
Omnivariate Rule Induction Using
a Novel Pairwise Statistical Test

Olcay Taner Yildiz

Abstract—Rule learning algorithms, for example, RIPPER, induces univariate rules, that is, a propositional condition in a rule uses only

one feature. In this paper, we propose an omnivariate induction of rules where under each condition, both a univariate and a

multivariate condition are trained, and the best is chosen according to a novel statistical test. This paper has three main contributions:

First, we propose a novel statistical test, the combined 5� 2 cv t test, to compare two classifiers, which is a variant of the 5� 2 cv t test

and give the connections to other tests as 5� 2 cv F test and k-fold paired t test. Second, we propose a multivariate version of RIPPER,

where support vector machine with linear kernel is used to find multivariate linear conditions. Third, we propose an omnivariate version

of RIPPER, where the model selection is done via the combined 5� 2 cv t test. Our results indicate that 1) the combined 5� 2 cv t test

has higher power (lower type II error), lower type I error, and higher replicability compared to the 5� 2 cv t test, 2) omnivariate rules are

better in that they choose whichever condition is more accurate, selecting the right model automatically and separately for each

condition in a rule.

Index Terms—Rule induction, model selection, statistical tests, support vector machines

Ç

1 INTRODUCTION

A rule contains a conjunction of propositions and a class
code that is the label assigned to an instance that is

covered by the rule. An example rule containing two
propositions for class C2 is

IF ðx2 ¼ ‘red’Þ AND ðx1 < 1:5Þ THEN C2: ð1Þ

The propositions are of the form xi ¼ v, xi < � or xi � �,
depending on, respectively, whether the input feature xi is
discrete or numeric (Rules can also be extended from
propositions to the first-order case, but this is beyond the
scope of this paper). A rule set is an ordered list of such
rules. A test instance is classified by sequentially checking
rules in a rule set. The first rule that covers the test instance
assigns its class to the instance.

Rule induction algorithms have a number of desirable
properties:

1. For each class Ci, there is a rule set in conjunctive
normal form. Each rule set merges rules with ORs,
and each rule consists of conditions merged via
ANDs. Such rule sets are easy to understand,
allowing knowledge extraction and validation by
application experts.

2. These methods are nonparametric in that they
assume no a priori form on the model or class
densities and fit their complexity to that of data.

3. They learn fast and can be used on very large data
sets with a large number of instances.

4. They do their own feature extraction/dimensionality
reduction and can be used on data sets with a large
number of features. For an excellent review of rule
induction algorithms, see [1].

Because of these reasons, rule induction algorithms are
more and more frequently used in many data mining and
pattern recognition applications and are preferred over
other methods like artificial neural networks. Popular rule
induction algorithms are C4.5RULES [2], PART [3], CN2 [4],
and RIPPER [5]. C4.5RULES generates a decision tree and
then converts it to a set of rules by writing each path from
the root to a leaf as a rule; PART grows a partial decision
tree and generates a single rule from the best performing
leaf; RIPPER and CN2 directly generate a set of rules. We did
a survey on the separate-and-conquer rule learning algo-
rithms in the literature, which will be given in Section 2.1.

A rule as in (1) is univariate in that conditions in the rule
use only one feature. As such, each condition defines an
axis-aligned split (e.g., x1 < 1:5 versus x1 � 1:5) and a rule
that is a conjunction of such conditions define hyperrectan-
gles in the input space. It is obvious that if the underlying
class discriminant is not axis aligned, then univariate
conditions will not be appropriate. We can define multi-
variate conditions where several features are used to define
a condition. For example, a multivariate linear condition is
of the form:

w1x1 þ w2x2 þ � � � þ wdxd þ w0 < 0; ð2Þ

for suitable values of wj; j ¼ 0; . . . ; d. The univariate
condition is a special case, where one of wj; j ¼ 1; . . . ; d
is 1, and all others are 0. This possibility of generalizing
from univariate to multivariate nodes has been previously
noticed for decision trees, and tree induction methods that
use multivariate decision nodes have been proposed [6],
[7], [8], [9]. Details of these approaches will be given in
Section 2.2.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013 2105

. The author is with the Department of Computer Engineering, Işik
University, P.K. TR-34980 Sile, Istanbul, Turkey.
E-mail: olcaytaner@isikun.edu.tr.

Manuscript received 9 June 2011; revised 7 Jan. 2012; accepted 21 July 2012;
published online 13 Aug. 2012.
Recommended for acceptance by Y. Chen.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2011-06-0337.
Digital Object Identifier no. 10.1109/TKDE.2012.155.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

Although multivariate nodes have been used in decision

trees nearly for three decades, learning multivariate rules

directly from data is rare. Our first contribution is the

proposal of the multivariate version of RIPPER namely

R.MULTI. There are three main differences between

R.MULTI and RIPPER:

. R.MULTI learns rules containing only multivariate
linear conditions, which are in the form of (2),
whereas RIPPER just contains univariate conditions.

. R.MULTI extracts multivariate linear conditions via
linear support vector machine (SVM), whereas
RIPPER explores the univariate feature space
exhaustively.

. R.MULTI uses cross validation (cv) for model
selection, whereas RIPPER uses minimum descrip-
tion length (MDL).

Our second contribution is the proposal of a new test, the

combined 5� 2 cv t test, which is a one-sided variant of

the 5� 2 cv t test proposed by Dietterich [10]. We also give

the theoretic connections to other tests such as 5� 2 cv F

test and k-fold paired t test. The 5� 2 cv t test uses only the

difference of the first fold error values of the algorithms,

and this is not robust due to the variance in folds. We

replace this with a statistic that uses all 10 differences of

error values and is, therefore, more robust. The combined

5� 2 cv F test uses square of the differences of error values

and cannot be used as a one-sided test.
Previously, omnivariate decision trees (ODTs) have been

proposed, where at each decision node, univariate and

multivariate candidate nodes are trained, and the more

accurate, as chosen by a statistical test, is used [11]. Our

third and main contribution is the combination of the

previous two contributions into a single algorithm, where

we propose an omnivariate version of rule learning,

R.OMNI, in which conditions may be univariate or multi-

variate, and the more accurate is chosen by the combined

5� 2 cv t test. Although one can advocate that using the

combined 5� 2 cv F test may be enough for model

selection, experimental results on 54 data sets show that

R.OMNI using the proposed combined 5� 2 cv t test

generates simpler and as accurate rule sets compared to

R.OMNI that uses the combined 5� 2 cv F test.
Fig. 1 shows example rule sets generated by R.UNI,

R.MULTI, and R.OMNI algorithms for Iris data set. In this

data set, R.UNI and R.MULTI generate rules containing only

univariate and multivariate conditions, respectively. On the

other hand, R.OMNI matches the complexity of a condition

with the complexity of the subproblem defined by the data

training the decision and generates two rules: one with a

univariate and the other with a multivariate condition.
The paper is organized as follows: In Section 2, we

review rule induction approaches. We derive our proposed

combined 5� 2 cv t test and discuss its connections to other

tests in Section 3. In Sections 4 and 5, we propose our novel

multivariate R.MULTI and omnivariate R.OMNI rule induc-

tion methods. We give the experimental results in Section 6

and conclude in Section 7.

2 RULE INDUCTION

There are two main groups of rule learning algorithms.
Separate-and-conquer algorithms and divide-and-conquer
algorithms. Separate-and-conquer algorithms first find the
best rule that explains part of the training data. After
separating the examples those are covered by this rule, the
algorithms conquer remaining data by finding next best
rules recursively. Consequently, previously learned rules
directly influence the data of the other rules.

Divide-and-conquer algorithms greedily find the split
that best separates data in terms of some predefined
impurity measure such as information gain, entropy, Gini
index, and so on. After dividing examples according to the
best split, the algorithms conquer each part of the data by
finding next best splits recursively. In this case, previously
learned splits in the parent nodes directly influence the data
of the descendant nodes.

2.1 Separate-and-Conquer Approach

2.1.1 Hill-Climbing Approach

PRISM [12] is one of the oldest rule induction techniques,
which uses hill climbing in learning rules. It starts with an
empty rule and adds conditions as long as the rule covers
negative examples. The algorithm compares possible
refinements with the purity measure �log p

pþn . PREPEND
[13] puts the new learned rule before the previously learned
rules. The logic behind is that general rules will be learned
first and if we put these rules at the end of the list, they will
also cover exceptions.

The two previous algorithms do not have any pruning
step. Since hill climbing is a greedy search method, pruning
the rule set may improve the performance. For this reason,
several hill-climbing algorithms do use pruning. REP [14]
prunes the rule set by deleting the last condition in a rule, I-
REP [15] (predecessor of RIPPER) prunes the rule set
starting with the first condition in a rule, GROW [16]
deletes a final sequence of conditions, SWAP-1 [17] finds

2106 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

Fig. 1. Rule sets generated by R.UNI, R.MULTI, and R.OMNI algorithms
for Iris. Rules are ordered, and a test instance is classified by the first
rule it matches. There is a default class if no rule covers an instance. In
this simple data set, each rule contains only one condition.

the best replacement for a condition. Like the postpruning
in the decision tree induction, these algorithms first find the
rule set that covers all positive examples in the training set,
which overfit the training data. Then, they prune the rule
set using another set, prune set.

RIPPER (R.UNI) learns rules from scratch starting from an
empty rule set. It has two phases: In the first phase, it builds
an initial set of rules, one at a time, and in the second phase,
it optimizes the rule set m times, typically twice [5].

In the first phase, RIPPER learns rules one by one, where
rules are added to a rule set to minimize the total
description length. First, propositional conditions are added
one at a time to a rule, at each step choosing the condition
that maximizes the information gain. Choosing the best is
done exhaustively by searching all possible split points. The
rule is then pruned to alleviate overfitting. Conditions are
removed one by one, where each time the condition that
mostly increases a rule value metric (based on the accuracy
on the prune set) is selected for removal. In RIPPER, one
stops removing conditions when the rule value metric
cannot be increased further.

In the second phase, rules in the rule set are optimized.
Two alternatives are grown for each rule. The first
candidate, the replacement rule, is grown starting with an
empty rule, whereas the second candidate, the revision rule,
is grown starting with the current rule. These two rules and
the original rule are compared, and the one with the
smallest description length is selected and put in place of
the original rule.

JOJO [18] and SWAP-1 [17] are bidirectional hill-
climbing rule induction algorithms, where they not only
allow adding conditions but also allow removing conditions
from a rule. SWAP-1 checks if a new learned condition can
be dropped or can be replaced by a new condition to
improve the rule.

PN-RULE [19] claim that existing sequential covering
algorithms try to achieve maximum precision for each
condition, which causes the rule set to be unsuccessful for
the rare classes. This is due to the fact that usually, rare
classes are considered as false positives to the general rules.
They use a two-phase design to overcome this problem,
where in the first phase (P-phase) they predict the presence
of the target class, and in the second phase (N-phase), they
predict the absence of the target class.

DATASQUEEZER [20] is one of the newest rule learning
algorithms that performs greedy hill-climbing search. The
main characteristics of DATASQUEEZER are 1) data
reduction is performed by using the prototypical concept
learning before generating rules (based on FINDS algorithm
in [21]); 2) it exhibits log-linear asymptotic complexity with
the size of training data and, therefore, is as fast as other
competitive rule learners.

2.1.2 Beam Search

AQ [22] is the predecessor of all rule induction systems. AQ
and some other algorithms as CN2 [23], POSEIDON [24],
BEXA [25] use beam search as top down to induce rules from
most general to most specific manner. On the other hand,
DLG [26] and LERILS [27] use beam search as bottom up to
induce rules from most specific to most general manner.

2.1.3 Best First Approach

Best first search can be seen as a beam-search technique

with an infinite beam size. ML-SMART [28] used that fact to

generate a set of candidate rules. Since the number of

alternative rules can grow exponentially, ML-SMART uses

pruning heuristics to remove unpromising rules.
PROGOL [29] is also a best first rule induction algorithm

working top-down manner. PROGOL makes its best first

search according to the A� technique [30]. According to the

A� technique, each rule have its score as the sum of

fðnÞ þ gðnÞ. f(n) is the performance of the rule, which is

calculated as the number of positive examples covered

minus the number of negative examples covered minus the

length of the rule. g(n) is the heuristic that how the rule will

behave if it was completed. PROGOL implements g(n) by

estimating the number of conditions required to complete

the rule.

2.1.4 Stochastic Approach

SFOIL [31] and MILP [32] used stochastic search to remove

local minima problem of hill climbing. When the hill-

climbing search reaches an optima (local optima), they

restart the search for best rule from other unexamined rule.
SIA [33] effectively uses genetic algorithm to generate

best rule set. SIA maintains a list of candidate rules as in

beam search called a generation of the genetic algorithm.

This generation produces children (new rules), by crossover

operations such as exchanging the conditions of the two

rules, by mutation as generating new rules for a parent rule.
More recently, ant colony optimization (ACO) has been

carried out for the extraction of rule-based classifiers. The

first application of ACO to the rule induction task is the ant-

miner algorithm [34]. Since then, several extensions and

modifications of this sequential covering algorithm have

been presented [35], [36].

2.1.5 Rough-Set Approach

The fuzzy-rough set (FRS) methodology is one of the widely

studied tool for reducing dimension and producing

classification systems. For example, Shen and Chouchoulas

[37] use the FRS methodology to reduce dimension and

build a rule-based classifier by extracting some fuzzy rules

from a perceptron network classifier in the reduced space.

On the other hand, there are many works that directly

generate rule base classifiers using the FRS approach. The

fuzzy-rough classification tree classifier [38] use fuzzy-

rough hybrids to measure the dependency of decision

attributes in the decision tree generation mechanism. Hu

et al. [39] discover fuzzy classification rules based on the

well-known Apriori algorithm.
Some of the classifiers have limitations such as working

only in discrete domain and, therefore, requiring a dis-

cretization step for numeric features [40], [41], or not

considering the theoretical properties of the lower and upper

approximations, such as topologic and algebraic properties

[42]. On the other hand, Zhao et al. [43] build a rule-based

classifier by using one generalized FRS model after propos-

ing a new concept named as “consistence degree.”

YILDIZ: OMNIVARIATE RULE INDUCTION USING A NOVEL PAIRWISE STATISTICAL TEST 2107

2.2 Divide-and-Conquer Approach

Friedman [44] is the first who used linear discriminant
analysis (LDA) for constructing decision trees. The algo-
rithm constructs binary univariate decision trees, where the
variable can be an original, transgenerated, or adaptive
variable. LDA is applied to construct the adaptive variable.

LTREE [45] constructs multivariate decision trees with
binary splits. Like Friedman’s approach, LTREE generates
new features using LDA and uses these extracted features
in the binary split. These extracted features can also be used
in the descendant nodes of the original node.

CART [6] finds the coefficients of the features using a
step-wise procedure, where in each step, one cycles through
the features x1; x2; . . . ; xd doing a search for an improved
linear combination split. Each instance is normalized by
centering each value of each feature at its median and then
dividing by its interquartile range.

OC1 [7] is an extension to the basic CART. A perturba-
tion vector is added to the discriminant once there is
convergence that is no improvement in the impurity. Such
perturbation helps CART to make conjugate jumps in the
discriminant hyper-space. Another extension is running
CART 20-50 times and selecting the best discriminant
according to the impurity measure.

In neural trees [46], at each node of the decision tree,
there is a neural network trained with its corresponding
data. Once the weights of the neural networks are found,
they can be used to channel the instance to the correct
branch. The nodes are binary; therefore, they propose to use
an heuristic to group K > 2 classes into two metagroups
before training the neural network.

FACT [47] creates a K-ary multivariate tree, where each
decision node can have can have K branches. Here, K
represents the number of classes in the data set. Contrary to
the binary trees, in FACT, each branch has its own
discriminant calculated using LDA, and an instance is
forwarded to the ith branch that minimizes expected risk.

QUEST [48] is an improved version of FACT and uses
binary splits instead of K-ary splits at each decision node.
Like neural trees, they need to group K > 2 classes into two
supergroups and propose to use two-means clustering for
this aim. QUEST also differs from FACT in the way that it
does not assume equal variances and uses the roots of the
quadratic equation (due to the equation in quadratic
discriminant analysis) as candidates for the split point.

In LDT [9], there are two optimization steps to find the
best multivariate split. In the inner optimization step, LDA
is used to separate two distinct groups of classes CL and CR
as much as possible. In the outer optimization problem,
LDT searches the best split of classes into two groups, CL
and CR.

In LMDT [8], with K classes, as in FACT, a node is
allowed to have K branches, and each branch has its own
discriminant. Linear discriminants are trained to minimize
the classification error, rather than an impurity measure.

Tibshirani and Hastie [49] propose a tree-based max-
imum margin classifier, where they search the line that
partitions the classes into two groups, that has the
maximum margin.

Bennett and Blue [50] investigate decision trees with

support vector classifiers at each node, but they do not

discuss adaptive construction of the tree topology, i.e., the

tradeoff between the overall tree complexity and the

complexity of support vector classifiers at each node

remains to be investigated.

3 PAIRWISE STATISTICAL TESTS

Let Xt
ij denote the Bernoulli random variable representing

the outcome of classifier i ¼ 1; . . . ; K on instance t ¼
1; . . . ; N of validation fold j ¼ 1; . . . ; L. Xt

ij ¼ 1 if the

outcome is error, and Xt
ij ¼ 0 if the outcome is correct. The

average error of learner i on fold j is then

Yij ¼
XN
t¼1

Xt
ij=N: ð3Þ

This corresponds to the misclassification error rate in

classification. Yij are the sum of independent and identically

distributed random variables (Xt
ij) and by the central limit

theorem are approximately normal distributed with mean

�i. For each learning algorithm i, the expected error is the

sample average mi (estimator of �i), which is calculated as

mi ¼
XL
j¼1

Yij=L: ð4Þ

In the following sections, we will give the derivations of

three well-known statistical tests, and our proposed test,

where all of them have the null hypothesis H0 : �1 ¼ �2.

3.1 5� 2 cv tt Test

Let Aj show the difference between the error values of the

two learners on fold j; so the difference between the error

values of the two learners on fold 1 of replication i is

Að2i�1Þ ¼ Y1ð2i�1Þ � Y2ð2i�1Þ and on fold 2 of replication i is

Að2iÞ ¼ Y1ð2iÞ � Y2ð2iÞ. s
2
i is the estimated variance of the

replication i:

s2
i ¼ ðAð2i�1Þ � ÂiÞ2 þ ðAð2iÞ � ÂiÞ2; ð5Þ

where Âi is the average of the differences on replication i:

Âi ¼
ðAð2i�1ÞþAð2iÞÞ

2 . Given that, s2
i will be

s2
i ¼

�
Að2i�1Þ �Að2iÞ

�
2

� �2

þ
�
Að2iÞ �Að2i�1Þ

�
2

� �2

¼
�
A2
ð2i�1Þ þA2

ð2iÞ
�

2
�Að2i�1ÞAð2iÞ:

ð6Þ

Under the null hypothesis that the two means are equal,

Aj=� is unit normal (Z), and assuming that Að2i�1Þ and Að2iÞ
are independent normals (two folds of replication i), s2

i =�
2

is chi-square distributed with one degree of freedom (X2
1).

Assuming also that the s2
i are independent

M ¼

X5

i¼1

s2
i

�2
¼

X10

i¼1

A2
i � 2

X5

i¼1

Að2i�1ÞAð2iÞ

2�2
ð7Þ

2108 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

is chi-square distributed with five degrees of freedom. We

know that if Z � Z and X � X2
n and if Z and X are

independent, then Z=
ffiffiffiffiffiffiffiffiffiffi
X=n

p
is t distributed with n degrees

of freedom. Then, the test statistic

t0d ¼
A1=�ffiffiffiffiffiffiffiffiffiffi
M=5

p ¼
ffiffiffiffiffi
10
p

A1ffiP10
i¼1 A

2
i � 2

P5
i¼1 Að2i�1ÞAð2iÞ

q ð8Þ

is t-distributed with five degrees of freedom. Since t2n � F1;n,

the test statistic

F 0d ¼
10A2

1P10
i¼1 A

2
i � 2

P5
i¼1 Að2i�1ÞAð2iÞ

ð9Þ

is F -distributed with one and five degrees of freedom.

Then, the null hypothesis is accepted with � level of

confidence if t0d 2 ð�t�=2;5; t�=2;5Þ or F 0d < F�;1;5 [10].

3.2 5� 2 cv FF Test

As explained above, under the null hypothesis that the two

means are equal, Aj=� is unit normal (Z), so their square

A2
j =�

2 is chi-square distributed with one degree of freedom.

Since the sum of n chi-square distributed variables is also

chi-square distributed, the sum of squares of differences

T ¼
P10

i¼1 A
2
i

�2
ð10Þ

is chi-square distributed with 10 degrees of freedom.

According to (7), sum of the variances of the differences,

M, is chi-square distributed with five degrees of freedom.

We know that if X � X2
m, Y � X2

n, and if X and Y are

independent, then the ratio X=m
Y =n is F -distributed with m

and n degrees of freedom. So, if we also assume that the

sum of squares of the differences and the sum of the

variances of the differences are independent of each other,

the test statistic

F 0a ¼
T=10

M=5
¼

P10
i¼1 A

2
iP10

i¼1 A
2
i � 2

P5
i¼1 Að2i�1ÞAð2iÞ

ð11Þ

is F -distributed with 10 and 5 degrees of freedom. Then, the

null hypothesis is accepted with � level of confidence if

F 0a < F�;10;5 [51].

3.3 kk-Fold Paired tt Test

We know that if a sample with k examples is normally

distributed, then

ffiffiffi
k
p
ðm� �Þ
S

ð12Þ

is t distributed with k� 1 degrees of freedom. Since there

are L normally distributed Ais (assumption) and we test

� ¼ 0,

t0k ¼
ffiffiffiffi
L
p �A

S
ð13Þ

is t distributed with L� 1 degrees of freedom, where �A and

S2 are defined as

�A ¼
PL

i¼1 Ai

L
ð14Þ

S2 ¼
PL

i¼1

�
Ai � �A

�2

L� 1

¼
PL

i¼1 A
2
i � 2

�PL
i;j¼1;i6¼j AiAj

�
=ðL� 1Þ

L
:

ð15Þ

If we put the values of �A and S in (13), we get the test
statistic (L ¼ 10)

t0k ¼
P10

i¼1 AiffiP10
i¼1 A

2
i � 2=9

P10
i;j¼1;i 6¼j AiAj

q : ð16Þ

Since t2n � F1;n, the test statistic

F 0k ¼
�P10

i¼1 Ai

�2

P10
i¼1 A

2
i � 2=9

P10
i;j¼1;i 6¼j AiAj

ð17Þ

is F -distributed with one and nine degrees of freedom.
Then, the null hypothesis is accepted with � level of
confidence if t0k 2 ð�t�=2;9; t�=2;9Þ or F 0k < F�;1;9.

3.4 Combined 5� 2 cv tt Test

In this section, we give the details of our proposed
combined 5� 2 cv t test. The motivation of our test is
like the motivation in [51], i.e., the 5� 2 cv t test uses A1 in
the numerator. This is arbitrary; actually, there are
10 possible Ai that can be placed there and one may notice
that depending on which one we use, the test sometimes
accepts and sometimes rejects. This is disturbing because
this depends on the order of folds and replications that
should not effect the test. As explained above, Alpaydin [51]
has previously used this to improve the 5� 2 cv t test and
proposes the 5� 2 cv F test that uses all 10 Ai. The
drawback of 5� 2 cv F test is that it uses square of the
differences of error values and cannot be used for a one-
sided test.

So, if Ai=� � Z, then �A (defined in (14)) is Nð0; 1=10Þ
and, therefore,

ffiffiffiffiffi
10
p

�A=� � Z. If we place �A instead of A1 in
(8), we get

t0y ¼
ffiffiffiffiffi
10
p

�Affiffiffiffiffiffiffiffiffiffi
M=5

p ¼
P10

i¼1 AiffiP10
i¼1 A

2
i � 2

P5
i¼1 Að2i�1ÞAð2iÞ

q ; ð18Þ

which is t distributed with five degrees of freedom. Since
t2n � F1;n, the test statistic

F 0y ¼
�P10

i¼1 Ai

�2

P10
i¼1 A

2
i � 2

P5
i¼1 Að2i�1ÞAð2iÞ

ð19Þ

is F -distributed with one and five degrees of freedom.
Then, the null hypothesis is accepted with � level of
confidence if t0y 2 ð�t�=2;5; t�=2;5Þ or F 0y < F�;1;5. We expect
this test to be more robust because it uses �A (the average of
10 Ai values) instead of one A1.

In general, when comparing two classifiers A and B, we
perform two one-sided tests, namely (�a � �b and �a � �b).
If one of them rejects, we can conclude that one has
significantly larger error rate than the other. For example, if
the test �a � �b is rejected, we can conclude that A has

YILDIZ: OMNIVARIATE RULE INDUCTION USING A NOVEL PAIRWISE STATISTICAL TEST 2109

larger error than B. If both tests accept, we can conclude
they have the same error rate. On the other hand, in two-
sided tests, one only tests for equality (�a ¼ �b), if the test
accepts, no problem, but if the test rejects, one cannot
statistically decide if A has lower error rate than B or B has
lower error rate than A; therefore, one cannot use two-sided
tests for decisions like that.

One tailed tests make it easier to reject the null
hypothesis when the alternative is true. A large sample,
two-sided, 0.05 level t test puts a probability of 0.025 in each
tail. It needs a t statistic of less than �1:96 to reject the null
hypothesis of no difference in means. A one-sided test puts
all of the probability into a single tail. It rejects the
hypothesis for values of t less than �1:645. Therefore, a
one-sided test is more likely to reject the null hypothesis
when the difference is in the expected direction, which
makes one-sided tests very attractive to machine learning
practitioners whose definition of success is having a
statistically significant result.

3.5 Discussion

If we compare the test statistic of our proposed test, F 0y, with
the test statistics of the other tests, F 0d (5� 2 cv t test), F 0k (k-
fold paired t test), and F 0a (5� 2 cv F test), we see

. F 0d > F 0y, when 10A2
1 > ð

P10
i¼1 AiÞ2, or A2

1 > 10 �A2,
that is, 5� 2 cv t test rejects more than the
combined 5� 2 cv t test, when A1 is significantly
larger (

ffiffiffiffiffi
10
p

times) than the mean of Ais. As
explained above, this makes 5� 2 cv t less robust
than our proposed the combined 5� 2 cv t test since
the result of the test depends on the order of folds
and replications.

. F 0a > F 0y, when
P10

i¼1 A
2
i > ð

P10
i¼1 AiÞ2, that is, 5� 2 cv

F test rejects more than the combined 5� 2 cv t test,
when the sum of squares is larger than the square of
sums. If the first classifier is better than the second in
half of the folds, and if the reverse is true for the
other half of the folds, F 0a will be far larger than F 0y,
and 5� 2 cv F test will reject the equality of
performances of those two classifiers, whereas the
combined 5� 2 cv t test accept it.

. F 0k > F 0y, when
P10

i6¼j AiAj=9 >
P5

i¼1 Að2i�1ÞAð2iÞ, that
is, k-fold paired t test rejects more than the combined
5� 2 cv t test, when the average of the products of
differences in k folds (of one replication) is larger
than the average of the products in two folds of the
five replications. For small samples, k-fold cv will
produce very small test sets, which in turn increase
variance and F 0k. Therefore, k-fold paired t test due
to its nature, may be more sensitive to outliers than
the combined 5� 2 cv t test.

4 MULTIVARIATE RULE INDUCTION (R.MULTI)

R.MULTI is the multivariate version of RIPPER where each
condition is a linear combination of the features, as in (2).
To get multivariate rules, one can first train a multivariate
tree and then write paths from the root to leaves as a set
of multivariate rules, as C4.5RULES does for univariate
trees. However, Cohen [5] has shown that learning rules

directly is faster and more accurate than learning a tree
and than converting it to rules—RIPPER is faster and
more accurate than C4.5RULES. We, therefore, opted for
learning multivariate rules directly and toward this aim,
we hereby propose a multivariate version of RIPPER

namely R.MULTI.

4.1 R.MULTI versus R.UNI

R.MULTI differs from original R.UNI in several respects:
First, because we take a weighted sum, discrete attributes
should be converted to a numeric form; this is done by 1-of-
L encoding by defining L dummy 0/1 variables for a
discrete attribute with L possible values.

Second, in training a multivariate linear decision, an
SVM with linear kernel is used to find the weight vector
ww ¼ ½w1; w2; . . . ; wd	T and the threshold w0 that best
separates the two classes. The details of finding ww and w0

will be explained in Section 4.2. We choose a linear SVM for
the following main reasons: 1) As far as our knowledge, a
linear SVM is one of the best learning algorithms to linearly
discriminate two classes, 2) SVM-based algorithms are
discriminant based, and therefore, there is no need to
estimate the class densities or the exact posterior probability
values as in Bayesian classifiers, and 3) SVM-based
algorithms are formulated as convex optimization pro-
blems, and there is a single optimum that we can solve
analytically. So, we are not bothered with heuristics for
learning rates as in other linear discriminants such as linear
perceptron or logistic regression.

Third, RIPPER uses MDL to check model complexity and
avoid overfitting, whereas R.MULTI uses cv as the model
selection method. This is done in two places: to stop adding
conditions to a rule, and to stop adding rules to the rule set.
The MDL calculation used in RIPPER cannot be generalized
to the multivariate case because of the combinatorial
number of possible hyperplanes that can be drawn [7].
We have, therefore, decided to use cv as the model selection
method in R.MULTI, instead of MDL. For this, at each stage,
we leave out one-third of the data set as validation set and
use the remaining two-thirds for actual training. We stop
adding a condition to a rule, or adding a rule to the rule set,
if the error on the validation set stops decreasing. Similarly,
in the optimization phase of R.MULTI, the two rules,
revision and replacement, and the original rule are
compared according to the error rate on the validation set,
and the one with the smallest validation error rate is
selected and put in place of the original rule.

4.2 Finding Best Multivariate Condition: Linear SVM

In SVM, the classification task is defined as a maximiza-
tion problem [52]. The distance from the separating
hyperplane to the instances closest to it on either side is
called margin, and the optimal separating hyperplane is
the one that maximizes the margin. For the nonseparable
case, we require

rt
�
wwTxxt þ w0

�
� 1� �t ð20Þ

for each data point xxt with output rt. If �t ¼ 0, the instance
is on the separating hyperplane. If 0 < �t < 1, the instance is
correctly classified but it is in the margin; otherwise, it is

2110 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

misclassified. Maximizing margin is equivalent to minimiz-
ing kwwk, and after adding penalty term (

P
t �
t) to the

objective function, we get the formulation

Lp ¼
1

2
kwwk2 þ C

X
t

�t

�
X
t

�t
�
rtðwwTxxt þ w0Þ � 1þ �t

�
�
X
t

�t�t;
ð21Þ

where �t and �t are Langrange multipliers, and C is the
penalty factor. When the quadratic problem is solved,
instances whose �t > 0 are called support vectors. ww is
calculated as the weighted sum of these support vectors

ww ¼
X
t

�txxt; ð22Þ

and the threshold w0 is calculated as

w0 ¼
1

N

X
t

rt � wwTxt; ð23Þ

where N is the sample size.

5 MODEL SELECTION IN RULE INDUCTION:
OMNIVARIATE RULE INDUCTION (R.OMNI)

The model selection problem in rule induction can be defined
as choosing the best model at each condition in a rule. In
approximating the real (unknown) discriminant with uni-
variate conditions, we are limited to a piecewise approxima-
tion using axis-aligned hyperplanes. With multivariate
linear conditions, we can use arbitrary hyperplanes and,
thus, approximate the discriminant better. The omnivariate
variant, R.OMNI, at each condition, trains and compares the
two possible conditions, univariate and linear multivariate,
and uses a statistical test to check for statistically significant
difference. Only if the test indicates that the multivariate
condition has significantly higher accuracy do we choose the
multivariate condition; otherwise, we choose the univariate
condition due to its simplicity.

Each condition type has a certain bias; using multivariate
linear condition, for example, we are assuming that the
input space can be divided using hyperplanes into localized
regions (volumes) where classes or groups of classes are
linearly separable. Using a rule with the same type of
conditions everywhere, we assume that the same bias is
appropriate in all cases. The omnivariate approach [11]
advocates the view that this assumption is not always
correct and that at each condition of the rule, which
corresponds to a different subproblem defined by the subset
of the training data reaching that condition, a different
model may be appropriate, and that the right model should
be found and used. For example, we expect that while
training the initial conditions in a rule (when we have more
data), a multivariate model may be used; but once we have
added a number of conditions, we have easier problems in
effectively smaller dimensional subspaces, and at the same
time, we have smaller training data and simple, for example,
univariate, splits may suffice and generalize better.

The major differences between the ODT algorithm [11]
and the omnivariate rule induction algorithm R.OMNI are
as follows:

. ODT generates decision trees using a divide-and-
conquer approach (Section 2.2), whereas R.OMNI

generates rule sets using a separate-and-conquer
approach (Section 2.1). Although decision trees can
be converted into rule sets, as Cohen has pointed in
[5], learning rules directly is both fast and accurate
than learning a tree and than converting it to rules.

. ODT uses LDA to find the splits in the multivariate
nodes, whereas R.OMNI uses a linear SVM to find
the splits in the multivariate conditions.

. ODT compares candidate models (univariate or
multivariate) using the combined 5� 2 cv F test,
whereas R.OMNI does it with the proposed com-
bined 5� 2 cv t test.

. ODT chooses between three candidate models
(univariate, multivariate linear, and multivariate
nonlinear), whereas R.OMNI chooses between two
candidate models (univariate and multivariate
linear).

The pseudocode for learning omnivariate rule set from
examples using cv is given in Fig. 2. We start learning from an
empty rule set (Line 2), and learn rule set for each classCi one
at a time. To do this, we sort the classes increasingly
according to prior probabilities (Line 3), and we try to
separate each class Cp (positives) from the remaining classes
Cpþ1; . . . ; CK (negatives) (Line 5). Rules are grown (Line 8),
pruned (Line 9) and added (Line 13) one by one to the rule
set. We stop adding rules when 1) the training error of the
rule is larger than 0.5 (Line 10) or 2) if there are no remaining
positive examples (Line 7). After learning a rule set, it is
optimized twice (Line 16) and pruned (Line 17). The
difference of R.OMNI from R.UNI occurs in two places: First,
the rule is grown and pruned with separate data sets called
grow set G and pruning set P . Second, the optimization and
simplification are done using a validation data set V .

The pseudocode for optimizing a rule set using cv is
given in Fig. 3. In the optimization phase, two alternatives
are grown for each rule (Line 2). The first candidate, the
replacement rule, is grown (Line 4) and pruned (Line 5)

YILDIZ: OMNIVARIATE RULE INDUCTION USING A NOVEL PAIRWISE STATISTICAL TEST 2111

Fig. 2. Pseudocode for learning an omnivariate rule set using cv.

starting with an empty rule, whereas the second candidate,
the revision rule, is grown (Line 6) and pruned (Line 7)
starting with the current rule. These two rules and the
original rule are compared, and the one with the smallest
error on the validation set V (Lines 10-13) is selected and
put in place of the original rule (Line 14).

The pseudocode for simplifying a rule set using cv is
given in Fig. 4. In simplifying the rule set, rules are pruned in
reverse order (Line 3). We prune a rule from the rule set if its
removal decrease the error on the validation setX (Lines 4-8).

The pseudocode for growing an omnivariate rule from
examples using a cv model selection technique is given in
Fig. 5. We start learning from an empty rule (Line 2) and
add conditions one by one. To add a condition, we train two
different candidate models, univariate model (Line 6) and
multivariate linear model (Line 7). We first generate
10 training and validation sets using 5� 2 fold cv (Line
4), and find the best model using the validation errors of the
models and the statistical test t (Lines 9-13). The idea is to
keep the architecture simple, unless the additional complex-
ity is justified by the significant decrease in error, and in
applying the test, we take complexity into account as
follows [53]: When comparing a univariate model with the
multivariate linear model, we test if the univariate model
has an expected error rate less than or equal to the expected
error of the multivariate linear model:

H0 : �uni � �multi versus H1 : �uni > �multi:

By assuming a prior preference of a univariate model to a
multivariate linear model, we would like to test whether it
is supported by the data, the hypothesis follows the prior
and is one sided. If the test does not reject, we favor the
univariate model: Either �uni < �multi, that is, the simpler
model indeed has less error, and we choose it because it is
more accurate; or, �uni ¼ �multi, and we prefer the simpler
model. The multivariate linear model is favored only if the
test rejects, i.e., when the additional complexity is justified
by the significant decrease in error and the test (data)
overrides our prior preference. That is, accuracy is checked
first and given equal accuracies, the simpler model is
favored. When we find the best condition (model), we add
the condition to the rule and remove examples covered by
that condition from the data set (Line 16). We stop adding

conditions to a rule when there are no negative examples in

the data set (Line 3).

6 EXPERIMENTS

6.1 Comparison of Pairwise Statistical Tests

6.1.1 Experimental Setup

The seven classification algorithms we use because of their

low time/space complexity are as follows:

1. max decides based on the prior class probability

without looking at the input. All test instances are

assigned to the class with the maximum prior. It is

not a learning algorithm in the usual sense, but any

plausible learning algorithm must have smaller error

rate than max; it is indeed surprising that max is

sometimes quite accurate.
2. mean is the nearest mean classifier that keeps the

mean vector for each class and assigns instance to
the class whose mean has the smallest euclidean

distance to the instance [54]. This corresponds to

assuming that classes are Gaussian distributed with

a shared covariance matrix whose diagonals are

equal and off diagonals are 0.
3. lda is the well-known linear classification algorithm.

2112 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

Fig. 3. Pseudocode for optimizing rule set RS on training set X and
validation set V .

Fig. 4. Pseudocode for simplifying rule set RS on data set X.

Fig. 5. Pseudocode for growing an omnivariate rule using data set X.

4. lnp linear perceptron with softmax outputs trained
by gradient-descent to minimize cross entropy.

5. RIPPER.
6. c45 is the archetypal decision tree method [2].
7. nn [55] is the 1-nearest neighbor classification

algorithm and uses the euclidean distance.

These classification algorithms are tested on 40 data sets
from the UCI machine learning repository [56]. Each data
set is resampled using 5� 2 cv [10] where twofold cv is
done five times (with stratification) and the roles swapped
at each fold to generate 10 training and testing folds.

6.1.2 One-Sided Pairwise Test Results

In the first part of our experiments, we compare our
proposed combined 5� 2 cv t test with the 5� 2 cv t test.
Toward this aim, we look at the performance of the tests in
comparing the expected error of two different algorithms.
We have seven different algorithms; therefore, we can make
21 different pairwise comparisons (max versus mean, max
versus lda; . . . ; c45 versus nn). For each pair, we test the one-
sided hypothesis H0 : �1 � �2, where �1 and �2 are the
expected error of the first and second algorithms, respec-
tively. This test is done on 40 data sets where for each data
set the rejection probability is calculated on 1,000 runs (of
5� 2 folds). As in [51], to compare the type I and II errors of
the statistical tests, for each data set and for each algorithm
pair, we calculate the normalized distance between the
expected error of the two algorithms:

z ¼ m1 �m2

ðs1 þ s2Þ=2
; ð24Þ

where m1 and m2 are the average expected error of the first
and second algorithms and s1 and s2 denote the standard
deviation of the error values of the first and second
algorithms on 1,000 runs. A small difference in expected
error result in a smaller z measure, which implies we have
similar algorithms and a rejection would be a type I error.
On the other hand, a large z measure denotes large
difference between expected error, and we expect larger
rejection rates for a test to have lower type II error (and
higher power). Since we have 40 data sets and 21 classifier
pairs, we have 840 different z value and rejection
probability pair for the two tests, and we plot these in
Fig. 6. For visualization purposes, we have also fitted a
function to the data of both tests. We see from the figure
that for z > 1:6, the 5� 2 cv t test rejects only 20 percent of
the cases whereas the combined 5� 2 cv t test rejects almost
95 percent of the cases, indicating that the combined test has
higher power (lower type II error). Similarly, when z < 0,
the combined test has a lower probability of reject
indicating that it has lower type I error.

Replicability of an experiment is a measure of how well
the outcome of the experiment can be reproduced [57].
When an experiment is repeated n times with different
randomizations of a given data set, the experiment is
consistent if its outcome is the same for all n experiments
and is almost consistent if its outcome is the same for all
n� 1 experiments. The replicability is defined as the
probability that two runs of the statistical test on the same
data set will produce the same outcome. Bouckaert and
Frank [57] estimated this probability as

Rðn; kÞ ¼ kðk� 1Þ þ ðn� kÞðn� k� 1Þ
nðn� 1Þ ; ð25Þ

where n denotes the number of experiments and k denotes
the number of times the test rejects the null hypothesis.

According to the one-sided test results, our proposed
combined 5� 2 cv t test (0.8928) has higher replicability
than the 5� 2 cv t test (0.8039).

6.1.3 Two-Sided Pairwise Test Results

In the second part of our experiments, we compare our
proposed combined 5� 2 cv t test with the three other tests
explained in this paper. Similar to Section 6.1.2, we look at
the performance of the tests in comparing the expected error
of two different algorithms. In this case, for each pair, we
test the two-sided hypothesis H0 : �1 ¼ �2, where �1 and
�2 are the expected error of the first and second algorithms,
respectively. We again have seven algorithms, 40 data sets,
1,000 runs making a total of 840,000 comparisons. To
compare the type I and II errors of the statistical tests, for
each data set and for each algorithm pair, we now calculate
the absolute normalized distance between the expected
error of the two algorithms:

z ¼ jm1 �m2j
ðs1 þ s2Þ=2

: ð26Þ

A large z measure denotes large difference between
expected error, and we expect larger rejection rates for a test
to have lower type II error (and higher power). We see from
Fig. 7 that for z > 2:1, the 5� 2 cv t test rejects only
20 percent and 5� 2 cv F test rejects only 30 percent of the
cases whereas the combined 5� 2 cv t test rejects almost
95 percent of the cases, indicating that the combined test has
higher power (lower type II error).

A small difference in expected error result in a smaller z
measure, which implies we have similar algorithms and a
rejection would be a type I error. We see from Fig. 7 that for
small z values (z � 0:3), 5� 2 cv F test has the lowest type I

YILDIZ: OMNIVARIATE RULE INDUCTION USING A NOVEL PAIRWISE STATISTICAL TEST 2113

Fig. 6. Comparison of type I and II errors of the combined 5� 2 cv t with
the 5� 2 cv t test on 40 classification problems. x-axis is z ¼ m1�m2

ðs1þs2Þ=2 ,
y-axis is the rejection probability of H0 : �1 � �2.

error, then comes the 5� 2 cv t test, and the combined test

has the highest type I error. Note that despite higher type I

error, only our proposed combined 5� 2 cv t test has the

tendency to reject the null hypothesis while the error

difference gets larger.
According to the two-sided test results, again our

proposed combined 5� 2 cv t test (0.8891) has the highest

replicability, followed by the 5� 2 cv F test (0.8674) and

5� 2 cv t test (0.8411) has the lowest replicability.

6.2 Comparison of Omnivariate Rule Induction with
Multivariate and Univariate Rule Induction

6.2.1 Experimental Setup

We use a total of 54 data sets from UCI [56] and Delve [58]
repositories. Our methodology in the division of training,
validation, and test sets is as follows: A data set is first
divided into two parts, with 1=3 as the test set, test, and 2=3

as the training set, train-all. The training set, train-all, is then
resampled using 2� 5 cv where fivefold cv is done two
times (with stratification) and the roles swapped at each
fold to generate 10 training and validation folds, trai;

vali; i ¼ 1; . . . ; 10. trai are used to learn the rule sets.
The optimization and simplification of the rule sets are
done using vali. The test set, test, is used to estimate the
generalization error of the rule sets.

We compare nine algorithms in the second part of our

experiments:

1. C45: C4.5 is the archetypal decision tree method [2].
2. CN2: CN2 rule learning algorithm.
3. PART: PART rule learning algorithm.
4. CART: Multivariate decision tree learning algorithm

using backfitting to find the discriminant at each
decision node.

5. LDT: Multivariate decision tree learning algorithm
using LDA to find the discriminant at each
decision node.

6. R.UNI: Ripper the proper, original univariate rule
induction algorithm.

7. R.MULTI: Our proposed multivariate rule induction
algorithm, where an SVM with linear kernel is used
to find multivariate linear conditions. We use the
LIBSVM 2.82 library that implements the linear SVM
[59]. We tune the regularization parameter C using
vali on each data set.

8. R.OMNI(F): Our proposed omnivariate rule induc-
tion algorithm, where combined 5� 2 cv F test is
used to compare univariate and multivariate candi-
date models for each decision condition.

9. R.OMNI(t): Our proposed omnivariate rule induc-
tion algorithm, where combined 5� 2 cv t test is
used to compare univariate and multivariate candi-
date models for each decision condition.

In our simulations, we saw that the optimization phase

should be repeated twice, also for the multivariate case, as

in RIPPER. These two optimization iterations do decrease

error rate and rule set size, but repeating it further does not

have such a drastic effect and does not justify the extra

training time.
Our comparison criteria are the generalization error of

the algorithms, the number of rules and the number of

conditions in those rules they generate, and the time

required to train the algorithm.
Since we have more than two algorithms, on each data

set, we cannot compare the average performances on

54 data sets and one needs to resort to nonparametric tests.

Friedman’s test and its posthoc Nemenyi’s test use ranks

instead of the absolute performances [60]. On each data set,

the performance values of the algorithms are sorted

from the best to the worst so that the best one gets the

rank of 1, the second 2, and so on, until we get to 9. We then

use nonparametric tests to check for significant difference in

average ranks over the 54 data sets.
According to Nemenyi’s test, two neighboring algorithms

lead to classifiers with significantly different performance

ranks at significance level � if the difference of their average

ranks is greater than or equal to the critical difference

CD ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

6M

r
; ð27Þ

where L is the number of algorithms, M is the number data

sets, and q� is the Studentized range statistic divided by
ffiffiffi
2
p

.

This allows us to find cliques of equally good subsets that

we can represent by underlining them.

6.2.2 Results

Table 1 shows the average and standard deviations of

expected error of rule sets produced by C45, CN2, PART,

CART, LDT, R.UNI, R.MULTI, R.OMNI(F), and R.OMNI(t)

algorithms. With respect to the expected error, R.MULTI is

better than both omnivariate algorithms that seem to be

similar and are better than R.UNI proper. The results of

the Nemenyi’s test on the expected error is given in Fig. 8a.

We see that there are three cliques: (R.OMNI(t), R.OMNI(F),

R.MULTI, LDT), (R.OMNI(t), R.OMNI(F), LDT, PART,

R.UNI, CART, C45), and (PART, CART, R.UNI, CN2, C45).

2114 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

Fig. 7. Comparison of type I and II errors of the combined 5� 2 cv t with
the 5� 2 cv t test and 5� 2 cv F test on 40 classification problems. x-
axis is z ¼ jm1�m2 j

ðs1þs2Þ=2 , y-axis is the rejection probability of H0 : �1 ¼ �2.

As we have explained in Section 4, a linear SVM is a
powerful classifier, so R.MULTI is better than R.UNI in
many data sets, with significant differences occurring
especially on discrete data sets such as balance, car, hayesroth,
and promoters. Some data sets are also inherently complex,
and in those data sets, again R.MULTI is significantly better
than R.UNI such as dermatology, ocr, optdigits, and tae.
Contrarily, on the handcrafted data set monks, R.UNI can
learn the optimal rules and is significantly better than
R.MULTI, which overfits for this case.

Although, in general, R.MULTI is more accurate than
R.UNI, there are also some other data sets, where R.UNI is

more accurate. This implies that it is worth using multi-
variate and/or rules in certain cases. We also see that
R.OMNI having both univariate and multivariate conditions
outperforms R.UNI on the same 12 data sets where R.MULTI

also outperforms R.UNI (balance, breast, car, german, hayesroth,
heart, ironosphere, optdigits, promoters, tae, vehicle, wine), and it
outperforms R.MULTI on four data sets where R.UNI also
outperforms R.MULTI (magic, satellite47, pageblock, ringnorm).
This shows that R.OMNI uses whichever type of condition is
more appropriate, selecting the right model appropriately.

The results of the Nemenyi’s test on the number of rules
and number of conditions are given in Figs. 8b and 8c,

YILDIZ: OMNIVARIATE RULE INDUCTION USING A NOVEL PAIRWISE STATISTICAL TEST 2115

TABLE 1
The Average and Standard Deviations of Expected Error of Rule Sets Produced by
C45, CN2, PART, CART, LDT, R.UNI, R.MULTI, R.OMNI(F), and R.OMNI(t) Algorithms

respectively. With respect to the rule set complexity, in
terms of number of rules, there are four cliques: (R.OMNI(t),
R.OMNI(F), R.MULTI), (R.OMNI(F), R.UNI), (R.UNI, LDT,
CART), and (CN2, C45, PART). In terms of number of
conditions, there are five cliques: (R.OMNI(t), R.OMNI(F),
R.MULTI), (R.OMNI(F), R.UNI), (R.UNI, LDT, CART),
(CART, CN2), and (CN2, C45, PART). This is mainly due
to the fact that multivariate conditions are more complex
than univariate conditions, and one multivariate condition
is equivalent to multiple univariate conditions. Usually,
R.MULTI generates significantly smaller rules on data sets
with discrete attributes. For example, on balance, R.UNI

generates on the average 4.0 rules whereas R.MULTI

generates 1.5; on mushroom, R.UNI generates 8.1 rules
compared to 1.1 rules of R.MULTI; and on tictactoe, R.UNI

generates 8.2 rules compared to R.MULTI’s 1.0.
Since R.OMNI uses a combined 5� 2 cv F or t test, it

requires 10 runs of univariate and multivariate condition
optimizations. Therefore, it is the slowest of the three
algorithms. R.UNI algorithm requires OðdNlogNÞ (sorting
N data for d features using Quicksort) to find the best
condition, whereas R.MULTI requires OðN3Þ (solving con-
vex optimization problem) to find the best condition.
Therefore, if d is significantly larger than N , R.MULTI is
faster than R.UNI; otherwise, R.UNI is faster than R.MULTI.
The result of Nemenyi’s test on the training time of the rule
sets produced by C45, CN2, PART, CART, LDT, R.UNI,
R.MULTI, R.OMNI(F), and R.OMNI(t) algorithms is shown in
Fig. 8d. Now, there are six cliques: starting with the fastest
univariate learners (C45, CN2, R.UNI), (CN2, R.UNI, PART),
(PART, LDT), continuing with the multivariate learners
(LDT, R.MULTI), (R.MULTI, R.OMNI(F), R.OMNI(t)), and the
slowest omnivariate learners with CART (R.OMNI(F),
R.OMNI(t), CART).

The number of times univariate and multivariate linear
models selected in rule sets produced by omnivariate
algorithms R.OMNI(F) and R.OMNI(t) are given in Table 2.
Also, the selection counts of those models as a function of
the position of a condition in a rule for R.OMNI(F) and
R.OMNI(t) algorithms are given in Fig. 9. In R.OMNI(F),
linear models are selected less than univariate models,
whereas in R.OMNI(t) univariate models are selected less

than the multivariate linear models. In 41 data sets out of
54 data sets, a linear model is chosen more than the
univariate model by R.OMNI(t). On the other hand, in 28
data sets out of 54 data sets, a univariate model is chosen
more than the linear model by R.OMNI(F).

The difference is mainly due to the nature of two
statistical tests. In Section 6.1.3, we showed that combined
5� 2 cv F test is more conservative than the combined
5� 2 cv t test. That is, combined 5� 2 cv t test rejects the null
hypothesis that univariate model and multivariate model
have the same expected error more than the combined
5� 2 cv F test. If the null hypothesis is rejected more, since
usually the linear model is better than the univariate model,
the linear model is favored more. On the other hand, if the
null hypothesis is not rejected (like usually in 5� 2 cv F test),
the simple model, namely univariate model, is favored more.

If we look at Fig. 9, we see that multivariate conditions
are usually selected early on, closer to the beginning of
the rule, where the complexity of the problem is high. We
see that when there is few data, it is more likely that the
appropriate condition is univariate, whereas with more
data, a multivariate condition becomes more likely. When
learning a rule, we add one condition at a time, and each
condition covers a number of instances that are removed
from the data. While learning the initial conditions (when
there are more data), it is more likely to have a multivariate
condition; as we proceed down the rule, we have less
remaining data and the condition is more likely to be
univariate—the multivariate condition overfit and is re-
jected by the statistical test.

7 CONCLUSIONS

In this paper, first, we propose a novel test, the combined
5� 2 t test, to use as a one-sided test in comparing two
classifiers. Although there are statistical tests in the
literature such as the 5� 2 t test [10] or the 5� 2 F test
[51], they have their own drawbacks. The 5� 2 t test uses
only the difference of the first fold error values of the
algorithms, which is not robust due to the variance in folds.
We replace this with a statistic that uses all differences of
error values and is, therefore, more robust. The 5� 2 cv F
test uses square of the differences of error values and
cannot be used for a one-sided test.

2116 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

Fig. 8. The result of Nemenyi’s test on the (a) expected error, (b) number of rules, (c) number of conditions, (d) training time of rule sets produced by
C45, CN2, PART, CART, LDT, R.UNI, R.MULTI, R.OMNI(F), and R.OMNI(t) algorithms.

To validate our novel test, we compare it with three
well-known tests namely 5� 2 cv t test, 5� 2 F test, and k-
fold paired t test. We see that the one-sided combined 5�
2 t test has higher power (lower type II error); that is, it
rejects when there is a large difference between the error
values of two algorithms. Similarly, when there is not any
significant difference between the error values of algo-
rithm, the combined test accepts; that is, it has a lower
probability of reject indicating that it has lower type I error.
The combined test has also higher replicability; that is, tests
performed by different practitioners with the same pair of
algorithms, the same data sets, and the same hypothesis
test present similar results.

In the second part of our work, we propose two novel
rule induction algorithms R.MULTI and R.OMNI, where
R.MULTI uses multivariate conditions and R.OMNI chooses
between univariate and multivariate conditions using cv.

Our simulation results show that R.UNI and R.MULTI

algorithms perform well on different data sets and R.OMNI

performs as well as the better of them. Multivariate

conditions are more complex but rules can be generated

by using a smaller number of them.
As a future work, we want to combine an ensemble of

multivariate rules. Boosted version of R.UNI, SLIPPER, is
given in [61]. Since multivariate conditions have more
variance than univariate conditions, we expect bagged or
boosted R.MULTI to have smaller error rate.

REFERENCES

[1] J. Fürnkranz, “Separate-and-Conquer Learning,” Artificial Intelli-
gence Rev., vol. 13, pp. 3-54, 1999.

[2] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[3] E. Frank and I.H. Witten, “Generating Accurate Rule Sets without
Global Optimization,” Proc. 15th Int’l Conf. Machine Learning,
pp. 144-151, 1998.

[4] P. Clark and R. Boswell, “Rule Induction with CN2: Some Recent
Improvements,” Proc. European Working Session Machine Learning,
pp. 151-163, 1991.

[5] W.W. Cohen, “Fast Effective Rule Induction,” Proc. 12th Int’l Conf.
Machine Learning, pp. 115-123, 1995.

[6] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classifica-
tion and Regression Trees. John Wiley and Sons, 1984.

[7] S.K. Murthy, S. Kasif, and S. Salzberg, “A System for Induction of
Oblique Decision Trees,” J. Artificial Intelligence Research, vol. 2,
pp. 1-32, 1994.

[8] C.E. Brodley and P.E. Utgoff, “Multivariate Decision Trees,”
Machine Learning, vol. 19, pp. 45-77, 1995.

[9] O.T. Yildiz and E. Alpaydin, “Linear Discriminant Trees,” Proc.
17th Int’l Conf. Machine Learning, pp. 1175-1182, 2000.

[10] T.G. Dietterich, “Approximate Statistical Tests for Comparing
Supervised Classification Learning Classifiers,” Neural Computa-
tion, vol. 10, pp. 1895-1923, 1998.

[11] O.T. Yildiz and E. Alpaydin, “Omnivariate Decision Trees,”
IEEE Trans. Neural Networks, vol. 12, no. 6, pp. 1539-1546,
Nov. 2001.

[12] J. Cendrowska, “PRISM: An Algorithm for Inducing Modular
Rules,” Int’l J. Man-Machine Studies, vol. 27, pp. 349-370, 1987.

[13] G.I. Webb and N. Brki�c, “Learning Decision Lists by Prepending
Inferred Rules,” Proc. Workshop Machine Learning and Hybrid
Systems, 1993.

[14] C.A. Brunk and M.J. Pazzani, “An Investigation of Noise-Tolerant
Relational Concept Learning Algorithms,” Proc. Eighth Int’l
Workshop Machine Learning, pp. 389-393, 1991.

YILDIZ: OMNIVARIATE RULE INDUCTION USING A NOVEL PAIRWISE STATISTICAL TEST 2117

Fig. 9. The number of times univariate and multivariate linear models
selected in rule sets produced by R.OMNI(F) and R.OMNI(t) on
10 validation runs with respect to the level of the condition in the rule.

TABLE 2
The Number of Times Univariate and Multivariate Models Selected in Rule Sets Produced by R.OMNI(F) and R.OMNI(t) on 10 Runs

[15] J. Fürnkranz and G. Widmer, “Incremental Reduced Error
Pruning,” Proc. 11th Int’l Conf. Machine Learning, pp. 378-383, 1994.

[16] W.W. Cohen, “Efficient Pruning Methods for Separate-and-
Conquer Rule Learning Systems,” Proc. 13th Int’l Joint Conf.
Artificial Intelligence, pp. 988-994, 1993.

[17] S.M. Weiss and N. Indurkhaya, “Reduced Complexity Rule
Induction,” Proc. 12th Int’l Joint Conf. Artificial Intelligence,
pp. 678-684, 1991.

[18] D. Fensel and M. Wiese, “Refinement of Rule Sets with JOJO,”
Proc. Sixth European Conf. Machine Learning, pp. 378-383, 1993.

[19] M.V. Joshi, R.C. Agarwal, and V. Kumar, “Mining Needles in a
Haystack: Classifying Rare Classes via Two-Phase Rule Induc-
tion,” Proc. ACM SIGMOD Conf., pp. 91-102, 2001.

[20] L.A. Kurgan, K.J. Cios, and S. Dick, “Highly Scalable and Robust
Rule Learner: Performance Evaluation and Comparison,” IEEE
Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 36,
no. 1, pp. 32-53, Feb. 2006.

[21] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[22] R.S. Michalski, “On the Quasi-Minimal Solution of the Covering

Problem,” Proc. Fifth Int’l Symp. Information Processing, pp. 125-128,
1969.

[23] P. Clark and T. Niblett, “The CN2 Induction Algorithm,” Machine
Learning, vol. 3, pp. 261-283, 1989.

[24] F. Bergadano, S. Matwin, R.S. Michalski, and J. Zhang, “Learning
Two-Tiered Descriptions of Flexible Concepts: The POSEIDON
System,” Machine Learning, vol. 8, pp. 5-43, 1992.

[25] H. Theron and I. Cloete, “BEXA: A Covering Algorithm for
Learning Propositional Concept Descriptions,” Machine Learning,
vol. 24, pp. 5-40, 1996.

[26] G.I. Webb, “Learning Disjunctive Class Descriptions by Least
Generalization,” Technical Report TR C92/9, Deakin Univ., School
of Computing and Math., Geelong, Australia, 1992.

[27] M. Chisholm and P. Tadepalli, “Learning Decision Rules by
Randomized Iterative Local Search,” Proc. 19th Int’l Conf. Machine
Learning, pp. 75-82, 2002.

[28] F. Bergadano, A. Giordana, and L. Saitta, “Automated Concept
Acquisition in Noisy Environments,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 10, no. 4, pp. 555-578, July 1988.

[29] S.H. Muggleton, “Inverse Entailment and PROGOL,” New Gen-
eration Computing, vol. 13, pp. 245-286, 1995.

[30] P.E. Hart, N.J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Trans.
Systems Science and Cybernetics, vol. SSC-4, no. 2, pp. 100-107,
July 1968.

[31] U. Pompe, M. Koca�ci�c, and I. Kohonenko, “SFOIL: Stochastic
Approach to Inductive Logic Programming,” Proc. Second Slove-
nian Conf. Electrical Eng. and Computer Science, pp. 189-192, 1993.

[32] M. Kova�ci�c, “Stochastic Inductive Logic Programming,” PhD
dissertation, Dept. of Computer and Information Science, Univ. of
Ljubljana, 1994.

[33] G. Venturini, “SIA: A Supervised Inductive Algorithm with
Genetic Search for Learning Attributes Based Concepts,” Proc.
Sixth European Conf. Machine Learning, pp. 280-296, 1993.

[34] R. Parpinelli, A.A. Freitas, and H.S. Lopes, “Data Mining with an
Ant Colony Optimization Algorithm,” IEEE Trans. Evolutionary
Computation, vol. 6, no. 4, pp. 321-332, Aug. 2002.

[35] D. Martens, M.D. Backer, J. Vanthienen, M. Snoeck, and B. Baesens,
“Classification with Ant Colony Optimization,” IEEE Trans.
Evolutionary Computation, vol. 11, no. 5, pp. 651-665, Oct. 2007.

[36] J.L. Olmo, J.R. Romero, and S. Ventura, “Using Ant Program-
ming Guided by Grammar for Building Rule-Based Classifiers,”
IEEE Trans. Systems, Man, and CyberneticsPart B: Cybernetics,
vol. 41, no. 6, pp. 1585-1599, Dec. 2011.

[37] Q. Shen and A. Chouchoulas, “A Rough-Fuzzy Approach for
Generating Classification Rules Pattern Recognition,” Pattern
Recognition, vol. 35, pp. 2425-2438, 2002.

[38] R. Bhatt and M. Gopal, “FRCT: Fuzzy-Rough Classification
Trees,” Pattern Analysis and Applications, vol. 11, pp. 73-88, 2008.

[39] Y.C. Hu, R.S. Chen, and G.H. Tzeng, “Finding Fuzzy Classifica-
tion Rules Using Data Mining Techniques,” Pattern Recognition
Letters, vol. 24, pp. 509-519, 2003.

[40] R. Yasdi, “Learning Classification Rules from Database in the
Context of Knowledge Acquisition and Representation,” IEEE
Trans. Knowledge and Data Eng., vol. 3, no. 3, pp. 293-306, Sept. 1991.

[41] Y. Tsai, C. Cheng, and J. Chang, “Entropy-Based Fuzzy Rough
Classification Approach for Extracting Classification Rules,”
Expert Systems with Applications, vol. 31, pp. 436-443, 2006.

[42] X. Wang, E. Tsang, S. Zhao, D. Chen, and D. Yeung, “Learning
Fuzzy Rules from Fuzzy Samples Based on Rough Set Technique,”
Information Sciences, vol. 177, pp. 4493-4514, 2007.

[43] S. Zhao, E.C. Tsang, D. Chen, and X. Wang, “Building a Rule-
Based Classifiera Fuzzy-Rough Set Approach,” IEEE Trans.
Knowledge and Data Eng., vol. 22, no. 5, pp. 624-638, May 2010.

[44] J.H. Friedman, “A Recursive Partitioning Decision Rule for Non-
Parametric Classification,” IEEE Trans. Computers, vol. C-26, no. 4,
pp. 404-408, Apr. 1977.

[45] J. Gama, “Discriminant Trees,” Proc. 16th Int’l Conf. Machine
Learning, pp. 134-142, 1999.

[46] H. Guo and S.B. Gelfand, “Classification Trees with Neural
Network Feature Extraction,” IEEE Trans. Neural Networks, vol. 3,
no. 6, pp. 923-933, Nov. 1992.

[47] W.Y. Loh and N. Vanichsetakul, “Tree-Structured Classification
via Generalized Discriminant Analysis,” J. Am. Statistical Assoc.,
vol. 83, pp. 715-725, 1988.

[48] W.Y. Loh and Y.S. Shih, “Split Selection Methods for Classification
Trees,” Statistica Sinica, vol. 7, pp. 815-840, 1997.

[49] R. Tibshirani and T. Hastie, “Margin Trees for High-Dimensional
Classification,” J. Machine Learning Research, vol. 8, pp. 637-652,
2007.

[50] K. Bennett and J. Blue, “A Support Vector Machine Approach to
Decision Trees,” Proc. Int’l Joint Conf. Neural Networks, pp. 2396-
2401, May 1998.

[51] E. Alpaydin, “Combined 5� 2 cv F Test for Comparing
Supervised Classification Learning Classifiers,” Neural Computa-
tion, vol. 11, pp. 1975-1982, 1999.

[52] V. Vapnik, The Nature of Statistical Learning Theory. Springer
Verlag, 1995.

[53] O.T. Yildiz and E. Alpaydin, “Ordering and Finding the Best of
K > 2 Supervised Learning Algorithms,” IEEE Trans. Pattern
Analysis Machine Intelligence, vol. 28, no. 3, pp. 392-402, Mar. 2006.

[54] E. Alpaydin, Introduction to Machine Learning, second ed. The MIT
Press, 2010.

[55] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer Verlag, 2001.

[56] A. Asuncion and D.J. Newman, “UCI Machine Learning Reposi-
tory,” http://www.ics.uci.edu/~mlearn/MLRepository.html,
2007.

[57] R. Bouckaert and E. Frank, “Evaluating the Replicability of
Significance Tests for Comparing Learning Algorithms,” Proc.
Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining,
pp. 3-12, 2004.

[58] C.E. Rasmussen, R.M. Neal, G. Hinton, D. van Camp, M.
Revow, Z. Ghahramani, R. Kustra, and R. Tibshirani, “Delve
Data for Evaluating Learning in Valid Experiments,” http://
www.cs.toronto.edu/~delve/, 1995/1996.

[59] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector
Machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[60] J. Demsar, “Statistical Comparisons of Classifiers over Multiple
Data Sets,” J. Machine Learning Research, vol. 7, pp. 1-30, 2006.

[61] W.W. Cohen and Y. Singer, “A Simple, Fast, and Effective Rule
Learner,” Proc. 16th Nat’l Conf. Artificial Intelligence, pp. 335-342,
1999.

Olcay Taner Yildiz received the BSc, MSc,
and PhD degrees in computer science from
Bo�gaziçi University, Istanbul, in 1997, 2000,
and 2005, respectively. He did postdoctoral
work at the University of Minnesota in 2005. He
is a full-time associate professor of computer
engineering in the Department of Computer
Science and Engineering at Işik University,
Turkey. He worked on machine learning,
specifically model selection and decision trees.

His current research include software engineering, natural language
processing, and bioinformatics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2118 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 9, SEPTEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

