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Abstract

We study two-level q-deformed angular momentum states and us-

ing q-deformed harmonic oscillators, we provide a framework for con-

structing qubits and quantum gates. We also present the construction

of some basic quantum logic gates, including CNOT, SWAP, Toffoli

and Fredkin.
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1 Introduction

Solving the quantum integrable models, quantum groups have been studied
since the eighties. Among many, one of the basic methods to construct quan-
tum groups is the Drinfeld’s method [1], in which a deformation parameter,
such as q, is defined on usual Lie algebra. Woronowicz’s approach [2] involves
non-commutative co-multiplication and in Manin’s approach [3] one can con-
struct a quantum group by making linear transformations on quantum plane.
Recently Manin’s approach is used to find inhomogeneous invariance quan-
tum groups of various particle algebras [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
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The particle algebras play an important role to describe fermions and
bosons both in quantum mechanics and quantum field theory. One can define
deformation parameter on particle algebra instead of Lie algebra. Then the
new system is called as deformed particle algebra. The first examples of
deformed particle algebras are about generalization of boson algebra [14, 15]
by using a real deformation parameter q. Macfarlane [16] and Biedenharn
[17] showed the relation between q deformed boson algebra and SUq(2),
which means q deformed special unitary group in two dimensions. Recently
the q-deformed particle algebras is used to understand the difference between
theoretical and experimental results in nuclear and atomic physics [18, 19,
20].

Recently entanglement measures of bipartite systems has been studied
in the context of q-deformed Heisenberg-Weyl algebra and a large class of
bipartite entangled states are obtained. The formalism of entanglement is
generalized to mixed states[21]. Bipartite entanglement in the context of
Uq(su(2)) quantum algebra used spin coherent state is introduced and these
entangled states has richer structure than non-deformed case[22].

Also it was shown that one can give good explanation to semiconductor-
cavity QED in high Q- regimes constructing excitons by using q deformed
boson algebra and it fits experiments[23]. q-deformed harmonic oscillators,
on the other hand, can provide models for quantum computations with such
as ion traps [24] and q-deformed relative entropy has been shown to be
playing an important role in the extensivity of quantum information metrics
[25].

Since qubits can be expressed using angular momentum states |jm〉, nat-
ural questions arise: i) Using q-deformed angular momentum states, can one
construct qubits; ii) How do the quantum gates act on q-deformed qubits;
and iii) Can one construct q-deformed quantum gates. In the following
sections, we present our results for these questions.

2 Qubits and Gates

In this section we introduce qubits in terms of angular momentum states
and formulate the operation of quantum logic gate to any qubit. Schwinger
representation [26] of angular momentum states are written as

|jm〉 =
(a†1)

j+m(a†2)
j−m

√

(j +m)!(j −m)!
|0̃10̃2〉. (1)

Here j is the total angular momentum quantum number and m is the zth

component of j, then a†1 is the creation operator for j and a†2 is the creation
operator for m. Also |0̃1〉 is oscillator ground state of j and |0̃2〉 is the
oscillator ground state of m. Substituting j+m = n1, j−m = n2 to Eq.(1),
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|jm〉 =
(a†1)

n1(a†2)
n2

√

(n1)!(n2)!
|0̃10̃2〉, (2)

where n1 + n2 = 1 and n1, n2 = {0, 1}. n1 and n2 are the eigenvalues
of the number operators. The creation and annihilation operators satisfy
following relations

aa† − a†a = 1, (3)

[a,N ] = a, [a†, N ] = −a†, (4)

N = a†a, N † = N. (5)

To construct a qubit we must define the values of j and m. In order
to write a qubit by using angular momentum state j must be equal to 1/2.
Then m can take values 1/2 and −1/2, which means that for j = 1/2 there
are two possible states |1/2 1/2〉 and |1/2 − 1/2〉, corresponding to qubit
states,

|1/2 − 1/2〉 = |0〉, (6)

|1/2 1/2〉 = |1〉. (7)

Since j’s are the same for both states only m is the determining parameter.
As a short hand notation we can express spin down state as | − 1/2〉 and
spin up state as |1/2〉.

Using Eq.(1) we can write qubit states in terms of oscillator states,

|0〉 = a†2|0̃10̃2〉 = |0̃11̃2〉, (8)

|1〉 = a†1|0̃10̃2〉 = |1̃10̃2〉. (9)

Taking j = 1/2 in j +m = n1 one can write m as n1 − 1/2 then a general
formula for qubit states can be written as;

|n1 − 1/2〉 =
(a†1)

n1(a†2)
(n2)

√

(n1)!(n2)!
|0̃10̃2〉 (10)

With the help of Eq.(10) any qubit state can be written. For spin up state n1
must be 1 and for spin down state n1 must be 0. Thus Eq.(10) is simplified
to

|x〉 = (a†1)
x(a†2)

(1−x)|0̃10̃2〉, (11)

where x can have values 0 and 1. In addition to that if one uses j −m = n2
to write an expression for m, the expression will be 1/2 − n1. Thus a qubit
state can also be written as below

|1/2− n1〉 =
(a†1)

n2(a†2)
(n1)

√

(n1)!(n2)!
|0̃10̃2〉. (12)
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Eq.(12) is used to write a qubit state |1− x〉. Substituting x for n1 one can
get

|1− x〉 = (a†1)
1−x(a†2)

(x)|0̃10̃2〉. (13)

Recall that n1 and x can take values only 0 and 1.
Let us now express how the gates act on qubits which are written in

terms of oscillator states. The operation of Phase Shift (PS), Hadamard
(Had), Not and Controlled-Not (CNot) gates [27] has been given in [28] as

PS|x〉 = eixφ|x〉, (14)

Had|x〉 = (−1)x|x〉+ |1− x〉, (15)

Not|x〉 = |1− x〉, (16)

CNot|x y〉 = (1− x)|x y〉+ x|x 1− y〉. (17)

Note that in Eqs.(14-16) |x〉 is an single qubit state but in equation (17)
|x y〉 is a two qubit state which is expressed as |x y〉 = |x〉|y〉.

Next, we will write Swap, Toffoli (control-control-not) and Fredkin (control-
swap) gates. Note that Toffoli and Fredkin [29] gates are essential for many
quantum information tasks, and recently there is an increasing interest on
these gates for creating large-scale W state quantum networks [30, 31, 32].

Swap|x y〉 = |y x〉, (18)

Fredkin|x y z〉 = (1− x)|x y z〉+ x|x z y〉, (19)

Toffoli|x y z〉 = (xy)|x y 1− z〉+ [(1− x)y + (1− y)x (20)

+ (1− y)(1 − x)]|x y z〉.

3 q-Deformed Oscillator and q-deformed Qubits

In this section we rewrite equations (14− 20) by using q-deformed harmonic
oscillators. To do that we must define a q-deformed oscillator algebra. Fol-
lowing equations (3−5) we write q-deformed boson algebra. The q-deformed
boson algebra can be written as in [33]

aqa
†
q − qa†qaq = q−N , (21)

[aq, Nq] = aq, [a†q, Nq] = −a†q (22)

[N ]q = a†qaq, aqa
†
q = [N + 1]q. (23)

Here aq and a†q are q deformed annihilation and creation operators respec-

tively. Unlike the usual boson algebra, the operator a†qaq is not a number
operator but it is equal to [N ]q and a deformed number can be defined as

[n] = qn−q−n

q−q−1 . Here q is a deformation parameter q = es and q ∈ R+.
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For a general realization the relation between q-deformed operators and
usual operators is given in [34]

aq =

√

qNψ1 − q−Nψ2

N(q − q−1)
a, (24)

a†q =

√

qNψ1 − q−Nψ2

N(q − q−1)
a†, (25)

Nq = N − (1/s)lnψ2. (26)

Here ψ1 and ψ2 are arbitrary parameters which depends on deformation pa-
rameter q. When they equal to 1 one can reach non-deformed boson algebra.
The qubit states |x〉q and |1− x〉q are written by q-deformed oscillators.

|x〉q = (a†1)
x
q (a

†
2)

(1−x)
q |0̃10̃2〉, (27)

|1− x〉q = (a†1)
1−x
q (a†2)

(x)
q |0̃10̃2〉. (28)

By using equations (24) and (25) one can rewrite equations (27) and (28).

|x〉q =
(
√

qN1ψ1−q
−N1ψ2

N1(q−q−1)
a†1

)x (√
qN2ψ3−q

−N2ψ4

N2(q−q−1)
a†2

)1−x

|0̃10̃2〉, (29)

|1− x〉q =
(
√

qN1ψ1−q
−N1ψ2

N1(q−q−1)
a†1

)1−x (√
qN2ψ3−q

−N2ψ4

N2(q−q−1)
a†2

)x

|0̃10̃2〉 (30)

In order to write equations in q-deformed case we must replace |x〉 and |1−x〉
by |x〉q and |1 − x〉q respectively in equations (14-20). To satisfy equations
(14-20) in q deformed case the arbitrary parameters should be defined using
equations (29) and (30).

First we use equation (29) in q-deformed version of equation (14) (PS|x〉q =
eixφ|x〉q). As it can be easily seen from equality there is no restriction on
parameters ψ1 and ψ2.

For the Hadamard gate (Had|x〉q = (−1)x|x〉q + |1 − x〉q). By using
equations (29) and (30) one can find ψ1 = ψ2 by assuming ψ1 = ψ3 and
ψ2 = ψ4.

For the Not gate (Not|x〉 = |1−x〉) we have same restrictions as Hadamard
case, which means ψ1 = ψ2 by assuming ψ1 = ψ3 and ψ2 = ψ4.

For CNOT gate (CNot|x y〉q = (1−x)|x y〉q+x|x 1−y〉q) the parameters
must be ψ5 = ψ6 with assumptions ψ5 = ψ7 and ψ6 = ψ8.

For Swap gate (Swap|x y〉q = |y x〉q), there is no restriction on parame-
ters ψi, i runs from 1 to 8.

For Fredkin gate (Fredkin|x y z〉q = (1 − x)|x y z〉q + x|x z y〉q), there
is no restriction on parameters ψi, i runs from 1 to 12.

For Toffoli gate (Toffoli|x y z〉q = (xy)|x y 1−z〉q+[(1−x)y+(1−y)x+
(1 − y)(1 − x)]|x y z〉q), the parameters are ψ9 = ψ10 by taking ψ9 = ψ11

and ψ10 = ψ12.
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As an example of finding parameters look at Hadamard gate.

Had|x〉q = (−1)x|x〉q + |1− x〉q (31)

Had
(
√

qN1ψ1−q
−N1ψ2

N1(q−q−1)
a†1

)x (√
qN2ψ3−q

−N2ψ4

N2(q−q−1)
a†2

)1−x

|0̃10̃2〉 = (32)

(−1)x
(
√

qN1ψ1−q
−N1ψ2

N1(q−q−1)
a†1

)x (√
qN2ψ3−q

−N2ψ4

N2(q−q−1)
a†2

)1−x

|0̃10̃2〉+

(
√

qN1ψ1−q
−N1ψ2

N1(q−q−1)
a†1

)1−x (√
qN2ψ3−q

−N2ψ4

N2(q−q−1)
a†2

)x

|0̃10̃2〉.

Then by arranging the terms in equation 32 one can get

Had(a†1)
x(a†2)

1−x|0̃10̃2〉 = (−1)x(a†1)
x(a†2)

1−x|0̃10̃2〉+ (33)
(

√

qN1ψ1−q
−N1ψ2

N1(q−q
−1)

)1−x(√

qN2ψ3−q
−N2ψ4

N2(q−q
−1)

)x

(

√

qN1ψ1−q
−N1ψ2

N1(q−q
−1)

)x(√

qN2ψ3−q
−N2ψ4

N2(q−q
−1)

)1−x (a
†
1)

1−x(a†2)
x|0̃10̃2〉.

Then by taking ψ1 = ψ3 and ψ2 = ψ4 one can get by remembering N2 =
1−N1

Had(a†1)
x(a†2)

1−x|0̃10̃2〉 = (−1)x(a†1)
x(a†2)

1−x|0̃10̃2〉+





(

qN1ψ1−q
−N1ψ2

N1(q−q−1)

)

(

q(1−N1)ψ1−q
(1−N1)ψ2

−(1−N1)(q−q−1)

)





1
2
−x

(a†1)
1−x(a†2)

x|0̃10̃2〉.

(34)
The term in the parenthesis must be 1. By writing the eigenvalues of N1 as
n1 one can see that

ψ1

ψ2
=

(1− n1)q
−n1 − n1q

n1+1

(1− n1)qn1 − n1qn1−1
(35)

The result is always 1 since n1 can only takes values 0 and 1. This means
that ψ1 = ψ2 for the Hadamard gate. For the other gates one can do the
similar calculations and reach the results which are given above.

sectionq-deformed Quantum Logic Gates
Here we introduce quantum logic gates in terms of q deformed oscillator

states. They can be expressed as
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Notq =

1
∑

x=0

|1− x〉q q〈x|, (36)

Hadq = −1(N1) +

1
∑

x=0

|1− x〉q q〈x| (37)

Swapq =
1

∑

x,y=0

|y x〉q q〈y x|, (38)

Cnotq = (1−N1) +

1
∑

x,y=0

|x 1− y〉q q〈y x|N1 (39)

Fredkinq = (1−N1) +

1
∑

x,y,z=0

|x z y〉q q〈z y x|N1, (40)

Toffoliq =
1

∑

x,y,z=0

|x y 1− z〉q q〈z y x| [N1M1 + (1−N1)M1] (41)

+

1
∑

x,y,z=0

|x y 1− z〉q q〈z y x| [(1−N1)M1 + (1−N1)(1−M1)] .

Here N1 and M1 are number operators for states |x〉 and |y〉. The next step is
obvious, to define arbitrary parameter ψ’s for acting the gates on q-deformed
qubits. In order to do that we take the simplest case which is q-deformed
NOT gate acts q deformed qubit (Notq|x〉q = |1− x〉q).

Notq|x〉q = |1− x〉q q〈x|x〉q (42)

By using equations (29) and (30) one can write the right hand side of equation
42 as,

(

qN1ψ1 − q−N1ψ2

N1(q − q−1)

)

1−x
2

(a†1)
1−x

(

qN2ψ3 − q−N2ψ4

N2(q − q−1)

)

x
2

(a†2)
x|0̃10̃2〉 (43)

〈0̃10̃2|(a2)
1−x

(

qN2ψ3 − q−N2ψ4

N2(q − q−1)

)

1−x
2

(a1)
x

(

qN1ψ1 − q−N1ψ2

N1(q − q−1)

)

x
2

(

qN1ψ1 − q−N1ψ2

N1(q − q−1)

)

x
2

(a†1)
x

(

qN2ψ3 − q−N2ψ4

N2(q − q−1)

)

1−x
2

(a†2)
1−x|0̃10̃2〉

With the help of property af(N) = f(N + 1)a and by choosing ψ3 =
ψ4 , ψ1 = ψ2, the parameters can be found as

ψ3 = qn1 and ψ1 = q1−n1 . (44)
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Then finally we can construct q-deformed qubits and gates by using equa-
tion 44. The q-deformed qubits are

|x〉q = (q1−n1)
x
2 (a†1)

x(qn1)
1−x
2 (a†2)

1−x|0̃10̃2〉, (45)

|1− x〉q = (q1−n1)
1−x
2 (a†1)

1−x(qn1)
x
2 (a†2)

x|0̃10̃2〉. (46)

Then the q-deformed gates are

Notq = (q1−n1)(
1−x
2

)(a†1)
1−x(qn1)

x
2 (a†2)

x|0̃10̃2〉〈0̃10̃2| (47)

(qn1)(
1−x
2

)(a2)
1−x(q1−n1)

x
2 (a1)

x,

Hadq = − 1N1 + (q1−n1)(
1−x
2

)(a†1)
1−x(qn1 )

x
2 (a†2)

x|0̃10̃2〉〈0̃10̃2|(q
n1)(

1−x
2

) (48)

(a2)
1−x(q1−n1)

x
2 (a1)

x,

Swapq = (q1−m1)(
1−y
2

)(b†1)
1−y(qm1 )

y

2 (b†2)
y|0̃10̃2〉(q

1−n1)(
1−x
2

)(a†1)
1−x (49)

(qn1 )
x
2 (a†2)

x|0̃10̃2〉〈0̃10̃2|(q
m1)(

1−y
2

)(b2)
1−y(q1−m1)

y

2 (b1)
y〈0̃10̃2|

(qn1)(
1−x
2

)(a2)
1−x(q1−n1)

x
2 (a1)

x,

Cnotq = (1−N1) + (q1−n1)
x
2 (a†1)

x(qn1)
1−x
2 (a†2)

1−x|0̃10̃2〉(q
1−m1)

1−y
2 (b†1)

1−y (50)

(qm1)
y

2 (b†2)
y|0̃10̃2〉〈0̃10̃2|(q

m1)(
1−y
2

)(b2)
1−y(q1−m1)

y

2

(b1)
y〈0̃10̃2|(q

n1)(
1−x
2

)(a2)
1−x(q1−n1)

x
2 (a1)

x(N1),

Fredkinq = (1−N1) + (q1−n1)
x
2 (a†1)

x(qn1)
1−x
2 (a†2)

1−x|0̃10̃2〉(q
1−p1)

z
2 (c†1)

z (51)

(qp1)
1−z
2 (c†2)

1−z |0̃10̃2〉(q
1−m1)

y

2 (b†1)
y(qm1)

1−y
2 (b†2)

1−y|0̃10̃2〉〈0̃10̃2|

(qp1)(
1−z
2

)(c2)
1−z(q1−p1)

z
2 (c1)

z〈0̃10̃2|(q
m1)(

1−y
2

)(b2)
1−y

(q1−m1)
y

2 (b1)
y〈0̃10̃2|(q

n1)(
1−x
2

)(a2)
1−x(q1−n1)

x
2 (a1)

x,

Toffoliq = (q1−n1)(
1−x
2

)(a†1)
1−x(qn1 )

x
2 (a†2)

x|0̃10̃2〉(q
1−m1)(

1−y
2

)(b†1)
1−y(qm1 )

y

2 (52)

(b†2)
y|0̃10̃2〉(q

1−p1)
1−z
2 (c†1)

1−z(qp1)
z
2 (c†2)

z|0̃10̃2〉〈0̃10̃2|(q
p1)(

1−z
2

)(c2)
1−z(q1−p1)

z
2 (c1)

z

〈0̃10̃2|(q
m1)(

1−y
2

)(b2)
1−y(q1−m1)

y

2 (b1)
y

〈0̃10̃2|(q
n1)(

1−x
2

)(a2)
1−x(q1−n1)

x
2 (a1)

x[(N1)(M1) + (1−N1)(M1)]

+ 〈0̃10̃2|(q
n1)(

1−x
2

)(a2)
1−x(q1−n1)

x
2 (a1)

x[(1−M1)(N1) + (1−N1)(1−M1)].

In above equations a, b and c are annihilation operators for states |x〉, |y〉 and |z〉
respectively and summation runs over x, y and z from 0 to 1.

4 Conclusion

The q deformation plays an essential role both in mathematics and physics.
Although it is used to solve some complicated integrable systems it is applied
to particle algebras. Since every force carrying particles obey boson algebra
and other fundamental particles obey fermion algebra, deforming these alge-
bras helps us understanding the behavior of them better. Nowadays, some
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studies show us q deformed systems better fits the experimental results than
usual systems, for example q-deformed three dimensional harmonic oscilla-
tor.

With this motivation, we have constructed qubit states by using q-
deformed boson algebra with arbitrary parameters ψ and quantum gates
acted on q-deformed qubits as quantum operators. Then restrictions on pa-
rameters has been discovered. As q-deformed systems fit better experiments,
quantum gates which are constructed with the help of q-deformed states may
be more effective.

Also in forth chapter we have constructed q-deformed quantum gates
as q-deformed oscillator states and have acted to q deformed qubits. Then
to satisfy Eqs.(36-41) we have found arbitrary parameters which are used to
write q-deformed gates and qubits and we found that these parameter ψ’s are
different from non deformed quantum gate case. As one can realize that in
the third chapter non-deformed quantum gates act on q-deformed qubit, we
defined arbitrary parameters ψ. In addition, in the forth chapter q-deformed
quantum logic gates act on q-deformed qubit, arbitrary parameters has been
defined and they are different form parameters which have been found in
chapter three.

As a further study, we believe that studying q-deformed versions of higher
level quantum systems and gates could lead to interesting findings.
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