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ABSTRACT: 

 

A generic and practical methodology is presented for 3D surface mesh reconstruction from the terrestrial laser scanner (TLS) derived 

point clouds. It has two main steps. The first step deals with developing an anisotropic point error model, which is capable of 

computing the theoretical precisions of 3D coordinates of each individual point in the point cloud. The magnitude and direction of 

the errors are represented in the form of error ellipsoids. The following second step is focused on the stochastic surface mesh 

reconstruction. It exploits the previously determined error ellipsoids by computing a point-wise quality measure, which takes into 

account the semi-diagonal axis length of the error ellipsoid. The points only with the least errors are used in the surface triangulation. 

The remaining ones are automatically discarded.  

 

1. INTRODUCTION 

Terrestrial laser scanners (TLSs) capture the geometry of target 

object or scene in the form of dense point clouds. Any point in 

the scan data is contaminated by the random errors. These errors 

propagate through the steps of data processing, namely pre-

processing, co-registration, mesh generation and 3D model 

reconstruction. Estimating the random error pattern of every 

individual point is essentially important for 3D model related 

tasks. The range of applications are various such as surface 

matching (Akca and Gruen, 2005; Gruen and Akca, 2005; Akca 

and Gruen, 2007), 3D object modelling and surface mesh 

generation (Akca et al. 2006a, 2006b; Akca et al. 2007), and 

surface comparison (Zhang et al. 2006; Baltsavias et al. 2007). 

 

The target object has to be scanned from multiple standpoints to 

ensure full coverage. Such a scanning configuration will result 

in overlaps between the consecutive scans. In this case, 

overlapping parts of the target object will be sampled by two or 

more point clouds each of which have different error patterns. 

The most common solution of this redundancy problem is the 

subsampling the data and then generating the 3D surface mesh. 

This solution is not optimal, since the random error 

characteristic of each individual point is anisotropic. We aim at 

developing a volumetric resampling method in which the low 

quality points are discarded and the high quality points are used 

in the subsequent modelling steps. Such an approach will yield 

3D surface models with the least errors. Contributions of this 

paper can be summarized as follows: 

• Development of a practical and generic point error 

model for TLS-derived data 

• Utilizing of a stochastic surface mesh reconstruction 

method based on the developed point error model. 

 

1.1 Related work on (general) mesh reconstruction 

Significant amount of works have been done on surface mesh 

reconstruction. These works can be classified to four main 

groups (Santos et al., 2012): Delaunay-based, surface-based, 

parametric surfaces-based and volumetric methods. 

Delaunay–based methods generally use unorganized point 

clouds as the input, allowing a Delaunay complex to be 

established. Using the Delaunay complex, mesh reconstruction 

can be realized by means of alpha-shapes (Bernardini et al., 

1999a). An often used method Crust reconstruction was 

presented in (Amenta et al., 1998) which is based on Voronoi 

diagram. This method was further improved using Cocone 

based reconstruction methods (Dey and Goswami, 2003). 

 

Surface–based methods take the surfaces of each scan or partial 

surfaces of the target object as the input. As a result of 

integration, a single triangular mesh (or surface) is 

reconstructed. One of the most known methods was presented 

by Turk and Levoy (1994) which zippers the meshes in order to 

obtain a consensus surface. The ball-pivoting algorithm 

(Bernardini et al., 1999b) can also be considered as a surface-

based reconstruction method. It incrementally interpolates the 

surface triangulation.  

 

The work of Sclaroff and Pentland (1991) can be considered as 

pioneering in the parametric surface-based works. They 

developed an approach which is based on the finite element 

model (FEM). Kazhdan et al. (2006) considered reconstruction 

as a spatial Poisson problem. This approach is improved by the 

implementation of a parallel computing algorithm (Bolitho et 

al., 2009). For the solution of the Poisson problem, a screening 

term is introduced in addition to the mathematical framework. 

So far this effort increases the quality of the integration 

(Kazhdan and Hoppe, 2013). 

 

The volumetric methods implicitly use the voxels which is a 

kind of 3D cuboid data structure where each voxel has attribute 

values. Hoppe et al. (1992) developed an approach which first 

generates a signed distance function (SDF) from the 

unorganized points using a Euclidean minimal spanning tree, 

and then applies the marching cube algorithm (Lorensen and 

Cline, 1987) to reconstruct the surface mesh. Curless and Levoy 

(1996) developed the volumetric range image processing 

(VRIP) algorithm which initially creates a dense volumetric 

grid. For each voxel, the weighted signed distance of points to 

the nearest range surface is computed in a line of sight direction. 
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Consequently, computation time is decreased, and only the 

reliable measurements are taken into consideration. Wheeler et 

al. (1998) put forward an algorithm entitled the consensus 

surfaces. This algorithm also partitions the space into voxels 

and calculates the SDF. However, it differs from other methods 

by warranting the observations to be locally coherent for the 

calculation of the SDF. Santos et al. (2011) have proposed a 

work, named as IMAGO volumetric integration algorithm 

(IVIA) method that synthesizes the VRIP and the consensus 

surface algorithms. The SDF based reconstruction methods 

were employed in numerous studies. The work presented by 

Zhou and Koltun (2013) proposed another volumetric method 

which is based on the points of interest (POI). In this work, a 

POI pose estimation is first performed, and then a projective 

SDF scheme is defined which maintains the POI geometry. 

Recently, SDF based surface mesh reconstruction is gaining 

popularity among real – time surface reconstruction works as 

presented in Newcombe et al. (2011), Izadi et al. (2011), and 

Chen et al. (2013).  

 

1.2 Related work on error consideration  

The surface reconstruction methods relying on the moving least 

squares (MLS) approach have been used both suppressing the 

noise and reconstructing local surface elements. Such an 

algorithm presented by Jones et al. (2003) used the original 

surface mesh as input. A local weight function was introduced 

using the spatial neighbourhood of each vertex. Then, position 

of each vertex was altered with respect to the local weight 

function. This algorithm not only de-noises the surface but also 

preserves sharp details. Point clouds can also be used as input. 

For example in Pauly (2003), local surface analyses were 

carried out with the MLS, followed by computation of SDF for 

surface mesh generation. 

 

Just after the acquisition step, the point cloud data may be pre-

processed to eliminate noise and other errors. The pre-

processing step is generally required in case of low density 

sampling, holes and surface reflectance induced problems. 

Weyrich et al. (2004) presented a tool box implemented based 

on the MLS approach. It can be used to remove outliers, to fill 

holes and to smooth the point cloud data. Thereafter, the 

resulting point cloud can be used to generate high quality 

surface meshes by employing standard surface triangulation 

methods.  

 

The study presented in Adamson and Alexa (2006) differs from 

the others by introducing an anisotropic MLS method. The 

anisotropy is based on the individual weight functions defined 

for each individual point, rather than a point and its spatial 

neighbourhood. In computation of weight function, only the 

principal curvatures are used. Each point is associated with its 

corresponding ellipsoid coming from covariance analysis of the 

weighting function. 

 

In case of sparsely sampled point clouds, the local LMS 

methods may lead insufficient results. To overcome this issue 

higher order algebraic surfaces such as sphere can be fit 

(Guennebaud and Gross, 2007). This method generates 

successful surface meshes from sparsely sampled data 

containing high curvature details. The MLS concept can be used 

with the robust statistical methods for surface mesh 

reconstruction (Oztireli et al., 2009). This study has advanced 

the MLS by integrating the non-linear Kernel regression 

method. It does not require any pre-processing step. The 

sharpness of features can be controlled by the user. It has real-

time reconstruction capabilities. 

Such a large number of studies show the relevance of the 

problem. A fully satisfying solution, which mathematically 

formulates the physical nature of the instrumental and 

environmental errors and applies it to the surface modelling 

tasks, has to be still designed, realized and justified. The point 

cloud data has certain error distributions. Its pattern can be 

investigated by means of positional uncertainty which is 

influenced by multiple parameters. Angular (mechanical) 

stability, sensor-to-object distance, incidence angle of the 

incoming laser beam, and surface reflectivity are the most 

significant ones. It results in a heteroscedastic (point 

dependent), anisotropic and inhomogeneous point error 

distribution. This fact has to be considered cautiously in the 

surface mesh reconstruction. The contribution of each induvial 

point to the final surface has to be evaluated separately. We 

developed such a surface mesh generation method. The point 

error modelling is given in the second section. The subsequent 

surface generation method is given in the third section. The 

experimental results are presented in the fourth section.  

 

2. ANISOTROPIC POINT ERROR MODEL 

The TLS systems operate in a spherical coordinate system 

measuring the range (ρ), vertical (α) and horizontal (θ) angles as 

the direct observations. The Cartesian coordinates ��� 	��	���� of 

any 	-th point are computed from the spherical observations  
� = �	�� 	
�	���� as: 

 

 �������� = 	 ��� cos�
�� cos������ cos�
�� sin������ sin�
�� �  (1) 

 

The spherical observations can be computed by reversing 

Equation (1) unless they are provided by the TLS software. 

Using the law of error propagation, the variance-covariance 

matrix ∑�� of any point in the Cartesian coordinate system is: 

 

  ∑�� =	 ���∑������    (2) 

 

where ��� is the Jacobian matrix of the partial derivatives of the 

Cartesian coordinates with respect to the range (�), vertical (
) 

and horizontal (�) angle observations. ∑�� is the a priori 

variance-covariance matrix of any observation point  
� 
 

 ∑�� = ��� 0 00 �" 00 0 �# �   (3) 

 

where, �� , �"  and �#  represent a priori variances of the range 

(�), vertical (
) and horizontal (�) angles, respectively. Non-

diagonal elements of this matrix are zero under the assumptions 

that (a) the TLS is well calibrated so that there is no sensor 

caused distortion and (b) there is no physical correlation among 

the direct observations.  

 

The parameters of the error ellipsoid can be calculated from the 

principal components of the variance-covariance matrix ∑�� as 

shown in Equation (4).  

 

  �∑�� − %&�' = 0   (4) 

 

Here, & is the unit matrix, % = �(), ( , (*�	 contains the 

eigenvalues and ' = ��)	� 	�*� is the eigenvector. The 

dimensions of the semi-axes of the error ellipsoid are the square 
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roots of the eigenvalues �+(), +( , +(*�. The axes orientation 

of the ellipsoid is given by the eigenvector. 

 

The error ellipsoid fictitiously represents the magnitude and 

direction of the random error of the associated point. At this 

stage, the error ellipsoid of every individual point can be 

computed provided that the ∑�� in Equation (3) is known. In 

order to fill the ∑�� matrix up, a priori precision values ��	 , �"	  
and �#	  should be computed. We developed a practical 

methodology to compute them, which is explained in the 

following. 

 

2.1 Computation of the angular precision values ,- and ,. 

A static and repetitive measurement configuration is proposed. 

The vertical (�
) and horizontal (��) angle precisions are 

determined by the repeated scans of the same environment 

when the TLS is set up firmly static. It is expected that each 

point should coincide with its conjugates in the other scans. The 

deviations of the conjugate points are relevant to the angular 

repeatability of the scanner system. 

 

In the experimental studies, the same environment was scanned 

five times from the same station. The five conjugate points of 

the same laser ray were selected and corresponding vertical (
) 

and horizontal (�) angles were computed. The root mean square 

error (RMSE) values of their discrepancies were computed both 

for the vertical and horizontal angles. These RMSE 

computations were repeated at least four laser rays which 

towards the four main directions North, East, South and West or 

equivalents. The mathematical means of each of these four 

RMSE values yield the a priori angular precisions �"	  and �#	  , 
respectively. 

 

2.2 Computation of the range precision value ,/ 

We have developed an empirical formula for the range precision 

(��) computation based on fieldwork and validation studies 

given in our previous work (Ozendi et al., 2017). It takes into 

account the distance between the TLS and the point, incidence 

angle of the incoming laser beam, and reflectivity of the object 

surface. 

 

 �� = 0	1	2�	1	3�4�567�8�    (5) 

and 

 9�:� = ;< = >� 					,						for				: B :�C						0										,						elsewhere  (6)	
 

where <, >, H and I are the coefficients, � is the scanner-to-point 

distance, J is the incidence angle and : is the intensity value of 

the point. If provided by the associated software of the scanner, 

the reflectance value is preferred, which is the normalized and 

distance effect eliminated version of the intensity value. The 

coefficients <, >, H and I are constant for each scanner and the 

observations �, J	and	M are variable for each point. 

 

The equation part H = I�  is the linear distance error where H is 

the constant error and I� is the proportional error whose 

contribution increases linearly as the distance � increases. 

Coefficient d is a fractional number.  

 

The function 9�:� is the error contribution of the target 

reflectivity. It is a quadratic function of the distance �. It is a 

piecewise function so that only the black (or absorbing) objects 

whose intensity I are less than the threshold :�C contribute the 

error.  

 

The linear distance error H = I� and the target reflectivity error 9�:� are the additive terms. The denominator term cos	�J� is the 

error due to the incidence angle, which intensify or attenuate the 

additive error terms. 

 

A single scan measurement configuration is proposed to derive 

the coefficients <, >, H and I. Two highly absorbent planar 

objects (black plates) and two perfectly reflective planar objects 

(white plates) were prepared. The pairs of black and white 

plates were located at close and far distances such as at 10 and 

90 meters, respectively. Their orientations are kept 

perpendicular to the TLS so that the incidence angles become 

zero degrees. A single scan was performed. Assuming that the 

plates are exactly planar, the least squares plane fitting was 

computed for each plate using the conventional least squares 

parameter estimation method. The RMSE of the off-plane 

distances I� was computed, represented with the symbol  N. 

 

 N = OP∑2Q2QRS)     (7) 

 

The four  N)TU  , N)TC  , NVTU  and NVTC   values are the RMS errors 

of the white plate at 10 meters, the black plate at 10 meters, the 

white plate at 90 meters and the black plate at 90 meters, 

respectively. Using the hypothetical graph in Figure 1, the 

scanner invariant parameters <, >, H and I can be computed 

straightforwardly. 

 

 
Figure 1. Two sets of the black-and-white-plates are located at 

10 and 90 meters distances, respectively. All of the four plates 

are at the rotation of 0 degrees of incidence angles. 

 

 

Parameter H is the summation of the constant distance accuracy 

(W) provided by the manufacturer and N)TU  which is the intercept 

of the red line (Figure 1). 

 

  H = W = N)TU    (8) 

 

The parameter I is the slope of the red line (Figure 1) which 

provides a kind of linear interpolation of the errors due to the 

distance. 

 

 I = 	XYZ[ SX\Z[VTS)T = tan	�^�  (9) 

 

The reflectivity error 9�:� is computed only for the black 

objects. It is a kind of quadratic interpolation whose parameters < and > can be calculated by solving the following equation 

system: 
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< = >�10 � = 	N)TC −N)TU< = >�90 � = 	NVTC −NVTU   (10) 

 

Once the scanner invariant coefficients <, >, H and I are 

computed, the range precision �� is calculated uniquely for each 

point with the Equations (5) and (6). Then, error ellipsoids are 

calculated (Figure 2). 

 

 
Figure 2. Side view of a point cloud of two buildings which was 

acquired with a Riegl VZ400 scanner. The TLS stand point is 

labelled by the red cube. The estimated error ellipsoids are 

represented in green color. The ellipsoids are plotted at every 

150-th points and their sizes are exaggerated for a better 

visualization.  

 

3. THE LEAST ERRORS SURFACE 

RECONSTRUCTION 

The proposed error ellipsoid is well defined mathematical 

representation of the physical reality, since it is formed by use 

of the most influential error sources. The size, shape and 

orientation of the error ellipsoid provide useful information 

about the metric quality of its point. 

 

Every point is associated with its error ellipsoid whose semi-

axis lengths are +() ,+(  and+(*, respectively, where +() is 

the length of the semi-major axis. +() can be considered as a 

quality measure of the point. However, this approach is sub-

optimal, because +() is independent of the angular a priori 

precision values (�"	and	�#). The quality measure should be 

composed of both angular and the range precision values. The 

semi-diagonal axis length of the bounding box of the error 

ellipsoid (Figure 3) fulfils this requirement. It is computed as in 

the following equation: 

 

 a� = 	Pb+()c = b+( c = b+(*c   (11) 

 

In the TLS used projects, the target object has to be scanned 

from multiple viewpoints for full coverage. The consecutive 

scans should have the overlaps to some extent. In the 

overlapping parts, the same object surface is sampled at 

multiple times each of which are obviously at multiple quality 

levels. This situation results in data redundancy and the output 

surface mesh will not be in the uniform quality, if all the high 

and low quality points are used. 

 

A decimation (subsampling) process should be performed in 

order that the points with the best spatial quality are selected 

over the redundant parts of the data. The remaining points are 

discarded. To achieve this objective, a voxel-based best quality 

point selection procedure was developed. The entire workflow 

is given in Figure 4. 

 
 

Figure 3. Illustration of an error ellipsoid and the point quality 

metric a� with respect to the TLS position. 

 

The workflow starts with the data acquisition and followed by 

the co-registration. In the data acquisition, stationary and 

repetitive 5 to maximum 10 scans are performed for the vertical 

and horizontal angle precision determination. In one of the 

scans, two sets of white and black plates, such as printed papers, 

are located at close and far distances for the range precision 

determination. These are the all extra labour costs for the point 

error model computation. 

 

 
 

Figure 4. The processing workflow. 

 

The scanner invariant vertical and horizontal angle precisions �"	and	�# , and the coefficients <, >, H and I are then computed. 

The every point in the every scan file is sought and its 

associated error ellipsoid is computed. All the scan files are 

merged, and a 3D voxelisation is established. The voxel sizes 

may vary depending on the object to be modelled and the 

required level of detail. The access and query mechanisms are 

provided by an octree data structure. The set of points lying in 

each voxel is determined. The number of points may vary for 

each voxel because the point density is not constant all over the 

point cloud. The final step is the selection of the point with the 

minimum a� value for each voxel. As a result, the new point 

cloud is composed of points whose error ellipsoids have the 

minimum semi-diagonal axis length. The surface mesh is 

created using this decimated point cloud. 
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4. EXPERIMENTAL STUDY 

The front façade of a building in the campus area of the Bulent 

Ecevit University (Zonguldak, Turkey) was scanned using a 

Faro Focus 3D X330 scanner. The building mostly contains 

planar components (Figure 5).  

 

 
 

Figure 5. The selected building façade for 3D surface mesh 

reconstruction.  

 

Three scans were performed in such a way that all details of the 

façade can be covered. They were co-registered using Faro 

Scene v5.5, which is the bundled software of the Faro scanners. 

The mean error of the co-registration was reported less than 2 

mm by the software. The co-registration process was followed 

by computation of the error ellipsoids for each point of all three 

scans (Figure 6). 

 

 
 

Figure 6. Three point clouds of the building façade acquired by 

the Faro Focus 3D X330 scanner. The red cubes show the TLS 

stand points. The ellipsoids are plotted at every 200-th point and 

their sizes are exaggerated for a better visualization. 

 

Given the points and their error ellipsoids, the quality measure 

of each individual point was computed using Equation (11), 

which is the length of the semi-diagonal axis of the error 

ellipsoid. The computed point quality measures are visualized in 

Figure 7. 

 

In Figure 7, the point quality is represented within a colour 

scale, varying between blue (min. 2 mm) and red (max. 25 mm). 

The blue colour corresponds to high quality and red to low 

quality points. Surface discontinuity, poor surface reflectance 

and higher incidence angles yield very low quality points. These 

points are represented by yellow-to-red colours. While in one 

scan the same part of the façade is measured with high quality 

points, in other scans the same part may be measured with low 

quality points. These points are mixed when the three scans are 

merged (Figure 8). The merged point cloud is messy and 

redundant, as it contains 5.2 million points. It is not optimal for 

surface mesh generation. 

 

 
 

Figure 7. Visualization of the point quality of the three scans. 

The TLS stations are indicated by the white cubes. The same 

colour legend is used in Figure 8, 9 and 10.  

 

 
 

Figure 8. Visualization of the point quality of the merged point 

cloud.  

 

A decimated point cloud was created using the voxel-based best 

point selection method. The voxel size was defined as 2 x 2 x 2 

cm. The each voxel contributes only and only one point with the 

best spatial quality (Figure 9).  

 

 
 

Figure 9. Visualization of the point quality of the decimated 

point cloud. The very low quality points (in red colour) still 

exist.  

 

When compared to the original merged point cloud (Figure 8), it 

is obvious that a great number of points of very low quality 

have been eliminated in the decimated point cloud (Figure 9), 

which has 1.4 million points.  

 

However, there still exist some very low quality points shown in 

red colour which are particularly located at surface 

discontinuities. It is due to the fact that some voxels contain 

points all with very low quality, and even the best quality one is 

still in the low quality.  

 

This situation requires an additional criterion. If the quality 

measure of the selected best quality point is greater than a 

threshold, i.e. if  a� d a� , this point (and the associated voxel) 

is discarded. We empirically defined this threshold  a� as 6 

mm. By threshold a� value, we ensure that the surface mesh 

has a uniform positional quality of 6 mm or better at 

everywhere.  

 

The newly decimated point cloud after the threshold a� applied 

is shown in Figure 10. It has 1.1 million points now. 
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Figure 10. The final decimated point cloud. The points with 

quality measure of greater than 6 mm were discarded. 

 

The final step of the workflow is the 3D surface mesh 

reconstruction. Geomagic Wrap 2015 and MeshLAB software 

were used to generate surface meshes both from the “original” 

(Figure 8) and “the best” (Figure 10) point clouds. Geomagic 

Wrap is a commercial software which can import point cloud 

data in various formats, and allows users to generate 3D surface 

meshes using a Delaunay-based algorithm (Edelsbrunner et al., 

1998). On the other hand, MeshLab is a scientific software that 

can be used free of charge (Cignoni et al., 2008). Even though 

the MeshLab provides various mesh generation algorithms, we 

chose the ball-pivoting algorithm (Bernardini et al. 1999b) for 

this study. The results are shown in Figure 11 and Figure 12, 

respectively. Neither editing nor filtering operations have been 

applied on the results. 

 

The “original” surface mesh (Figure 11a) has 9.8 million 

triangles, while “the best” surface mesh (Figure 11b) has only 

1.9 million triangles. The proposed stochastic mesh generation 

method gives a better result with substantially less number of 

triangles by factor 5. The proposed method eliminates the noise 

significantly. Moreover, the redundant data is eliminated. Such 

a stochastic elimination of the erroneous points results in more 

accurate surface meshes. Identical results were obtained when 

using the academic software MeshLAB for the surface 

triangulation (Figure 12).  

 

 
      (a) 

 
      (b) 

 (c)    (d) 

 (e)   (f) 

 

Figure 11. 3D surface meshes generated with the Geomagic Wrap 2015 software. (a) “Original” surface mesh, (b) “the best” surface 

mesh, (c-d) zoom-in to the “original” mesh, (e-f) zoom-in to “the best” mesh. 
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      (a) 

 
      (b) 

 (c)    (d) 

 (e)    (f) 

 

Figure 12. 3D surface meshes generated with the MeshLAB software. (a) “Original” surface mesh, (b) “the best” surface mesh, (c-d) 

zoom-in to the “original” mesh, (e-f) zoom-in to “the best” mesh. 

 

 

5. CONCLUSIONS 

We proposed a complete processing chain for high quality 

surface mesh generation specifically from the TLS derived point 

clouds. It is practical yet effective and powerful. The underlying 

methodology is generic, which can be implemented with using 

any scanner hardware and surface triangulation software 

combinations at no other operational cost.  

 

The proposed point error model is anisotropic such that the 

spatial quality of each point is uniquely represented with its 

error ellipsoid. It is practical which can be computed in ordinary 

scanning projects with minimum labour and equipment costs 

(five more scans and four printed papers). The proposed surface 

reconstruction method is stochastic in which the spatial quality 

of the used points is rigorously regarded. The result is a non - 

redundant consensus surface with uniform positional quality. 

Moreover, as the number of points is decreased, the 

computation time and memory requirements become feasible. 

The proposed method can be favourably used in multi-sensor 

data fusion studies.  
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