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Department of Electrical-Electronics Engineering, Istanbul University, Avcilar 34850, Istanbul, Turkey
Email: hcirpan@istanbul.edu.tr

Erdal Panayırcı
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This paper first proposes a computationally efficient, pilot-aided linear minimum mean square error (MMSE) batch channel
estimation algorithm for OFDM systems in unknown wireless fading channels. The proposed approach employs a convenient
representation of the discretemultipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and findsMMSE
estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the
proposed MMSE estimator. Moreover, optimal rank reduction is achieved by exploiting the optimal truncation property of the
KL expansion resulting in a smaller computational load on the estimation algorithm. The performance of the proposed approach
is studied through analytical and experimental results. We then consider the stochastic Cramér-Rao bound and derive the closed-
form expression for the random KL coefficients and consequently exploit the performance of the MMSE channel estimator based
on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance.
To further reduce the complexity, we extend the batch linear MMSE to the sequential linear MMSE estimator. With the fast
convergence property and the simple structure, the sequential linear MMSE estimator provides an attractive alternative to the
implementation of channel estimator.
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1. INTRODUCTION

With unprecedented demands on bandwidth due to the ex-
plosive growth of broadband wireless services usage, there is
an acute need for a high-rate and bandwidth-efficient digital
transmission. In response to this need, the research commu-
nity has been extensively investigating efficient schemes that
make efficient utilization of the limited bandwidth and cope
with the adverse access environments [1]. These access envi-
ronments may create different channel impairments and dic-
tate unique sets of advanced signal processing algorithms to
combat specific impairments.

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Multicarrier (MC) transmission scheme, especially or-
thogonal frequency-division multiplexing (OFDM), has re-
cently attracted considerable attention since it has been
shown to be an effective technique to combat delay spread or
frequency-selective fading of wireless or wireline channels,
thereby improving the capacity and enhancing the perfor-
mance of transmission. This approach has been adopted as
the standard in several outdoor and indoor high-speed wire-
less and wireline data applications, including terrestrial digi-
tal broadcasting (DAB and DVB) in Europe, and high-speed
modems over digital subscriber lines in the US. It has also
been implemented for broadband indoor wireless systems in-
cluding IEEE802.11a, MMAC, and HIPERLAN/2.

An OFDM system operating over a frequency-selective
wireless communication channel effectively forms a number
of parallel frequency-nonselective fading channels, thereby
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reducing intersymbol interference (ISI) and obviating the
need for complex equalization, thus greatly simplifying chan-
nel estimation/equalization task. Moreover, OFDM is band-
width efficient since the spectra of the neighboring subchan-
nels overlap, yet channels can still be separated through the
use of orthogonality of the carriers. Furthermore, its struc-
ture also allows efficient hardware implementations using
fast Fourier transform (FFT) and polyphase filtering [2].

Although the structure of OFDM signalling avoids ISI
arising due to channel memory, fading multipath channel
still introduces random attenuations on each tone. Further-
more, simple frequency-domain equalization, which divides
the FFT output by the corresponding channel frequency re-
sponse, does not assure symbol recovery if the channel has
nulls on some subcarriers. Hence, advanced signal process-
ing algorithms have to be used for accurate channel estima-
tion to improve the performance of the OFDM systems. Nu-
merous pilot-aided channel estimation methods for OFDM
have been developed [3, 4, 5, 6]. In particular, a low-rank ap-
proximation is applied to linear MMSE estimator for the es-
timation of subcarrier channel attenuations by using the fre-
quency correlation of the channel [3]. Two pilot-aided MLE
and MMSE schemes are revisited and compared in terms of
computational complexity in [4]. In [5], an MMSE channel
estimator, which makes full use of the time and frequency
correlation of the time-varying dispersive channel, was pro-
posed. Moreover, low-complexity MMSE doubly channel es-
timation approaches were presented in [6] based on embed-
ding Kronecker-delta pilot sequences.

Multipath fading channels have been studied extensively,
and several models have been developed to describe their
variations [7]. In many cases, the channel taps are modelled
as general lowpass stochastic processes (e.g., [8]), the statis-
tics depend onmobility parameters. A different approach ex-
plicitly models the multipath channel taps by the Karhunen-
Loeve (KL) series representation [9]. KL expansion models
have also been used previously in modelling the multipath
channel within a CDMA scenario [10]. In the case of KL se-
ries representation of stochastic process, a convenient choice
of orthogonal basis set is one that makes the expansion co-
efficient random variables uncorrelated. When these orthog-
onal bases are employed to expand the channel taps of the
multipath channel, uncorrelated coefficients indeed repre-
sent the multipath channel. Therefore, KL representation al-
lows one to tackle the estimation of correlated multipath pa-
rameters as a parameter estimation problem of the uncorre-
lated coefficients. Exploiting KL expansion, the main contri-
bution of this paper is to propose a computationally efficient,
pilot-aided MMSE channel estimation algorithm. Based on
such representation, no matrix inversion is required in the
proposed batch approach. Moreover, optimal rank reduc-
tion is achieved by exploiting the optimal truncation prop-
erty of the KL expansion resulting in a smaller computa-
tional load on the estimation algorithm. The performance
of the proposed batch approach is explored based on the
evaluation of the stochastic Cramér-Rao bound for the ran-
domKL coefficients.We also analyze the effect of a modelling
mismatch on the estimator performance. In contrast to [3],

the proposed batch approach employs KL expansion of mul-
tipath channel parameters and reduces the complexity of the
singular value decomposition (SVD) used in eigendecompo-
sition by estimating multipath channel parameters instead of
channel attenuations on each tone. In addition, we propose
the simple sequential MMSE implementation for the estima-
tion of the KL expansion coefficients, which does not require
to perform matrix inversion as well.

The rest of the paper is organized as follows. Section 2 de-
scribes a general model for OFDM systems and briefly intro-
duces the channel estimation task. Section 3 derives a basic
and simplified approach to MMSE batch channel estimation
for OFDM systems. To show its efficiency, the performance
bounds are analyzed and the performance degradation due
to amismatch of the estimator to the channel statistics as well
as the SNR is demonstrated. The sequential MMSE estima-
tor is introduced in Section 4 and its convergence behavior
is also analyzed. Some simulation examples are provided in
Section 5. Finally, conclusions are drawn in Section 6.

2. SYSTEMMODEL

In order to eliminate ISI arising due to multipath chan-
nel and preserve orthogonality of the subcarrier frequencies
(tones), conventional OFDM systems first take the IFFT of
data symbols and then insert redundancy in the form of a
cyclic prefix (CP) of length LCP larger than the channel order
L. CP is discarded at the receiver and the remaining part of
the OFDM symbol is FFT processed. Combination of IFFT
and CP at the transmitter with the FFT at the receiver divides
the frequency-selective channel into several separate flat-
fading subchannels. The block diagram in Figure 1 describes
the conventional OFDM system. We consider an OFDM sys-
temwithK subcarriers for the transmission ofK parallel data
symbols. Thus, the information stream X(n) is parsed into
K-long blocks: Xi = [Xi(0),Xi(1), . . . ,Xi(K − 1)]T , where
i = 1, 2, . . . is the block index and the superscript (·)T in-
dicates the vector transpose. The K × 1 symbol block is then
mapped to a (K + L)× 1 vector by first taking the IFFT of Xi

and then replicating the last LCP elements as

si =
[
si(0), si(1), . . . , si

(
K + LCP − 1

)]T
. (1)

si is serially transmitted over the channel. At the receiver, the
CP of length LCP is removed first and FFT is performed on
the remaining K × 1 vector. Therefore, we can write the out-
put of the FFT unit in matrix form as

Yi = AiHi + ηi, (2)

where Ai is the diagonal matrix Ai = diag(Xi) and Hi is
the channel vector. The elements of Hi are the values of the
channel frequency response evaluated at the subcarriers.
Therefore, we can write Hi = [Hi(0),Hi exp( j2π/K),
. . . ,Hi exp( j2π(K − 1)/K)]T as Hi = F hi, where F is
the FFT matrix with (m,n) entry exp(− j2πmn/K) and
hi = [hi(0),hi(1), . . . ,hi(L − 1)]T . hi modelled as a complex
Gaussian vector with hi ∼ N (0,Chi) represents the overall
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Figure 1: OFDM system block diagram.

channel impulse during the ith OFDM block. Finally,
ηi is a K × 1 zero-mean, i.i.d. complex Gaussian vector
that models additive noise in the K subchannels (tones). We
have E[ηiη

†
i ] = σ2IK where IK represents a K × K iden-

tity matrix, σ2 is the variance of the additive noise entering
the system, and the superscript (·)† indicates the Hermitian
transpose.

Based on model (2), our main objective in this paper
is to develop both batch and sequential pilot-aided chan-
nel estimation algorithm according to MMSE criterion and
then explore the performance of the estimators. A batch ap-
proach adapted herein explicitly models the channel param-
eters by the KL series representation and estimates the un-
correlated expansion coefficients. Furthermore, the compu-
tational load of the proposed MMSE estimation technique
is further reduced with the application of the KL expansion
optimal truncation property [9]. We then introduce batch
channel MMSE approach first.

3. MMSE ESTIMATIONOF KL COEFFICIENTS:
BATCH APPROACH

A low-rank approximation to the frequency-domain lin-
ear MMSE channel estimator is provided by [3] to reduce
the complexity of the estimator. Optimal rank reduction is
achieved in this approach by using the SVD of the channel
attenuations covariance matrix CH of dimension K × K . In
contrast, we adopt the MMSE estimator for the estimation
of multipath channel parameter h that uses covariance ma-
trix of dimension L×L. The proposed approach employs KL
expansion of multipath channel parameters and reduces the
complexity of the SVD used in eigendecomposition since L is
usually much less than K . We will now develop MMSE batch
estimator for pilot-assisted OFDM system in the sequel.

3.1. MMSE channel estimation

Pilot-symbol-assisted techniques can provide information
about an undersampled version of the channel that may be
easier to identify. In this paper, we therefore address the
problem of estimating multipath channel parameters by ex-
ploiting the distributed training symbols. Considering (2),
and in order for the pilot symbols to be included in the
output vector for our estimation purposes, we focus on an

undersampled signal model. Assuming that Kp pilot symbols
are uniformly inserted at known locations of the ith OFDM
block, the Kp × 1 vector corresponding to the FFT output at
the pilot locations becomes

Y = AFh + η, (3)

whereA = diag[Ai(0),Ai(∆), . . . ,Ai((Kp−1)∆)] is a diagonal
matrix with pilot-symbol entries, ∆ is pilot spacing interval,
F is a Kp × L FFT matrix generated based on pilot indices,
and similarly η is the undersampled noise vector.

For the estimation of h, the new linear signal model can
be formed by premultiplying both sides of (3) by A† and as-
suming that pilot symbols are taken from a PSK constellation
A†A = IKp , then the new form of (3) becomes

A†Y = Fh + A†η,

Ỹ = Fh + η̃,
(4)

where Ỹ and η̃ are related toY and η by the linear transforma-
tion, respectively. Furthermore, η̃ is statistically equivalent to
η.

Equation (4) offers a Bayesian linear model representa-
tion. Based on this representation, the minimum variance
estimator for the time-domain channel vector h for the ith
OFDM block, that is, conditional mean of h given Ỹ, can be
obtained using MMSE estimator. We should clearly make the
assumptions that h ∼ N (0,Ch), η̃ ∼ N (0,Cη̃), and h is un-
correlated with η̃. Therefore, MMSE estimate of h is given by
[11]

ĥ = (F†C−1η̃ F + C−1h
)−1

F†C−1η̃ Ỹ. (5)

Due to PSK pilot-symbol assumption together with the
result Cη̃ = E[η̃η̃†] = σ2IKp , we can therefore express (5) by

ĥ = (F†F + σ2C−1h
)−1

F†Ỹ. (6)

Under the assumption that uniformly spaced pilot sym-
bols are inserted with pilot spacing interval ∆ and K =
∆ × Kp, correspondingly, F†F reduces to F†F = KpIL. Then
according to (6) and F†F = KpIL, we arrive at the expression

ĥ = (KpIL + σ2C−1h
)−1

F†Ỹ. (7)
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Since MMSE estimation still requires the inversion of C−1h ,
it therefore suffers from a high computational complexity.
However, it is possible to reduce the complexity of theMMSE
algorithm by diagonalizing channel covariance matrix with a
KL expansion.

3.2. KL expansion

Channel impulse response h is a zero-mean Gaussian pro-
cess with covariance matrix Ch. The KL transformation is
therefore employed here to rotate the vector h so that all its
components are uncorrelated. The vector h, representing the
channel impulse response during ith OFDM block, can be
expressed as a linear combination of the orthonormal basis
vectors as follows:

h =
L−1∑
l=0

glψ l = Ψg, (8)

whereΨ = [ψ0,ψ1, . . . ,ψL−1], ψ i’s are the orthonormal basis
vectors, g = [g0, g1, . . . , gL−1]T , and gl’s are the weights of the
expansion. If we form the covariance matrix Ch as

Ch = ΨΛgΨ
†, (9)

where Λg = E{gg†}, the KL expansion is the one in which
Λg of Ch is a diagonal matrix (i.e., the coefficients are uncor-
related). If Λg is diagonal, then the form ΨΛgΨ

† is called an
eigendecomposition of Ch. The fact that only the eigenvectors
diagonalize Ch leads to the desirable property that the KL
coefficients are uncorrelated. Furthermore, in the Gaussian
case, the uncorrelatedness of the coefficients renders them
independent as well, providing additional simplicity.

Thus, the channel estimation problem in this application
is equivalent to estimating the i.i.d. complex Gaussian vector
g KL expansion coefficients.

3.3. Estimation of KL coefficients

In contrast to (4) in which only h is to be estimated, we now
assume that the KL coefficient vector g is unknown. Thus the
data model (4) is rewritten for each OFDM block as

Ỹ = FΨg + η̃ (10)

which is also recognized as a Bayesian linear model, and re-
call that g ∼ N (0,Λg). As a result, the MMSE estimator of g
is

ĝ = Λg
(
KpΛg + σ2IL

)−1
Ψ†F†Ỹ

= ΓΨ†F†Ỹ,
(11)

where

Γ = Λg
(
KpΛg + σ2IL

)−1
= diag

{
λg0

λg0Kp + σ2
, . . . ,

λgL−1
λgL−1Kp + σ2

} (12)

and λg0 , λg1 , . . . , λgL−1 are the singular values of Λg.

It is clear that the complexity of the MMSE estimator in
(7) is reduced by the application of KL expansion. However,
the complexity of ĝ can be further reduced by exploiting the
optimal truncation property of the KL expansion [9]. MMSE
estimator of g requires 4L2 + 4LKp + 2L real multiplications.
From the results presented in [4], ML estimator of g is ob-
tained as follows:

ĝ = 1
Kp

Ψ†F†Ỹ. (13)

Note that, according to (13), the ML estimator of g re-
quires 4L2 + 4LKp real multiplications.

3.4. Truncated KL expansion

A truncated expansion gr can be formed by selecting r or-
thonormal basis vectors among all basis vectors that satisfy
ChΨ = ΨΛg. The optimal one that yields the smallest av-
erage mean squared truncation error (1/L)E[ε†r εr] is the one
expanded with the orthonormal basis vectors associated with
the first largest r eigenvalues as given by

1
L
E
[
ε†r εr

] = 1
L

L−1∑
i=r

λgi , (14)

where εr = g−gr . For the problem at hand, truncation prop-
erty of the KL expansion results in a low-rank approximation
as well. Thus, a rank-r approximation to Λgr is defined as

Λgr = diag
{
λg0 , λg1 , . . . , λgr−1 , 0, . . . , 0

}
. (15)

Since the trailing L− r variances {λgl}L−1l=r are small compared
to the leading r variances {λgl}r−1l=0 , then the trailing L−r vari-
ances are set to zero to produce the approximation. However,
typically the pattern of eigenvalues for Λg splits the eigenvec-
tors into dominant and subdominant sets. Then the choice of
r is more or less obvious. The optimal truncated KL (rank-r)
estimator of (11) now becomes

ĝr = ΓrΨ
†F†Ỹ, (16)

where

Γr = Λgr

(
KpΛgr + σ2IL

)−1
= diag

{
λg0

λg0Kp + σ2
, . . . ,

λgr−1
λgr−1Kp + σ2

, 0, . . . , 0
}
.

(17)

Since our ultimate goal is to obtain MMSE estimator for the
channel frequency response H, from the invariance property
of the MMSE estimator, it follows that if ĝ is the estimate of
g, then the corresponding estimate of H can be obtained for
the ith OFDM block as

Ĥ = FΨĝ. (18)

Thus, from (16) and (17), the truncatedMMSE estimator
of g requires 4Lr + 4LKp + 2r real multiplications.
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3.5. Performance analysis

We turn our attention to analytical performance results of
the batch MMSE approach. We first consider the CRB and
derive the closed-form expression for the random KL coeffi-
cients, and then exploit the performance of the MMSE chan-
nel estimator based on the evaluation of minimum Bayesian
MSE.

3.5.1. Cramér-Rao bound for randomKL coefficients

The mean squared estimation error for unbiased estimation
of a nonrandom parameter has a lower bound, the Cramér-
Rao bound (CRB), which defines the ultimate accuracy of un-
biased estimation procedure. Suppose ĝ is an unbiased esti-
mator of a vector of unknown parameters g (i.e., E{ĝ} = g)
then the mean squared error matrix is lower bounded by the
inverse of the Fisher information matrix (FIM):

E
{
(g− ĝ)(g− ĝ)†

} ≥ J−1(g). (19)

Since the estimation of unknown random parameters g via
MMSE approach is considered in this paper, the modified
FIM needs to be taken into account in the derivation of
stochastic CRB [12]. Fortunately, the modified FIM can be
obtained by a straightforward modification of (19) as

JM(g) � J(g) + JP(g), (20)

where JP(g) represents the a priori information.
Under the assumption that g and η̃ are independent of

each other and η̃ is a zero mean, from [12] and (10), the con-
ditional PDF is given by

p
(
Ỹ|g) = 1

πKp
∣∣Cη̃

∣∣ exp {−(Ỹ−FΨg)†C−1η̃ (Ỹ−FΨg)
}
(21)

from which the derivatives follow as

∂ ln p
(
Ỹ|g)

∂gT
= (Ỹ− FΨg)†C−1η̃ FΨ,

∂2 ln p
(
Ỹ|g)

∂g∗∂gT
= −Ψ†F†C−1η̃ FΨ,

(22)

where the superscript (·)∗ indicates the conjugation opera-
tion.

Using Cη̃ = σ2IKp , Ψ
†Ψ = IL, and F†F = KpIL, and tak-

ing the expected value yield the following simple form:

J(g) = −E
[
∂2 ln p(Ỹ|g)
∂g∗∂gT

]

= −E
[
− Kp

σ2
IL

]
= Kp

σ2
IL.

(23)

The second term in (20) is easily obtained as follows.
Consider the prior PDF of g as

p(g) = 1
πL
∣∣Λg

∣∣ exp {− g†Λ−1g g
}
. (24)

The respective derivatives are found as

∂ ln p(g)
∂gT

= −g†Λ−1g ,

∂2 ln p(g)
∂g∗∂gT

= −Λ−1g .

(25)

Upon taking the negative expectations, the second term
in (20) becomes

JP(g) = −E
[
∂2 ln p(g)
∂g∗∂gT

]
= −E[−Λ−1g

]
= Λ−1g .

(26)

Substituting (23) and (26) in (20) produces for the modified
FIM the following:

JM(g) = J(g) + JP(g)

= Kp

σ2
IL +Λ−1g

= 1
σ2
(
KpIL + σ2Λ−1g

)
= 1

σ2
Γ−1.

(27)

Inverting the matrix JM(g) yields

CRB(ĝ) = J−1M (g) = σ2Γ. (28)

3.5.2. BayesianMSE

For the MMSE estimator ĝ, the error is

ε = g− ĝ. (29)

Since the diagonal entries of the covariance matrix of the
error represent the minimum Bayesian MSE, we now derive
covariance matrix Cε of the error vector. From the perfor-
mance of the MMSE estimator for the Bayesian linear model
theorem [11], the error covariance matrix is obtained as

Cε =
(
Λ−1g + (FΨ)†C−1η̃ (FΨ)

)−1
= σ2

(
KpIL + σ2Λ−1g

)−1
= σ2Γ

(30)

and then the minimum Bayesian MSE of the full rank esti-
mator becomes (see Appendix A)

BMSE(ĝ) = 1
L
tr
(
Cε
)

= 1
L
tr
(
σ2Γ

) = 1
L

L−1∑
i=0

λgi
1 + Kpλgi SNR

,
(31)

where SNR = 1/σ2 and tr denotes trace operator onmatrices.
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Comparing (28) with (30), the error covariance matrix
of the MMSE estimator coincides with the stochastic CRB of
the random vector estimator. Thus, ĝ achieves the stochastic
CRB.

As the details are given in Appendix A, BMSE(ĝ) given in
(31) can also be computed for the truncated (low-rank) case
as follows:

BMSE
(
ĝr
) = 1

L

r−1∑
i=0

λgi
1 + Kpλgi SNR

+
1
L

L−1∑
i=r

λgi . (32)

Notice that the second term in (32) is the sum of the powers
in the KL transform coefficients not used in the truncated es-
timator. Thus, the truncated BMSE(ĝr) can be lower bounded
by (1/L)

∑L−1
i=r λgi which will cause an irreducible error floor

in the SER results.

3.6. Mismatch analysis

Once the true frequency-domain correlation, characterizing
the channel statistics and the SNR, is known, the optimal
channel estimator can be designed as indicated in Section 4.

However, in mobile wireless communications, the chan-
nel statistics depend on the particular environment, for ex-
ample, indoor or outdoor, urban or suburban, and change
with time. Hence, it is important to analyze the performance
degradation due to a mismatch of the estimator to the chan-
nel statistics as well as the SNR, and to study the choice of
the channel correlation and SNR for this estimator so that
it is robust to variations in the channel statistics. As a per-
formance measure, we use uncoded symbol error rate (SER)
for QPSK signaling. The SER expression for this case is given
in [13] as a function of the SNR and the average BMSE(ĝ) as
follows:

SERQPSK = 3
4
− µ

2
− µ

π
arctan(µ), (33)

where

µ = Ωg√(
Ωg + BMSE(ĝ)

)
(1 + 2/ SNR)

, (34)

and Ωg represents the normalized variance of the channel

gains (Ωg =
∑L−1

i=0 λgi = 1) and SNR = 1/σ2. In practice,
the true channel correlations and SNR are not known. If the
MMSE channel estimator is designed to match the correla-
tion of a multipath channel impulse response Ch and SNR,
but the true channel parameter h̃ has the correlation Ch̃ and

the true �SNR, then average Bayesian MSE for the designed
channel estimator is obtained as (see Appendices A and B)

(i) SNR mismatch:

BMSE(ĝ) = 1
L

L−1∑
i=0

λgi(
1 + Kpλgi SNR

)2 [1 + Kpλgi
SNR2

�SNR
]
; (35)

ỹ(m + 1) +

−
∑

κm+1

σ2,u(m + 1),Mm

∑+

+

ĝm+1

Z−1
ĝm

u†(m + 1)

Figure 2: Block diagram of sequential MMSE estimator.

(ii) correlation mismatch:

BMSE(ĝ) = 1
L

L−1∑
i=0

λ̃gi + Kp SNR λgi
(
λ̃gi + λgi − 2βi

)
1 + Kp SNR λgi

, (36)

where λ̃gi is the ith diagonal element ofΛg̃=Ψ†Ch̃Ψ, and βi is
ith diagonal element of the real part of the cross-correlation
matrix between g̃ and g.

4. MMSE ESTIMATIONOF KL COEFFICIENTS:
SEQUENTIAL APPROACH

We now turn our attention to the derivation of the sequen-
tial MMSE algorithm with simple structure. The sequential
MMSE approach is proposed in this paper to follow the chan-
nel variations by exploiting only channel correlations in fre-
quency. The block diagram for this is shown in Figure 2.

To begin with the algebraic derivation, we use (10) to
writemth component of Ỹ as

Ỹ[m] = u†(m)g + η̃[m], (37)

where u†(m) is the mth row of FΨ and η̃[m] is the mth ele-
ment of the noise vector η̃.

If an MMSE estimator of Ỹ[m+1] can be found based on

Ỹ[m], denoted by ̂̃Ym+1|m, the prediction error fm+1 = Ỹ[m+

1] − ̂̃Ym+1|m will be orthogonal to Ỹ[m]. We can therefore
project g onto each vector separately and add the results, so
that

ĝm+1 = ĝm + κm+1 fm+1

= ĝm + κm+1
(
Ỹ[m + 1]− u†(m + 1)ĝm

)
,

(38)

where ĝm+1 is the (m+1)th estimate of g, and κm+1 is the gain
factor given as

κm+1 = Mmu(m + 1)
u†(m + 1)Mmu(m + 1) + σ2

. (39)

It can be seen thatMm = E
[
(g− ĝm) (g− ĝm)†

]
is need-

ed in (39), hence update equation for the minimum MSE
matrix should also be given. If we substitute (38) inMm+1 =
E
[
(g− ĝm+1) (g− ĝm+1)†

]
, we obtain an update equation
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forMm+1 as

Mm+1 =
[
I− κm+1u†(m + 1)

]
Mm. (40)

Based on these results, the steps of the sequential MMSE
estimator for g can be summarized as follows.

Initialization. Set the parameters to some initial value
ĝ0 = 0,M0 = Λg.

(1) Compute the gain κm+1 from (39).
(2) Update the estimate of g from (38).
(3) Update the minimumMSE matrix from (40).
(4) Repeat step (1)–step (3) untilm = Kp − 1.

Some remarks and observations are now in order.

(i) No matrix inversions are required.
(ii) Since the MMSE estimator (11) requires F†F to be

equal to KpI which is satisfied only when ∆ = K/Kp

is an integer, however, the sequential version of (11)
works as long as ∆ ≤ K/L.

We now analyze the complexity of the sequential MMSE
algorithm. It follows from (39) in step (1) that one needs
4L2 + 5L real multiplications to compute the gain. Similarly,
from (38) in step (2), it requires 5L real multiplications for
the estimator update. Finally, in step (3), we need 8L2 real
multiplications for the MMSE matrix update. Therefore, the
total sequential MMSE algorithm requires 12L2 + 10L real
multiplications for one iteration.

4.1. Performance analysis

We turn our attention now to the performance analysis of the
adaptive algorithm. We will try to evaluate its convergence
properties in terms of mean square error.

From (39) and (40), we conclude that

κm+1σ
2 = (I− κm+1u†(m + 1)

)
Mmu(m + 1)

=Mm+1u(m + 1).
(41)

Substituting (41) in (39), we have(
Mm+1 − σ2

u†(m + 1)Mmu(m + 1) + σ2
Mm

)
u(m + 1) = 0L×1.

(42)

Based on (42), the following recursion is obtained:

Mm+1 = σ2

u†(m + 1)Mmu(m + 1) + σ2
Mm

= δm+1|mMm.
(43)

Due to positive definite property of error covariance matrix
Mm, it follows that u†(m + 1)Mmu(m + 1) > 0. As a result,
0 < δm+1|m < 1.

Define average MSE at the mth step as MSEm =
(1/L) tr(Mm), then it follows from (43) that

MSEm+1 = δm+1|mMSEm . (44)

Thus, we observe that as m → ∞, MSEm → 0 which means
that ĝm converges to g in the mean square.

5. SIMULATIONS

In this section, the merits of our channel estimators are illus-
trated through simulations. We choose average mean square
error (MSE) and symbol error rate (SER) as our figure of
merits. We consider the fading multipath channel with L
paths given by (45) with an exponentially decaying power de-
lay profile θ(τl) = Ce−τl/τRMS with delays τl that are uniformly
and independently distributed over the length LCP. Note that
h is chosen as complex Gaussian leading to a Rayleigh fading
channel with root mean square (RMS) width τRMS and nor-
malizing constant C. In [3], it is shown that the normalized
exponential discrete channel correlation for different subcar-
riers is

r f (k) = 1− exp
(− L

(
1/τRMS + 2π jk/K

))
τRMS

(
1− exp

(− L/τRMS
))(

1/τRMS + 2π jk/K
) .
(45)

The scenario for our simulation study consists of a wire-
less QPSK-OFDM system employing the pulse shape as a
unit-energy Nyquist-root raised-cosine shape with rolloff
α = 0.2, with a symbol period (Ts) of 0.120microsecond,
corresponding to an uncoded symbol rate of 8.33Mbps.
Transmission bandwidth (5MHz) is divided into 1024 tones.
We assume that the fading multipath channel has L = 40
paths with an exponentially decaying power delay profile
(45) with τRMS = 5 sample (0.6microsecond) long.

5.1. BatchMMSE approach

AQPSK-OFDM sequence passes through channel taps and is
corrupted by AWGN (0 dB, 5 dB, 10 dB, 15 dB, 20 dB, 25 dB,
and 30 dB, respectively). We use a pilot symbol for every
twenty (∆ = 20) symbols. The MSE at each SNR point
is averaged over 1000 realizations. We compare the experi-
mental MSE performance and its theoretical Bayesian MSE
of the proposed full-rank MMSE estimator with maximum-
likelihood (ML) estimator and its corresponding Cramér-
Rao bound (CRB). Figure 3 confirms that MMSE estimator
performs better thanML estimator at low SNR. However, the
2 approaches have comparable performance at high SNRs. To
observe the performance, we also present the MMSE andML
estimated channel SER results together with theoretical SER
in Figure 4. Due to the fact that spaces between the pilot sym-
bols are not chosen as a factor of the number of subcarriers,
an error floor is observed in Figures 3 and 4. In the case of
choosing the pilot space as a factor of number of subcarriers,
the error floor vanishes because of the fact that the orthog-
onality condition between the subcarriers at pilot locations
is satisfied. In other words, the curves labeled as simulation
results for MMSE estimator and ML estimator fit to the the-
oretical curve at high SNRs. It also shows that the MMSE
estimated channel SER results are better than ML estimated
channel SER especially at low SNRs.

5.1.1. SNR designmismatch

In order to evaluate the performance of the proposed full-
rank MMSE estimator to mismatch only in SNR design, the
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Figure 3: Performance of proposed MMSE and MLE together with
BMSE and CRB.
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Figure 4: Symbol error rate results.

estimator is tested when SNRs of 10 and 30 dB are used in
the design. The SER curves for a design SNR of 10, 30 dB
are shown in Figure 5. The performance of the MMSE esti-
mator for high SNR (30 dB) design is better than low SNR
(10 dB) design across a range of SNR values (0–30 dB). This
results confirm that channel estimation error is concealed
in noise for low SNR whereas it tends to dominate for high
SNR. Thus, the system performance degrades especially for
low SNR design.

10−1
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10−3

10−4

SE
R

0 5 10 15 20 25 30 35 40

SNR (dB)

Simulation results: SNR design = 10dB
Theoretical results: SNR design = 10dB
Simulation results: SNR design = 30dB
Simulation results: SNR design = 30dB

Figure 5: Effects of SNR design mismatch on SER.

5.1.2. Correlationmismatch

To further analyze full-rankMMSE estimator’s performance,
we need to study sensitivity of the estimator to design errors,
that is, correlation mismatch. We therefore designed the es-
timator for a uniform channel correlation which gives the
worstMSE performance among all channels [3, 5] and evalu-
ated it for an exponentially decaying power delay profile. The
uniform channel correlation between the attenuations can be
obtained by letting τRMS →∞ in (45), resulting in

r f (k) = 1− exp(2π jLk/K)
2π jk/K

. (46)

Figures 6 and 7 demonstrate the estimator’s sensitivity to the
channel statistics in terms of average MSE and SER perfor-
mance measures, respectively. As it can be seen from Fig-
ures 6 and 7, only small performance loss is observed for low
SNRs when the estimator is designed for mismatched chan-
nel statistics. This justifies the result that a design for worst
correlation is robust to mismatch.

5.1.3. Performance of the truncated estimator

The truncated estimator performance is also studied as a
function of the number of KL coefficients. Figure 8 presents
the MSE result of the truncated MMSE estimator for SNR =
10, 20, and 30 dB. If only a few expansion coefficients are
employed to reduce the complexity of the proposed es-
timator, then the MSE between channel parameters be-
comes large. However, if the number of parameters in
the expansion is increased, the irreducible error floor still
occurs.
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Figure 6: Effects of correlation mismatch on MSE.

5.2. Sequential MMSE approach

TheMSE results of the sequential full-rankMMSE algorithm
are obtained and presented as shown in Figure 9. In order
to better evaluate the performance of the proposed sequen-
tial MMSE estimation algorithm, we compare it with pre-
viously developed least mean square (LMS) and recursive
least squares (RLS) algorithms. It can be seen from simu-
lations that recursive MMSE estimator yields better perfor-
mance than LMS and RLS approaches and achieves Bayesian
MSE especially for low SNR.

For the convergence of the proposed adaptive algorithm,
MSE versus iteration is plotted for SNR = 10, 20, 30, and
40 dB in Figure 10. As expected, the proposed sequential al-
gorithm converges faster for high SNR values.

Finally, we wish to evaluate the performance of the algo-
rithm for different values of pilot spacing 10, 20, 30, 40, and
50 by plotting the MSEs and SERs with respect to SNR in
Figures 11 and 12, respectively. For the values pilot spacing ∆
larger than K/L, the SER and MSE performances decrease as
∆ increases.

6. CONCLUSION

We consider the design of low-complexityMMSE channel es-
timators for OFDM systems in unknown wireless dispersive
fading channels. We first derive the batch MMSE estimator
based on the stochastic orthogonal expansion representation
of the channel via KL transform. Based on such represen-
tation, we show that no matrix inversion is needed in the
MMSE algorithm. Therefore, the computational cost for im-
plementing the proposed MMSE estimator is low and com-
putation is numerically stable. Moreover, the performance
of our proposed batch method was first studied through
the derivation of stochastic CRB for Bayesian approach.

100
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Simulation results: correlation mismatch
Simulation results: true correlation

Theoretical results: true correlation

Figure 7: Effects of correlation mismatch on SER.
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Simulated: SNR = 30dB
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Figure 8: MSE as a function of KL expansion coefficients.

Since the actual channel statistics and SNR may vary within
OFDM block, we have also analyzed the effect of modelling
mismatch on the estimator performance and shown both
analytically and through simulations that the performance
degradation due to such mismatch is negligible for low SNR
values. The MMSE estimator is then extended to sequen-
tial implementation which enjoys the elegance of the simple
structure and fast convergence.
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Figure 9: Sequential MMSE performance.
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Figure 10: Convergence of the sequential MMSE estimator.

APPENDICES

A. BAYESIANMSE FOR TRUNCATEDMMSE KL
ESTIMATOR UNDER SNRMISMATCH

Substituting (10) in (16), the truncated MMSE KL estimator
now becomes

ĝr = KpΓrg + ΓrΨ
†F†η̃. (A.1)
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Simulation: pilot spacing = 10
Simulation: pilot spacing = 20
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Simulation: pilot spacing = 40
Simulation: pilot spacing = 50

Figure 11: Performance of the sequential MMSE for different pilot
spacings.
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Figure 12: Symbol error rate of the sequential MMSE for different
pilot spacings.

The estimation error

ε̂r = g− ĝr

= g− (KpΓrg + ΓrΨ
†F†η̃

)
= (IL − KpΓr

)
g− ΓrΨ

†F†η̃

(A.2)
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and then the average Bayesian MSE is

BMSE
(
ĝr
) = 1

L
tr
(
Cε̂r
)

= 1
L
tr
(
Λg(IL − KpΓr)2 + Kpσ̃

2Γ2r
)

= 1
L

r−1∑
i=0

[
λgi

(
1− Kp

λgi
λgiKp + σ2

)2

+ Kpσ̃
2
(

λgi
λgiKp + σ2

)2]
+
1
L

L−1∑
i=r

λgi

= 1
L

r−1∑
i=0

λgi
σ̃2Kpλgi + σ4(
Kpλgi + σ2

)2 + 1
L

L−1∑
i=r

λgi

where σ2 = 1
SNR

, σ̃2 = 1�SNR
= 1

L

r−1∑
i=0

λgi(
1 + Kpλgi SNR

)2
[
1 + Kpλgi

SNR2

�SNR
]

+
1
L

L−1∑
i=r

λgi .

(A.3)

Based on the result obtained in (A.3), Bayesian estima-
tor performance can be further elaborated for the following
scenarios.

(i) By taking �SNR = SNR, the performance result for the
case of no SNR mismatch is

BMSE
(
ĝr
) = 1

L

r−1∑
i=0

λgi
1 + Kpλgi SNR

+
1
L

L−1∑
i=r

λgi . (A.4)

(ii) As r → L in (A.3), BMSE(ĝ) under SNR mismatch re-
sults in the following Bayesian MSE:

BMSE(ĝ) = 1
L

L−1∑
i=0

λgi(
1 + Kpλgi SNR

)2
[
1 + Kpλgi

SNR2

�SNR
]
.

(A.5)

(iii) Finally, the Bayesian MSE in the case of no SNR mis-
match can also be obtained as

BMSE(ĝ) = 1
L

L−1∑
i=0

λgi
1 + Kpλgi SNR

. (A.6)

B. BAYESIANMSE FOR TRUNCATEDMMSE KL
ESTIMATOR UNDER CORRELATIONMISMATCH

In this appendix, we derive the Bayesian MSE of the trun-
cated MMSE KL estimator under correlation mismatch. Al-
though the real multipath channel h̃ has the expansion corre-
lation Ch̃, we designed the estimator for the multipath chan-
nel h = Ψg with correlation Ch. To evaluate the estima-

tion error g̃ − ĝr in the same space, we expand h̃ onto the

eigenspace of h as h̃ = Ψg̃ resulting in correlated expansion
coefficients.

For the real channel, data model in (10) can be rewritten
as

Ỹ = FΨg̃ + η̃ (B.1)

and substituting in (16), the truncated MMSE KL estimator
now becomes

ĝr = KpΓrg + ΓrΨ
†F†η̃. (B.2)

For the truncated MMSE estimator, the error is

ε̂r = g̃− ĝr

= g̃− KpΓrg− ΓrΨ
†F†η̃.

(B.3)

As a result, the average Bayesian MSE is

BMSE
(
ĝr
) = 1

L
tr
(
Cε̂r
)

= 1
L
tr
(
Λg̃ + K2

pΓ
2
rΛg + σ2KpΓ

2
r − 2KpΓrβ

)
= 1

L

r−1∑
i=0

[
λ̃gi +

Kpλgi
(
λgi − 2βi

)
Kpλgi + σ2

]

+
1
L

L−1∑
i=r

λ̃gi , σ2 = 1
SNR

= 1
L

r−1∑
i=0

[
λ̃gi +

Kp SNR λgi
(
λgi − 2βi

)
1 + Kp SNR λgi

]
+
1
L

L−1∑
i=r

λ̃gi

= 1
L

r−1∑
i=0

λ̃gi + Kp SNR λgi
(
λ̃gi + λgi − 2βi

)
1 + Kp SNR λgi

+
1
L

L−1∑
i=r

λ̃gi ,

(B.4)

where β is the real part of E[g̃g†] and βi’s are the diagonal
elements of β. With this result, we will now highlight some
special cases.

(i) Letting βi = λgi = λ̃gi in (B.4) for the case of no mis-
match in the correlation of KL expansion coefficients,
the truncated Bayesian MSE is identical to that ob-
tained in (A.4).

(ii) As r → L in (B.4), Bayesian MSE under correlation
mismatch is obtained to yield

BMSE(ĝ) = 1
L

L−1∑
i=0

λ̃gi + Kp SNR λgi
(
λ̃gi + λgi − 2βi

)
1 + Kp SNR λgi

. (B.5)

(iii) Under no correlation mismatch in (B.5) where βi =
λgi = λ̃gi , Bayesian MSE obtained from (B.5) is identi-
cal to that in (A.6).

(iv) Also note that as SNR →∞, (B.4) reduces to MSE(g̃−
gr).
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