.6)	1.0000
Perioperative risk of surgery elevated, n (%)	347 (86.8)	57 (89.1)	290 (86.3)	0.6886
Revised cardiac risk index > 1% n (%)	158 (39.5)	28 (43.8)	130 (38.7)	0.4865
Reason for surgery cancer n (%)	122(305)	20(313)	102(304)	0.8831
Revised Charlson comorbidity index mean (SD)	19(22)	19(21)	19(23)	0.9629
Myocardial infarction n (%)	25(63)	1 (1 6)	24(71)	0.1527
Congestive heart failure $n(\%)$	22(5.5)	8 (12 5)	14(42)	0.0139
Peripheral vascular disease n (%)	18(45)	0(12.5)	18(54)	0.0911
Corebroyascular disease $n(\%)$	33(83)	4(63)	20 (8.6)	0.6285
Dementia n (%)	4(10)	(0.5)	4(12)	1.0000
Chronic pulmonery discose $n(\mathcal{O}_{n})$	4(1.0)	11(172)	4(1.2)	0.5702
Phoumatologic disease $n(7)$	12(22)	11(17.2)	(14.0)	0.3702
Dentia ulaar diaaaa $n(0)$	13(3.3)	4(0.3)	9(2.7)	0.1360 N/A
Mild liver disease $n(76)$	10(2.5)	0(0.0)	10(2.0)	0.2756
Nind liver disease, $h(\%)$	10(2.3)	0(0.0)	10(5.0)	0.5750
Diabetes without chronic complications, $h(\%)$	37 (14.3)	4 (0.3)	33 (13.8)	0.0303
Diabetes with chronic complications, $n(\%)$	37 (9.3)	6 (9.4)	31(9.2)	1.0000
Hemiplegia of parapiegia, n (%)	9 (2.3)	$\frac{2}{7}$ (3.1)	7(2.1)	0.0407
Renal disease, n (%)	44 (11.0)	/ (10.9)	37 (11.0)	1.0000
Any malignancy, $n(\%)$	129 (32.3)	22 (34.4)	10/ (31.9)	0.//06
Moderate or severe liver disease, n (%)	16 (4.0)	1 (1.6)	15 (4.5)	0.4859
Metastatic solid tumor, n (%)	28 (7.0)	3 (4.7)	25 (7.4)	0.5954
AIDS/HIV, n (%)	6 (1.5)	2 (3.1)	4 (1.2)	0.2466
Functional capacity, n (%) good	184 (46.0)	11 (17.7)	23 (7.0)	0.0118
Hospital events				
PC consult, n (%)	7 (1.8)	3 (4.7)	4 (1.2)	0.0849
Underwent planned surgery, $n_*(\%)$	386 (96.5)	62 (96.9)	324 (96.4)	1.0000
Length of surgery, mean (SD)	2.9 (2.1)	2.7 (1.7)	2.9 (2.2)	0.2396
ICU stay, n (%)	56 (14.1)	13 (20.3)	43 (12.9)	0.1199
Postop complications				
Yes vs. none	54 (13.6)	12 (18.8)	42 (12.6)	0.2303
Death, n (%)	3 (0.8)	1 (1.6)	2 (0.6)	0.4081
Length of stay, mean $(SD)^{\ddagger}$	4.3 (5.8)	4.5 (3.9)	4.3 (6.2)	0.7445
Location of discharge, n (%)				0.0002
Home	342 (87.69)	44 (71.0)	298 (90.9)	
Rehab	41 (10.5)	16 (25.8)	25 (7.6)	
Other	7 (1.8)	2 (3.2)	5 (1.5)	
Functional status on discharge, ambulatory n (%)	356 (91.3)	51 (82.3)	305 (93.0)	0.0118

*Length of surgery was calculated in hours from anesthesia records [†]Patients who required any length of ICU stay

^tLength of stay was days spent in hospital

1.63, 4.98) and those with congestive heart failure (OR, 4.04; 95% CI, 1.55, 10.54) had significantly higher odds of having ADs. Men had significantly lower odds of having AD than females (OR, 0.56; 95% CI, (0.32, 0.99).

There were 14 (3.5%; n = 10 SDM/8 living will) patients who had not reported having an AD at the clinic visit but had one documented in the EMR prior to surgery and 66 (16.5%) who reported having an AD at the clinic visit but did not have one documented in the EMR prior to surgery (Table 2).

DISCUSSION

Patients undergoing elective surgery and evaluated in a PAT had a low prevalence of AD, a finding similar to

reports that identify low levels of ACP completion in other settings,^{1,4} and studies finding that the integration of ACP conversations into the preoperative clinic process is not an established norm.⁵ Lack of AD documentation places a burden on family members to make decisions on

Table 2 Frequency of Advance Directive (AD) Reported to Exist byPatient Compared to Scanned to Electronic Medical Record (EMR),n (%)

AD reported to exist by patient	AD scanned to EMR			
	Yes	No	Total	
Yes No Total	50 (12.5) 14 (3.5) 64 (16.0)	66 (16.5) 270 (67.5) 336 (84.0)	116 (29.0) 284 (71.0) 400 (100.0)	

their loved one's behalf without patient guidance and can lead to care that does not comport with the patient's preference. Also, some ADs that patients report completing are not available in the EMR where clinicians could access them when needed. A limitation of this study was that it included only one health system. Local practice patterns may differ at other hospitals. Our findings suggest that there is a significant opportunity for improvement in ACP in this clinical setting. Future research should focus on processes to make ACP more available to high-risk patient populations.⁶

Acknowledgements: The authors would like to acknowledge Greg Sachs and Richard M. Frankel for their mentorship through the IUSM ASPIRE program.

Corresponding Author: Shilpee Sinha, MD, FACP; IUH Department of Palliative Care, Academic Health Center, Indiana University School of Medicine, 1633 N. Capitol Ave., MT 301, Indianapolis, IN 46202, USA (e-mail: ssinha@iuhealth.org).

Funding Dr. Torke was supported by a Midcareer Investigator Award in Patient-Oriented Research (K24 AG053794).

Compliance with Ethical Standards:

Conflict of Interest: The authors declare that they do not have a conflict of interest.

Publisher's Note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

- Rao JK, Anderson LA, Lin FC, Laux JP. Completion of advance directives among U.S. consumers. Am J Prev Med 2014;46(1):65–70.
- Lee TH, Marcantonio ER, Mangione CM, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999;100(10):1043–1049.
- Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 1987;40(5):373–383.
- Lovell A, Yates P. Advance Care Planning in palliative care: a systematic literature review of the contextual factors influencing its uptake 2008-2012. Palliat Med 2014;28(8):1026–1035.
- Grimaldo DA, Wiener-Kronish JP, Jurson T, Shaughnessy TE, Curtis JR, Liu LL. A randomized, controlled trial of advanced care planning discussions during preoperative evaluations. Anesthesiology 2001;95(1):43–50; discussion 45A.
- Ernst KF, Hall DE, Schmid KK, et al. Surgical palliative care consultations over time in relationship to systemwide frailty screening. JAMA Surg 2014;149(11):1121–1126.