
Userland CO-PAGER: Boosting Data-Intensive Applications with
Non-volatile Memory, Userspace paging

Feng Li
Purdue University

Indianapolis, Indiana
li2251@purdue.edu

Daniel G. Waddington
IBM Research, Almaden
San Jose, California

daniel.waddington@ibm.com

Fengguang Song
Indiana University-Purdue University

Indianapolis, Indiana
fgsong@iupui.edu

ABSTRACT
With the emergence of low-latency non-volatile memory (NVM)
storage, the software overhead, incurred by the operating system,
becomes more prominent. The Linux (monolithic) kernel, incorpo-
rates a complex I/O subsystem design, using redundant memory
copies and expensive user/kernel context switches to perform I/O.
Memory-mapped I/O, which internally uses demand paging, has
recently become popular when paired with low-latency storage.
It improves I/O performance by mapping the data DMA transfers
directly to userspace memory and removing the additional data
copy between user/kernel space. However, for data-intensive ap-
plications, when there is insufficient physical memory, frequent
page faults can still trigger expensive mode switches and I/O op-
erations. To tackle this problem, we propose CO-PAGER, which is
a lightweight userspace memory service. CO-PAGER consists of a
minimal kernel module and a userspace component. The userspace
component handles (redirected) page faults, performs memory man-
agement and I/O operations and accesses NVM storage directly.
The kernel module is used to update memory mapping between
user and kernel space. In this way, CO-PAGER can bypass the
deep kernel I/O stacks and provide a flexible/customizable and effi-
cient memory paging service in userspace. We provide a general
programming interface to use the CO-PAGER service. In our exper-
iments, we also demonstrate how the CO-PAGER approach can be
applied to a MapReduce framework and improves performance for
data-intensive applications.

CCS CONCEPTS
• Software and its engineering → Memory management;

KEYWORDS
Non-volatile Memory, Memory Management, Big Data

1 INTRODUCTION
A new generation of non-volatile memory (NVM) technology is
driving the advent of storage devices with unprecedented through-
put and latency characteristics. For example, the Intel Optane DC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HP3C ’19, March 8–10, 2019, Xi’an, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6638-0/19/03. . . $15.00
https://doi.org/10.1145/3318265.3318272

P4800X NVMe SSD [1], attaching directly to the PCIe bus, has a
4KiB block random read/write access latency (queue depth 1) of
7− 10µsec and throughput of up to 550 KIOPS. However, the legacy
storage subsystems in current operating systems are unable to un-
lock the full potential of these devices due to incurred software
overhead [2].

Eliminating traditional IO stack overhead is an active research
topic[3, 4]. Among the proposed methods, memory-mapped I/O
has become a popular alternative to traditional file I/O. By mak-
ing use of the demand paging mechanism of the Linux kernel,
memory-mapped I/O can eliminate the extra data copy and reduce
context switches. The memory-mapped I/O approach also provides
a straightforward path to consumption but still incurs software
overhead from the kernel-based page mapping process [5, 6].

The challengewe address in this work is how to improvememory
paging performance by leveraging the low-latency benefits of these
new devices. Instead of improving kernel paging mechanism itself,
we propose to migrate the paging functionality into userspace. This
not only allows us to optimize the IO path, but also customize the
paging function for a specific application (e.g., application-specific
pre-fetching).

Our CO-PAGER solution consists of a paging component that
executes in userspace, and a minimal kernel module. The userspace
component detects page faults, manages and performs paging (be-
tween main memory and low-latency storage). The kernel compo-
nent updates the memory-mapping information (page tables).

This design brings several benefits:

• Since I/O now “bypasses” the kernel, we avoid the overhead
introduced by the conventional I/O design.

• Userspace now has more control over paging mechanisms.
For example, given a domain-specific application which has
specificmemory access pattern, a customized prefetch and/or
replacement policy can be easily implemented in userspace
without costly modification to the kernel.

To demonstrate the benefits of the CO-PAGER design and show
how it can be used with existing applications, we have proto-
typed NV-Phoenix, which is an integration of CO-PAGER with the
Phoenix MapReduce framework [7]. More details of NV-Phoenix
will be given in Section 4.2 and 5.2.

Note that the usage of CO-PAGER is not limited to MapReduce.
In NV-Phoenix, we introduce a portable interface, which can be
reused with other existing projects written in general languages
like C/C++. This way, application developers don’t need to know
details about the NVM device under the hood. Instead, they can take
advantage of fast storage devices to accelerate their applications,
by using the familiar interface such as malloc and free.

__

This is the author's manuscript of the article published in final edited form as:

Li, F., Waddington, D. G., & Song, F. (2019). Userland CO-PAGER: Boosting data-intensive applications with non-volatile memory, userspace paging. Proceedings of the 3rd
International Conference on High Performance Compilation, Computing and Communications, 78–83. https://doi.org/10.1145/3318265.3318272

https://doi.org/10.1145/3318265.3318272
https://doi.org/10.1145/3318265.3318272

To the best of our knowledge, this work makes the following
contributions:

• CO-PAGER: a lightweight userspace memory service, that
leverages user-level IO with high-performance NVMe de-
vices to perform fast paging.

• NV-Phoenix: an improved MapReduce framework, which
is integrated with CO-PAGER service, and enables existing
MapReduce applications to run without API changes.

• A general persistent programming interface, that provides
simplified access to low-latency NVM SSDs.

In the remainder of the paper, the following section introduces
the background of NVMe storage technologies, and knowledge of
paging and virtual memory. Section 3 introduces related work and
compare them with ours. Section 4 shows the design of CO-PAGER
memory service and how we integrate it with the Phoenix MapRe-
duce framework. Finally, Sections 5 and 6 present the experimental
results and summarize the paper.

2 BACKGROUND
In this section, we first introduce the background and current us-
age/applications of NVMe SSDs, followed by some fundamental
knowledge of virtual memory and paging and their applications.

2.1 NVMe SSDs and userspace device driver
NVMe (NVM express, [8]) is an optimized, high-performance host
controller interface for PCIe-based SSDs. It’s designed to provide
efficient access to next-generation NVM storage devices, and it
addresses several performance vectors: bandwidth, IOPS and la-
tency, scalability, etc. Unlike traditional protocols such as SAS and
SATA, NVMe protocol features multiple deep queues and can pro-
vide high IOPS per CPU instruction and lower I/O latency [9]. It
supports both enterprise(e.g. reservation) and client features (e.g.
power management)

Native driver support has been available in both Windows and
Linux (since 3.3, Jan 2012). To better accommodate the fast NVMe
devices, the new blk-mq framework has been added to Linux kernel
since 3.13, which will bypass previous Linux I/O scheduler and
provide functions to device drivers for mapping I/O inquiries to
multiple queues.

IBM Comanche [10, 11] is a framework for user-level composi-
tional storage development. It provides an approach to reorganizing
different build-blocks (e.g. block allocation, caching, partitioning)
to provide custom storage solutions for various needs from appli-
cations.

We use the blk-nvme component from the Comanche framework
to interact with NVMe SSDs in userspace. Internally, Comanche
blk-nvme component uses tools such as Intel SPDK [12] and DPDK
[13] to manage memory and I/O operations in userspace.

2.2 Paging and virtual memory
Virtual memory provides an address mapping from virtual address
space to physical address space. It offers protection of memory re-
gions in two levels: memory mappings of different processes are not
overlapped; kernel memory is isolated with userspace processes.
Paging is an important part of virtual memory implementation,
and by swapping from/to the secondary storages like hard drives,

it provides userspace processes an “illusion” of available memory,
which can be larger than physical memory available in the sys-
tem. However, such paging procedure with fast storage devices like
NVMe SSDs can be challenging, due to the legacy kernel design
which was originally for slower spinning hard drives. User-level
paging implementations usually offer flexibility and speed. Exam-
ples of user-level paging system are DLM [14], micro-kernel kernel
implementations [15, 16], etc.

A userspace application can request virtual memory from operat-
ing system kernel, through system calls such as mmap or sbrk/brk.
However, because of the overhead of context switch during system
calls, it’s better to allocate a large chunk of memory and then split
it to get small chunks. Many library calls, such as C malloc/free,
can help us with that, by maintaining lists of pre-allocated buffers.
Besides malloc provided by stand C library, there are also some
other available allocators which also provide equivalent POSIX-
compatible malloc/free interfaces, which applications can use in-
terchangeably. By providing the same malloc/free interfaces, our
CO-PAGER service can also be applied to existing applications
easily.

2.3 MapReduce and Phoenix
MapReduce is a general programming model designed for paral-
lelized computation [17]. The basic idea is to take a set of key/value
pairs as input, “map” them to intermediate key/value pairs, and
then merge the intermediate values based on the keys. The pro-
gramming model can fit well to many parallel problems and it has
influenced essential tools in big data domain, such as Apache Spark
[18]and Hadoop [19]. MapReduce usually utilizes a cluster of nodes
and communications between nodes are established using remote
procedure calls or distributed file system, both of which can be
expensive for data-intensive applications.

To eliminate such expensive communication between nodes, one
approach is to align tasks to a single node. With multi-core and
multi-processing systems (e.g. Intel Xeon Phi) becoming even more
popular recently, the computation power of a single node has dra-
matically increased. And it’s promising to run data-intensive appli-
cations in a single node, using MapReduce framework like Phoenix
[7]. Unlike the cluster-based MapReduce frameworks, Phoenix uses
threads to spawn parallel map and reduce tasks.

Since all the threads are spawn in a single node, main memory
can become the performance bottleneck [20, 21]. If the active mem-
ory of an application cannot fit into the main memory, in-memory
pages can be swapped out to secondary storage periodically. His-
torically, swapping is considered relatively slow since legacy drives
such as spinning drives usually have limited bandwidth and latency.
Now that the low-latency NVM storage is available, we can use it
to accelerate the Phoenix framework, with the help of Linux paging
mechanism.

3 RELATEDWORK
There have been several explorations on using NVM device to con-
struct a “persistent heap”. Hwang et al. [22] designed a persistent
object store, along with a namespace and persistent object manage-
ment scheme, and auto-generation is supported for easier use of
the object store. Coburn et al [4] proposed NV-Heaps, which is a

lightweight and high-performance persistent object system, and
also ensures safety in the same time. Megalloc [23] is a distributed
NVM allocator, which can expose virtual address space of NVMs
installed in multiple nodes, by using RDMA (remote direct mem-
ory access). User-level memory page allocator [24], shows how
user-level virtualized MMU can be used to outperform state-of-art
memory allocators. Markthub et al. designed Dragon [25], which
transparently extends capabilities of GPU memory by mapping
NVM storage to GPU addressable space. Unlike those work, our
CO-PAGER focuses on the kernel-bypass design and utilizes more
simplified I/O stacks in userspace.

The persistent memory programming [26] provides a growing
collection of libraries (Persistent Memory Development Kit, PMPK
[27]), which can be exposed to applications so that they can manage
data among volatile memory, persistent memory and storage ex-
plicitly. Moon et al. [28] explore how to optimize a Hadoop MapRe-
duce Framework with SSDs, by utilizing fast SSDs for intermediate
Hadoop data and slower HDDs for Hadoop File System(HDFS).

Micro-kernel [29] provides an alternative way to support I/O in
userspace. Unlike monolithic kernels (e.g. Linux), micro-kernels
keep most of the system services in user space, and communica-
tions happen in the form of message passing. Micro-kernels usually
suffer from poor performance due to the expensive inter-process
communications.

4 METHODS
In this section, we first introduce a top-level system design of CO-
PAGER memory service, followed by more details of implementa-
tion. After that, we introduce the new system of NV-Phoenix and
the general programming interface of the CO-PAGER service.

4.1 System Design of CO-PAGER
The fundamental idea of CO-PAGER is to lift the paging service from
kernel to userspace as much as possible, which is demonstrated in
Figure 1. The left part of the figure shows a brief design for current
Linux kernel paging mechanism, as we have seen in subsection
2.2. The Linux kernel manages several critical components: page
replacement and I/O path. Page tables are maintained for each
process and they are used by the kernel to track whether a page is
mapped to physical memory or swapped out to the disk. The block
device (i.e. NVMe drive in our work) is totally managed by Linux
kernel through a kernel driver (blk-mq).

We present our new design in the right part of Figure 1, where
we lift the paging service to userspace, and now the paging service
can interact with NVMe SSDs in userspace, through the Comanche
blk-nvme interface (shown as “Device Driver” in the userspace).

Figure 2 shows more details of the CO-PAGER design, where
the readers can see more details of each component involved in the
CO-PAGER service.

4.1.1 Kernelspace components. We introduce the kernelspace
component first, because it’s relatively simple and will be used
by the userspace service. We create a kernel module called XMS
(eXtreme Memory Service), whenever the userspace component
decides to map a virtual address range to physical memory frames,
it sends the corresponding virtual and physical address information
to XMS module, and then XMS updates the in-kernel mapping

Linux Paging CO-PAGER
Application

Application
Paging
Service

Paging
Service

Device
Driver

Device
Driver

Minimal
Kernel Module

slow
path

USER

KERNEL

USER

KERNEL
slow
path

page
faults

page
faults

storage

storage

fast
path

Figure 1: Comparison between kernel paging and userland
CO-PAGER.

Allocator
Interface

 Minimal
Kernel Module

USER

update
mapping

storage

 I/O
Management

 Fault
Catching

CO-PAGER Core
Replacement
 Policy

 Page
 Mapping

 Communicator

 Page Table

Comanche
blk-nvme

Applications

update
mapping

page
faults

KERNEL

Figure 2: Implementation details of CO-PAGER.

information (page table, TLB, etc) correspondingly. The in-kernel
memory mapping information is still required so that when the
application accesses the mapped pages for the second time, it won’t
trigger faults again.

4.1.2 Userspace Components. There are three major tasks for
the userspace components: 1. capture faults 2. handle faults 3. syn-
chronize mapping information with the kernel.

Page faults are captured by fault catching component, which is
actually a segmentation fault signal handler. When an application
allocates memory space from CO-PAGER service, CO-PAGER first
asks kernel for an empty range of virtual addresses, and sets the
protection bit of this range as “PROT_NONE”. This means initially
the application doesn’t have READ/WRITE access for the allocated
addresses and any further accesses will trigger segmentation faults.
Such segmentation faults later will be captured by the fault catching
component, and then be solved by the CO-PAGER core.

The CO-PAGER core component is where page faults are actually
handled. CO-PAGER core reserves physical memory frames and
has replacement policy and page mapping mechanisms to map a
virtual address either to (1) a physical memory frame or (2) a NVMe
logical block address (similar to kernel paging, as we can see from
Subsection 2.2). To solve a page fault, CO-PAGER core first selects a
victim page, then updates mappings and issues I/O through the I/O

management path. The I/O management path uses the Comanche
blk-nvme interface we have mentioned in Subsection 2.1. which
issues asynchronous I/O requests and directly interacts with the
NVMe device in userspace.

CO-PAGER also needs to synchronize the mapping information
to the kernel (the XMS module we have mentioned). This is done
by the communicator, which keeps the file descriptor of the XMS
module, and exchanges memory mapping information with the
XMS module.

The allocator interface above the CO-PAGER core provides appli-
cations a generic API like malloc/free. This is the only interface the
applications need to interact with, and it will be introduced later.

4.2 NV-Phoenix and general memory allocator
interface

In this subsection, we describe how we design NV-Phoenix, a
MapReduce framework with CO-PAGER enabled, so that mem-
ory allocation can be managed easily with CO-PAGER memory
service mentioned above.

To better fit our CO-PAGER into this ecosystem, we compose
the CO-PAGER userspace component as a shared library, which
provides POSIX-compatible malloc/free interfaces, so that the ap-
plications don’t need any explicit code modifications other than
linking to the CO-PAGER library. This is achieved by adding a
‘mmap replacement‘ to TCMalloc [30], using the ‘MallocHook:: Set-
MmapReplacement’ function. The default behavior of TCMalloc is
asking memory from kernel usingmmap or sbrk system calls. There
are several reasons why we choose TCMalloc instead of Glibc mal-
loc. Firstly, TCMalloc has clearer code structure and it’s easier to add
a mmap replacement; also, there are more flexible controls provided
by TCMalloc. For example, setting the TCMALLOC_SKIP_SBRK en-
vironment variable can force TCMalloc to ignore sbrk/brk system
calls, and obtain memory from kernel only through mmap system
call. After we set the TCMALLOC_SKIP_SBRK environment vari-
able and add our CO-PAGER mmap hook, all memory allocation
related system calls from TCMalloc will be translated to CO-PAGER
allocations.

In our earlier implementation, we tried to intercept “malloc” as
CO-PAGER allocation directly, using the LD_PRELOAD trick [31].
However, doing that we will lose all the optimizations provided by
userspace memory allocation libraries like Glibc malloc or TCMal-
loc.

Performance comparison of mmap-based TCmalloc and CO-
PAGER-based Tcmalloc are presented in Section 5, by linking both
libraries with the Phoenix MapReduce framework.

5 EXPERIMENTS
To show the advantage of the userspace paging design, we first use
a micro-benchmark to compare the page-fault-handling latency of
CO-PAGER to the default Linux paging subsystem. Then a real-
word application, using the NV-Phoenix introduced in section 4.2,
is tested with various input sizes. We also compare the end-to-
end time of the NV-Phoenix application with the same application
running with other memory conditions.

System Configuration Table 1 shows the system configura-
tions used in the experiments. We use Intel Optane 900P NVMe

SSD [32], which was launched in 2017. It has symmetric read/write
latency of 10 us, and can deliver 550K IOPS. 1

Table 1: Machine Configuration

Type Information

CPU Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
quad-core processors

Main memory 8GB
OS version Ubuntu 16.04.1
Kernel version 4.13.0-38
Compiler GCC 5.4.0
Secondary storage #1 WD SATA3 5400 rpm
Secondary storage #2 Intel 900P 280GB AIC

5.1 Micro-benchmark
The first experiment is to measure the time used by CO-PAGER
to solve each page fault, and compare with the traditional Linux
paging utilities (more specifically, themmap system call). Themicro-
benchmark tool we use here can access a contiguousmemory region
in different modes. Sequential and random modes write to pages in
sequential and random order, while the stride mode writes with a
stride size of 8 pages.

Next we explain howwe create the virtual memory region for the
benchmark. For the CO-PAGER group, we use the “raw” CO-PAGER
allocation interface to create a heap, without using TCMalloc’s
mmap replacement. For the mmap group, we use themmap system
call with the MADVISE_RANDOM option 2, We don’t use memory
allocator interfaces (such as TCMalloc malloc/free) here because
those library calls maintain internal buffers and other optimization
techniques, which make tracking fault-handling more difficult.

Figure 3: Write fault penalty for cached access.

Figure 3 shows the latency for three types of writes. From this
figure, CO-PAGER has reduced the fault penalty by 41.6%, 82.5%
and 82.5% for random/sequential/stride write respectively. Since
1unlike enterprise version of Optane SSDs, 900P can only be configured with 512B
logical block size
2mmap’s performance might be better with other MADVISE or MMAP_POPULATE
options, due to more optimizations in kernel.

Linux paging utilizes the page cache, the paging operation does
not have to update its contents into the secondary device (NVMe
SSD) immediately. Instead, updates will be resident in page cache,
and be flushed out in a later time. We simulate this behavior in
CO-PAGER: instead of flushing into NVMe device each time for a
paging out, we only issue one asynchronous write command and
return immediately. The completion of that write will be checked
the next time when the same physical page is used.

Figure 4: Write fault penalty for sync access.

Even though Figure 3 shows how CO-PAGER reduces the kernel
(software) overhead, the latency shown is not directly related to
the NVMe devices, since all the writes are “asynchronous”. How-
ever, real applications do more than just writing and we also need
consider effects of actual flushing. With this in mind, we add syn-
chronization for both CO-PAGER and Linux kernel paging. So that
after each time they both solve a fault, the update is guaranted
written into the NVMe device. In Linux kernel paging, this is en-
forced by adding a “msync” after updating each page. The new
results are shown in Figure 4, From the figure, we can observe that,
though CO-PAGER is faster than Linux kernel paging in both stride
writes and random writes (19% less fault handling latency), it is
slightly slower in the case of a sequential write. The reason might
be the kernel optimizations of I/O operations, such as the merging
I/O requests for adjacent sectors in I/O scheduler [33]. Currently
CO-PAGER is in its prototype status and more optimizations can be
made in future. Note that since the 900P has 512 logical block size,
we expect an even lower latency for CO-PAGER if using enterprise
NVMe device such as Intel Optane DC P4800X [1].

5.2 Evaluation of NV-Phoenix
There are totally 7 applications provided in Phoenix package, all of
them can be configured with CO-PAGER.We show the performance
of k-means application as an example in this subsection.

In figure 5, we run K-means (from the recent C++ version of
Phoenix package [21]) with different element sizes, under different
memory constraints:

(1) mmap with sufficient memory
(2) mmap with 32M physcial memory, paging on NVMe SSD

using Linux default paging mechanism.

Figure 5: K-means execution time with Phoenix.

(3) CO-PAGER with 32M physical memory, paging on NVMe
SSDs using the proposed CO-PAGER userspace paging de-
sign.

Here both mmap and CO-PAGER are used together with TCMal-
loc library (different from the “raw” performance we saw from the
first experiment). It means that instead of triggering ammap system
call or CO-PAGER allocation for each malloc/new operation, the
TCMalloc library accumulates the small allocations and allocates a
large chunk of memory once.

The memory constraints are enforced using the cgroup tool [34].
K-means application is configured with 100 clusters and each point
has three dimensions. The results of running Phoenix K-means
are shown in Figure 5, with input size from 512K points to 8192K
points. From the figure, we can see that the running time under
various memory constraints is the same when the number of points
is smaller than 2M. That’s reasonable since the active memory of
the application can fit in the 32MB physical memory.

However, when input size keeps increasing, we can see the sig-
nificant difference of various memory constraints. Mmap with suf-
ficient memory still gives the shortest execution time, which is
expected since the active memory can always fit in the physical
memory. For mmap with 32M memory constraint using kernel pag-
ing, the k-means application runs slower, because it needs to page
in/out from/to the NVMe device. Under the same 32M memory
constraint, CO-PAGER allocator’s performance is better than Linux
mmap, thanks to the simpler design of paging service in userspace.

6 CONCLUSION
The low-latency and high-throughput of NVMe devices have made
us to rethink of I/O stack design of modern operating systems.
Directly mmap to fast NVMe storage would produce significant
software overhead, since the paging system was originally designed
for slower hard drives. To better fit NVMe SSDs using the extended
memory model, we introduce CO-PAGER, which is a light-weight
memory service and consists of an efficient user-level memory
service and a minimal kernel module. We lift the paging and I/O
management to the user space and use the minimal kernel module

to update the in-kernel page table. This design provides users with
higher flexibility to use more customized memory service based on
the different memory access patterns of various applications. The
experiments show that the CO-PAGER significantly reduces the
page fault penalty, compared with the paging utilities in a recent
kernel. The CO-PAGER is also integrated with Phoenix, a shared-
memory MapReduce framework, to demonstrate that the general
APIs can be easily applied to other real applications. Our results
show the CO-PAGER memory service can significantly improve
the performance of the application under high memory pressure,
compared to the default kernel paging service.

7 FUTUREWORK
When we are comparing the Linux memory map I/O with raw
CO-PAGER allocation, we found there are many tunable options
which can affect the performance of memory-mapped I/O. One such
example is the madvise system call, which can tell the kernel the
desired access pattern of the application. To our surprise, those hints
don’t always bring possible effects in our preliminary experiments,
when there is not enough physical memory to accommodate all the
active pages. Currently we are investigating more detailed patterns
of the memory-mapped I/O behavior, and we think it will help us
better improve the CO-PAGER design.

In the experiment section, we are using the simplest direct map-
ping when we manage the replacement of pages. Since the pager
itself is modularized, it is very intuitive to implement other types of
replacement policies for various types of workloads. And we expect
we can get better results for better-tuned replacement policies.

ACKNOWLEDGMENTS
This material is based upon research partially supported by Purdue
Research Foundation and by the NSF Grant #1835817. We would
like to thank the Storage Systems group in IBM Research Almaden,
for their assistance during the development of CO-PAGER.

REFERENCES
[1] Intel SSD DC P4800X specifications. https://www.intel.com/content/

www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/
optane-dc-p4800x-series/p4800x-375gb-aic-20nm.html, 2018.

[2] Daniel Waddington and Jim Harris. Software challenges for the changing storage
landscape. Communications of the ACM, 61(11):136–145, 2018.

[3] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne: Lightweight
persistent memory. In ACM SIGARCH Computer Architecture News, volume 39,
pages 91–104. ACM, 2011.

[4] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. Nv-heaps: making persistent objects fast and
safe with next-generation, non-volatile memories. ACM Sigplan Notices, 46(3):
105–118, 2011.

[5] Jungsik Choi, Jiwon Kim, and Hwansoo Han. Efficient memory mapped file i/o
for in-memory file systems. In 9th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 17). USENIX Association, 2017.

[6] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young Yeom. Efficient
memory-mapped i/o on fast storage device. ACM Transactions on Storage (TOS),
12(4):19, 2016.

[7] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International
Symposium on, pages 13–24. Ieee, 2007.

[8] Danny Cobb and Amber Huffman. NVM Express and the PCI Express SSD
Revolution. In Intel Developer Forum. Intel, 2012.

[9] NVM Express Overview. http://nvmexpress.org/wp-content/uploads/NVMe_
Overview.pdf, 2018.

[10] Daniel G Waddington. Fast & flexible io: A compositional approach to storage
construction for high-performance devices. arXiv preprint arXiv:1807.09696, 2018.

[11] IBM Comanche project. https://github.com/IBM/comanche, 2018.
[12] Storage performance development kit (SPDK). http://www.spdk.io, 2018.
[13] Data Plane Development Kit Project. https://dpdk.org, 2018.
[14] Hiroko Midorikawa, Yuichiro Suzuki, and Masatoshi Iwaida. User-level remote

memory paging for multithreaded applications. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 196–197.
IEEE, 2013.

[15] Jochen Liedtke. Toward real microkernels. Communications of the ACM, 39(9):
70–77, 1996.

[16] Dylan McNamee and Katherine Armstrong. Extending the mach external pager
interface to accomodate user-level page replacement policies. In USENIX MACH
Symposium, pages 17–30, 1990.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[18] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. Apache spark: a unified engine for big data processing. Commu-
nications of the ACM, 59(11):56–65, 2016.

[19] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.
[20] Richard M Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix rebirth:

Scalable mapreduce on a large-scale shared-memory system. In Workload Char-
acterization, 2009. IISWC 2009. IEEE International Symposium on, pages 198–207.
IEEE, 2009.

[21] Justin Talbot, Richard M Yoo, and Christos Kozyrakis. Phoenix++: modular
mapreduce for shared-memory systems. In Proceedings of the second international
workshop on MapReduce and its applications, pages 9–16. ACM, 2011.

[22] Taeho Hwang, Dokeun Lee, Yeonjin Noh, and Youjip Won. Designing persistent
heap for byte addressable nvram. InNon-Volatile Memory Systems andApplications
Symposium (NVMSA), 2017 IEEE 6th, pages 1–6. IEEE, 2017.

[23] Songping Yu, Nong Xiao, Mingzhu Deng, Yuxuan Xing, Fang Liu, and Wei Chen.
Megalloc: Fast distributed memory allocator for nvm-based cluster. InNetworking,
Architecture, and Storage (NAS), 2017 International Conference on, pages 1–9. IEEE,
2017.

[24] Niall Douglas. User mode memory page management: An old idea applied anew
to the memory wall problem. arXiv preprint arXiv:1105.1815, 2011.

[25] Pak Markthub, Mehmet E Belviranli, Seyong Lee, Jeffrey S Vetter, and Satoshi
Matsuoka. Dragon: breaking gpu memory capacity limits with direct nvm access.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, page 32. IEEE Press, 2018.

[26] Pmem.io-Persistent Memory Programming. https://pmem.io, 2018.
[27] Persistent Memory Development Kit (PMDK) project. https://github.com/pmem/

pmdk/, 2018.
[28] Sangwhan Moon, Jaehwan Lee, Xiling Sun, and Yang-suk Kee. Optimizing the

hadoop mapreduce framework with high-performance storage devices. The
Journal of Supercomputing, 71(9):3525–3548, 2015.

[29] Jochen Liedtke. On micro-kernel construction, volume 29. ACM, 1995.
[30] TCMalloc : Thread-Caching Malloc. http://goog-perftools.sourceforge.net/doc/

tcmalloc.html, 2018.
[31] Linux Programmer’s Manual dynamic linker/loader. http://man7.org/linux/

man-pages/man8/ld.so.8.html, 2018.
[32] Intel Optane SSD 900P Series. https://www.intel.com/content/www/us/en/

solid-state-drives/optane-ssd-900p-brief.html, 2018.
[33] Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel: from I/O ports

to process management. " O’Reilly Media, Inc.", 2005.
[34] Manual page for cgroup. http://man7.org/linux/man-pages/man7/cgroups.7.html,

2018.

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-375gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-375gb-aic-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-375gb-aic-20nm.html
http://nvmexpress.org/wp-content/uploads/NVMe_Overview.pdf
http://nvmexpress.org/wp-content/uploads/NVMe_Overview.pdf
https://github.com/IBM/comanche
http://www.spdk.io
https://dpdk.org
https://pmem.io
https://github.com/pmem/pmdk/
https://github.com/pmem/pmdk/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-900p-brief.html
https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-900p-brief.html
http://man7.org/linux/man-pages/man7/cgroups.7.html

	Abstract
	1 Introduction
	2 Background
	2.1 NVMe SSDs and userspace device driver
	2.2 Paging and virtual memory
	2.3 MapReduce and Phoenix

	3 Related Work
	4 Methods
	4.1 System Design of CO-PAGER
	4.2 NV-Phoenix and general memory allocator interface

	5 Experiments
	5.1 Micro-benchmark
	5.2 Evaluation of NV-Phoenix

	6 Conclusion
	7 Future work
	Acknowledgments
	References

