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Abstract

Purpose: Within-subject controlled models in individuals who preferentially load one side of the
body enable efficient exploration of the skeletal benefits of physical activity. There is no
established model of physical activity-induced side-to-side differences (i.e., asymmetry) at the
proximal femur.

Methods: Proximal femur asymmetry was assessed via dual-energy x-ray absorptiometry in male
jumping athletes (JMP, n=16), male baseball pitchers (BB, n=21), female fast-pitch softball
pitchers (SB, n=22), and controls (CON, n=42). The jumping leg was the dominant leg in JMP,
whereas in BB, SB and CON the dominant leg was contralateral to the dominant/throwing arm.

Results: BB and SB had 5.5% (95%Cl, 3.9 to 7.0%) and 6.5% (95%Cl, 4.8 to 8.2%) dominant-
to-nondominant leg differences for total hip areal bone mineral density (aBMD), with the
asymmetry being greater than both CON and JMP (p<0.05). BB and SB also possessed dominant-
to-nondominant leg differences in femoral neck and trochanteric aBBMD (p<0.001). SB had 9.7%
(95% Cl, 6.4 to 13.0%) dominant-to-nondominant leg differences in femoral neck bone mineral
content, which was larger than any other group (0<0.006). At the narrow neck, SB had large
(>8%) dominant-to-nondominant leg differences in cross-sectional area, cross-sectional moment
of inertia and section modulus, which were larger than any other group (£<0.02).

Conclusion: Male baseball and female softball pitchers are distinct within-subject controlled
models for exploring adaptation of the proximal femur to physical activity. They exhibit adaptation
in their dominant/landing leg (i.e., leg contralateral to the throwing arm), but the pattern differs
with softball pitchers exhibiting greater femoral neck adaptation.
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Individuals who preferentially load one side of the body are used to explore skeletal adaptation to
physical activity. No within-subject controlled model of proximal femur adaptation currently
exists. The current study demonstrates baseball and softball pitchers are distinct within-subject
controlled models of physical activity-induced proximal femur adaptation.

Keywords
DXA,; exercise; femoral neck; hip; osteoporosis

INTRODUCTION

Osteoporotic fractures of the proximal femur account for the majority of fracture-related
health care costs and mortality. In Western nations, 20-25% of women who suffer an
osteoporotic proximal femur fracture die within 1 year [1] and 10-20% of previously
independent individuals are institutionalized [2]. Optimizing peak bone mass when young is
advocated to delay osteoporosis and reduce proximal femur fracture risk during aging [3].
Fracture risk during aging doubles for each standard deviation of bone lost from mean peak
bone mass [4] and a 10% increase in peak bone mass is predicted to delay the onset of
osteoporosis by 13 years [5]. As 25-30% of adult bone mineral is accrued within the 2-3
years around puberty and 95% of adult bone mass has accrued by the end of adolescence [6,
7], the growing years are viewed as a window of opportunity for lifelong bone health.

The growing years appear particularly important to maximize the skeletal benefits of
physical activity. This was eloquently shown by Kannus and colleagues [8], and supported
by others [9, 10], who explored the upper extremities of racquet sport players to show the
skeletal advantage of physical activity during specific phases of growth. We subsequently
observed these physical activity-induced skeletal benefits persisted lifelong, particularly the
benefits on bone size [11]. In terms of the proximal femur, randomized controlled trials
(RCTs) and longitudinal studies have confirmed the benefit of physical activity during
growth on proximal femur bone health (see [3] for review). For instance, the lowa Bone
Development Study demonstrated 10-16% greater hip BMC and 8% greater hip aBMD in
participants who accumulated the greatest amount of physical activity from childhood
through adolescence [12].

RCTs and longitudinal studies are effective means of demonstrating the skeletal benefits of
physical activity; however, they are costly in terms of both time and money. Consequently,
alternative study designs are often employed, with within-subject controlled studies
assessing side-to-side differences (i.e., asymmetry) in individuals who preferentially exercise
one side of the body being particularly attractive. Within-subject study designs enable the
skeletal effects of physical activity to be explored in the absence of selection bias and with
lessened impact of inherited and systemic factors. These factors influence conclusions drawn
from traditional cross-sectional study designs comparing between individuals.

Within-subject controlled study designs have almost exclusively been used to address
questions regarding the skeletal effects of physical activity at upper extremity sites, with
racquet sport players [9, 13] and throwing athletes [11, 14] being popular models. In
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contrast, there is no established model to explore physical activity-induced side-to-side
skeletal differences in the lower extremities and, in particular, at the proximal femur. Lower
extremity skeletal asymmetry has been reported in some athletic populations, including
handball players (contralateral > ipsilateral leg to throwing arm), soccer players (stance >
kicking leg) [15], fencers (lunging > trail leg) [16] and long/high jump athletes (jump > lead
leg) [17, 18]. However, to our knowledge, only two previous studies have reported
asymmetry at the proximal femur, with rhythmic gymnasts having 4.7% greater aBMD at
the femoral neck in their take-off versus landing leg [19] and ten-pin bowlers having 12.2%
greater femoral neck aBMD in their slide (i.e., the leg opposite the bowling arm) versus trail
leg [20]. These latter models show initial promise, but there is a need for additional within-
subject models that enable physical activity benefits at the proximal femur to be explored.

The aim of the current study was to explore jumping (high/long) and throwing (baseball/
softball pitchers) athletes as potential within-subject controlled models to study the skeletal
effects of physical activity at the proximal femur. Jumping athletes expose their jump leg to
vertical ground reaction forces during take-off that are more than double that experienced
during maximal sprinting [21-23], whereas baseball and fast-pitch softball pitchers expose
their landing leg (i.e., the leg opposite the pitching arm) to elevated ground reaction forces
compared to their drive leg [24-26]. Control subjects were also assessed to explore whether
any asymmetry observed in the athlete groups were accounted for by crossed asymmetry
whereby the lower extremity opposite the dominant arm possesses enhanced proximal femur
bone properties [27].

METHODS

Study design and participants

A within-subject controlled cross-sectional study design was used to compare bone
properties at the bilateral proximal femurs in male jumping athletes (JMP group), male
baseball pitchers (BB group), female fast-pitch softball pitchers (SB group), and male and
female controls (CON group). JMP were included if they were currently competing or
practicing in long and/or high jump at the collegiate-level. BB and SB were included if they
were currently competing or practicing as a pitcher in professional Minor League Baseball
or collegiate-level fast-pitch softball, respectively. IMP, BB, SB were excluded if they had a
past history of competing in an activity alternate to their primary sport that may have
exposed their lower extremities to asymmetrical loading (e.g. soccer, fencing, ten-pin
bowling, baseball, softball, etc.). CON were included if they were aged 18-30 years and did
not have a past history of competing in an activity that may have exposed their lower
extremities to asymmetrical loading. Exclusion criteria for all groups were: 1) known
metabolic bone disease; 2) history of a femoral fracture or stress fracture; 3) implanted metal
within the femur, and; 4) exposure to lower extremity immobilization for more than 2 weeks
within the past 2 years. The study was approved by the Institutional Review Board of
Indiana University and written informed consent was obtained from all participants.
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Dual-energy x-ray absorptiometry

Dual-energy X-ray absorptiometry (DXA) using a Discovery-W machine (Hologic, Inc.,
Waltham, MA) equipped with Apex v4.0 software was performed per the manufacturer’s
instructions to obtain bilateral hip areal bone mineral density (aBMD; g/cm?), bone mineral
content (BMC, g) and projected area (cm?). Hip structural analysis was used to determine
cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), section modulus (Z)
and cortical thickness (CtTh) at the narrow neck region of the proximal femur. A whole-
body scan was performed to assess whole-body fat-free lean mass (kg), fat mass (%), and
aBMD (g/cm?).

Statistical analyses

Two-tailed analyses with a level of significance set at 0.05 were performed with IBM SPSS
Statistics (v24; SPSS Inc., Chicago, IL). Demographic and anthropometric characteristics in
male participants (JMP, BB and male CON) were compared between groups using one-way
ANOVAs followed by a Fisher’s least square difference post-hoc test. Demographic and
anthropometric characteristics in female participants (SB and female CON) were compared
between groups using independent t-tests.

Leg dominance within each group was defined as follows: JMP group—the leg the
participant jumps from during long and/or high jump; BB and SB groups—the leg opposite
the pitching arm, and; CON group—the leg opposite the dominant arm. Dominant versus
nondominant leg differences in proximal femur properties were assessed by calculating
mean percent differences ([dominant leg — nondominant leg] / nondominant leg x 100%) and
their 95% confidence intervals (Cls). 95% Cls not crossing 0% were considered statistically
significant, as determined by single sample t-tests on the mean percent differences with a
population mean of 0%. Dominant-to-nondominant leg percent difference values were
compared between groups using a one-way ANOVA followed by a Fisher’s least square
difference post-hoc test.

RESULTS

Demographic and anthropometric characteristics of the 101 recruited participants are
detailed in Table 1. Among males, BB were older, taller, heavier, and had a greater BMI and
whole-body lean mass than both JMP and CON (all p < 0.05). They also started competing
and had been competing for longer than JMP (all p < 0.05). JMP were younger than CON (p
< 0.05), and both BB and JMP had greater whole-body aBMD than CON (all p< 0.001).
Among females, SB were younger, taller and heavier than their respective CON group (all p
< 0.05). These demographic differences between groups are normalized and are not believed
to influence within-subject asymmetry.

Proximal femur properties in each leg in male and female subjects are provided in Tables 2
and 3, respectively. Few parameters revealed bilateral asymmetry in absolute difference
values in male and female CON. As such, and as male vs. female differences in proximal
femur bone health are normalized when data are expressed in terms of dominant-to-
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nondominant leg differences, male and female CON groups were condensed into a single
CON group when determining and comparing mean percent differences.

CON did not exhibit dominant-to-nondominant leg differences in aBMD, BMC or area in
any region (all p=0.12 to 0.43), except aBMD at the greater trochanter (o = 0.04) (Fig. 1).
JMP, BB and SB had 1.6% (95% Cl, 0.1 to 3.2%), 5.5% (95% Cl, 3.9 to 7.0%) and 6.5%
(95% Cl, 4.8 to 8.2%) dominant-to-nondominant leg differences for total hip aBMD, with
the bilateral asymmetry in BB and SB being greater than in both CON and JMP (all p<
0.05; Fig. 1A). The greater total hip aBMD in BB and SB resulted from dominant-to-
nondominant leg differences in BMC (all p< 0.001; Fig. 1B), as opposed to differences in
projected bone area (all p> 0.12; Fig. 1C).

BB and SB possessed 3.7% (95% Cl, 2.5 to 4.9%) and 6.1% (95% Cl, 3.4 to 8.8%)
dominant-to-nondominant leg differences in aBMD at the femoral neck (all p < 0.001; Fig.
1D). In SB, the bilateral asymmetry in aBMD resulted from a 9.7% (95% Cl, 6.4 to 13.0%)
dominant-to-nondominant leg difference in BMC (p < 0.001; Fig. 1E), whose effect on
aBMD was tempered by a dominant-to-nondominant leg difference in projected bone area (p
= 0.005; Fig. 1F). The bilateral asymmetry in femoral neck BMC in SB was greater than that
observed in all other groups (all p< 0.006, Fig. 1E).

BB and SB exhibited 6.1% (95% Cl, 4.4 to 7.9%) and 6.8% (95% Cl, 4.7 to 8.9%)
dominant-to-nondominant leg differences in trochanteric aBMD (all p< 0.001; Fig. 1G).
These dominant-to-nondominant leg differences were greater than those observed in both
JMP and CON (all p<0.001) and resulted from large dominant-to-nondominant leg
differences in trochanteric BMC (all p< 0.005, Fig. 1H).

CON exhibited dominant-to-nondominant leg differences in CSA and CSMI favoring the
dominant leg at the narrow neck region (all p< 0.02, Fig. 2A,B). JMP and BB did not
exhibit any dominant-to-nondominant leg differences at the narrow neck (all p> 0.07),
except for CSA in BB (p= 0.03, Fig. 2A). There were no differences between CON, JMP or
BB for any measure at the narrow neck (all p >0.08, Fig. 2). In contrast, SB had large
dominant-to-nondominant leg differences, with the largest difference being for CSMI which
was 12.7% (95% Cl, 6.6 to 18.8%) greater in the dominant leg (p < 0.001, Fig. 2B).
Dominant-to-nondominant leg differences for CSA, CSMI and Z were greater in SB than all
other groups (all p<0.02, Fig. 2A-C), with SB also having greater dominant-to-
nondominant leg differences for CtTh than both CON and JMP (all p < 0.03, Fig. 2D).

DISCUSSION

The current data indicate that male baseball and female fast-pitch softball pitchers are
distinct within-subject controlled models for exploring the impact of physical activity on the
proximal femur. Both groups of throwing athletes exhibited 5.5-6.5% and 6.1-6.8% greater
total proximal femur and trochanteric aBMD in their dominant/landing leg (i.e., leg
contralateral to their throwing arm) compared to their nondominant/drive leg (i.e., leg
ipsilateral to their throwing arm), respectively. These differences were larger than dominant-
to-nondominant leg differences observed in both jumping athletes and controls. Baseball and
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softball pitchers also had significant dominant-to-nondominant leg differences in aBMD at
the femoral neck; however, softball pitchers interestingly had greater differences in femoral
neck BMC at this site than all other groups, including baseball pitchers. In addition, softball
pitchers were the only group that exhibited significant dominant-to-nondominant leg
differences in projected bone area at the femoral neck. Exploring the femoral neck region
further, softball pitchers had large (>8%) and greater dominant-to-nondominant leg
differences in narrow neck CSA, CSMI and Z than all other groups. These cumulative data
indicate that both baseball and softball pitchers load and adapt the proximal femur in their
dominant/landing leg, but the pattern of adaptation differs with softball pitchers exhibiting
greater adaptation within the femoral neck region.

Few physical activities asymmetrically load the lower limbs and there is no accepted within-
subject controlled model system to explore proximal femur adaptation to mechanical loads
associated with physical activity. To our knowledge, only two previous studies have
demonstrated bilateral asymmetry at the proximal femur in athlete groups [19, 20]. The
dominant-to-nondominant leg differences in femoral neck aBMD observed in baseball and
softball pitchers in the current study (3.7-6.1%) are comparable to the 4.5% difference
observed between the take-off and landing legs in rhythmic gymnasts [19], but they are less
than the 12.2% difference observed between the slide and trail legs in competitive ten-pin
bowlers [20]. Further work is required to confirm the large bilateral asymmetry observed in
ten-pin bowlers and their relative utility as a within-subject controlled model compared to
baseball and softball pitchers.

The magnitude of the dominant-to-nondominant leg differences observed in baseball and
softball pitchers in the current study is translatable to studies exploring the between-subject
skeletal benefits of physical activity. While throwing athletes exhibit extreme upper
extremity adaptation at levels beyond those achievable within the general population (e.g.,
bone strength is up to double in their throwing vs. nonthrowing arm [11]), the dominant-to-
nondominant leg differences observed in proximal femur aBMD and BMC are equivalent to
those observed with physical activity in between-subject intervention and prospective
observational studies [28, 29]. Thus, throwing athletes may be a useful, efficient model for
studying clinically achievable skeletal benefits of physical activity prior to performing a
more definitive and costly longitudinal study.

The reason for greater dominant-to-nondominant leg differences in bone mass and structural
properties at the femoral neck in softball pitchers compared to baseball pitchers was
unexpected. Both groups started competing well prior to their adolescent growth spurt, and
the professional baseball pitchers had been competing for longer and at a higher level than
the collegiate-level fast-pitch softball pitchers (21.4 vs. 13.2 years). The latter would be
considered to favor greater adaptation in baseball pitchers, with inclusion of age or years
training as a covariate in analyses accentuating differences in proximal femur asymmetry the
between softball and baseball pitchers (data not shown). It is possible there are sex-related
differences in mechanosensitivity and adaptation, with some reports indicating males have a
longer “‘window of opportunity’ for physical activity induced adaptation across the pubertal
growth period [9, 30]. However, this would again favor greater adaptation in male baseball
pitchers which was not observed.
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The greater adaptation in softball pitchers most likely resulted from differences in
mechanical loading between fast-pitch softball and baseball pitching. No studies have
directly compared lower extremity biomechanics during baseball and softball pitching, and
few have assessed bilateral loading of both the landing and drive legs in either baseball or
softball pitching. However, from the available data, softball pitching may be associated with
greater ground reaction forces. Baseball pitchers generate maximum vertical ground reaction
forces in their landing leg (1.5-2.0X body weight (BW) [25, 31, 32]) that are 1.5-to-2 times
greater than in their drive leg (1.0-1.3X BW [25, 33, 34]). In contrast, softball pitchers may
generate larger landing leg maximum vertical ground reaction forces (3.0-3.5X BW) [35,
36], although other studies report similar forces (1.4-1.8X BW [26, 37, 38]) to those
observed in baseball pitchers.

In addition to potentially generating greater ground reaction forces, softball pitchers exhibit
different lower extremity kinematics than baseball pitchers. They stride on a flat surface to
land their landing/dominant leg with the knee in relative extension (29-33° knee flexion [26,
37, 39]) and foot closed (i.e., facing 3" base for a right-handed pitcher [26]). In contrast,
baseball pitchers stride downhill from an elevated mound to land with their knee in greater
knee flexion (41-64° knee flexion [24, 40-42]) and foot more open (i.e., approximately
facing the batter [40]). The reduced knee flexion position in softball pitchers has the
potential to reduce shock absorption as forces are propagated proximally to the proximal
femur, while a more closed foot position would influence hip rotation position to potentially
alter the distribution of forces at the proximal femur.

Finally, differences in pitching frequency, intensity, and volume when young may have
contributed to the different proximal femur adaptation between baseball and softball
pitchers. We deliberately did not collect information on pitching volumes when young as it
would not be possible to validate historically recalled data, particularly for throwing across
the adolescent growth period. However, pitching volume is regulated in youth baseball by
pitch count limits and required days of rest between pitching outings. In contrast, no such
regulations have historically been present in youth softball, where it has been common for
pitchers to pitch up to 100 times within a single game, and to pitch in multiple games per
day and on consecutive days [43-45]. Thus, it is possible that greater throwing volumes
when young in softball pitchers contributed to their greater bilateral asymmetry at the
proximal femur relative to baseball pitchers.

In comparison to baseball and softball pitchers, there were limited dominant-to-nondominant
leg differences observed in jumping athletes. Jumping athletes exhibited dominant-to-
nondominant leg differences in total proximal femur aBMD, and femoral neck and
trochanteric BMC; however, the differences were not greater than dominant-to-nondominant
leg differences observed in controls. The limited dominant-to-nondominant leg differences
in jumping athletes may relate to the timing, duration and frequency of jumping exposure in
the athletes tested, as we know jumping is an osteogenic stimulus [28, 29]. Jumping athletes
begun competing in jump events at the approximately the same time as their self-reported
adolescent growth spurt and had been competing for less than a half to a third as long in
their chosen sport compared to the throwing athletes (Table 1). The later introduction and
shorter duration of unilateral preferential loading compared to baseball and softball pitchers
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may have tempered the side-to-side differences in jumpers. For instance, differences in
proximal femur asymmetry the between jumpers and baseball pitchers (but, not softball
pitchers) disappeared when years training was used as a covariate (data not showr). We also
hypothesize that the jumping athletes performed less frequent and less repetitions of
unilateral loading compared to throwing athletes who perform hundreds of weekly
repetitions. Finally, jumping athletes perform a high volume of bilateral loading activities
such as sprinting which may enhance proximal femur bone health bilaterally. The net result
is enhancement of the denominator in calculations of side-to-side differences and a
subsequent reduction in dominant-to-nondominant leg percent differences.

Our study had a number of strengths, including the use of a within-subject controlled model
to control selection bias and minimize the impact of inherited and systemic factors, and the
inclusion of a control group not exposed to unilaterally elevated loads to account for any
normal crossed asymmetry. However, the study also possesses a number of limitations.
Analyses were restricted to low-resolution, areal-based DXA outcomes which have known
limitations when assessing the skeletal benefits of physical activity [46]. We did not assess
hip muscle properties. Muscle and bone are intricately linked and the increased loading of
the dominant leg in baseball and softball pitchers may be associated with increased muscle
mass and strength. However, we did not observe any dominant-to-nondominant differences
in DXA-derived lower extremity fat-free lean mass in either baseball (1.2%; 95% CI, 0.3 to
2.7%, p = 0.12) or softball (0.1%; 95% CI, —1.6 to 1.8%, p = 0.88) pitchers and,
interestingly, the hip musculature in the nondominant leg of softball pitchers has actually
been shown to be 6-7% stronger than in the dominant leg [43]. We also did not quantify
loading during pitching or retrospective and current training volumes (including frequency;,
intensity, and volume of throwing) which may provide insight into the differences in
adaptation between baseball and softball pitchers.

In summary, the current data demonstrate that male baseball and female fast-pitch softball
pitchers are useful and efficient within-subject controlled models for exploring adaptation of
the proximal femur to the mechanical loading associated with physical activity. Both athlete
groups preferentially load their landing/dominant leg (i.e., leg contralateral to their throwing
arm) during each pitch. Repeated many times over the course of an athletic career, the net
result is enhanced proximal femur bone properties when compared to the contralateral drive/
non-dominant leg (i.e., leg ipsilateral to their throwing arm). Interestingly, collegiate-level
female softball pitchers exhibited greater adaptation in the femoral neck region compared to
professional-level male baseball pitchers. Additional studies are required to explore the
mechanism/s for this discrepancy and to fully establish the models’ utility in addressing
deeper questions regarding mechanoadaptation at the clinically relevant proximal femur.
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