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Abstract

Purpose: Within-subject controlled models in individuals who preferentially load one side of the 

body enable efficient exploration of the skeletal benefits of physical activity. There is no 

established model of physical activity-induced side-to-side differences (i.e., asymmetry) at the 

proximal femur.

Methods: Proximal femur asymmetry was assessed via dual-energy x-ray absorptiometry in male 

jumping athletes (JMP, n=16), male baseball pitchers (BB, n=21), female fast-pitch softball 

pitchers (SB, n=22), and controls (CON, n=42). The jumping leg was the dominant leg in JMP, 

whereas in BB, SB and CON the dominant leg was contralateral to the dominant/throwing arm.

Results: BB and SB had 5.5% (95%CI, 3.9 to 7.0%) and 6.5% (95%CI, 4.8 to 8.2%) dominant-

to-nondominant leg differences for total hip areal bone mineral density (aBMD), with the 

asymmetry being greater than both CON and JMP (p<0.05). BB and SB also possessed dominant-

to-nondominant leg differences in femoral neck and trochanteric aBMD (p<0.001). SB had 9.7% 

(95% CI, 6.4 to 13.0%) dominant-to-nondominant leg differences in femoral neck bone mineral 

content, which was larger than any other group (p≤0.006). At the narrow neck, SB had large 

(>8%) dominant-to-nondominant leg differences in cross-sectional area, cross-sectional moment 

of inertia and section modulus, which were larger than any other group (p≤0.02).

Conclusion: Male baseball and female softball pitchers are distinct within-subject controlled 

models for exploring adaptation of the proximal femur to physical activity. They exhibit adaptation 

in their dominant/landing leg (i.e., leg contralateral to the throwing arm), but the pattern differs 

with softball pitchers exhibiting greater femoral neck adaptation.
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Individuals who preferentially load one side of the body are used to explore skeletal adaptation to 

physical activity. No within-subject controlled model of proximal femur adaptation currently 

exists. The current study demonstrates baseball and softball pitchers are distinct within-subject 

controlled models of physical activity-induced proximal femur adaptation.
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INTRODUCTION

Osteoporotic fractures of the proximal femur account for the majority of fracture-related 

health care costs and mortality. In Western nations, 20–25% of women who suffer an 

osteoporotic proximal femur fracture die within 1 year [1] and 10–20% of previously 

independent individuals are institutionalized [2]. Optimizing peak bone mass when young is 

advocated to delay osteoporosis and reduce proximal femur fracture risk during aging [3]. 

Fracture risk during aging doubles for each standard deviation of bone lost from mean peak 

bone mass [4] and a 10% increase in peak bone mass is predicted to delay the onset of 

osteoporosis by 13 years [5]. As 25–30% of adult bone mineral is accrued within the 2–3 

years around puberty and 95% of adult bone mass has accrued by the end of adolescence [6, 

7], the growing years are viewed as a window of opportunity for lifelong bone health.

The growing years appear particularly important to maximize the skeletal benefits of 

physical activity. This was eloquently shown by Kannus and colleagues [8], and supported 

by others [9, 10], who explored the upper extremities of racquet sport players to show the 

skeletal advantage of physical activity during specific phases of growth. We subsequently 

observed these physical activity-induced skeletal benefits persisted lifelong, particularly the 

benefits on bone size [11]. In terms of the proximal femur, randomized controlled trials 

(RCTs) and longitudinal studies have confirmed the benefit of physical activity during 

growth on proximal femur bone health (see [3] for review). For instance, the Iowa Bone 

Development Study demonstrated 10–16% greater hip BMC and 8% greater hip aBMD in 

participants who accumulated the greatest amount of physical activity from childhood 

through adolescence [12].

RCTs and longitudinal studies are effective means of demonstrating the skeletal benefits of 

physical activity; however, they are costly in terms of both time and money. Consequently, 

alternative study designs are often employed, with within-subject controlled studies 

assessing side-to-side differences (i.e., asymmetry) in individuals who preferentially exercise 

one side of the body being particularly attractive. Within-subject study designs enable the 

skeletal effects of physical activity to be explored in the absence of selection bias and with 

lessened impact of inherited and systemic factors. These factors influence conclusions drawn 

from traditional cross-sectional study designs comparing between individuals.

Within-subject controlled study designs have almost exclusively been used to address 

questions regarding the skeletal effects of physical activity at upper extremity sites, with 

racquet sport players [9, 13] and throwing athletes [11, 14] being popular models. In 
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contrast, there is no established model to explore physical activity-induced side-to-side 

skeletal differences in the lower extremities and, in particular, at the proximal femur. Lower 

extremity skeletal asymmetry has been reported in some athletic populations, including 

handball players (contralateral > ipsilateral leg to throwing arm), soccer players (stance > 

kicking leg) [15], fencers (lunging > trail leg) [16] and long/high jump athletes (jump > lead 

leg) [17, 18]. However, to our knowledge, only two previous studies have reported 

asymmetry at the proximal femur, with rhythmic gymnasts having 4.7% greater aBMD at 

the femoral neck in their take-off versus landing leg [19] and ten-pin bowlers having 12.2% 

greater femoral neck aBMD in their slide (i.e., the leg opposite the bowling arm) versus trail 

leg [20]. These latter models show initial promise, but there is a need for additional within-

subject models that enable physical activity benefits at the proximal femur to be explored.

The aim of the current study was to explore jumping (high/long) and throwing (baseball/

softball pitchers) athletes as potential within-subject controlled models to study the skeletal 

effects of physical activity at the proximal femur. Jumping athletes expose their jump leg to 

vertical ground reaction forces during take-off that are more than double that experienced 

during maximal sprinting [21–23], whereas baseball and fast-pitch softball pitchers expose 

their landing leg (i.e., the leg opposite the pitching arm) to elevated ground reaction forces 

compared to their drive leg [24–26]. Control subjects were also assessed to explore whether 

any asymmetry observed in the athlete groups were accounted for by crossed asymmetry 

whereby the lower extremity opposite the dominant arm possesses enhanced proximal femur 

bone properties [27].

METHODS

Study design and participants

A within-subject controlled cross-sectional study design was used to compare bone 

properties at the bilateral proximal femurs in male jumping athletes (JMP group), male 

baseball pitchers (BB group), female fast-pitch softball pitchers (SB group), and male and 

female controls (CON group). JMP were included if they were currently competing or 

practicing in long and/or high jump at the collegiate-level. BB and SB were included if they 

were currently competing or practicing as a pitcher in professional Minor League Baseball 

or collegiate-level fast-pitch softball, respectively. JMP, BB, SB were excluded if they had a 

past history of competing in an activity alternate to their primary sport that may have 

exposed their lower extremities to asymmetrical loading (e.g. soccer, fencing, ten-pin 

bowling, baseball, softball, etc.). CON were included if they were aged 18–30 years and did 

not have a past history of competing in an activity that may have exposed their lower 

extremities to asymmetrical loading. Exclusion criteria for all groups were: 1) known 

metabolic bone disease; 2) history of a femoral fracture or stress fracture; 3) implanted metal 

within the femur, and; 4) exposure to lower extremity immobilization for more than 2 weeks 

within the past 2 years. The study was approved by the Institutional Review Board of 

Indiana University and written informed consent was obtained from all participants.
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Dual-energy x-ray absorptiometry

Dual-energy X-ray absorptiometry (DXA) using a Discovery-W machine (Hologic, Inc., 

Waltham, MA) equipped with Apex v4.0 software was performed per the manufacturer’s 

instructions to obtain bilateral hip areal bone mineral density (aBMD; g/cm2), bone mineral 

content (BMC, g) and projected area (cm2). Hip structural analysis was used to determine 

cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), section modulus (Z) 

and cortical thickness (CtTh) at the narrow neck region of the proximal femur. A whole-

body scan was performed to assess whole-body fat-free lean mass (kg), fat mass (%), and 

aBMD (g/cm2).

Statistical analyses

Two-tailed analyses with a level of significance set at 0.05 were performed with IBM SPSS 

Statistics (v24; SPSS Inc., Chicago, IL). Demographic and anthropometric characteristics in 

male participants (JMP, BB and male CON) were compared between groups using one-way 

ANOVAs followed by a Fisher’s least square difference post-hoc test. Demographic and 

anthropometric characteristics in female participants (SB and female CON) were compared 

between groups using independent t-tests.

Leg dominance within each group was defined as follows: JMP group—the leg the 

participant jumps from during long and/or high jump; BB and SB groups—the leg opposite 

the pitching arm, and; CON group—the leg opposite the dominant arm. Dominant versus 

nondominant leg differences in proximal femur properties were assessed by calculating 

mean percent differences ([dominant leg – nondominant leg] / nondominant leg × 100%) and 

their 95% confidence intervals (CIs). 95% CIs not crossing 0% were considered statistically 

significant, as determined by single sample t-tests on the mean percent differences with a 

population mean of 0%. Dominant-to-nondominant leg percent difference values were 

compared between groups using a one-way ANOVA followed by a Fisher’s least square 

difference post-hoc test.

RESULTS

Demographic and anthropometric characteristics of the 101 recruited participants are 

detailed in Table 1. Among males, BB were older, taller, heavier, and had a greater BMI and 

whole-body lean mass than both JMP and CON (all p < 0.05). They also started competing 

and had been competing for longer than JMP (all p < 0.05). JMP were younger than CON (p 
< 0.05), and both BB and JMP had greater whole-body aBMD than CON (all p < 0.001). 

Among females, SB were younger, taller and heavier than their respective CON group (all p 
< 0.05). These demographic differences between groups are normalized and are not believed 

to influence within-subject asymmetry.

Proximal femur properties in each leg in male and female subjects are provided in Tables 2 

and 3, respectively. Few parameters revealed bilateral asymmetry in absolute difference 

values in male and female CON. As such, and as male vs. female differences in proximal 

femur bone health are normalized when data are expressed in terms of dominant-to-
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nondominant leg differences, male and female CON groups were condensed into a single 

CON group when determining and comparing mean percent differences.

CON did not exhibit dominant-to-nondominant leg differences in aBMD, BMC or area in 

any region (all p = 0.12 to 0.43), except aBMD at the greater trochanter (p = 0.04) (Fig. 1). 

JMP, BB and SB had 1.6% (95% CI, 0.1 to 3.2%), 5.5% (95% CI, 3.9 to 7.0%) and 6.5% 

(95% CI, 4.8 to 8.2%) dominant-to-nondominant leg differences for total hip aBMD, with 

the bilateral asymmetry in BB and SB being greater than in both CON and JMP (all p < 

0.05; Fig. 1A). The greater total hip aBMD in BB and SB resulted from dominant-to-

nondominant leg differences in BMC (all p < 0.001; Fig. 1B), as opposed to differences in 

projected bone area (all p > 0.12; Fig. 1C).

BB and SB possessed 3.7% (95% CI, 2.5 to 4.9%) and 6.1% (95% CI, 3.4 to 8.8%) 

dominant-to-nondominant leg differences in aBMD at the femoral neck (all p < 0.001; Fig. 

1D). In SB, the bilateral asymmetry in aBMD resulted from a 9.7% (95% CI, 6.4 to 13.0%) 

dominant-to-nondominant leg difference in BMC (p < 0.001; Fig. 1E), whose effect on 

aBMD was tempered by a dominant-to-nondominant leg difference in projected bone area (p 
= 0.005; Fig. 1F). The bilateral asymmetry in femoral neck BMC in SB was greater than that 

observed in all other groups (all p ≤ 0.006, Fig. 1E).

BB and SB exhibited 6.1% (95% CI, 4.4 to 7.9%) and 6.8% (95% CI, 4.7 to 8.9%) 

dominant-to-nondominant leg differences in trochanteric aBMD (all p < 0.001; Fig. 1G). 

These dominant-to-nondominant leg differences were greater than those observed in both 

JMP and CON (all p ≤ 0.001) and resulted from large dominant-to-nondominant leg 

differences in trochanteric BMC (all p ≤ 0.005, Fig. 1H).

CON exhibited dominant-to-nondominant leg differences in CSA and CSMI favoring the 

dominant leg at the narrow neck region (all p ≤ 0.02, Fig. 2A,B). JMP and BB did not 

exhibit any dominant-to-nondominant leg differences at the narrow neck (all p > 0.07), 

except for CSA in BB (p = 0.03, Fig. 2A). There were no differences between CON, JMP or 

BB for any measure at the narrow neck (all p > 0.08, Fig. 2). In contrast, SB had large 

dominant-to-nondominant leg differences, with the largest difference being for CSMI which 

was 12.7% (95% CI, 6.6 to 18.8%) greater in the dominant leg (p < 0.001, Fig. 2B). 

Dominant-to-nondominant leg differences for CSA, CSMI and Z were greater in SB than all 

other groups (all p < 0.02, Fig. 2A–C), with SB also having greater dominant-to-

nondominant leg differences for CtTh than both CON and JMP (all p < 0.03, Fig. 2D).

DISCUSSION

The current data indicate that male baseball and female fast-pitch softball pitchers are 

distinct within-subject controlled models for exploring the impact of physical activity on the 

proximal femur. Both groups of throwing athletes exhibited 5.5–6.5% and 6.1–6.8% greater 

total proximal femur and trochanteric aBMD in their dominant/landing leg (i.e., leg 

contralateral to their throwing arm) compared to their nondominant/drive leg (i.e., leg 

ipsilateral to their throwing arm), respectively. These differences were larger than dominant-

to-nondominant leg differences observed in both jumping athletes and controls. Baseball and 
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softball pitchers also had significant dominant-to-nondominant leg differences in aBMD at 

the femoral neck; however, softball pitchers interestingly had greater differences in femoral 

neck BMC at this site than all other groups, including baseball pitchers. In addition, softball 

pitchers were the only group that exhibited significant dominant-to-nondominant leg 

differences in projected bone area at the femoral neck. Exploring the femoral neck region 

further, softball pitchers had large (>8%) and greater dominant-to-nondominant leg 

differences in narrow neck CSA, CSMI and Z than all other groups. These cumulative data 

indicate that both baseball and softball pitchers load and adapt the proximal femur in their 

dominant/landing leg, but the pattern of adaptation differs with softball pitchers exhibiting 

greater adaptation within the femoral neck region.

Few physical activities asymmetrically load the lower limbs and there is no accepted within-

subject controlled model system to explore proximal femur adaptation to mechanical loads 

associated with physical activity. To our knowledge, only two previous studies have 

demonstrated bilateral asymmetry at the proximal femur in athlete groups [19, 20]. The 

dominant-to-nondominant leg differences in femoral neck aBMD observed in baseball and 

softball pitchers in the current study (3.7–6.1%) are comparable to the 4.5% difference 

observed between the take-off and landing legs in rhythmic gymnasts [19], but they are less 

than the 12.2% difference observed between the slide and trail legs in competitive ten-pin 

bowlers [20]. Further work is required to confirm the large bilateral asymmetry observed in 

ten-pin bowlers and their relative utility as a within-subject controlled model compared to 

baseball and softball pitchers.

The magnitude of the dominant-to-nondominant leg differences observed in baseball and 

softball pitchers in the current study is translatable to studies exploring the between-subject 

skeletal benefits of physical activity. While throwing athletes exhibit extreme upper 

extremity adaptation at levels beyond those achievable within the general population (e.g., 

bone strength is up to double in their throwing vs. nonthrowing arm [11]), the dominant-to-

nondominant leg differences observed in proximal femur aBMD and BMC are equivalent to 

those observed with physical activity in between-subject intervention and prospective 

observational studies [28, 29]. Thus, throwing athletes may be a useful, efficient model for 

studying clinically achievable skeletal benefits of physical activity prior to performing a 

more definitive and costly longitudinal study.

The reason for greater dominant-to-nondominant leg differences in bone mass and structural 

properties at the femoral neck in softball pitchers compared to baseball pitchers was 

unexpected. Both groups started competing well prior to their adolescent growth spurt, and 

the professional baseball pitchers had been competing for longer and at a higher level than 

the collegiate-level fast-pitch softball pitchers (21.4 vs. 13.2 years). The latter would be 

considered to favor greater adaptation in baseball pitchers, with inclusion of age or years 

training as a covariate in analyses accentuating differences in proximal femur asymmetry the 

between softball and baseball pitchers (data not shown). It is possible there are sex-related 

differences in mechanosensitivity and adaptation, with some reports indicating males have a 

longer ‘window of opportunity’ for physical activity induced adaptation across the pubertal 

growth period [9, 30]. However, this would again favor greater adaptation in male baseball 

pitchers which was not observed.
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The greater adaptation in softball pitchers most likely resulted from differences in 

mechanical loading between fast-pitch softball and baseball pitching. No studies have 

directly compared lower extremity biomechanics during baseball and softball pitching, and 

few have assessed bilateral loading of both the landing and drive legs in either baseball or 

softball pitching. However, from the available data, softball pitching may be associated with 

greater ground reaction forces. Baseball pitchers generate maximum vertical ground reaction 

forces in their landing leg (1.5–2.0X body weight (BW) [25, 31, 32]) that are 1.5-to-2 times 

greater than in their drive leg (1.0–1.3X BW [25, 33, 34]). In contrast, softball pitchers may 

generate larger landing leg maximum vertical ground reaction forces (3.0–3.5X BW) [35, 

36], although other studies report similar forces (1.4–1.8X BW [26, 37, 38]) to those 

observed in baseball pitchers.

In addition to potentially generating greater ground reaction forces, softball pitchers exhibit 

different lower extremity kinematics than baseball pitchers. They stride on a flat surface to 

land their landing/dominant leg with the knee in relative extension (29–33° knee flexion [26, 

37, 39]) and foot closed (i.e., facing 3rd base for a right-handed pitcher [26]). In contrast, 

baseball pitchers stride downhill from an elevated mound to land with their knee in greater 

knee flexion (41–64° knee flexion [24, 40–42]) and foot more open (i.e., approximately 

facing the batter [40]). The reduced knee flexion position in softball pitchers has the 

potential to reduce shock absorption as forces are propagated proximally to the proximal 

femur, while a more closed foot position would influence hip rotation position to potentially 

alter the distribution of forces at the proximal femur.

Finally, differences in pitching frequency, intensity, and volume when young may have 

contributed to the different proximal femur adaptation between baseball and softball 

pitchers. We deliberately did not collect information on pitching volumes when young as it 

would not be possible to validate historically recalled data, particularly for throwing across 

the adolescent growth period. However, pitching volume is regulated in youth baseball by 

pitch count limits and required days of rest between pitching outings. In contrast, no such 

regulations have historically been present in youth softball, where it has been common for 

pitchers to pitch up to 100 times within a single game, and to pitch in multiple games per 

day and on consecutive days [43–45]. Thus, it is possible that greater throwing volumes 

when young in softball pitchers contributed to their greater bilateral asymmetry at the 

proximal femur relative to baseball pitchers.

In comparison to baseball and softball pitchers, there were limited dominant-to-nondominant 

leg differences observed in jumping athletes. Jumping athletes exhibited dominant-to-

nondominant leg differences in total proximal femur aBMD, and femoral neck and 

trochanteric BMC; however, the differences were not greater than dominant-to-nondominant 

leg differences observed in controls. The limited dominant-to-nondominant leg differences 

in jumping athletes may relate to the timing, duration and frequency of jumping exposure in 

the athletes tested, as we know jumping is an osteogenic stimulus [28, 29]. Jumping athletes 

begun competing in jump events at the approximately the same time as their self-reported 

adolescent growth spurt and had been competing for less than a half to a third as long in 

their chosen sport compared to the throwing athletes (Table 1). The later introduction and 

shorter duration of unilateral preferential loading compared to baseball and softball pitchers 
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may have tempered the side-to-side differences in jumpers. For instance, differences in 

proximal femur asymmetry the between jumpers and baseball pitchers (but, not softball 

pitchers) disappeared when years training was used as a covariate (data not shown). We also 

hypothesize that the jumping athletes performed less frequent and less repetitions of 

unilateral loading compared to throwing athletes who perform hundreds of weekly 

repetitions. Finally, jumping athletes perform a high volume of bilateral loading activities 

such as sprinting which may enhance proximal femur bone health bilaterally. The net result 

is enhancement of the denominator in calculations of side-to-side differences and a 

subsequent reduction in dominant-to-nondominant leg percent differences.

Our study had a number of strengths, including the use of a within-subject controlled model 

to control selection bias and minimize the impact of inherited and systemic factors, and the 

inclusion of a control group not exposed to unilaterally elevated loads to account for any 

normal crossed asymmetry. However, the study also possesses a number of limitations. 

Analyses were restricted to low-resolution, areal-based DXA outcomes which have known 

limitations when assessing the skeletal benefits of physical activity [46]. We did not assess 

hip muscle properties. Muscle and bone are intricately linked and the increased loading of 

the dominant leg in baseball and softball pitchers may be associated with increased muscle 

mass and strength. However, we did not observe any dominant-to-nondominant differences 

in DXA-derived lower extremity fat-free lean mass in either baseball (1.2%; 95% CI, −0.3 to 

2.7%, p = 0.12) or softball (0.1%; 95% CI, −1.6 to 1.8%, p = 0.88) pitchers and, 

interestingly, the hip musculature in the nondominant leg of softball pitchers has actually 

been shown to be 6–7% stronger than in the dominant leg [43]. We also did not quantify 

loading during pitching or retrospective and current training volumes (including frequency, 

intensity, and volume of throwing) which may provide insight into the differences in 

adaptation between baseball and softball pitchers.

In summary, the current data demonstrate that male baseball and female fast-pitch softball 

pitchers are useful and efficient within-subject controlled models for exploring adaptation of 

the proximal femur to the mechanical loading associated with physical activity. Both athlete 

groups preferentially load their landing/dominant leg (i.e., leg contralateral to their throwing 

arm) during each pitch. Repeated many times over the course of an athletic career, the net 

result is enhanced proximal femur bone properties when compared to the contralateral drive/

non-dominant leg (i.e., leg ipsilateral to their throwing arm). Interestingly, collegiate-level 

female softball pitchers exhibited greater adaptation in the femoral neck region compared to 

professional-level male baseball pitchers. Additional studies are required to explore the 

mechanism/s for this discrepancy and to fully establish the models’ utility in addressing 

deeper questions regarding mechanoadaptation at the clinically relevant proximal femur.
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Figure 1. 
Percent dominant-to-nondominant leg differences for areal bone mineral density (aBMD), 

bone mineral content (BMC), and bone area in the total proximal femur (A-C), femoral neck 

(D-F), and trochanter (G-I) regions. Data represent mean percent difference between the 

dominant and nondominant legs, with error bars indicating 95% confidence intervals. 

Confidence intervals greater than 0% indicate greater bone properties within the dominant 

leg compared to nondominant leg (*p < 0.05; †p < 0.01; ‡p < 0.001). Capital letters indicate 

the group data differs significantly from CON (C), JMP (J), BB (B) and SB (S) (p < 0.05).
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Figure 2. 
Percent dominant-to-nondominant leg differences at the narrow neck region of the proximal 

femur for A) cross-sectional area (CSA), B) cross-sectional moment of inertia (CSMI), C) 

section modulus (Z) and D) cortical thickness (CtTh). Data represent mean percent 

difference between the dominant and nondominant legs, with error bars indicating 95% 

confidence intervals. Confidence intervals greater than 0% indicate greater bone properties 

within the dominant leg compared to nondominant leg (*p < 0.05; †p < 0.01; ‡p < 0.001). 

Capital letters indicate the group data differs significantly from CON (C), JMP (J), BB (B) 

and SB (S) (p < 0.05).
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