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Abstract
The heating of biomass under low-oxygen conditions generates three co-products, bio-oil, biogas,
and biochar. Bio-oil can be stabilized and used as fuel oil or be further refined for various applications
and biogas can be used as an energy source during the low-oxygen heating process. Biochar can be
used to sequester carbon in soil and has the potential to increase crop yields when it is used to improve
yield-limiting soil properties. Complex bio-physical interactions havemade it challenging to answer
the question of where biochar should be applied for themaximumagronomic and economic benefits.
We address this challenge by developing an extensive informatics workflow for processing and
analyzing crop yield response data as well as a large spatial-scalemodeling platform.We use a
probabilistic graphicalmodel to study the relationships between soil and biochar variables and predict
the probability andmagnitude of crop yield response to biochar application. Our results show an
average increase in crop yields ranging from4.7% to 6.4%depending on the biochar feedstock and
application rate. Expected yield increases of at least 6.1% and 8.8%are necessary to cover 25% and
10%ofUS croplandwith biochar.We find that biochar application to crop areawith an expected yield
increase of at least 5.3%–5.9%would result in carbon sequestration offsetting 0.57%–0.67%ofUS
greenhouse gas emissions. Applying biochar to corn area is themost profitable from a revenue
perspective when compared to soybeans andwheat because additional revenues accrued by farmers
are not enough to cover the costs of biochar applications inmany regions of theUnited States.

1. Introduction

Biochar is a carbon rich soil amendment produced
from biomass by a thermochemical process, pyrolysis,
or gasification [1]. Soil biochar applications have
generated interest as a strategy for mitigating climate
change by sequestering carbon (C) in soils, and
simultaneously as a strategy for enhancing global food
security [2–6] by increasing crop yields especially on
degraded and poor quality soils [7]. There is evidence
that the recalcitrant C in biochar has a significantly
greater residence time compared to C in uncharred
plant biomass [5, 8] suggesting that biochar applica-
tion is a possible avenue for drawing down C from the
atmosphere and stabilizing it in the soil [2, 9]. The
alkalinity of biochar, its high internal porosity [10],
and capacity to absorb cations, i.e., a cation exchange

capacity (CEC), can increase soil nutrient and water
holding capacity [11–13] without compromising soil
conservation goals [5]. This can lead to increases in
crop yields in less fertile and degraded soils which
often coincide with high rural poverty [2, 5]. However,
the ability of biochar to sequester carbon and alleviate
soil limitations on crop yields depends on the biochar’s
properties, which are influenced by properties of the
feedstock used to produce the biochar and by the
production technology (pyrolysis/gasification tech-
nologies) [8, 14].

While there is no or little incentive for farmers to
adopt most climate change mitigation practices, the
potential yield increase following biochar application
has made it a promising new climate mitigation strat-
egy. However, the degree of adoption of biochar tech-
nology is closely tied to the farmer’s costs and benefits

OPEN ACCESS

RECEIVED

9May 2018

REVISED

27December 2018

ACCEPTED FOR PUBLICATION

9 January 2019

PUBLISHED

29March 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/333956732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/1748-9326/aafcf0
https://orcid.org/0000-0003-2131-7712
https://orcid.org/0000-0003-2131-7712
https://orcid.org/0000-0001-8681-1688
https://orcid.org/0000-0001-8681-1688
mailto: hamzed@iastate.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aafcf0&domain=pdf&date_stamp=2019-03-29
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aafcf0&domain=pdf&date_stamp=2019-03-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


[2]. Hence, in the absence of a carbon credit market,
crop yield increase is the primary factor determining
the economic viability of biochar applications [1, 15].
Farmers will have toweigh the cost of applying biochar
—which usually happens in the first year—with
the increase in revenue triggered by higher yields in
subsequent years. Thus, the ability to accurately pre-
dict crop yield response to biochar applications is cri-
tical to the development of a viable biochar industry
and to the design of incentive programs to enhance
biochar adoption and C sequestration. Previous
research suggests the need to match biochar type with
soil type and management systems to optimize agro-
nomic and environmental outcomes [6].

Crop yield responses to soil biochar applications
are highly variable [8, 16, 17] indeed, yield responses
reported in reviews have ranged from negative to posi-
tive due to variations in soil properties, biochar proper-
ties, and complex soil×crop×biochar×climate×
management interactions [8, 18, 19]. Based on 507 field
studies assessing yield differences, only 25% showed a
significantly negative or positive biochar effect (21.6%
positive and 3.5% negative) on yields [8]. Other studies
have reported minor increases in crop productivity
with considerable variability [18] and small but statisti-
cally significant increases in crop productivity (either
grain or biomass) from both pot and field experiments
[19]. The key finding of those studies was large varia-
bility (from−28% to 89%) in yield response to biochar
applications. Some research suggests that biochar may
reduce plant growth and limit nutrient availability
[2, 6, 19]. A recent global meta-analysis from 109 stu-
dies found that there is significant geographical varia-
tion in the yield response [6]. Although a global mean
increase of 13% is reported, yields in the tropics (�35th
degree latitude) increase by approximately 25%
whereas yields in temperate (>35th degree latitude)
regionsdecrease by 3%.

The complex nature of biochar interactions with
soils and crops as well as lack of clear understanding of
mechanisms and interactions [20, 21] has led to
reports with conflicting interpretations, even under
similar conditions [19]. In addition, the large amount
of missing data in the literature [22] including incon-
sistent reporting of soil and biochar properties [19] has
made the prediction of crop yield response to biochar
a very challengingmodeling exercise [2].

In this study, we addressed the challenge of pre-
dicting crop yield responses to biochar applications by
developing an extensive informatics platform for col-
lecting, preprocessing and analyzing data, and large-
scale spatial modeling. Several statistical procedures
and informatics technologies were integrated to facil-
itate the interpretation and modeling of crop yield
responses to biochar. We used probabilistic graphical
models in our platform to study the causal relation-
ships among different soil and biochar variables and
model the yield response at a large spatial scale. These
models are inherently capable of handling missing

data [23] and accounting for uncertainty associated
with observations [24, 25]. In this platform, we com-
bined expert knowledge (for better defining the rela-
tionship among the variables) and data (for estimating
the parameters of themodel) to handle the complexity
of our problem.

Probabilistic graphical models are commonly used
in cases with incomplete datasets [26] and high uncer-
tainty [27] which makes them a suitable candidate for
the current status of biochar science. We hypothesize
that building this platform using available peer-
reviewed datawill allow us to refine our understanding
of biochar interactions with crops and soils. Further-
more, we hypothesize that our platform can help us
make large scale predictions of regional average crop
response to different types of biochar. Our main goal
was to identify areas with high probability of crop yield
response to biochar applications in the United States
as well as the magnitude of those responses. Our out-
puts can significantly advance the science of biochar
use in agriculture by identifying highly responsive
areas and the reasons these regions are more respon-
sive. Therefore, ourmain objectives were threefold:

First, we want to understand the relationships
between soil and biochar properties associated with
crop yield increase following biochar application. Sec-
ond, we quantify the probability,magnitude, and loca-
tion of positive crop yield responses following biochar
application in the United States. Third, we identify
regions with the highest increase in revenue over a 10
and 20 year period for three major crops. Our work
also adds a geographic dimension to the literature by
constructing GIS data showing the yield increase for
cropland in theUnited States at specific locations.

2.Methodology

2.1.Data collection
Webuilt our database on top of the rawdata previously
collected from ameta-analysis [2]. The original dataset
was built upon 40 studies (published up to 2013) with
17 variables and 685 observations [2]. New peer-
reviewed studies from both pot and field studies were
found using academic search engines (Google Scholar,
Web of Science, Scopus) and the same variables were
extracted and added to the database. These search
engines were searched using ‘biochar AND crop
productivity’ OR ‘biochar AND crop yield’ keywords
and the latest date for inclusion of the studies was 31
April 2016.

Among all studies, publications which examined
the effect of biochar application on crop production
(grain/biomass) were selected. We did not include
studies or observations in the database if either biochar
application rate or grain/biomass yield data were
missing. In total, from the 63 new studies which met
our criteria, 575 more observations were added to the
database.
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Soil organic carbon (SOC), sand, silt, clay content,
CEC and soil pH were extracted from all studies to
describe the chemical and physical properties of soils.
Biochar carbon, nitrogen, ash content, pH, carbon-to-
nitrogen (C:N) ratio, highest pyrolysis temperature
(HPT), feedstock, and thermochemical process were
variables extracted to account for differences in bio-
char type. Biochar feedstock was classified into woody,
non-woody, and manure, while pyrolysis type was
characterized as fast and slow.

In addition to soil and biochar properties, our
model also included latitude and both N fertilizer and
biochar application rates. Given that absolute yield is
not readily comparable among studies, response ratio
(RR) was used as the target variable [28]. The RR is
defined as:

=
⎛
⎝⎜

⎞
⎠⎟ ( )Yield

Yield
RR ln . 1Biochar

control

A positive RR indicates a positive yield response to
biochar application, whereas a RR of 0 shows no
change from control treatment. This variable also can
be easily transformed back to percentage relative
increase (RI) using = - ´( )eRI 1 100RR . Many key
drivers of crop yields (e.g. soil N) particularly soil
nutrient levels are not included in the database
because nutrient availability does not perfectly corre-
late to total nutrient content in soil given spatially het-
erogeneous soil chemistry [2]. Therefore, it is expected
to see smaller variability in the models estimation of
RR compared to the observedRR.

2.2.Model development
A Bayesian network (BN) was used for modeling the
yield response to biochar applications. BN models
usually are made of qualitative and quantitative
components. The qualitative component is a graphical
model which represents how the variables are statisti-
cally dependent on each other; nodes indicate variables
and arcs show dependencies. The quantitative comp-
onent is the conditional probability distribution of a
node xi (specified in the graphical model) on its
parents ( )pa xi . Taking into account the conditional
independence assumption (Markov condition), the
joint distribution over all the variables xi for
=i n1, ..., is equal to [25]:

=
=
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which is the product of conditional distributions
defined for each variable. When new evidence is
introduced, it propagates through the BN and the
posterior probabilities are computed. This is called an
inference and it allows for detecting the change in the
probabilities of some variables given a value for other
variables [27].

In the current study, a hybrid BN model (a model
that includes both discrete and continuous variables)
was developed within the R environment [29] and by
using the Bayes Server software [30]. The final design
of themodel’s structure resulted in 84 parameters. The
heterogeneity among crop species and other key dri-
vers of yield that are not included in the model, con-
vinced us to use the probability of yield increase P
(RR>0) instead of directly using estimated mean of
RR; this inherently accounts for the variability around
the average estimate of RR. Thereby, the estimated
mean and variance were used to estimate P(RR>0)
and identify places with high probability of yield
increase. We setup a repeated cross validation proce-
dure with 250 iterations for training and testing our
BN. In each iteration, the model was trained with 80%
of the observations in the dataset and tested against the
remaining 20% of observations. Predictions made by
the BNwere then compared with the previously devel-
oped statistical model [2]. Model efficiency (EF) and
mean absolute difference (MAD) were used to com-
pare the performance of thesemodels as follows:

= - å -
å -
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where Ym is modeled yield, YO is observed yield, ȲO is
the mean of the observed yield and n is the number of
the observations. EF varies between -¥ to 1; EF=1
represent the perfect match between modeled and
observed data, whereas <EF 0 indicates an unsatis-
factory model performance. Biochar properties were
produced from common biomass feedstock materials
such as corn (C), soybean (S), switchgrass (G) and
hardwood (W) using both fast (F) and slow (S)
pyrolysis engineering (hereafter designated as CS, CF,
GS, SF, andWS). Details on biochars properties can be
found in table 1.

Table 1.Chemical properties of biochar types used in this study. The pyrolysis temperature is 500 °C for all biochar types. Slowpyrolysis is
used for biochar from switchgrass, and hardwood. For comparative purposes, we are reporting slow and fast pyrolysis properties for biochar
derived from corn stover.

Feedstock pH C (%) N (%) Ash (%) CN (Molar)

Switchgrass (GS) 9.9 71.0 0.88 15.2 94.1

Corn, slow pyrolysis (CS) 9.9 69.8 1.25 9.1 65.4

Corn, fast pyrolysis (CF) 8.4 52.4 0.46 37.0 134.4

Soybeans, fast pyrolysis (SF) 9.3 53.1 0.63 56.9 98.3

Hardwood (WS) 7.0 77.6 0.53 7.0 169.2
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The final BN model was then projected onto all
cultivated lands in the US based on the 2016 Cropland
Data Layer (CDL) with 30 m×30 m resolution
[31, 32] using the Gridded Soil Survey Geographic
(gSSURGO) [33] database for the five biochar
types (table 1) and two application rates, i.e. 5 and
15Mg ha−1. The gSSURGO database provides a wide
range of soil properties in 10 m×10 m resolution
including all the variables required for ourmodel [34].
A pixel in the map is considered cultivated if it is iden-
tified as cultivated in at least two out of the five years of
CDL data. The gSSURGO database includes the het-
erogeneity of soil properties (as different compart-
ments) for each pixel. In the current study, the most
representative soil type was used to extract the basic
soil properties.

3. Results

3.1. Analyzing the literature data
The estimated average RR to biochar showed a 12%
increase for all studies in our database. A large
variability in RR was also observed, ranging from
−24.4% to 98%, with the interquartile range ranging
from 0 to 21% (figure 1). Among all soil properties,
clay content, SOC, pH and CEC showed a significant
negative correlation with RR, while sand and silt
content were positively correlated with RR. Yield
response was invariant with nitrogen application rate,
biochar ash content, and biochar pH. The HPT,
biochar N, and C:N ratio showed a significant negative
correlation with RR. Higher biochar C content was
significantly correlated with a higher RR (figure 1). A
linearmodel analysis revealed aminor (not significant)
association between feedstock and crop type with RR
while no direct association was found between

thermochemical technology and RR. Note that we do
not make any assumptions about the functional form
of yield response to biochar application. The model
predicts that the biochar application rate has a
diminishing marginal effect on the yield response, i.e.
the yield effect is higher with low biochar application
rates andflattens out at higher application rates.

3.2. Large-spatial scalemodeling
We compared our BN model and the only available
statistical model for explaining the heterogeneity in
yield response to soil and biochar properties [2]. The
authors of that study used a generalized additivemodel
(GAM) with 162 parameters to develop smooth
functions mapping of independent variables to RR. In
more than 250 iterations, the BN model consistently
outperformed the GAM; as the BN model average EF
and MAD values were 0.23 and 0.10, respectively,
compared to −1.96 and 0.18 for the GAM. Negative
EF implies that the observedmean is a better predictor
than themodel; and the positive average EF proves the
merit of the BN and indicates that it can be used to
explore different scenarios of soil and biochar proper-
ties within the scope of the training dataset. Given the
proficiency of the BNmodel, spatially explicit analysis
of response to biochar was explored for cropland in
the US under different biochar scenarios. Figure 2
shows the estimated probability, magnitude, and
expected yield increase for hardwood biochar and 15
Mg ha−1 application rate scenarios. We focus on
locations that have a positive expected yield increase
because farmer’s will not apply biochar if the expected
yield change is negative. This assumes that the only
incentive for farmers to apply biochar is the yield
increase.

Figure 1. Left: estimated density plot of RRwith the dotted red line representing themean and the solid red line representing the
threshold for no yield response to biochar application. Right: correlationmatrix plot for RRwith biochar properties: Biochar
pH (BpH), highest pyrolysis temperature (HPT), biochar carbon (BC), BN: biochar nitrogen (BN), biochar ash (BA), and biochar C:N
ration (BCN).
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Regions known to have high soil quality (e.g. Des
Moines lobe in north central Iowa) showed a low
probability of having a yield increase under all biochar
scenarios. Our model indicates a high probability of a
positive RR in areas with highly weathered soils (e.g.
Eastern half of San Joaquin valley in California). Yield
response was predicted to be the lowest in areas with
very high SOC, CEC, or soil pH such as those found in
north Texas andMinnesota (figure 2).

Our results show the highest increase in expected
yields of 6.43% for biochar derived from hardwood
with an application rate of 15 Mg ha−1. The lowest
increase increase of 4.69% was observed for bio-
char derived from soybeans at an application rate of
5 Mg ha−1. Assuming farmers with the highest expec-
ted yield increase are the first to apply biochar to the
field, then minimum yield increases ranging from
8.8% (soybeans biochar at 5Mg ha−1) to 11.4% (hard-
wood biochar 15Mg ha−1) are necessary to cover 10%
of crop area. A minimum yield increases ranging from
6.1% (switchgrass biochar at 5 Mg ha−1) to 7.9%
(hardwood biochar 15Mg ha−1) are necessary to cover
25%of crop area.

We estimated the total area where a 75% (or
higher) probability of yield increase is expected for
each scenario as well as areas where this is expected to
be lower than 25%. This helped us identify the most
and least responsive regions to biochar applications
across the United States. Total high probability areas
for biochar application range from 8.4% to 30%
of total cropland in the United States. The slow pyr-
olysis hardwood biochar with an application rate of

15 Mg ha−1 was the scenario with the largest high
probability area with 39.7 Mha, whereas fast pyrolysis
soybean biochar with an application rate of 5 Mg ha−1

resulted in the lowest high probability area with
11.2 million ha. In general, for similar application
rates, biochar produced from hardwood and corn
stover resulted in larger responsive areas than switch-
grass, while fast pyrolysis soybean biochar showed the
lowest response. In low-quality soils, the higher appli-
cation rate (15 Mg ha−1) resulted in a higher prob-
ability of a yield increase, whereas high quality soils
showed no response to application rate.

We selected the Central Valley of California to
assess the model’s response to different soil properties
under the slow pyrolysis from corn stover scenario
with an application rate of 15 Mg ha−1. The Central
Valley is an agricultural region drained by the Sacra-
mento and San Joaquin rivers. It is about 82 kilometers
wide and extends 600 km northwest from the Teha-
chapi Mountains to Redding. The southern part of the
valley, also known as San Joaquin valley, is well-known
for having highly variable alluvial soils ranging from
very acidic-low organic matter soils to very alkaline-
high organic matter soils. The BN model successfully
captured the essence of our general understanding of
crop yield response to biochar on high and low-quality
soils. Yield response was the weakest in west side of the
San Joaquin valley, which is dominated by soils with
high clay, pH, CEC, and organic matter (figure 3). On
the other hand, the old, highly weathered soils on the
east side of the valley, which have low organic matter,
CEC, and pH, showed the greatest response to biochar

20% - 45%
45% - 55%
55% - 65%

70% - 75%
75% - 85%
85% - 95%

65% - 70%

337.5 675 1,350 Kilometers0

500 1,000 2,000 Kilometers0

>20 %
15 %
10 %
8 %
5 %
< 5 %

>20 %
5 %
0 %
-2 %
-5 %
< -5 % 500 1,000 2,000 Kilometers0

EYmRR

pRR

Figure 2.Estimated probability (pRR), response ratio (mRR), and expected yield (EY) increase for biochar derived fromhardwood
and an application rate of 15Mgha−1 (WS15).
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applications. The model’s response was not attributed
to just one variable, as all soil properties contributed to
the estimation of yield response (figure 3). The total
area with high probability of yield response to biochar
application varied from 0.01 Mha for fast pyrolysis
soybean biochar (5 Mg ha−1) to 0.6 Mha for slow pyr-
olysis hardwood biochar (15 Mg ha−1) which is
approximately 1% and 15% of total cropland in the
Central Valley, respectively.

3.3. Economic aspects of biochar application
There are various economic aspects of biochar appli-
cation such as expected revenue from applying bio-
char, cost of biochar application, commodity price
effects of biochar-induced yield increases in the long-
run, or potential revenue from the provision of

environmental services (e.g. increased carbon seques-
tration and/or reduction in nitrogen leaching). For this
case study, we focus only on the increase in revenue at
the county level and the long-term effects on commod-
ity prices. The differences in the expected yield increase
between the 5 Mg ha−1 and the 15 Mg ha−1 biochar
application rate is not sufficient to justify the higher
application rate and thus, we focus on the lower rate.
We assume that the application of biochar occurs in the
first year and lasts for the remainder of the projection
period, i.e., 10 and20 years.

To determine the farmers’ willingness to pay per
ton of biochar, we calculate the net present value
(NPV) of the additional revenue triggered by the
expected increase in yield over a period of 10 and 20
years (figure 4). Table 2 shows the crop area covered

Figure 3. Spatial variation of soil properties and probability of a yield increase forWS15 scenario in theCentral valley of California.
SOM: soil organicmatter; CEC: cation exchange capacity; P(RR>0): Probability of finding positive yield response to biochar
application.

Figure 4.Net present value of expected additional revenue ($ ha−1) frombiochar-induced yield increase over 20 years per ton of
biochar applied for the scenario CS5. Based on an assumed discount rate of 5%, yield projections (2016–2035), and long-termprice
projections for corn, soybeans, andwheat [35]. The results are similar for the scenario SF5.

Table 2.Area (inmillion ha) coveredwith biochar forwillingness-to-pay amounts of
$200, $250, and $300 and a 10 and 20 years time horizon.

10 Years 20 Years

Corn Soybeans Wheat Corn Soybeans Wheat

$200 1.72 0.13 0.02 15.69 7.16 0.68

$250 0.36 0.00 0.00 8.43 2.48 0.20

$300 0.08 0.00 0.00 3.56 0.72 0.04
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under three different biochar prices over 10 and 20
years. If the yield increase due to biochar is limited to
10 years, the crop area covered is much smaller
because the timeframe to recuperate the initial cost is
shorter. Because we calculated the NPV per ton of bio-
char applied, the values in figure 4 represent farmers’
willingness to pay per ton of biochar. The highest NPV
is observed for corn followed by soybeans and wheat.
The highest revenue increases are observed in the
southeast for corn and the east for soybeans. Note that
those areas do not coincide with large corn and soy-
bean acreage. For wheat and soybeans, the revenue
gains are moremoderate compared to corn suggesting
that the best use of biochar is its application to
corn area.

Large-scale application of biochar on US agri-
cultural land will have long-term commodity price
effects because the increase in supply will decrease pri-
ces. The decrease in commodity prices from the expec-
ted yield increase is about 7.5% and 7.6% for soybeans
and corn, respectively and 6.3% for wheat based on an
economic simulation model for US land-use change
[36, 37]. An increase in commodity prices is observed
when biochar-induced yield increase is compensated
by land being taken out of food and feed crop produc-
tion. At a biomass price of approximately $70 per dry
ton ($4 GJ−1), we see an average increase in corn, soy-
bean, and wheat prices of 6.3%, 10%, and 15.8%,
respectively. At a biomass price of $4 GJ−1, our model
estimates a biomass production of 117–119 million
tons per year from both, corn stover and switchgrass
under a low biomass production cost scenario and
87–89million tons at a biomass price of $5GJ−1 under
high biomass production cost. The effect on commod-
ity prices of biochar-induced yield increases is spec-
ulative but highlights one additional aspect of biochar
application that can become important under large-
scale deployment.

There is a wide range of biochar prices which is the
reason why we report willingness-to-pay to avoid any
cost assumptions. The biochar price is assumed to
range from $87 to $351 permetric ton for farmers [38]
but small scale manufacturing costs are estimated to
be closer to $500 permetric ton [39].

4.Discussion

In contrast to other researchers [11, 18, 20]who found
the greatest effect of biochar on coarse texture soils, we
did not find a significant correlation between RR and
sand content. Hence, our results are similar to those in
the original database [2] and indicate a negative
correlation with clay, SOC, soil pH, and CEC. That is,
soils with lower values of those soil properties show a
higher probability of yield increase after biochar
application. For example, the pH of an acidic soil will
rise following biochar application which likely results
in increased microbial activity [22, 40]. This increases

nutrient availability [18, 41] and reduces the mobility
of toxic elements [42]. As a second example, biochar
has a high capacity to retain nutrients and water and
therefore there is a higher probability that biochar will
help increase nutrient and water availability to crops
grown in soils with low activity clays.

In contrast to the findings of [2, 18], we find evi-
dence suggesting an association between RR and bio-
char properties such as C, N content, and C:N ratio.
This might be due to the increase in total number of
observations in our database which strengthened weak
associations. HPT was closely associated with biochar
C and C:N showing a negative correlation with RR,
meaning that the lower the HPT the higher the C con-
tent in biochar and the higher the probability of a yield
increase.

It was found that biochar from fast pyrolysis soy-
beans resulted in less area with a high probability of a
positive response to biochar regardless of application
rate, compared to other types of biochar. The reason
for this difference in performance of biochars lies
either in feedstock material or thermochemical pro-
cess. Given that the model is only weakly sensitive to
biochar ash content, the lower C content of the SFmay
have been the dominant factor influencing the small
crop yield response to the SF biochar. Given that no
additional N fertilizer was assumed to accompany bio-
char applications in our simulations, the relative sizes
of the labile C pool in the biochar and the inorganic N
pool in the soil are critical factors influencing N avail-
ability to crops andmay cause large differences in crop
yields for different types of biochar. The large variation
in measured crop yield responses [8, 18, 19] and the
probability of crop yield responses predicted by our
model for different scenarios shows the importance of
optimizing the selection of specific biochar types,
application rates and management for achieving high
probability of a positive crop yield increase.

Examining the model’s behavior revealed that
crop yield response to biochar was dominated by soil
properties and that increases in biochar application
rate resulted in higher probability of crop yield increa-
ses for soils with lower quality. The increase in prob-
ability is not sufficient to compensate for the
additional cost of the higher application rate. In soils
with PP<0.25 (mostly high quality soils) there was
no direct association between biochar application rate
and crop yield response. Other research has also not
found a clear relationship between productivity and
application rate although they did not differentiate
based on soil quality [18, 19].

Crop yields are strongly influenced by weather dur-
ing the growing season and yield responses to biochar
applications are expected to be strongly influenced by
complex weather×biochar×soil×crop×manage-
ment interactions. Therefore, the estimated yield increa-
ses, as a result of biochar application, predicted by our
model are long-term (5–10 years) averages, which are
attributed to improvements in soil physical and
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chemical properties. This is where other researchers
have estimated a much longer time period for the bio-
char effect [43]. Our modeling approach is not appro-
priate the address persistence of biochar as a response
variable/output but should persistence should be
addressed in future research.

The BN developed in this study is computationally
fast and accurate enough to be used for large scale
modeling, nonetheless, our results have several
caveats. For example, our understanding suggests that
various management practices (such as residual
removal, increases in N fertilization rates, etc), soil
properties (such as inorganic N available in the soil),
and biochar properties (such the size of labile C and N
pools) are potential drivers of crop yield responses that
are not explicitly defined in the model. Adequate data
is currently unavailable in the literature to cover all
possible soil-biochar interactions, and therefore the
model focuses on available information. The inference
domain of themodels output is limited to the extent of
the training dataset. However ourmodel paves the way
for the use ofmore computationally intensive process-
based crop models by identifying regions, soil types,
and biochar types with high and low probability of
crop yield response.

Assuming a carbon sequestration rate of
0.59 Mg ha−1 yr−1 [43], we find that expected yield
increases of 5.3%–5.9% would result in a biochar cov-
erage of 50% of US cropland and resulting sequestra-
tion of 66.0–77.5 million Mg yr−1 or 0.57%–0.67% of
US greenhouse gas emissions in 2016 [44].

A one-time application of 5 or 15Mg ha−1 was the
only option considered here; in the future other man-
agement options, such as annual co-applications of
biochar with fertilizer, may need to be considered.
Although the results of this study are not directly
pertinent, the pattern of responsive soils identified
are likely to be similar under different application sce-
narios. Future research may open up different path-
ways of biochar use that do not have to apply 5 or
15 Mg ha−1 of biochar but a lower amount (e.g. when
used as part of a composite fertilizer) which would
change the economics and very likely also the range of
soils where it can be applied. If smaller amounts of
biochar as part of a composite fertilizer can increase
yields, it may even prompt farmers or farming regions
to get their own pyrolysis unit, use the heat for green-
houses and the biochar for producing carbon fertili-
zers. Farmers may start to plant say hedgerows to get
their own biochar at lower costs and create carbon
credits while doing so, depending on the political deci-
sions for future land use changes andCO2 prices.

More complicated soil properties such as land-
scape properties were not considered in our model
because not enough data in the literature would allow
us to extract and train the model. Given that there are
not sufficient studies on biochar effects on crop yield,
explicit landscape position, and ‘productivity index,’
we do not think it is plausible to develop a successful

model linking land capabilities with biochar effect on
crop yield at this point. Our hope is that inherent soil
productivity (which is related to landscape position) is
captured by other variables which are available in the
database (SOC, sand, silt, clay content, CEC and
soil pH).
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