View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Isik University Academic Open Access

A SOFTWARE PROCESS ASSESSMENT MODEL
AND A TOOL FOR
XP@SCRUM AGILE METHOD

A Thesis Presented to the
Institute of Sciences and Engineering ofsik University
In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Computer Engineering

by
ibrahim ULUDA G

ISIK UNIVERSITY
2006

https://core.ac.uk/display/333955957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approved for the University Committee on Graduatiedis

Prof. Dr. HisnU A. Erbay

Director

| certify that thesis satisfies all the requirensesis a thesis for the degree of Master of

Science.

Prof. Dr. Selahattin Kuru
Head of the
Computer Engineering

Department

This is to certify that | have read this thesis #&mat, in my opinion, it is fully adequate in

scope and quality as a thesis for the degree ofdvla$ Sciences.

Prof. Dr. Selahattin Kuru

Supervisor

Examining Committee Members

A Software Process Assessment Model and Tool for X¥*SCRUM Agile Method

Abstract

In today’s fast and competitive world, Agile Metlsotlas become popular by software
producers because for their high-speed, flexibdityl responding to change quickly. These
methods have been criticized as undisciplined wayaoking. However, these methods are
disciplined processes that incorporate good engiee management practices, albeit with
extreme implementations tailored to a specific kimfdenvironment [27]. Mark Paulk

showed that organizations applying XP can reach CiMMel 2 and Level3.

These methods do not have improvement guide arabdeyp determination. There might

be differences between the organizations applyirge methods.
In this thesis, | will propose a software processeasment model and a tool for proposed
model. My approach is selecting an assessment nazdal guide and selecting an agile

method as target method.

Keywords: software process assessment, Agile Methods, CMM

Acknowledgements

Firstly, | would like to thank to my advisor, Preor Selahattin Kuru. | am grateful for his

support and supervision.

Thanks to Mark Paulk from SEI for sharing his preagons about XP, CMM and Agile
Methodologies.

Special thanks to Arjan C. Schokking for sharing é&xperiences about XP@SCRUM in
Philips Research Laboratory.

Thanks to Bag Karakaya for his help.

Thanks to scrumdevelopment Yahoo Groups for shadiegs about SCRUM.

Dedication

This thesis is dedicated to my parents who havepatepd me all the way since the

beginning of my studies.

Also, this thesis is dedicated to my soul mateizFivhich has been a great source of

motivation and inspiration.

Table of Contents

YA 0 15] 1 = (o1 SRR iii
ACKNOWIEAGEMENTS ...ttt e e e e e e e e e smnnr e e e e e e e e e e e nnaes v
(D I=To [Tor=1 110] o [UETETT TR \Y
L1 o] 1SN0 | O] 01 (=] 01 KT RPN Vi
LISt Of FIQUIES... .. iX
TS o) B 1= o] [T X
O T 10 1o (¥ [1o o 1R 1
11 RoAAMAP Of TNESIS ... 2
FZ = - Tox (| {0 1o Vo PO 3
N R Y0 1 111V7= | (=T d (016 F 1 TP 3
2.2. PrOCESS ASSESSIMENT . .eiieeieiee et ceeee et et e ettt e et e et ea s aer e reraenaenns 5
2.3. Agile MethOUOIOGIES.......uueeiiiiiieee ettt 6
B TS 03 111 1 1 11
3.1 [igolo [SToxuTo] AR (o TR T o1 £ 1] o [F T 11
3.2 SCIUM P ASES . .oveiiee ettt vt ettt et e et e e e e e e e e e et e aesemeeeeareeenns 12
3.3, HOW DOES SCIUM WOIK? ..o et e e e e e enanns 14
I B S od 011 g T {01 [T PR 16
3.4.1. Yot £] T = 1) (=] 17
3.4.2. PrOAUCT OWNET ... e ettt e e e e e e e e e e e e ereaeenee 17
3.4.3. Yot £ 10 0T IT= 1 IR 18
3.4.4.) = 1 (] 1101 [0 [£ 18
I TR o2 011 0 od = (2 £ o1 1P 18
3.5.1. Product BackKlOg..........cceviiiiiiiiiiiiiiiiiiiie e 19
3.5.2. Daily SCrUM .. 21
3.5.3. Sprint Planning MEetiNgcooo i 22
3.5.4.] o111 0| ST TP PPPPPPPPPTT 22
3.5.5. SpPrint REVIEW MEELINGuviiiiiiiciiiiiie et 23
3.6. AdVantages Of SCIUM.........uuuvuiurtrtmmmmmmm s sseseseeeeeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 23
4. EXtreme Programiming..........ooiiuuuueeietcmmeeeeeee e et e e e e e e e s s snibbbreeeeesssannnenees 25
4.1. Extreme Programming Process Modelccccceerviiiiiiiiiiiiiiiiiiiiiicieeeeeenen, 25.
A2, XP VaAlUBS: ..ot e e e 26
42.1. COMIMUNICALION .t ettt e e e eaerenaes 26

4.2.2. Y 1101 0] 1o Y2 SO 27
4.2.3. FEedbDaCKuiiiiiiiiiiii e 27
4.2.4. (000 11] =T =TS UPUPUPUPPPT 28
4.2.5. ST 01T 0! SO UPT PP 28
4.3, COrE PraCliCESueiiiiiiiiiiiee s e ettt e et e s e e e erne e e e s 29
4.3.1. Coding Standardoooiiiiii e 29
4.3.2. Collective Code OWNEISNIPiiceeeemeeeeeeiiiiiiiiiiiii e 29
4.3.3. CoNtiNUOUS INTEGIALIONuuiiii et 30
4.3.4. Design IMProVEMENT.........oooiiii e e 30
4.3.5. SIMPIE DESIGN ...t 30
4.3.6. SMAll TEIEASES ... 31
4.3.7. Sustainable Peace............oooo e 31
4.3.8. System MetaphOruviiiiiiii e e 31
4.3.9. Pair Programimingcoeoi oo immmeeiiieieee e 31
4.3.10. Planning GamE..........uuuuuuuuuuiiimmmmmmmiiiiaiaieeeeeeeeeeeeeaaeaeeeeeeaesesreeaeeeeeeees 32
4.3.11. Test-Driven DevelopmeNt.............oceeeemruriiiiiiiiiiiieeeeeeeeeee e eeeeeeeeeeeeens 33
4.3.12. WhOIE T@AM ...ttt e e e 33
4.4. Methodology COMPANISONuuuiiiiiiiieeeeeteee e e ettt e e neeeeeas 33
5. XP@SCRUM ...ttt ettt e e e e e e e e e 35
5.1. Benefits Of XP@SCRUMcoooiuiiiittmcee et e e eneeenns 37
5.2, XP@SCRUM EXPEIMNENCESuvuvrrrunnnnmmmmmmrsernnnnninanaanaaasaaaeaaeeesasesseneaes 38
B. ISOMEC 15504ooiiiiiiiiee ettt ettt ettt e e e e ettt e e e e e e e e e e nnbe e e e e e annaeeeens 40
6.1. Introduction tO ISO/IEC 15504ccmmeeeeeeiiiiiieieeaiiiieeeessiiieee e e emneeens 40
6.2. SPICE dOCUMENT SUITEuuiiiiiiieee e eeeeeee ettt 41
6.1.1. Concepts and introductory gUIdecceeeeeeeiiiiiiiiiiiiiieeeeeee e 42
6.1.2. A model for process Managementccccccuuuuereeeeieeeeenniniiiiiiieeeeeeeens 45
6.1.3. RALING PrOCESS....ciiiiiiiiiiiititeeeeee ettt e e e e s 48
6.1.4. Guide to conducting aSSESSMENtcccccmeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeiaaae 48
6.1.5. Construction, selection and use of assedsnmsruments and tools......... 50
6.1.6. Qualification and training of aSSESSOrS....ccccceeviiiiiiiiiiiiieeeeeeeeeeee, 51.
6.1.7. Guide for use in process improvement ... cerrrrrrnr e eeeeeeee D3
6.1.8. Guide for use in determining supplier precrmablllty 54
6.1.9. VOCADUIAIYcoeiiiiiiie et e 56
7. A Model of Process Assessment for XP@SCRUM .co...c.ueiiiiiiiiiiiii e, 57
7.1. Concepts and INtroductory GUIAE...........couuueurimimmiiiiiiiiiieeee e 57
7.1.1. ASSESSMENE MOELoviiiiiiiiiieeee e 58
7.2. A Model for Process Management in XP@SCRUM....c....ccccceeeiiiiiiiiiiinnnnn. 58
7.2.1. BaASE PraCliCeSccoiiiiiiiiieieeeeeeeeee et 59
7.2.2. Communication Process Category.......cuuceeeeeiiiiiiiiiiiiiiieeee e 60
7.2.3. Planning Process Categoryceeeeeeerrrmmmmmiiiiiiiiaaaaiaeeeeeeeeeeaaeaaeens 60
7.2.4. Designing Process Categorycoceeceeeeveerruruviniiiiiiiieeeeeeeeeeeaas 61
7.2.5. Coding ProCess CateQOrYy oo eeeeeeeeeeeeeeaameeeeeeeeeeeerennmneneee 62
7.2.6. Testing Process Cate@gory............commmmmmerrrrnmmnmniinninninaaaeaaaaeeeeesaaaananas 63

7.3, RAUNG PrOCESS......cciiviiiiiiiiiiiiiieeeeeee et ereeee e 64

7.4. Guide t0 Process ASSESSMENL eeeeeerrmrrmnnnnnnnnnnnnnnnnnaaaaaanes 64
7.4.1. Reviewing the assessment SCOPEcccceevvriiiiiiieeinnniiiiiiiiiiieeeeean 65.
7.4.2. Selecting Process INStANCEScccceeeemeriiiieeeeiiiiiiiiiie e 65
7.4.3. Preparing for ASSESSMENT ... e e e e e e e eeeeeeeee e eeees 65
7.4.4. Information Collecting and Validationcccocooviiiiiiie, 66
7.4.5. Determining the Actual Ratingcceeeeeiiiiiiiiiiiiieeeeeeiiiie 66
7.4.6. Validating RatiNgSccooiiiiiiiii e eeeeee e 73
7.4.7. Presenting Assessment OQULPUL........couuumeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeceeeeeeeee 3

7.5. Comparison of ISO SPICE and XP@SCRUM PClu.cccevvvevieeeeererernnnnnnnn 74

8. ATOoOl for XP@SCRUM PCl ..ottt 75
0 R N1 o 1= o | P 75
8.2. Technical DetailScooiiiiiiiiee e 78

9. AN EXAMPIE ASSESSIMENT.....eiiiiiiieeiiiis sttt e e e e e e e e e e s st bee e e e e e s e s ensbeeeeeees 80
0.1, ASSESSIMENT SCOPE ... iiiei ittt ettt errmmce e et e et e 80
9.2. Preparing fOr ASSESSIMENTuuiiiiiaeice ettt s erae e e e e 81
9.3. Information Collecting and Validation................coovviiiiiiiiiiiiiiiiiiiaens 81
9.4. Determining the Actual Ratingcceeeeiiiiiiiiiiiiiiiiiiees e 81
9.5. Presenting ASSESSMENt OULPUL..........couremmmiiiiiiiiiiiiiieee e e e e eeeeeeans 84

10. CONCIUSION ...ttt ettt e e e e e e e e e e e e sab e e e e e nanbneeeeenae 85

REFEIENCES ...t e e e e e e e e 86

viii

List of Figures

Figure 2.1 An illustration of the software proCEsS........ccooevvviiiiiiiiiiii s 3
Figure 2.2 Software Process ASSESSMENT [L8] ceerrrrrrrrmmmmmmmmininienininsssssennens D
Figure 2.3 The Planning SPeCtrum [8]........ e seeeeeeeeaeeaiiiiiiiiiiiiieeee e e e e e sseneeeeeeee e 9
Figure 3.1 Scrum Methodology [44]cceeeeiiee e 13
Figure 3.2 How Does Scrum WOrK? [1]......coooceeeee et e e e 14
Figure 3.3 Input for @ New SPrint [33]cceemeiriieeii e 15
Figure 3.4 An example of Burndown Chart [34].........uuuuiiiiiiiiiiiiiieeeeeeee e, 21
Figure 4.1 Extreme Programming Process Model [44].........ccccoiviiiiiiiiiiiiiiiiiiiiinnns 25
Figure 5.1 Overlap of XP and Scrum practiCes [32].........urerriiiiiiiiiiiieeeeeeeeeeeeeanaeennn 36
Figure 5.2 XP@SCRUM MOEI [3]uuuuiiiiiiiiiemaaee et e e e e 37
Figure 6.1 SPICE document SUItE [18]ccceaaeieeeiiiiiiiiiiiiiee e ee e 43
Figure 6.2 Context of process asseSSMEeNt [L8] . .oooouririiiiiiiiiieeeiiiiiiiiieeeeee s 45
Figure 6.3 Eight assessment Stages [L18]o ceeeeeeeriiiiiiiiiiiiiiiieee e e e srmneeeaeee e 50
Figure 6.4 Software process improvement steps.[18]...........ovvvviiiiiviiiiiiiiiiiiiiiinans 55
FIQUIE 8.1 PrOJECE LISt ...uuiiiieii e e e e ettt e e ee e e e eeeeeeeeseennnne 76
Figure 8.2 Add @ NEW GSSESSMENT......ciiii it ereee e 76
Figure 8.3 Update ASSESSIMENL.........uuuiiie it e e e e e e e 77
Figure 8.4 ASSESSMENT Of 8 PrOCESS........ oo eeeeeiiaiiiiiiiiieiee e e e e e e e e aneneee e e e e 77
Figure 8.5 Assessment ReSUlt Chart..........ccooiiiiiiiiiieeeeee e 78
Figure 8.6 A Sample ASSESSMENE REPOITcuvuuuuuiiiiiiiiii e ea e e e 78
Figure 9.1 Assessment Result of Reporting Project.........ccccoevvvieiiiiiiieeeiieieecceeee, 84

List of Tables

Table 3.1 An example of Product Backlog [34] ..eeeeereevveiiiiiiiiiiiiiiiiiiicieee e 20
Table 3.2 Methodology Comparison for SCrum [44] coo.....ooooiiiiiiiiiiiiieeeeee 23
Table 3.3 An example of Sprint Backlog [34] .. ccceeeeiviieiiiiiiiiiiiiiee e 24
Table 4.1 Methodology Comparison of Extreme Prognimycccvvveeeeeeeeeeennnnnnnne 34
Table 6.1 The role of the assessor in differenésmaent approaches [18].............c..ee.eee. 52
Table 7.1 Comparison table of ISO SPICE and XP@SBRLI...............cceeeeeeeeeeenennnn. 74

Chapter 1

Introduction

As a relatively young methodology in software erginng, Agile Methods [7] and its
development practices are becoming increasinglylaopbut its value is still confounded
by hype and implicit, yet-to-be validated knowledge&necdotes of industrial teams
experiencing success with partial or full implenatioins of these practices are abundant

[22] [41]. However, organizations need a model #rapirically assesses AM’s efficacy.

Sim et al. challenged the software engineering camiy to create benchmarks — a set of
tests used to compare the performance of altem&tchniques [36]. Much fine work has
been done on metrics for software development. 8heunt of literature on the subject
and the process of gathering a significant set efirics can be overwhelming to a small,
informal team. Boehm and Turner [8] suggest thainésrmal team culture is appropriate
agile methods, but this may mean that team memidnerdess likely to be enthusiastic
about formal metrics. Additionally, XP teams ardeaof less likely to have metrics
specialists on their staff due to size constraarid an avoidance of what is generally
considered to be a formal, heavyweight aspect d@ifiwace development. Thus, it is

important to create a framework that is both infative and lightweight [43].

Even though agile methodologies are lightweightytdo have a defined process. Some
agile proponents may consider this is an oxymoexabse they believe that agile methods
present an alternative way to a process-centengcbagh. They feel that their lightweight
methodologies are distinctly different from the Waa&eight, bureaucratic and disciplined
plan-driven methodologies [8] [14]. Agile methodeed a process assessment model
because it must be determined whether organizasiensffective in achieving their goals.
XP and Scrum are the most popular agile method®ritey are combined, they provide
a structure within which a customer can evolve fanswe product that best meets his or

her needs, and can implement quality functionalityrementally to take advantage of

business opportunities. This paper proposes a amdtprocess assessment model for this

agile method.

The proposed model, (XP@SCRUM PCIl - Process Capatbietermination and
Improvement) model expects to provide set of astitm assist organizations applying

XP@SCRUM in improving the way that acquire softwareducts.

The XP@SCRUM PCI model develops a set of methogodogl models covering;
» areference model for processes and process cigypabil

e an assessment tool for this model

The XP@SCRUM PCI model is designed to comply with general requirements for
processes in XP@SCRUM. While proposing this mo@&&/SPICE 15504 guided as a

reference Software Process Assessment Framework.

1.1 Roadmap of Thesis

My thesis is organized as follows. Part 2 giveskigamund information for process,
process assessment and agile methodologies. Bapléns the Scrum Agile Method. Part
4 explains the Extreme Programming. Part 5 dissubsev XP and Scrum can be used
together. Part 6 is a summary of ISO/IEC 15504rivagonal Standard. Part 7 proposes an
assessment model for XP@SCRUM. Part 8 explainsotblecreated for this model. Part 9

presents an assessment conducted by using thisdnetial tool.

Chapter 2

Background

2.1. Software Process

As software processes have developed, the terngndhas been defined successively.
Sommerville defines the software process as: “ldivare process is the set of activities
and associated results which produce a softwarguptd[38]. This basic concept can be
modeled by using an elementary process model adldaptsoftware development [17].

This is illustrated in Figure 2.1.

Resources
Product idea Software Software Product
—»> —»
process

Figure 2.1 An illustration of the software process [5]

Any software process needs to at least addresfollosving activities in some form in
order to develop software [38].

» Specification. Decide what is to be developed.

» Development. Develop the product.

» Validation. Ensure the product meets the specitoat

» Evolution. Handle changes in the product.

In today’s methods, this is done in many differavays. An example of software
development that does not address these actiistibe methods that sparked the software
crisis, also known as ‘code and fix’ methods. Téeklof planning and requirements in the

methods, made the following problems common [38].

* Poor structure.
After each fix the structure of the code is destbynaking subsequent fixes and
additions more and more difficult.

* Inaccurate results.
The resulting program is hardly ever what the austodesired in the first place
due to the lack of requirements.

* Expensive.
Because of poor structure and lack of planningnaldiifications and fixes become

very expensive.

When these problems were observed, new modelsatithessed planning, requirements,
test and modification were developed. SommervBIg] [dentifies four different types of
such software development models currently in msitaal use:
* Waterfall type
Each activity, specification, development, validatand evolution, is executed and
signed off sequentially, one by one [31].
» Evolutionary type.
The activities are interleaved to rapidly produceot@ypes of increasing
complexity and correctness with regards to custaeruirements [38].
* Formal transformation.
The system is specified as a mathematical systemsathen transformed into the
finished product using formal mathematical transfations [20].
» Component based.
The software system is assembled from pre-develppgd [12].

Of these, the waterfall and evolutionary typesraost widely used in industry today, but
the potential effectiveness of software reuse laased much interest in component based
software engineering. In the classification aboagile methodologies are classified as
evolutionary by Sommerville. These are, howevemmmwnly regarded as a separate type.

These methodologies are very new and there iscéfoeenore research into the area [19].

2.2. Process Assessment

According to ISO/IEC 15504, process assessmengfiaatl as “A disciplined evaluation
of an organization's software processes againstptbeess model or variant model
described in this International Standard” [18]. Tigure of process assessment can be

seen at the Figure 2.2.

Process

Is

3 examined Identifies
Identifies y capability
changes t and risks of

Process
Assessment

Process
Improvement

Capability
etermination

motivates

Figure 2.2 Software Process Assessment [18]

Process assessment examines the processes usedigaaization to determine whether
they are effective in achieving their goals. Thesessment characterizes the current
practice within an organizational unit in termstioé capability of the selected processes.
The results may be used to drive process improvemetivities or process capability
determination by analyzing the results in the cxinté the organization's business needs,

identifying strengths, weaknesses and risks inlienethe processes [18].

Within a process improvement context, process assa# provides the means of
characterizing the current practice within an orgational unit in terms of the capability
of the selected processes. Analysis of the resultse light of the organization's business
needs identifies strengths, weakness and risksenha the processes. This, in turn, leads
to the ability to determine whether the processestective in achieving their goals, and
to identify significant causes of poor quality, @rer runs in time or cost. These provide

the drivers for prioritizing improvements to proses [18].

The framework for process assessment [18]:
* encourages self-assessment;
* takes into account the context in which the assiessEcesses operate;
» produces a set of process ratings (a processerddither than a pass/fail result;
» through the generic practices, addresses the ade@iidhe management of the
assessed processes;

* is appropriate across all application domains @resf organization.

2.3. Agile Methodologies

Agile methodologies have arisen as a reactiondantbre strict processes employed during
the third period of software engineering proces$és. development of these occurred in
parallel at the end of the 90’s. The most widegpralathese methodologies are listed as
below [19]:

* Extreme Programming (XP)

e Scrum

* Cockburn's Crystal Family

* Open Source Software Development

* Highsmith's Adaptive Software Development

» Coad's Feature Driven Development

 DSDM (Dynamic System Development Method)
* Rational Unified Process

* Lean Programming

* Agile Modeling
These methodologies have many common aspects &tina core group of people from
the agile community formulated the agile manifed&scribing the most fundamental

aspects of agile development. The principles ofiiée manifesto are below.

The followings are the principles of the Agile Miasito [28]:

* Our highest priority is to satisfy the customerothgh early and continuous delivery of
valuable software.

* Welcome changing requirements, even late in devedop. Agile processes harness
change for the customer's competitive advantage.

» Deliver working software frequently, from a coupleweeks to a couple of months,
with a preference to the shorter time scale.

» Business people and developers must work togetilgrttiroughout the project.

» Build projects around motivated individuals. Giveemn the environment and support
they need, and trust them to get the job done.

* The most efficient and effective method of convgyinformation to and within a
development team is face-to-face conversation.

» Working software is the primary measure of progress

» Agile processes promote sustainable developmertspbnsors, developers, and users
should be able to maintain a constant pace indefni

» Continuous attention to technical excellence amsbgtesign enhances agility.

» Simplicity--the art of maximizing the amount of vianot done--is essential.

* The best architectures, requirements, and desigasge from self-organizing teams.

» Atregular intervals, the team reflects on how éadme more effective, then tunes and

adjusts its behavior accordingly.
Agile methodologies focus on the followings:
Individuals and interactions over processes aniks.too

Working software over comprehensive documentation.

Customer collaboration over contract negotiation.

P oo N PE

Responding to change over following a plan.
These central values that the agile community adhter are [2] discusses as below.
First, the agile movement emphasizes the relatipnaind communality of software

developers and the human role reflected in theraots, as opposed to institutionalized

process and development tools. In the existingegwidctices, this manifest itself in close

team relationship, close working environment areamgnts, and other procedures boosting

team spirit.

Second, the vital objective of the software teanoisontinuously turn out tested working

software. New releases are produced at frequestvais, in some approaches even hourly
or daily, but more usually bi-monthly or monthlyhd developers are urged to keep the
code simple, straightforward, and technically adeahas possible, thus lessening the

documentation burden to an appropriate level.

Third, the relationship and cooperation betweendaeelopers and clients is given the
preference over strict contracts, although the mamze of well drafted contracts does
grow at the same pace as the size of the softwajegb. The negotiation process itself
should be seen as a means of achieving and mangaanviable relationship. From a
business point of view, agile development is fodusm delivering business value
immediately as the project stalls, thus reducirgribks of none—fulfillment regarding the

contract.

Fourth, the development group, comprising both vemié developers and customer
representatives, should be well-informed, compesent authorized to consider possible
adjustment needs emerging during the developmeweps life-cycle. This means that the
participants are prepared to make changes andaldmtthe existing contracts are formed

with tools that support and allow these enhancesnenbe made.

According to Highsmith and Cockburn [11], what aev about agile methods are not the
practices they use, but their recognition of pe@si¢he primary drivers of project success,
coupled with an intense focus on effectiveness rmadeuverability. This yields a new
combination of values and principles that define agile world view.” Boehm [8]
illustrates the spectrum of different planning neeth with Figure 2.3, in which hackers are
placed at one end and the so called inch-pebblédend contractual approach at the

opposite end.

Cockburn defines the core of agile software develp methods as the use of light-but-

sufficient rules of project behavior and the usehafman- and communication-oriented

8

rules. The agile process is both light and suffitid.ightness is a means of remaining
maneuverable. Sufficiency is a matter of stavingthe came [11]. He proposes the
following “sweet spots” the presence of which irfitaare development work enhances the

prospects for a successful project outcome:

Two to eight people in one room

Communication and community

Onsite usage experts

Short and continuous feedback cycles

Short increments

One to three months, allows quick testing and repai
Fully automated regression tests

Unit and functional tests stabilize code and alémmtinuous improvement

© ©® N o 0o K 0dhR

Experienced developers
10.Experience speeds up the development time from1® ttmes compared to slower

team members

Inch-

Adaptive Milestone Milestone pebble
SW risk-driven plan-driven ironbound
Hackers XP development models models contract
| | |
= | | | .

Agile methods | |

Software CMM

CMM

Figure 2.3 The Planning Spectrum [8]

Miller [25] gives the following characteristics tgile software processes from the fast

delivery point of view, which allow shortening tliie-cycle of projects:

1. Modularity on development process level
2. Iterative with short cycles enabling fast veafions and corrections
3. Time-bound with iteration cycles from one to si@eks

Parsimony in development process removes akbegssary activities
Adaptive with possible emergent new risks
Incremental process approach that allows functg application building in small
steps
Convergent (and incremental) approach minimizegisks
8. People-oriented. |.e. agile processes favorlpemger processes and technology

Collaborative and communicative working style

The basic principles of agile methods comprise @iorgiving honesty of working code,
effectiveness of people working together with gotighand focus on teamwork. A set of
common sense approaches emerging from agile sefmearelopment processes have been

suggested by Ambler [4] as follows:

people matter
less documentation is possible
communication is a critical issue

modeling tools are not as useful as usually thought

A A A

big up-front design is not required

When software development is incremental (smaltwake releases, with rapid cycles),
cooperative (customer and developers working caotigtatogether with close

communication), straightforward (the method itsslfeasy to learn and to modify, well
documented), and adaptive (able to make last mooteriges), the development is called

agile [2].

10

Chapter 3

Scrum

This chapter gives information about Scrum and Ito® implemented. This information

is based on the book “Agile Software Developmernhw@crum” [33].

3.1. Introduction to Scrum

In today’s fast-paced, fiercely competitive worlidcommercial new product development,
speed and flexibility are essential. Companies iaoeeasingly realizing that the old,
sequential approach to developing new products Iginipn’'t get the job done. Instead,
companies in Japan and the United States are adnojjstic method: as in rugby, the ball

gets passed within the team as it moves as a pititeufield.

Scrum implements an empirical approach based inggsocontrol theory. The empirical

approach reintroduces flexibility, adaptability dgoroductivity into system development.

Scrum is an iterative, incremental process for bgieg any product or managing any
work. It produces a potentially shippable set afidionality at the end of iteration. Its

attributes are listed as below [1]:

1. Scrumis an agile process to manage and contrelaewment work.

2. Scrum is a wrapper for existing engineering prastic

3. Scrum is a team-based approach to iterativelyementally develop systems and
products when requirements are rapidly changing

4. Scrum is a process that controls the chaos ofictinfj interests and needs.

5. Scrum is a way to improve communications and mazensb-operation.

6. Scrum is a way to detect and cause the removaiydhimg that gets in the way of
developing and delivering products.

7. Scrum is a way to maximize productivity.

11

8. Scrum is scalable from single projects to entigaaizations. Scrum has controlled
and organized development and implementation fdtiphel interrelated products
and projects with over a thousand developers apteimenters.

9. Scrum is a way for everyone to feel good about tjudi, their contributions, and

that they have done the very best they possiblydcou

Scrum naturally focuses an entire organization oiding successful products. Without
major changes -often within thirty days - teams lauségding useful, demonstrable product
functionality. Scrum can be implemented at the ieigig of a project or in the middle of a

project or product development effort that is wulnle.

Scrum is a set of interrelated practices and rulest optimize the development
environment, reduce organizational overhead, andsety synchronize market
requirements with iterative prototypes. Based indera process control theory, Scrum
causes the best possible software to be construgieeh the available resources,
acceptable quality, and required release datesfulUpeoduct functionality is delivered
every thirty days as requirements, architecturel dasign emerge, even when using

unstable technologies.

3.2. Scrum Phases

Scrum has the following three phases [44]:
* Pregame
o Planning: Create the Product Backlog (A priortizist of requirements)
0 Architecture : Use backlog to create high levelgiesf architecture
« Game
o Development Sprints: The software is created isdtgprints.
= Develop: Defining changes needed for the implent&mtaof
backlog requirements into packets, opening the gtackerforming
domain analysis, designing, developing, implemeptiesting, and
documenting the changes. Development consists ef rthicro

process of discovery, invention, and implementation

12

= Wrap: Closing the packets, creating a executahigiore of changes
and how they implement backlog requirements.

= Review: All teams meeting to present work and revigogress,
raising and resolving issues and problems, addienqy backlog
items. Risk is reviewed and appropriate responegsatl.

» Adjust: Consolidating the information gathered frdhe review
meeting into affected packets, including differtodk and feel and
new properties.

* Postgame
o Closure: Make preparation for release, includingifidocumentation and
testing.

These phases can be summarized in the Figure 3.1.

Scrum Methodology

m Pregame
* Planning =
+ System Architecture/High Level [‘
Design % /
M,
m Game o
« Sprints (Concurrent Engineering) / ,»JII \ \\,-,
+ Develop |
(Analysis,Design,Develop) :
0 Wrap . />
. Review S [
. Adjust _}a- I
m Postgame |
+ Closure \\Jf

Figure 3.1 Scrum Methodology [44]

13

3.3. How Does Scrum Work?

Scrum is based on the concept of iterations. Thesetwo nested iterations at the end of
which a feasible product appears. The inner itemais done every day and is called a
scrum. The external iteration is done every mord@ days- which, according to the

proponents of Scrum is the ideal - neither long sbort- for viable software to be

developed). This is illustrated in the Figure 3.2.

Scrurre 15 minute daily meeting.
Teams member respond to basics:
1) What did you do since last Scrum
Meeting?

) 2) Do you have any obstacles?
Sornd Backiog Backiog 3) What will you do bafore naxt

Featura(s) Items
assigned expanded d
1o sprind i I

Froduct Backiog

Prontized product festures desired by the customer

Mew functionality
Is damonstrated
at end of sprint

Figure 3.2 How Does Scrum Work? [1]

The Product Backlog is the listing of the thingattthe system should include and address,
including functionality, features and technologyisTis a prioritized list of all product
requirements. Product backlog is never finalizedth@r, it emerges and evolves along
with the product. Items that have high prioritytbe Product Backlog are the ones that are
most desired. Product Backlog content can come #ogwhere: users, customers, sales,
marketing, customer service, and engineering chsuséimit items to backlog. However,
only the Product Owner can prioritize the backl®oge Product Owner effectively decides
the order in which things are built.

14

Small, cross-functional teams perform all developt{&crum Teams). These teams take
on as much Product Backlog as they think they can into an increment of product
functionality within a thirty-day iteration, @print. Every Sprint must finish by delivering
new executable product functionality. Architectiaed design emerge across multiple
Sprints, rather than being completely during thiet fSprints. Figure 3.3 explains how a
new Sprint is formed.

Product Backlog Eewiew,

Team Capavilities ﬁ Consider q Mext Sprint Goal
Buginess Conditions &

Technology Stability Organize

Figure 3.3 Input for a new Sprint [33]

Multiple teams can develop product increments iralpe, all teams working the same
Product Backlog. The Scrum Teams are self-orgagiaimd fully autonomous. They are
constrained only by organization’s standards amyeotions, and by the Product Backlog
that they have selected. How the Product Backldbsiturned into a product increment
is up to team decisions. The team maintains afisasks to perform during each Sprint
that is calledSprint Backlog.

Scrum relies on team initiative and integrity. Dwyi the sprint, a management
representative §crum Master) enforces Scrum practices and helps the team tee ma
decisions or acquire resources as needed. The teash not be disturbed or given
direction by anyone by outside of it while it isarSprint.

The Scrum Team meets daily for a short status mgetalledDaily Scrum. At the Daily
Scrum, Progress is reviewed and impediments idedtfbr removal by management. The

Daily Scrum is an excellent place to observe howpurogress a team is making.

At the end of the Sprint, the team gets togetheh wmanagement at Sprint Review

Meeting to inspect the product increment the team has. Athky either build on what was

15

developed, scavenge it, or throw it away. Howetle, pressure to build on what's been
developed is high. The thirty day Sprint duratiois@es that the worst that happens is that
thirty days are lost should the team prove unaloledévelop any useful product

functionality.

After the product increment is inspected, managénwten rearranges the Product
Backlog to take account of what the team has actisihgal. The Product Backlog has
more meaning when viewed in light of the partiallgveloped product. Sometimes so
many backlogs are built that management selectsadrer release schedule. In this case,

the next Sprint can be used to release the product.

Once the Product Backlog has been stabilized,almn tagain selects top priority Product
Backlog for the next Sprint. The team then goesugh another iteration of work, pushing
through another Sprint. This cycle continues utitgd product, based oBmpirically

Managing cost, time, functionality, and quality — is deenpedentially releasable. Release

Sprints are then devised to bring the product lease-readiness.

Scrum is straightforward. By stripping away inagpiate and cumbersome management
practices, Scrum leaves only the essence of wankun® leaves a team free to go it, to
work its heart out and build the best product gaesiAlthough the Scrum process seems
simple and skeletal, it provides all necessary mament and control to focus developers

and quickly build quality products.

In Scrum, there is no formal project planning phdseere aren’t any Pert charts. There are
no roles and individual assignments. The team is abget on with its work and build
valuable product increments anyway. The team ggiutzes from a dispirited group of

individuals waiting for instructions into a teanattiakes the initiative and acts.

3.4. Scrum Roles

Scrum has four roles as listed below.
1. Scrum Master

2. Product Owner

16

3. Scrum Team
4, Stake Holders

These roles are better defined then the ones irwKieh is due to the fact that Scrum
focuses on management and control where XP foamsemngineering practices so well
defined roles are more important. That is also wingt of the time a person will only have

a single role and none are left out in a typicajgut [32].

3.4.1. Scrum Master

Scrum Master is the person that manages the Samegs in an organization. The Scrum

master is responsible for the success of Scrum.

The Scrum Master is a new management role intratlbgeScrum. The Scrum Master is

responsible for ensuring that Scrum values, prestiand rules are enacted and enforced.

The Scrum Master represents management and thedesach other. At the Daily Scrum,
the Scrum master listens closely to what each tesmber reports. He or she compares
what progress has been made to what progress vpaster, based on Sprint goals and

predictions made during previous Daily Scrum.

The Scrum Master works with the customer and manage to identify and institute a
Product Owner. The Scrum master works with managereeform Scrum teams. The
Scrum Master then works the Product Owner and ttreins teams to create Product
Backlog for a Sprint. The Scrum Master works witle Scrum teams to plan and initiate
the Sprint. During the Sprint, the Scrum Master duarts all Daily Scrums, and is
responsible for ensuring that impediments are ptympmoved and decisions are
promptly made. The Scrum Master is also respongdyevorking with management to

gauge process and reduce backlog.

3.4.2. Product Owner

Product owner is the customer representative. Rtoaluner can be only a person not a

committee. He/she is responsible for managing anttalling the Product Backlog.

17

3.4.3. Scrum Team

A team commits to achieving a Sprint Goal. The taamaccorded full authority to do

whatever it decides is necessary to achieve thie goa

The Scrum Master meets with the Scrum team andewevithe Product Backlog. The
Scrum Team commits to turn a selected set of PtoBacklog into a working product.
The Scrum team makes this commitment every SprFime. team has full authority to do
whatever is necessary to do so. It is only constchiby organizational standards and

conventions.

Every individual has their own strengths and weakes, comes from a unique
background, and is trained and gains skills throaauginiqgue education and job history. Pair

Programming enables to gain the strengths of tearardics.

A team selects the amount of Product Backlog amabkshes the Sprint Goal. No third

party can commit a person or team to do work.

It is important to equip a team with the best passtools. Open environments allow

people to communicate more easily.

3.4.4. Stakeholders

Users, management, sponsors are the stakeholdrs pfoject [29]. The stakeholders can
join the Scrum meetings to see the status of tlogeqr but they cannot speak in the
meeting. They can give their opinions about thedpob features and perform functional
tests.

3.5. Scrum Practices

Scrum practices provide practical methods to cotaglee Scrum development life cycle.

18

3.5.1. Product Backlog

The Product Backlog represents everything that m@yaterested in the product or process
has thought is needed or would be a good idea aduat. It is a list of all features,

functions, technologies, enhancements, and bug fixat constitute the changes that will
be made to the product for future releases. Takeshows an example of a Product

Backlog.

Product backlog is initially incomplete, just antied list of all things that the product or
system needs. The first Product Backlog may bstalirequirements that is gleaned from
a vision document garnered from a brainstormingieas, or derived from a marketing
requirements document. Sources of Product Backiedgaamal or informal as the hosting
organization. To get the first Sprint going, PradBacklog only needs to contain enough
requirements to drive a thirty-day Sprint. A Spriain start from only concepts and wish

list.

The product backlog emerges from this initial l&ggt the product and the customer’s
understanding of their needs emerge and evolvekl8acis dynamic. Management
repeatedly changes it to identify what the prodecduires to be appropriate competitive,

and useful. As long as a product exists, ProduckBg also exists.

Product Backlog is sorted in order of priority. Tqpiority Product Backlog drives
immediate development activities. Higher priorigcklog is clearer and has more detailed
specification than lower priority backlog. Bettestiemates are made based on the greater

clarity and increased detail.

A Burndown chart shows the amount of work remairaegoss time. The Burndown chart
is an excellent way of visualizing the correlatlmetween the amount of work remaining at
any point in time and the progress of the projeeam(s) in reducing this work. The
intersection of a trend line for work remaining ahe horizontal axis indicates the most
probable completion of work at that point in timfe.Burndown Chart reflecting this is
shown in Figure 3.4. This allows to “what if” theopect by adding and removing

functionality from the release to get a more acalgletdate or extend the date to include

19

Table 3.1 An example of Product Backlog [34]

Init. | Adj. Adj.
Backlog Description Est. | Factor | Est.
Title Import 1l 2| 3| 4| 5| 6| 7
Project Selection or new 3 02 36| 36|/ 0| 0| 0 0] O] O
Template Backlog for new projects 2 02 24 24| 0o Oof of of of O
Create P. B. workseet with formatting 3 02 36| 36| 0Of Ol of o] 0| O
Create S. B. worksheet with formatting 3 02| 36| 36|/ 0| 0| 0] 0] O] O
Display tree view of product
backlog, releases, sprints 2 0,2 24| 24| 0| 0| 0] O] O] O
Sprint-1 13 0,2| 15,6 16| 0| 0| 0] O] O] O
Create a new window containing
product backlog template 3 0,2 36| 36|36 0| 0] 0] 0] O
Create a new window containing
sprint backlog template 2 02| 24| 24|24
Burndown window of product backlog 5 02 0| 0| 0| 0] O
Burndown window of sprint backlog 1 02 12| 12|12 0| 0| 0| 0| O
Display tree view of product
backlog, releases, sprints 2 02| 24| 24|24 0| 0| 0| Ol O
Display burndown for selected or release 3 02| 36| 36(36] 0| 0] O] O] O
Sprint-2 16 0,2| 19,2 19| 19|1,2
Automatic recalculating of values and tools 3 02| 36| 36/36(36] 0| 0| 0] O
As changes are made to
backlog in secondary window
update burndown graph on main page 2 0,2| 24| 24|24|24| 0| 0| 0] O
Hide/automatic display of burndown window 3 02| 36| 36/36/36] 0] 0] 0] O
Insert sprint capability p 0,2| 24| 2424|124 0| 0| 0] O
Insert Release capability 1 02| 12| 1,2|12|12] 0| O] O] O
Owner assigned capability and columns opt 2 02| 24| 24(24|24] 0] 0] O] O
Print burndown graphs 1 02 1,2 1,2(1,2|1,2| Of Of Of O
Sprint-3 14 0,2 16,8 17| 17| 17 0| Of O] O
Duplicate incomplete backlog
without affecting totals b 0,2 6 6| 6| 6| 6| 6| 6| 6
Note capability 4 02| 72| 72|72|72|72|72|7,2|7,2
What-if release capability on burndown graph 15 0,2 18 18| 18| 18| 18| 18| 18] 18
Trend capability on burndown server 2 02| 24| 24|24(24(24(24|24|2/4
Publish capability for entire project,
publishing it as HTML web pages 11 0,2| 13,2 0| Of 13| 13| 13| 13| 13
Future Sprints 39 0,2| 46,8 34| 34| 34| 34| 34| 34| 34
Release-1 85| 70| 65| 47| 47| 47| 47

20

more functionality. The Burndown Chart is the @b of reality (work done and how fast

it's being done) with what is planned, or hoped[8#].

Release-1
90

80

70

60

Days Work S

Remaining ,

30

20

10

Sprint

Figure 3.4 An example of Burndown Chart [34]

3.5.2. Daily Scrum

Each Scrum Team meets daily for a 15-minute statasting called the daily Scrum.

During the meeting, the team explains what it hesomplished since the last meeting,
what is going to do before the next meeting, andtvalbstacles are in its way. Attending a
Daily Scrum is easier and more informative thardimeg a report and Daily Scrums have

additional benefit of being a boon for the teamva#l as for its managers.

During the Daily Scrum, only one person talks #itree. Everyone reports his or her status.

Scrum Master asks everyone three questions.

1. What have you done since the last Scrum?
2. What will you do between now and the next Scrum?

3. What got in your way of doing work?

21

The Daily Scrum is not a design session and shmatidurn into a working session.

3.5.3. Sprint Planning Meeting

Customers, users, management, the Product Ownethan8crum Team determine the
next Sprint goal and functionality at the Sprinaiitling meeting. The team then devises

the individual tasks that must be performed todthk product increment. (Figure 3.3)

To start the meeting, the Product Owner preseetsajh priority Product Backlog. Having
selected the Product Backlog, a Sprint Goal istedafThe reason for having a Sprint Goal

is to give the team some wiggle room regardingfitinetionality.

After establishing the Sprint goal, the team detees what work will have to be

performed. The team compiles a list of tasks to mete to meet the Sprint Goal. These
tasks are detailed pieces of work needed to coritiertProduct Backlog into working

software. Tasks should be enough detailed so et &ask takes roughly four to sixteen
hours to finish. This task list is called SprintdRkpg. The team self-organizes to assign
and undertake the work in the Sprint Backlog (T&b8. The team may have to define an
initial architecture or create designs before it @ally delineate the rest of the design. In
such a case, the team should define the initiadgtigation, design, and architecture work
in as much detail as possible, and reminders fakwhat will probably have to be done

once the investigation or design has been compl@aty the team can change its Sprint
Backlog. The Sprint Backlog is a highly visiblearéme picture of the work that the team

plans to accomplish the Sprint, and it belongslgatethe team.

3.5.4. Sprint

A team is let loose for the thirty day Sprint. Tleam has committed to the goal and
accepted the responsibility of building a produatréement that meets the goal. It has the
authority to act as it as it sees fit. No persotsioe the team can change the scope or
nature of the work the team is doing during a SpiNo one is allowed to add more
functionality or technology to the Sprint. No onenctell the team how to proceed in its

work.

22

Every product development project is constraineddoy variables, (1) time available (2)
cost, in people and resources, (3) delivered guadihd (4) delivered functionality. A

Sprint greatly fixes the first three variables.

3.5.5. Sprint Review Meeting

The Sprint Review meeting is a four-hour informatibmeeting. During the meeting, the
team presents to management, customers, usersthanBroduct Owner the product

increment that it has built during the Sprint.

3.6. Advantages of Scrum

The Scrum methodology, on the other hand, is desiga be quite flexible throughout. It
provides control mechanisms for planning a prodatgase and then managing variables
as the project progresses. This enables organizatiochange the project and deliverables

at any point in time, delivering the most approferigelease [44].

The comparison of Scrum with other methodologieshiswn in the Table 3.2.

Table 3.2 Methodology Comparison for Scrum [44]

Waterfall Spiral Iterative Scrum
Defined Process Required Required Required Planning & Closure
Final Product Determined Determined Set During Project | Set During Projec

During Planning| During Planning

Project Cost Determined Partially Variable | Set During Project| Set Duringject
During Planning

Completion Date Determined Partially Variable | Set During Project| Set Duringject
During Planning

Responsiveness to Planning Only Planning Primarily At end of eagihroughout

environment iteration

Team flexibility, Limited - Limited - Limited - Unlimited During

Creativity cookbook appr. | cookbook appr. cookbook appr. Iterations

Knowledge Training prior Training prior Training prior Teamwork

Transfer To project to project To project during project

Probability of Success | Low Medium Low Medium High

23

Table 3.3 An example of Sprint Backlog [34]

Task Description OriginatdrResponsible| Status 12| 3| 4 5| 6| 7| 8 9|10|11]12
Meet to discuss the goals

and features for Sprint 3-6[Danielle | Danielle/Sug Completed P00| 0| O 0| 0| O Of 0| 0| O| O
Move Calculations out of

Crystal reports Jim Allen Not Started 8| 8| 8| 8| 8| 8| 8| 8| 8| 8| 8
Get KEG Data Tom Completeq 20| 0| of of of of of of of o O
Analyze KEG Data - Title George In Progreps |24 (24| 24| 12(12|12(12| 12| 12|12 12
Analyze KEG Data - Parce Tim Completed [122| 12| 12| 12| 4| 4| 4| O| O Of O
Analyze KEG Data - Encur]

brance Josh In Progresg 20| 10|10|10]| 10
Analyze KEG Data —

Contact Danielle In Progresy 2424| 24| 24| 12(10| 8| 6| 6| 6| 6| 6
Analyze KEG Data —

Facilities Allen In Progress 124|24| 24| 12(10|10|10| 10|10| 10|10
Define & Build Database Barry/Dave In Progress (80| 80| 80| 80|80|60(60(6060|6060
Validate the size of KEG

Database Tim Not Started

Look at KEG Data on the

G:\ Dave In Progress 33| 3| 3| 3| 3| 3| 3 3| 3| 3| 3
Confirm Agreement with

KEG Sue Not Started

Confirm KEG Staff

Availability Tom Not Started | 1) 1| 1 2f 2| 2f 2| 12| 1| 1| 1
Switch JDK 1.3.1. Run all

tests Allen Not Started| 4§ 8| 8| 8| 8| 8| 8| 8| 8| 8| 8| 8
Store PDF files in a

structure Jacquie Completed 8ol o] ol Oo| ol of of o Oof Oof O
TopLink. Cannot get

rid of netscape parser Richard Completed no|l ol of of of o] O 0

Build test data repository Barry In Progreps (10| 10| 10| 10| 10| 10| 10 8

Move application and

database to Qual Richard Completed h 4 4 4| 4| 4

Set up Crystal Environmen| Josh Completed 11 1

Test app in Qual Sue In Progregs

Definining Sprint Goal

required for solution in

2002 Lynne In Progresg P40(40| 40| 40|40(40|38| 38|38|38|38
Reference tables for impor

process Josh In Progresy

Build standard import

exception process Josh In Progresy 122|121 10
Handle multiple file

imports on same page Jacquie Disregardegd

Migrate to CruiseControl

Servlet Allen Not Started 41 4 4| 4| 4| 4| 4| 4| 4| 4| 4

24

20

Chapter 4

Extreme Programming

Extreme Programming (XP) was conceived and devdlopaddress the specific needs of

software development conducted by small teams @ flte of vague and changing

requirements. This new lightweight methodology Erajes many conventional tenets,

including the long-held assumption that the costcbBnging a piece of software

necessarily rises dramatically over the coursenoé.t XP recognizes that projects have to

work to achieve this reduction in cost and expllog savings once they have been earned

[6].

4.1. Extreme Programming Process Model

The Extreme Programming process model is showinerrtgure 4.1.

v N
4 R 4 - Extreme Programming Project

Extreme Programming

Test Scenarios

Mewe Lser Stary

User Stories . .
Requirements Froject Velacity Bugs

Swstem Release Latest Customer

Architectural \yioon,, Release pian [T O - version, Acceptance approval Small
Spike Planning & Tests Releases
Uncertain Confident Mext lteration
Estimates Estimates
Spikc Caparizht 200 1. Doeovan Wells

Figure 4.1 Extreme Programming Process Model [44]

In Extreme Programming, the customer identifies rieeds by writing user stories. The

customer prioritizes the stories in the planninghganeeting. The software is created with

fast iterations. After each iteration; a workingdatested software is created. The tests

25

include unit tests performed by developers andtfanal tests performed by customers.

The software is created by using simple design,rafattoring.

4.2. XP Values:

Extreme Programming initially recognized just faalues but a new value was added in
the second edition of Extreme programming explaifiée five values are [13]:

e« Communication

* Simplicity
* Feedback
» Courage

* Respect (the latest value)

4.2.1. Communication

Extreme Programming techniques can be viewed afadetfor rapidly building and
disseminating institutional knowledge among memio¢is development team. The goal is
to give all developers a shared view of the systgmcth matches the view held by the
users of the system. To this end, Extreme Progragpii@vors simple designs, metaphor,
collaboration of users and programmers, frequembatecommunication and feedback
[13].

Communication is accomplished by the followings]{23
» Collaborative workspaces
» Co-location of development and business space
» Paired development
» Frequently changing pair partners
» Frequently changing assignments
» Public status displays
» Short standup meetings

* Unit tests, demos and oral communication, not deantation

26

4.2.2. Simplicity

Extreme Programming encourages starting with th@leist solution and refactoring to
better ones. The difference between this approauth more conventional system
development methods is the focus on designing adihg for the needs of today instead
of those of tomorrow, next week, or next month. grents of XP acknowledge the
disadvantage that this can sometimes entail mdogt ébmorrow to change the system;
their claim is that this is more than compensatadbly the advantage of not investing in
possible future requirements that may change befurg become relevant. Coding and
designing for uncertain future requirements impliee risk of spending resources on
something that might not be needed. Related topteeious value, "communication”,

simplicity in design and coding should improve {heality of) communication. A simple

design with very simple code can be easily undedstny every programmer in the team
[13].

Simplicity encourages the followings [23]:
» Delivering the simplest functionality that meetsimess needs
» Designing the simplest software that supports #exlad functionality
» Building for today and not for tomorrow

» Writing code that is easy to read, understand, fa@m@nd modify

4.2.3. Feedback

Within Extreme Programming, feedback is relatedlifterent dimensions of the system
development [13]. These dimensions are listed bsbe
* Feedback from the system: by writing unit tests gnegrammers have direct
feedback from the state of the system after impigimg changes.
* Feedback from the customer: The functional testswaitten by the customer and
the testers. They will get concrete feedback ablmatcurrent state of their system.
This review is planned once in every two or threseks so the customer can easily
steer the development.
* Feedback from the team: When customers come upneith requirements in the
planning game the team directly gives an estimatiotihe time that it will take to

implement.

27

Feedback is closely related to communication amapkgity. Flaws in the system are
easily communicated by writing a unit test thaty@® a certain piece of code will break.
The direct feedback from the system tells programmne recode this part. A customer is

able to test the system periodically accordindh®functional requirements.

Feedback is provided by the followings actions {23]
* Aggressive iterative and incremental releases
* Frequent releases to end users
» Co-location with end users
» Automated unit tests
* Automated functional tests
* Do the right thing in the face of opposition

» Do the practices required to succeed

4.2.4. Courage

The Extreme Programming doctrine of "Courage intesysdevelopment” can be best
explained by a couple of practices [13]. One is¢bemmandment to always design and
code for today and not for tomorrow. This is aroefto avoid getting bogged down in
design and requiring a lot of effort to implemenything else. Courage enables developers
to feel comfortable with refactoring their code wheecessary. This means reviewing the
existing system and modifying it so that future rapges can be implemented more easily.
Another example of courage knows when to throw cadey. Every programmer has
experienced getting stuck on a complex problemhigirtown design and code after
working on it all day, then coming back the nexy deith a clear and fresh view and

rapidly solving the problem in half an hour.

4.2.5. Respect

In Extreme Programming the Respect value has difteperspectives. There's respect for
other team members because, even with short cyates continuous integration,
programmers never commit changes that break cotigpi)ahat make existing unit tests

fail, or that otherwise delay the work of their peeThere's respect for one self in always

28

striving for high quality and seeking for the bestign for the solution at hand through
refactoring [13].

4.3. Core Practices

Extreme Programming has 12 core practices. Thesksted as below.
1) Coding standard
2) Collective code ownership
3) Continuous integration
4) Design improvement
5) Simple design
6) Small releases
7) Sustainable pace
8) System metaphor
9) Pair programming
10)Planning game
11)Test driven development
12)Whole team

4.3.1. Coding Standard

Coding standard is an agreed upon set of rulestlleagntire development team agree to
adhere to throughout the project [14]. By followiagoding standard, all of the code looks
like if it was written by a one person. The teanm choose standard written by other

person/company or creates own coding standard.

The benefits of Coding Standard are:
» Code is understandable by all team
» Supports Collective Code Ownership
4.3.2. Collective Code Ownership
Collective code ownership means that everybodyespansible for all the code; this, in

turn, means that everybody is allowed to changepantyof the code [14].

29

The benefits of Collective Code Ownership are:
» Decrease the time for development and fixing bug
» Provides continuity of the project
If a team member leaves the team, any team mermabecantinue his/her task

* Reduce duplicate code

4.3.3. Continuous Integration

Continuous Integration is a software developmemictiice where members of a team
integrate their work frequently; usually each pergautegrates at least daily - leading to
multiple integrations per day. Each integrationasified by an automated build (including
test) to detect integration errors as quickly asspgwe. This reduces the integration

problems [15].

4.3.4. Design Improvement

Extreme Programming focuses on delivering busineslie in each iteration. To
accomplish this over the course of the whole ptojie software must be well-designed.

The alternative would be to slow down and ultimatgt stuck [21].

The refactoring process focuses on removal of daptin (a sure sign of poor design), and
on increasing the "cohesion" of the code, whiledang the "coupling”. High cohesion
and low coupling have been recognized as the hedbnat well-designed code for at least
thirty years. The result is that XP teams starhwigood, simple design, and always have a
good, simple design for the software. This letsrttsistain their development speed, and

in fact generally increase speed as the projed fward [42].

4.3.5. Simple Design

XP team develops the software by using the simptleisig that works. This means
implementing only the required features. Simplagtesnables to handle changes that will

occur in the future.

30

4.3.6. Small releases

Small releases enable to create the software vih<ustomer wants. At the end of each

release, the customer gives a feedback to the &R.te

The benefits of small releases can be listed asbel
» The customers gets a working product at the erehol release

» The customer can change the scope, add/removednsict

4.3.7. Sustainable Peace

Extreme Programming teams are in it for the lomgtélhey work hard, and at a pace that
can be sustained indefinitely. This means that thesk overtime when it is effective, and
that they normally work in such a way as to maxenmoductivity week in and week out
[21].

4.3.8. System Metaphor

System Metaphor is a vision of what the prograrand how the program works. At its
best, the metaphor is a simple evocative descniptiohow the program works, such as
"this program works like a hive of bees, going fartpollen and bringing it back to the
hive" as a description for an agent-based inforomatietrieval system [42]. By system

metaphor, a programmer can make his/her decisioatdabe program.

4.3.9. Pair Programming

Pair programming means code is produced by twoldpges sitting next by next and

looking to the same monitor.

Many customers think that pair programming is umssary and increases the budget.
However there are many researches showing pairgroging increases the quality of the

product, decreases the development time [10].

The benefits of pair programming [10] can be listsdelow:
* many mistakes get caught as they are being typeather than in QA test or in the
field (continuous code reviews);

31

the end defect content is statistically lower (cwmus code reviews);

the designs are better and code length shorterofoggorainstorming and pair
relaying);

the team solves problems faster (pair relaying);

the people learn significantly more, about the eystand about software
development (line of-sight learning);

the project ends up with multiple people understaméach piece of the system;
the people learn to work together and talk moresroftogether, giving better
information flow and team dynamics;

people enjoy their work more

4.3.10Planning Game

The main planning process within Extreme Prograngnsrcalled the planning game.

The planning process is divided into two parts {14]

Release Planning:This is focused on determining what requirememts iacluded in

which release and when it's going to be deliveiidte customers and developers are both

part of this. Release Planning consists of threesest

Exploration Phase: In this phase the customer will give all his regments for
the system. These will be written down on userystards.

Commitment Phase: Within the commitment phase business and developme
will commit themselves to the functionality thativae included and the date of the
next release.

Steering Phaseln the steering phase the plan can be adjusted reguirements

can be added and or existing requirements candregell or removed.

Iteration Planning: This plans the activities and tasks of the dewalepin this process

the customer is not involved. Iteration Planningpatonsists of three phases:

Exploration Phase: Within this phase the requirement will be traregatto
different tasks. The tasks are recorded on taskscar
Commitment Phase:The tasks will be assigned to the programmerstaatime it

takes to complete will be estimated.

32

» Steering Phase:The tasks are performed and the end result ishedtavith the

original user story.

4.3.11 Test-Driven Development

Extreme Programming is obsessed with feedback, iansbftware development, good
feedback requires good testing. Top XP teams peattest-driven development”, working
in very short cycles of adding a test, then maltingprk [42].

There are two types of tests:
» Unit Test: Unit tests are automated tests written before toeeitten. These tests
are written to check if the functionality of theitten code will pass. Before the
release, all unit tests must pass.

» Functional Tests:Functional tests are the acceptance test madedbgroar.

4.3.12Whole Team

All the contributors to an XP project sit togetherembers of one team. This team must
include a business representative -- the "Customexrho provides the requirements, sets
the priorities, and steers the project. It is bete Customer or one of her aides is a real
end user who knows the domain and what is needbd. t&am will of course have

programmers. The team may include testers, who thelgCustomer define the customer
acceptance tests. Analysts may serve as helpdiget@€ustomer, helping to define the
requirements. There is commonly a coach, who hébgsteam keep on track, and

facilitates the process. There may be a managevjding resources, handling external

communication, coordinating activities. None ofdbeoles is necessarily the exclusive
property of just one individual: Everyone on an d§Bm contributes in any way that they

can. The best teams have no specialists, only gecantributors with special skills [42].

4.4. Methodology Comparison

The methodology comparison is shown in the Talle 4.

33

Table 4.1 Methodology Comparison of Extreme Programing

Waterfall Spiral Iterative XP

Defined Process | Required Required Required Not Exists

Final Product Determined | Determined | Set During| Set During
During During Project Project
Planning Planning

Project Cost Determined | Partially Set During| Set During
During Variable Project Project
Planning

Completion Date | Determined | Partially Set During| Set During
During Variable Project Project
Planning

Responsiveness tpPlanning Planning At end of each Throughout

environment Only Primarily iteration

Team flexibility, Limited - Limited - Limited - Unlimited

Creativity cookbook | cookbook cookbook During
approach approach approach Iterations

Knowledge Training Training prior | Training prior | Paired

Transfer prior to project to project Programming
To project

Probability of Low Medium Low | Medium High

Success

34

Chapter 5

XP@SCRUM

Scrum and Extreme Programming provide complemenpmnctices and rules. They
overlap at the planning game (XP) and Sprit plagr(@crum). Both encourage similar
values, minimizing otherwise troublesome discomsetietween management and
developers. Combined, they provide a structure iwithhich a customer can evolve a
software product that best meets his or her nesdbscan implement quality functionality
incrementally to take advantage of business oppiies. Following are several shared

practices that facilitate this functionality [21]:

Iterations: All work is done iteratively, with the customegibg able to steer and direct the

project in every iteration.

Increments. the team produces an increment of the customeighest-priority
functionality in every iteration. If desired, thestomer can direct the developers to turn

these increments into live, operational functidyadit any time.

Emergence Only that functionality that the customer hasstdd for the next iteration is
considered and built. The customer doesn't payuioctionality that he or she might not

select, and the developers don't have to codegdelmd maintain irrelevant code.

Self-organization The customer says what he or she wants; develapdetermines how

much they can develop during an iteration and égwut the tasks to do so.

Collaboration: Business and engineering collaborate about hast thebuild the product

and what the product should do between iterations.

Scrum doesn't have any engineering practices, wrgpand using those at the
organization where it is implemented. When theggraering practices are weak, overall

productivity is lessened [21].

35

XP doesn't have any management practices. XPnbelilegement where it needs them, but

offers few insights into maximizing value [21].

Both methods complement each other very well amdbeacombined to address the issues
with the lack of methods for dealing with low levislsues in Scrum and high level
planning issues in XP. Also the only real overlaiween the two methodologies is the
planning game which was directly lifted from Scrisjn XP to give it at least rudimentary
process estimation and tracking ability. This caericauses no problems since it is
implementation is the same in both methodologieB. the other practices the two
methodologies have are exclusive to them. Theyshmvn in Figure 5.1. Here the red
circle describes XP with its practices listed te tight while the blue circle depicts Scrum
with its practices to the left. The purple sectisithe overlap and as described above only

holds the planning game [32].

Sprint Small Releases
Sprint Planning Cin-5ite Custormer
End of Sprint Review Simple Design
Caaily Scrum System Metaphor
Product Owner 40 Hour Week
Scrum Master Continuous Integration
Product Backlog Coding Standards
Sprint Backlog The Plancitg Game _Iﬂzollgct'we Code Ownership
esting
Refactoring

Pair-Prograrmming

Figure 5.1 Overlap of XP and Scrum practices [32]

And the Figure 5.2 shows how XP and Scrum is impleted together.

36

5.1.

Serum

Management

Practices
Sprint Backiog

Froduct
Backlog

P@ Scrumm

xP Engineering
Practices
Simple Design
Testing
Refactoring.
FPair Frogramming
Collective Ownership
Continuous Integration
Coding Standards

Figure 5.2 XP@SCRUM Model [3]

Benefits of XP@SCRUM

Benefits of XP@SSCRUM can be listed as below [3]:

The agile management and control mechanisms ofnteme applicable for any
type of project, including business initiativesttbansist of multiple, simultaneous
software development, business development, rezeaghg, marketing, support,
and implementation projects. XP@SCRUM projects \itthin the overall
management framework of these initiatives.

XP@SCRUM projects realize the full benefits of smifjanization; teams are
iteration (or Sprint) goal directed, rather thaorgtdirected.

When Extreme Programming projects are wrapped byngahey become scalable
and can be run simultaneously by non-collocatechsea

37

Scrum implements in a day; Extreme Programmingheagradually implemented

within the Scrum framework.

5.2. XP@SCRUM Experiences

Philips Research has selected the combination e Programming and Scrum as the

base of their software development process. Fitsdy applied XP and then they used XP

with Scrum. While applying only XP, there had perhk as below [40]:

1. XP does not give you much help regarding documiematnodeling, and the use

of UML and design patterns.

. Newly hired software engineers had to be instrucidtbre the architecture is

addressed in XP. The term is only briefly mentionedthe 12 practices. Our
current belief is that a good introductory coursgarding XP is required for each
new employee. They must be instructed that writegs first has everything to do
with architecture and design: it forces to looklet code from the viewpoint of its
user which is at a higher abstraction level. Andt tit offers a practical way to
obtain the principle of low coupling and high colas This is because tests must
be fully self-contained. Furthermore refactoring, eéxplained by Martin Fowler
[16], allows to not only addressing architectur¢hatbeginning of the project (as in
the waterfall model) but offers the opportunityeteolve the software architecture
in a cost-effective sense. Certainly, the princigésign-as-you-go compared to
code-and-fix must be explained from a practicaltern

XP did not help us regarding introduction of XP an organization, how to
optimize or enhance the way of working, and how imteract with your
management. Also as with most managers, the wotckrag scared them off.
Maybe we may propose the word excellent here. \Weawrare of course, that XP
would not be what it is now, if XP would not havweck a provocative name

We could not convince all our customers to provige with unambiguous
requirements in the form of acceptance tests. Eséwe could get from them were
scenario’s to execute, with some related sentemgesding the expected outcome.
Defining automated tests for all requirements at @lser level in the multimedia

domain though, is a challenge on its own. We nowedale meetings at the end of

38

the iteration in which the team demonstrates thereatly implemented
functionality to the customer and discusses togetinether it is accepted or not.

5. An iteration length of two weeks worked out to be short for our small teams (1-
5 in size) in order to be able to add significamidtionality. We are now using
iteration lengths of one calendar month, which aéduces a nice rhythm in our
projects: at the beginning of the month new requéets have to be identified and
at the end of the month these requirements havgetaccepted. This is easily
remembered even without inspecting our calendars.

6. We felt the need to not only enter functional reguoients in the list of user stories
but also nonfunctional ones, like moving from om®ltto another, a major
refactoring or a particular required document. A##, it is the customer that pays
for them and we want them to become visible andamu. We now also add

problem reports and change requests to this list.

After applying XP with Scrum, they have solved inieblems numbered 3 through 6.

39

Chapter 6

ISO/IEC 15504

This chapter summarizes the international stanftargrocess assessment ISO/IEC 15504

[18] which is a reference model for this thesis.

6.1. Introduction to ISO/IEC 15504

ISO/IEC 15504 (SPICE) is a major internationaliative to support the development of
an International Standard for Software Process gsssent. The project has three principal

goals [37]:

» To develop a working draft for a standard for saftevprocess assessment
* To conduct industry trials of the emerging standard
« To promote the technology transfer of software psscassessment into the

software industry world-wide

The standard is designed to provide assessmernitsrébat are repeatable, objective,
comparable within similar contexts, and able taibed for either process improvement or
process capability determination is used by anrorgéion to determine whether they are
effective in achieving their goals. The assessrobatacterizes the current practice within
an organizational unit in terms of the capabilityttee selected processes. The results may
be used to drive process improvement activitieprocess capability determination by
analyzing the results in the context of the orgatmn's business needs, identifying

strengths, weaknesses and risks inherent in treegses.

The first goal was achieved on June 1995 when éhgion 1 (draft standard) was released.
By the normal process of development of internaiastandards, the SPICE documents
have been published as ISO/IEC TR 15504:1998 wao# Process Assessment. WG10 is

continuing the work to the ultimate goal, full imiational standard.

40

There are a lot of people involved in SPICE devedept from over 20 countries. The
international efforts are coordinated by five im@ional technical centers. This
arrangement has brought together software, stasdardcess and many other developers
and academics around the world. The ultimate gb#his international community is to

develop a consistent and validated framework fitwswe process assessment.

Why an international standard is needed? To impropglity and productivity,
management needs to somehow measure the procedsirusievelopment. Process
assessment can be a strong and effective drivgarémess improvement. An international

standard will provide the following benefits to swdre industry:

» Software suppliers will submit to just one procassessment scheme (presently
numerous schemes are used)

» Software development organizations will have a ttwlinitiate and sustain a
continuous process improvement

* Program managers will have a means to ensurelbatdoftware development is

aligned with, and supports, the business needseabriganization

Practically it means that companies can get muttersituation in the competitive world-
wide markets when they use internationally standadd software process assessment
framework. Companies participating to the SPICEettlgyment ensure that they are at the

forefront of this technology when it will reach timternational standard [30].

SPICE can be used in various contexts. Before USRILCE, the organization must first
define the key determinant of why SPICE is needéeére are three choices:

* To understand the software process used

« To support process improvement

» To support process capability determination

6.2. SPICE document suite

SPICE provides a set of documents, which are usedfeamework for the assessment of

software process. Organizations can use these dotanm various phases of production,

41

for example in planning, managing, monitoring, coling and improving acquisition,

supply, development, operation, evolution and suppicsoftware.

Basically software process assessment examinesetheted processes whether they are
effective in achieving their goals, which is dong determining the capability of the
selected processes. This structured approach ftwase process assessment helps an
organization to improve its processes or to deteents capability for certain requirement,

or to determine supplier’s capability for certa@muirement.

Process assessment provides information of thebddpaof the selected processes.
Analysis results, from business point of view, idgnstrengths, weakness and risks
inherent in the processes [37]. By this, analyzams able to determine whether the
processes are effective, and to identify significaauses of poor quality, or over runs in
time or cost. After recognizing these kinds of essunanagers can prioritize improvements

to processes.

Process capability determination analyses the seghaapability of selected processes
against a target process capability profile. Bg,tititries to find out the risks involved in a

project, if the project is run with the analyzedqasses.

The document suite of SPICE contains nine diffemtuments, which can be used in

process assessment. The relationship of these @éodsitan be seen at the Figure 6.1.

6.1.1. Concepts and introductory guide

This part of this International Standard provide®rall information on the concepts of

software process assessment and its use in thedmtexts of process improvement and
process capability determination. It describes hlogvparts of the suite fit together, and
provides guidance for their selection and use.exjlains the requirements contained
within this International Standard, and their apgliility to the conduct of an assessment,
to the construction and selection of supportingstoand to the construction of extended

processes.

42

Part 1 Part9
Corcepts and Ftroduciary Gude woacabulary

Part 7 Part 8 Partt
Guide Tor uze in Guide far uze in Lialificateon and traming
Arocess mprovement determning suppker ol assessons

process capakulty

Part3 Part4

Guide to conducing
azsessment

Fating Proceszes

[|

Part5 Part 2
Construction, selection & model
ahd uze of azsessment sl Tor
FOCESS managemnent

ingtruments and {ools

Figure 6.1 SPICE document suite [18]

Figure 6.2 shows how process assessment and promesiility determination affects to
process improvement. Basically a process is exainth an assessment, which leads to
process capability determination and process imgrent. Capability determination
identifies the capability and risks of a processd @rocess improvement identifies the
changes, which should be made to the process. &eftvapability determination generally

motivates an organization to do process improver3it

The benefits arising from the use of this suitd@fuments include:
Foracquirers:
* An ability to determine the current and potentigbability of a supplier’s software
processes
Forsuppliers:
* An ability to determine the current and potentiapability of their own software
processes
* A ability to define areas and priorities for softe&grocess improvement

» A framework that defines a road map for softwamcpss improvement

43

Forassessors

» A framework that defines all aspects of conductisgessments

Processes, categorized into five process categartbe model, are described below:

» Customer-Supplier - processes that directly impact the customer,psup
development and transition of the software to tbetamer, and provide for its
correct operation and use

» Engineering - processes that directly specify, implement, aintain a system and
software product and its user documentation

* Project - processes which establish the project, and dovate and manage its
resources to produce a product or provide a sewiiieh satisfies the customer

» Support - processes which enable and support the perfaenaf the other
processes on a project

» Organization - processes which establish the business goalseobrganization
and develop process, product, and resource asketh will help the organization

achieve its business goals

Context of a Process Assessment

An assessment is carried out by assessing selpobedsses against the process model
defined in part 2 of this International Standaiichis two-dimensional model consists of a

set of process-specific base practices and a ggraric practices. The generic practices
apply across all processes. The generic practicegrouped into common features and
capability levels that may be used to determine il the process is managed. The
assessment output includes a set of process ci#pdbitel ratings for each process

instance assessed. The context of a process assgssrsummarized in Figure 6.2.

An assessment is supported by an assessment iesittruon set of instruments, constructed
according to part 5 of this International Standaiithe process assessment is carried out
either by a team with at least one qualified assesti0 has the competence described in
part 6; or, on a continuous basis using suitabi¢stéor data collection and verified by a

qualified assessor.

44

Azzessment Input
e Assessment scope
s Assessment purpose
s Aszessment constraints
e Agsessment responsibilities
o Faend process definitions
o Addtional mformation to be

collected

Process

Assessment mstriments Azcesstnett

* Processindicators —_—
s Process managern ent

indicators /

Process Wodel

(Part 2 of this Internatrions Standardy ~ £58essment output
* Process Purpose s (eneric Practice Adequecy

* Practices rating .
¢ Process capability lewvel

ratings
e Azsessment record

\

to process improvernent or
process capability det errnination

Figure 6.2 Context of process assessment [18]

Tools to support process assessment
An assessment instrument is a tool, or set of tamed during the performance of an

assessment to assist the assessor in obtainiagleglconsistent and repeatable results.

6.1.2. A model for process management

Document 2 provides the set of practices fundanh¢émtgood software engineering. This
document defines various processes which can ke insearious phases of production,

named acquire, supply, development, support, eyaive operate.

The model includes a set of practices, named lpsittices and generic practices. Basic

practices, grouped into processes and processotiEggare essential activities of a

45

specific process, while generic practices, apple#ad any process, represent the activities

necessary to manage a process and improve itsitgpbperform.

Process capability levels, common features, ancrgeipractices are used in evolving
process capability. A capability level basicallynswts of a set of common features (sets of
activities), which provide enhancement in the cdpgbof performing a process.
Compared to the predecessors, each level providesj@ enhancement in capability of

the performance of a process.

Capability levels provide two benefits:
» Acknowledging dependencies among the practicespobeess

* Help an organization to identify which improvementsight perform first

Capability levels are named as followed:
* Level O — Not performed
The Not-Performed level has no common featureserdhs general failure to
perform the base practices in the process. Therena easily identifiable work

products or outputs of the process.

* Level 1 — Performed informally
Base practices of the process are generally peeidrnThe performance of these
base practices may not be rigorously planned au#éd. Performance depends on
individual knowledge and effort. Work products thfe process testify to the
performance. Individuals within the organizati@taognize that an action should
be performed, and there is general agreement higagattion is performed as and

when required. There are identifiable work proddot the process.

* Level 2 —Planned and tracked
Performance of the base practices in the procesplaaned and tracked.
Performance according to specified proceduresrifiage Work products conform

to specified standards and requirements.

46

The primary distinction from the Performed-InforigalLevel is that the
performance of the process is planned and managedprgressing towards a

well-defined process

* Level 3 - Well defined
Base practices are performed according to a wélhel process using approved,

tailored versions of standard, documented processes

The primary distinction from the Planned-and-Tratkevel is that the process of
the Well-Defined Level is planned and managed usamg organization-wide
standard process.

» Level 4 — Quantitatively controlled
Detailed measures of performance are collected aaradyzed. This leads to a
guantitative understanding of process capability an improved ability to predict
performance. Performance is objectively manag&de quality of work products

is quantitatively known.

The primary distinction from the Well-Defined Levislthat the defined process is

quantitatively understood and controlled.

» Level 5 — Continuously improving
Quantitative process effectiveness and efficienoglg (targets) for performance
are established, based on the business goals obranization. Continuous
process improvement against these goals is enalegiantitative feedback from
performing the defined processes and from pilotimpovative ideas and
technologies.

The primary distinction from the Quantitatively-Goolled Level is that the defined

process and the standard process undergo contimefioement and improvement,

based on a quantitative understanding of the implaciianges to these processes.

47

6.1.3. Rating process

This document suite of SPICE is used in defining thinimum set of requirements for
conducting a software process assessment. Thegeeregnts are used to ensure that the
outputs of the assessment are consistent, repeasainl representative of the process

instances assessed.

A process assessment is practically done by asgesslected processes against the
process model defined in document 2. The outputhefassessment provides a set of

capability level ratings for each process instaagsessed.

This document is primarily addressed to the qualdifassessor and other people, such as
the sponsor of the assessment, who need to atmmselves that the requirements have

been met. It may also be very valuable for devepéassessment methods and tools.

As part of the SPICE, this document establishes¢lj@irements for a software process
assessment, for rating, analyzing and profiing assessment, and defines the

circumstances under which assessment results angacable.

This document provides an assessment frameworkwhic
* Encourages self-assessment
» Takes into account the context in which the asskegs®esses operate
* Produces a set of process ratings (a processeradiher than a pass/fail result
* Through the generic practices, addresses the adeaqiadhe management of the
assessed processes

» |s appropriate across all application domains @&rekf organization

6.1.4. Guide to conducting assessment

Process assessment basically means just colleotfogmation describing the current
capability of an organization’s processes. It igiated if there is a need to determine
and/or improve the capability of these processB$CE document 4 provides guidance on
interpreting the requirements set out in part 3narily for the use in a team-based

assessment.

48

Although this guidance is directed at conductinggam-based assessment, the principles
for rating processes can be used in a continuookpased assessment. Nevertheless, in a

continuous assessment the data collection is somdliferent.

This document is primarily aimed at the followings:
» The assessment team for preparing the assessment
 The participants in the assessment for understgndire assessment and
interpreting the results
« All staff within organizations for understandingethdetails and benefits of
performing process assessment
 Tool and method developers for developing toolsnmthods supporting the

process assessment model

Process assessment

Figure 6.2 describes how a process assessmentecanitibted by the need for process
improvement or process capability determinationsessment input is collected with the
help of assessment instrument, and the processinsmdsed in assessment. Finally the

output is used for process improvement or procapalility determination.

Assessment guide
The assessment contains eight stages, descrilfegure 6.3 below. The stages are:
» Assessment input review
* Process instance selection
* Preparations
» Information collection and verification
» Determination of actual ratings
» Determination of derived ratings
* Rating validation

* Presenting the assessment output

49

6.1.5. Construction, selection and use of assessment ingtnents and tools

SPICE document 5 establishes the requirementfwstiucting an assessment instrument.

In addition, it provides guidance on selection asdbility characteristics associated with

Beviewing the
asasessme nt
Inpnt

Alizred to

Presenting
asgessient

¥

N

Selecting the

proce ss
instances

Walidating the sample

¥

Collecting and

irformation

various types of assessment instruments.

An assessment instrument is defined as a tooldpofstools) which is basically used in
evaluation of the adequacy or existence of prastié® assessment instrument is needed
to provide a consistent set of indicators as disicrators to help judge how well the

practices have been implemented. An assessmenirrestt provides also a mechanism

for recording the collected information.

This document:

instrument

instruments

output

Fs

Validating the
ratirgs

/

Detenmining
derTed ratings

Fa

Determining
actual ratings

Figure 6.3 Eight assessment stages [18]

Sets out the minimum requirements to be met irctrestruction of an assessment

Defines a set of indicators to be included in 8easment instrument

Provides guidance on the selection, constructiod asability of assessment

This part of the International Standard is diredtethe following people:
» Those responsible for the design and constructiomssessment instruments, e.g.
methodology providers, tool suppliers, assessors
* Assessors and assessment teams with responsiliditythe selection and
procurement of appropriate assessment instruments
» Assessors, sponsors or other parties responsiblasiessing conformance of an

assessment instrument to these requirements

Construction of an assessment instrument

It is not required in this standard that an assessimstrument should take any particular
form or format. It can be, for example, a papereblasnstrument containing forms,
guestionnaires or checklists, or it can be, fomgpla, a computer-based instrument such as

a spreadsheet, a data base system or an inte@ratid tool.

“Regardless of the form of the assessment instrgnienmain objective is to help an
assessor to perform an assessment in a consisttn¢@eatable manner, reducing assessor
subjectivity and ensuring the validity, usabilityda comparability of the assessment

results”.

“All indicators incorporated into an assessmenttrimaent shall be traceable to a
corresponding process, generic practice, or baasgtipe in the process model in part 2 of

this international standard or to a practice irearended process”.

6.1.6. Qualification and training of assessors

This part of the International Standard defines ithigal and ongoing qualification of

assessors and provides guidance for the preparatidnqualification of assessors to
perform software process assessments. It descnigehanisms that may be used to
demonstrate assessor competence and to validagssmssor's education, training and

experience.

The guidance in this document is applicable to myamizational unit or a sponsor of an
assessment wishing to select or specify the typeassessors to perform either self-
assessments or independent assessments.

51

The guidance is also applicable to the identifamatnd demonstration of the competencies
necessary for the performance of assessments, carldet process of obtaining those

competencies.

The role of the assessor, as described in parttdi®international Standard, is to assess
the capability of the software process of an orgational unit in a constructive and
objective manner. The assessment should be focusdbe process and not the people
implementing the process. The role varies depenaiinthe assessment approach as shown
in Table 6.1.

Table 6.1 The role of the assessor in different assessmapproaches [18]

Self-assessment approach Independent assessment approach
Is task and people oriented. Is task oriented.
Guides the assessment. Controls the assessment.
Delivers an approach. Delivers a rating.
Promotes discussion. Regulates discussion.
Works with projects. Works separately from projects
Uses organizational unit's business goals. Maydiéferent to organizational

unit's business goals.

Influences through results obtained, Influences through position and

relationships established and expertise. | expertise.

Seeks compliance and commitment. Determines pra@uisguacies.

Is like being a change agent. Is like being antaudi

The result of the assessment obviously dependseskilled judgment of the assessors.
“The achievement of an acceptable level of conststerepeatability and reliability of

results relies on competent assessors with apptepskills, experience, and knowledge of
the software process, of the model for processssritbed in document 2, and of the

conduct of assessment and rating described in Pauntsl 4”.

52

A qualified assessor usually acts as a team Idadéne assessment team. This person is in
responsibility of ensuring that other team membease the right blend of specialized

knowledge and assessment skills. This qualifiecessss has to provide the necessary
guidance and lead to the team, and help to mod#ratgudgments and ratings made by

other team members to ensure the consistency oésodts.

This document practically describes the assessopetencies and appropriate education,
training and experience. The document also intregumechanisms used in demonstrating

the competence and validating the education, trgiand experience.

In addition to technical skills, assessors shougtehalso certain personal skills, like

diplomacy, persistence and judgment.

6.1.7. Guide for use in process improvement

Document 7 acts as a guide on using process assastunderstand the current state of
processes, and to create and prioritize the impnewt plans. The document is primarily
aimed at the management of an organization consglersoftware process improvement

programme, members of improvement teams, softwagmeers, and external consultants.

This process improvement guide includes the folhauwi
* An overview of process improvement — the factorscivhdrive software process
improvement and general principles which underpin i
* A methodology for process improvement — an eigkp stnodel for improving
software processes within a continuous improverogcie
» Cultural issues — aspects of organizational cultheg are critical for successful
process improvement

* Management — software process improvement from aagement perspective
including an overall framework for process measuaem

This guidance, used in software assessment forepsodmprovement, covers the
following:

* Invoking a software process assessment

53

» Using the results of a software process assessment

» Measuring software process effectiveness and inggnewt effectiveness
» Identifying improvement actions aligned to busingsals

» Using the process model in document 2 as a roupefaramprovement

* Cultural issues in the context of software procegsovement

» Dealing with management issues for software prorepsovement

The guidance provided by this document, does netsyme specific organizational
structures, management philosophies, softwarec)itde models or software development
methods. The guidance and principles are apprepriat different business needs,
application domains and sizes of organization,hst they may be used by all types of

software organizations to guide their improvemeniviies.

Figure 6.4 illustrates the steps for continuousvemie process improvement using the
components of SPICE. A comprehensive process ingpnent programme may identify

improvement goals to be attained over severaltiters of the improvement cycle.

6.1.8. Guide for use in determining supplier process capality

This part of the International Standard providesdguce on how to utilize process

assessment for the purposes of process capal@tigyrdination [18].

A process capability determination (PCD) is a gystic assessment and analysis of
selected software processes within an organizatiamied out with the aim of identifying
the strengths, weaknesses and risks associateddejtloying the processes to meet a

particular specified requirement.

Process capability determination is applicable iwasiety of situations; the specified
requirement may involve a new or an existing tasg&ontract or an internal undertaking, a
product or a service, or any other requirement Wwhi to be met by deploying an

organization's software processes.

54

This guidance is intended to be applicable acrbsofiware application domains, over all
software organizational structures, within anywafe customer-supplier relationship, and

to any organization wishing to determine the preceapability of its own software
processes.

This guide is primarily aimed at:
* The sponsor who initiates the process capabilitgrd@nation

* The organization whose process capability is tddtermined
* The assessment team

* Tool and method developers

1
Examine
organisation's
needs

Organisation’s needs

Software process o i
improvement request Institutionalised

improvements

2
Monitor
performance

Identified
seope and
priorities

T
Sustain

Validated
improvement
results

Improvement
initiation

Re-assessment
request

Confirm the
improvemen

Implemented
improvements

Preliminary
process
improvement
programme plan

Analysed
re-assessment
results

5

Implement
improvement

Assessment

Approved
results

action plan

and derive
action plan

request (Parts 3 and 4)

current assesse,
capability

Process improvement
programme glan for

capability determination
Industrial

(Fart 8)
benchmarks

Practice descriptions
from process model Target capability

profiles from capability
(Part 2) determination

Figure 6.4 Software process improvement steps [18]

In this guide, two alternative approaches to pre@apability determination are presented.
Core process capability determination is a minimwtreamlined set of activities

applicable whenever a single organization needdentify its current process capability,

55

without any partners or sub-contractors being wmedl Extended process capability
determination is applicable when an enhanced chiyaisi needed to be done, or when
consortia or sub-contractors are involved. WhicBec& ever selected, the conduct of

process capability determination is described iadlseparate stages, named:

» Target definition stage
* Response stage
» Verification and Risk Analysis Stage

6.1.9. Vocabulary

Part 9 is a consolidated vocabulary of all termecgally defined for the purposes of
SPICE.

56

Chapter 7

A Model of Process Assessment for XP@SCRUM

While proposing a process assessment model for XPRQSBA, ISO/IEC 15504
framework has been a reference guide. The struofu®O/IEC 15504 has been followed.

7.1. Concepts and Introductory Guide

This process assessment model provides a modahéorssessment of XP@SCRUM
processes. This model can be used in organizaipplying XP@SCRUM or wants to
assess their processes in terms of XP@SCRUM.

This model provides a structured approach for gsessment of software processes for the
following purposes:

a) by or on behalf of an organization applying XR@R&EM with the objective of
understanding the state of its own processes fmrags improvement;

b) by or on behalf of an organization applying XPER&IM with the objective of
determining the suitability of its own processes &particular requirement or class of

requirements;

The model for process assessment:
a) encourages self-assessment;
b) takes into account the context in which the ssms@ processes operate;

C) produces a set of process ratings (a procefiteprather than a pass/fail result;
The process assessment model is based on assaesgagific process instance. A process

instance is a singular instantiation of a procésg ts uniquely identifiable and about

which information can be gathered in a manner gravides repeatable ratings. Each

57

process instance is characterized by a set of gmess capability level ratings, each of

which is an aggregation of the practice adequattygs that belong to that level.

The model is designed to provide assessment rethdis are repeatable, objective,
comparable within similar contexts, and able taibed for either process improvement or

process capability determination in XP@SCRUM.

7.1.1. Assessment Model

Process assessment is an activity that is perfomitbdr during a process improvement

initiative or as part of a process capability deti@ation exercise.

An assessment is carried out by assessing selpovegsses against the process model.
This two-dimensional model consists of a set ofcpss-specific practices. The
assessment output includes a set of process ciépdbitel ratings for each process

instance assessed.

An assessment is supported by an assessment iestrurar set of instruments,

constructed. The process assessment is carriday @t assessor(s).

The requirements of an assessor are listed as below
» Must have good understanding of Agile Methods idirilg XP and SCRUM
* Must have good understanding of process assessomtaixt

» Effective in verbal and written communication

7.2. A Model for Process Management in XP@SCRUM

This part of XP@SCRUM PCI Model is to document $le¢ of practices fundamental for
XP@SCRUM.

This model categorizes XP@SCRUM processes intogiveess categories.
« Communication
* Planning
» Designing
58

» Coding
e Testing

This model has four levels for processes.

Level O, Not Performed
Any process in this level is not performed. Thiseleis very dangerous for
company.

Level 1, Performed Partially
In this level, processes are partially performedsMequirements are missing. This
level is can lead to potential risk for the company

Level 2, Performed Largely
In this level, the processes largely satisfy thmirpose. Much effort is spent on
these processes.

Level 3, Performed Fully
In this level, processes are performed in a glgbsdltisfying way. In terms of

business value, it offers a competitive advantagempany.

7.2.1. Base Practices

In an assessment conducted according to the poosisof this model, the processes
included within the scope of the assessment stlalimapped to one or more of the

processes defined in this clause.

The assessment shall include all of the base pesctf each process within the scope of

the assessment.

The five process categories are:

COMM Communication
PLAN Planning
DSGN Designing
CODE Coding

TEST Testing

59

7.2.2. Communication Process Category

The purpose of the communication is to increasectiseration, productiveness and to

decrease the mistakes.

The input of Communication Process is people antstand the output of this process is

definition/refinement of the communication objeetv

COMM.1 Public status displays
Public status displays informs the customer aldoeistatus of the project.

COMM.2 Oral communication

Oral Communication is the fastest way of commuiocat

COMM.3 On-site customer
Onsite customer is customer representative whovsits the development team. When

there is a doubt about implementation, on-siteaust explains.

7.2.3. Planning Process Category

The purpose of the planning is to establish an@pyate life cycle model for the project.

The input to this process is Product Backlog amdatltput of this process is a software life
cycle model with descriptions of software actigtiand tasks to be performed by the

project and identification of project controls.

Project plans typically document

- Project purpose and objectives;

- Work products to be developed;
— Software estimates;

- Project risks and mitigation plans;

- Resources allocated to the project activities.

60

PLAN.1 Build Project Team
The purpose of the “Build project teams” processtasestablish project teams with
qualified members who can fulfill their responsii®s on their team and work together as

a cohesive group.

PLAN.2 Maintain Product Backlog

Product Backlog is a prioritized listing all funmtiality desired in the final product.

PLAN.3 Sprint Planning Meeting
Customers, users, management, the Product Ownethan8crum Team determine the
next Sprint goal and functionality at the Sprinariling meeting. The team then devises

the individual tasks that must be performed todthke product increment.

PLAN.4 Daily Scrum
Daily Scrum is a daily short meeting to monitor gtatus of the project.

PLAN.5 Track Progress
To see the status of the project Burndown Chansed. The Scrum Master should update

this chart daily.

PLAN.6 Sprint Review Meeting
The Sprint Review meeting is a four-hour informatibmeeting. During the meeting, the
team presents to management, customers, usersthanBroduct Owner the product

increment that it has built during the Sprint.

PLAN.7 Travel Light

The team must be very fast to response the changes.

7.2.4. Designing Process Category

The purpose of the develop software design prosetss establish a software design that
effectively accommodates the software requiremeaitshe top-level this identifies the
major software components and refines these interddevel software units which can be

coded, compiled, and tested.

61

The input forDesign Process is Product Backlog and the output is the architecof the

system.

DSGN.1 Simplicity
XP team develops the software by using the simpteisig that works. This means
implementing only the required features. Simplagtesnables to handle changes that will

occur in the future.

DSGN.2 Create System Metaphor

System Metaphor is a vision of what the prograamnid how the program works.

DSGN.3 Refactoring
Refactoring means changing the source code intgrrial improve the efficiency,

performance and readability of the code.

7.2.5. Coding Process Category

The purpose of coding is to produce executableimhependently tested units of software

code which implement the components of the softwlasegn [18].

The inputs of this process are people, tools artklbg items. And the output is the

product.

CODE.1 Establish Coding Standards
The team writes the code on an agreed set of rliles.ensures consistency and simplifies

the maintenance process with legible code.

CODE.2 Collective Code Ownership
Collective code ownership means that everybodyespansible for all the code; this, in

turn, means that everybody is allowed to changepantyof the code [14].

CODE.3 Code Integration

Code integration enables to ensure that everytigging well.

62

CODE.4 Provide Sustainable Peace
The team members are in it for the long term. TWweyk hard, and at a pace that can be
sustained indefinitely. This means that they wovkerame when it is effective, and that

they normally work in such a way as to maximizeduaiivity week in and week out [42].

CODE.5 Configuration Management
“Configuration Management” is satisfied by usinga@de versioning tool. The available
tools are CVS, VSS, etc.

CODE.6 Paired Development
Paired development increases the communication degtwthe developers, ensures

“collective code ownership”.

7.2.6. Testing Process Category

The purpose of testing is to ensure that the predigoftware works as stated in the

Product Backlog.

Inputs ofTesting Process are code and data. And the output of this protessiccess or

fail.

TEST.1 Perform unit tests
Unit tests are automated tests written before asderitten. These tests are written to
check if the functionality of the written code wphss. Before the release, all unit tests

must pass.

TEST.2 Code and fix

When a bug is found, a test must be written for it.
TEST.3 Perform Functional Tests

The functional tests are done by customer. Funatitasts enables the working software is

the software customer wants.

63

7.3. Rating Process

A base practice adequacy rating or a base praetiséence rating shall be determined and
validated for every base practice within each seteprocess instance for each process

and/or extended process identified within the assest scope [18].

Base practice adequacy shall be rated using theritydevel as defined in 7.2.

7.4. Guide to Process Assessment

Process assessment is undertaken to understarairtemt process. The process model
defines, for each process, a set of base praatessntial to good software engineering,
and a set of generic practices grouped into capalédvels. The assessment output
consists of a set of generic practice adequacggatand process capability level ratings

for each process instance assessed together widsessment record.

The assessment output identifies the current psowagpability level ratings of an
organizational unit's processes and forms the btsiplan, prepare, implement and

evaluate specific improvement actions.

The assessment output allows an organizationaltandentify, analyze and quantify its

strengths, weaknesses and risks.

Assessment stages are listed as below:
* reviewing the assessment input
» selecting process instances
* preparing for assessment
» information collecting and verification
» determining the actual rating
+ validating the ratings

* presenting assessment output

64

7.4.1. Reviewing the assessment scope

The assessment input shall be defined before $esament. At minimum the assessment

input shall define:

the assessment purpose

» the assessment scope

* the assessment constraints

» the identity of assessor and responsibilities
» the definition of extended processes

+ the identification of additional information

If the assessment is done for a project, the sobflee assessment and constraints is set by
customer and the team. If the assessment is donghdoorganization, the scope of the

assessment and constraints is set by the orgamzati

The assessor should review the defined assessmgpbse, scope and constraints to

ensure that they are consistent and that the aseaspurpose can be fulfilled [18].

7.4.2. Selecting Process Instances

Before the assessment starts, the assessor(s}(®eld® processes to assess. These
processes should be agreed with the customer.

7.4.3. Preparing for Assessment

The team for the assessment is created. The sittee@éam is dependent on the scope of
the assessment. The team leader is responsibtevéoall the assessment. All assessment
team members should have experience in softwarmesring and one or more should

have specific experience in the processes undesstsent and in the technologies used to

support the processes. The team chooses whichttoake for the assessment.

65

7.4.4. Information Collecting and Validation

Information has to be collected and validated fteprocess. The information is
collected by

* Interviews

* Questionnaires

* Documentation Reviews

* Observation analysis

* Meeting Notes

* Test Results

* Source Code

7.4.5. Determining the Actual Rating

The rating is determined according to the colleatéarmation and the metrics defined as

below.

COMM.1 Public status displays

Level 0: The customer cannot see the status

Level 1: The customer sees the status rarely (mgnth
Level 2: The customer sees the status frequentgkly).

Level 3: The customer sees the status continuddally).

COMM.2 Oral communication

Level 0: There is not any oral communication betwdiee team and the team is not
working the same room.

Level 1: There is a little oral communication beénehe team but the communication is
not performed in a satisfactory way.

Level 2: The team performed the oral communicatioostly in a satisfactory way but

there are little problems.

Level 3: Team members can learn what they need fstmar members immediately by

oral communication.

66

COMM.3 On-site customer

Level O: There is no on-site customer or the agglgm-site customer cannot be reached.
Level 1: An on-site customer is assigned but difficult to contact with him/her. He/she
cannot populate backlog and prioritize backlog. sHe/ does not have a good
understanding of the project.

Level 2: An on-site customer is assigned. He/shmastly available for the developer
team. He/she is good at populating backlog andipring backlog. He/she has a good
understanding of the project.

Level 3: An on-site customer is assigned. He/shalwsys available for the developer
team. He/she is very good at populating backlady @uoritizing backlog. He/she has an

excellent understanding of the project.

PLAN.1 Build Project Team

While assessing this process the following actsitare considered.
» Define Project Team(s)
Usually a Scrum team is 6-10 people. If there acgenpeople, split the people into
more than one team.
» AssignRoles
Assign a role (developer, tester, component deee/agic) for each user and assign a
duty (component development, interface coding,, tetsf) for each Scrum team and
reduce the interactions between Scrum teams.
» Establish working environment
All the team members should be in the same roore. Wiarking environment must

increase the communication between the team members

Level O: The project team is not defined.

Level 1: The project team is defined but the r@esnot assigned or the assigned roles are
not clear. The working environment is not suitdbleworking.

Level 2: The project team is defined and the aggigoles are clear but the team(s) is (are)
not enough for the project. The established workingronment is suitable for working.
Level 3: The project team is defined. The assigmées are clear. The defined team(s) is
(are) enough for the project. The established wmgrkénvironment is very good and

motivates the team(s).

67

PLAN.2 Maintain Product Backlog

While assessing “Maintain Product Backlog”, thddwaiing activities are considered.
* Get Customer Requests
The Product Backlog is driven by the customer. Thstomer populates the list and
prioritizes the list.
* Make Estimation
After Backlog is created, the team makes an estmdiow long it will take. The
estimation is done by talking to the people who arsthnds the product and the
technology. The estimate includes the time it tateperform all of the requisite

architecture, design, construction and testing.

Level 0: The product backlog does not exist.

Level 1: The product backlog exists but the custoisenot good at populating and
prioritizing the product backlog. The team is fiamh making good estimation.

Level 2: The product backlog exists but the leviepopulating, prioritizing backlog by
customer and making estimation by the team is geera

Level 3: The product backlog exists. The custorsegdod at populating and prioritizing

the product backlog. The team is makes good estmat

PLAN.3 Sprint Planning Meeting

While assessing “Sprint Planning Meeting”, thedualing activities are considered.
» Define Sprint Goal
The Product Owner chooses the top priority itend @rSprint Goal is defined based
on this priorities.
» Detail the tasks
The team determines the work to be performed tohréa the Sprint Goal. The tasks
must be detailed enough to turn the Product Badkitmga working software. This task

is called Sprint Backlog.

Level 0: The meeting is not held.

Level 1. The meeting is held but the sprint goaha defined and the tasks are not
detailed.

Level 2: The meeting is held. Sprint goal is defieit the tasks are not detailed.

68

Level 3: The meeting is held. Sprint goal is defimad the tasks are detailed.

PLAN.4 Daily Scrum
While assessing “Daily Scrum”, the following acties are considered.
* Make short meeting
The length of this meeting is 15 — 30 minutes. Tiniseting should not be a long
meeting.
» Only ask three questions
Only the three questions are asked in this meeting.
o What have you done since the last Scrum?
o What will you do between now and the next Scrum?
o What got in your way of doing work?

* Do not turn into design session

Level O: The daily scrum meetings are not held.

Level 1: The daily scrum is held (daily or frequghbut the meeting does not reach to its
aim. The three questions are not asked or othestigne are asked. The meeting takes
more than 15 -30 minutes.

Level 2: The daily scrum is held (daily or frequgjitThe meeting mostly satisfies the aim

of daily scrum.

Level 3: The daily scrum is always held daily. Tineeting reaches to its aim. Only the

three questions are asked. It shows the statuseqirbject. The meeting is short.

PLAN.5 Track Progress

Level O0: The burndown chart is not used.

Level 1: The burndown chart is used but it updasedly.

Level 2: The burndown chart is used but it is upddtequently.

Level 3: The burndown chart is used and it is upda&ontinuously.

PLAN.6 Sprint Review Meeting

Level 0: The meeting is not held at the end ofsjent.

Level 1: The meeting is held but the aim of the timggis not reached.
Level 2: The meeting is held. The aim of this negis mostly reached.

69

Level 3: The meeting is held and the aim of thisetimg is reached. The sprint goal is

reviewed.

PLAN.7 Travel Light
While assessing “Travel Light”, the following adties are considered.
* Reduce Documentation
The team writes only required documentation. Thaesd not mean writing no
document.
» Discard temporary models
Models exist mainly for communication and underdiag; discard these once they
have served their purpose.
* Plan when needed

Do not make unnecessary plans.

Level 0: The team is not traveling light. The tedo@s not perform the required actions to
perform light.

Level 1: The team starts to understand the impoeta traveling light and makes a little
effort to travel light.

Level 2: The team has a good understanding of lireykght and makes much effort to
perform this.

Level 3: The team always travels light and perfoonly the necessary actions.

DSGN.1 Simplicity

Level O: The simplicity is not concerned.

Level 1: The simplicity has a low priority. The 39 and product is complex.

Level 2: The simplicity has a high priority but teas little complexity in the system and
product.

Level 3: The simplicity has the first priority aftitere is no complexity.

DSGN.2 Create System Metaphor
Level 0: The metaphor is not created.
Level 1: The metaphor is created but it is weak aadnot be understood by many

members.

70

Level 2: The metaphor is created and understoothéyy members. But there is a little
weakness in the metaphor.
Level 3: The metaphor is created and understooevbyy member. It exactly tells what is

wanted.

DSGN.3 Refactoring

Level 0: No refactoring is performed by the develap

Level 1: Refactoring is performed rarely and a isalot used.

Level 2: A tool is used for refactoring and refactg is performed rarely.

Level 3: A tool is used for refactoring and refaitg is performed frequently.

TEST.1 Perform unit tests

The rating level is given according to the follogan
» First test then code
» All code must have unit test
» All tests must succeed before the release

e All unit test must be automated

Level O: There is no unit test.
Level 1: The unit tests are written and succeeafiaw part (< %40) of the code.
Level 2: The unit tests are written and succeearfost part (%40 - %99) of the code.

Level 3: All code has a unit test. All tests suectbefore the release.

TEST.2 Code and fix

Level 0: The code is not fixed when a bug is found.

Level 1: The code is fixed but a test is not wntte

Level 2: The code is fixed and a test is writtentfmt bug mostly.

Level 3: The code is fixed and a test is writtentf@at bug always.

TEST.3 Perform Functional Tests
The rating level is given according to the follogan
+ Customer writes functional tests

* Must be sufficient to test the requirements

71

Level 0: The functional tests are not performed.
Level 1: The functional tests are performed buy tiest a few part of the requirements.
Level 2: The functional tests are performed ang teset most part of the requirements.

Level 3: The functional tests are performed ang thet all of the requirements.

CODE.1 Establish Coding Standards

Level 0: The coding standard is not established.

Level 1: The coding standard is established butdthelopers do not concern about these
rules.

Level 2: The coding standard is established andléwelopers try to obey these rules but
not all of the code satisfies these rules.

Level 3: The coding standard is established andiéwvelopers try to obey these rules. All

of the code satisfies these rules.

CODE.2 Collective Code Ownership

Level O: Every developer only knows his/her code eannot modify others’ code.
Level 1: Some of the team members knows about &ithede but cannot modify.
Level 2: Many of the team members own others’ caat can modify.

Level 3: Every team member owns all the code andhwadify any code.

CODE.3 Code Integration

Level O: There is not a tool for code integration.

Level 1: There is a tool for code integration kus iused before the release.
Level 2: There is a tool for code integration the tode in integrated infrequently
(interval is more than one day).

Level 3: There is a tool and there are nightly dbsil

CODE.4 Provide Sustainable Peace

Level 0: The team makes overtime frequently anslithnot taken into consideration.

Level 1: This is taken into consideration but tean still makes overtime because of poor
management.

Level 2: The team makes overtime infrequently.

Level 3: There is no overtime. Everything is gowmejl.

72

CODE.5 Configuration Management

Level O: A code versioning tool is not defined.

Level 1: A code versioning tool is defined butsitnot used.
Level 2: A code versioning tool is defined butsitrarely.

Level 3: A code versioning tool is defined butsittiompletely.

CODE.6 Paired Development

Level O: There is no paired development.

Level 1: The paired development is performed whenohlem occurs.

Level 2: The developers try to perform the pairededopment.

Level 3: The developers perform the paired devekgmmore than two hours a day.

Everyone changes his/her partner.

7.4.6. Validating Ratings

The ratings should be validated to ensure that #reyan accurate representation of the
processes assessed. The validation should incledessing whether the sample size
chosen is representative of the processes assasdethat it is capable of fulfilling the

assessment purpose.

The following mechanisms are useful in supportiatidation:

* comparing results to those from previous assesstienthe same organizational
unit;

* looking for consistencies between connected oteélprocesses;

» looking for proportional ratings across the capgbikevels e.g. higher ratings for
higher levels than for lower ones;

» taking an independent sample of ratings and comgatiem to the assessment
team ratings;

» feedback sessions of preliminary findings to thgaaizational unit.

7.4.7. Presenting Assessment Output

After conducting the assessment, the assessmenitasineeded to be prepared.

73

The assessment output should contain:
» the assessment input
» the assessment instrument used
» the base practice ratings for each process instssassed
» the date of assessment
» the name of assessor
* additional information
» the project and sprint name

* any assessment assumption and limitations

The assessment output is a basis for process immgrar capability determination. The

result of the assessment output is two dimensicimait, process versus rating.

The result data is reported everyone involved éioject including customers.

7.5. Comparison of ISO SPICE and XP@SCRUM PCI

The following table shows the comparison of ISO@P[the reference guide) and
XP@SCRUM PCI.

Table 7.1 Comparison table of ISO SPICE and XP@SCRUNRCI

1ISO SPICE XP@SCRUM PCI

Contains 9 parts Contains 4 sections

Six maturity levels Four levels
Level O — Not performed Level O — Not performed
Level 1 — Performed informally Level 1 — Performed Partially
Level 2 — Planned and tracked Level 2 — Performed Largely
Level 3 — Well defined Level 3 — Performed Fully

Level 4 — Quantitatively controlled

Level 5 — Continuously improving

Five Process Categories Five Process Categories
Customer-Supplier Communication
Engineering Planning
Project Designing
Support Coding
Organization Testing

Self or Independent Assessment Self Assessment

74

Chapter 8

A Tool for XP@SCRUM PCI

Another aim of this thesis is to create a tooltfer proposed model. The tool is designed

for one company and multiple users.

There are three modules in this tool.
e Assessment
* User Management

* Company Management

8.1. Assessment

There are three actions in this module.

» List Assessments (Figure 8.1)

* New Assessment (Figure 8.2)

Update Assessment (Figure 8.3)

Delete Assessment

» Assessment Report (Figure 8.5)

When a user logs into the system, the availablesassents are listed Figure 8.1.

The properties of assessment are: (Figure 8.4)
* Rating Level

* Evidence&Findings

After rating the processes, a chart is generalediti the Figure 8.5. Also an assessment

report is generated Figure 8.6.

75

‘Ale Edit Yiew Favorites Tools Help #

Qbxk - @ - M @ I@!psearth - Favarites @|t-3-§‘- -] %' B @ B 3

|Gl search ~) & ‘ F&M“El Popups okay || M check

Autolink v] 2utorl] @ options 4

LogOut |Support | &bout
FYITE ettt | User Mngt. | Company Info User: m Uluda

]E Assessment List

Assessment 1 Report Delete

W New Assessment’

Figure 8.1 Project List

Eile Edit ¥iew Favorites Tools Help #

Qoak > O - H A @‘,Osaarch Teraverites € (- M- @& EEEHI3
Adress] htp:flocalhostxpscrumpril ssessment{Assessmentinssrt. aspx Lirks
Google - | [v] [C] search - D & | F&f@ Popups okay | A% Check = A autolink = | st [P options

XP@SCRUM PCT LogOut | Support | About []
AT | User Mngt. | Company Info brahim Ulud

Wsars o

New Assessment

Assessment Scope Communication

[] cOMM.1 - Public status displays

[J GOMM.2 - Oral communication

[COMM. 5 - On-sita customer
Planning

[] PLAN.1 - Build Project Team

[l PLAN. 2 - Maintain Product Backlog

[] PLAN. 3 - Sprint Planning Meeting

[] PLAMN. 4 - Daily Scrum

[PLAMN.S - Track Progress

[PLAN.6 - Sprint Review Meeting

[PLAMN. 7 - Travel Light
e [l

g Local .{ntr,anet, |

_é:[Dane-

Figure 8.2 Add a new assessment

76

File Edit View Favortes Tools Help I
QGoack - [H B G| Posarch SeFavortes & (0- a @l [& g & 3
Address |@ http: flocalhost fxpscrumpi it ntInsert,aspx ntld=19 M Links >
Guoglc-| M [C search ~ @D & P2 | 2 popups okay | 4% check + % Autolink uiorll @ options
XPia@SCRUM PCT LogOut [Support | About |#]
| User Mngt. | Company Info Usar': =
—
ME Assessment Update -
— : Y Assessments
Assessm_e?it.}\’(_zme \Assessment 1 E
Assessment Purpose ssessment Purpose
Assessment Scope Communication
COMM.1 - Public status displays
COMM. 2 - Oral communication
COMM. 3 - On-site customer
Planning
PLAM.1 - Build Project Team
PLAN.2 - Maintain Product Backlog
PLAN.3 - Sprint Flanning Meeting
PLAN.4 - Daily Scrum
PLAN.5 - Track Progress
PLAM.6 - Sprint Review Meeting
PLAM.7 - Travel Light
Design
A vl
é] Dong

g Local intranst.

Figure 8.3 Update Assessment

File Edt Visw Favortes Tools

Help L
QGoack - [H B G| Posarch SeFavortes & (0- a @l [& g & 3
Address |@ http: flacalhost fxpscrumpcifAssessment fAssessmentInsert? aspx?assessment Id=19

Google - |

] ke >
(v| [Cf search ~ D & FoBN B popups okay | 4 check R Autolink okl [options

LogOut | Support | About |
Wasr s g

| User Mngt. | Company Info

M Assessment i

Process Name g

ﬁ Assessments - i
CODE.1 Establish Coding Standards : i

Rating Level

Evidence And
Findings

Evidence And
Findings

vl

g Local intranst.

Figure 8.4 Assessment of a Process

77

Assessment 1
33
3
254
24
1.5+
1
0.5 5
-
CODEA CODE.2 CODEZ CODE 4 CODES CODES
Chart Director (unregisterad) from www.advsofteng.com
Figure 8.5 Assessment Result Chart
|1 %P &SCRUM PEI - Microsoft Intermet Explorer =

File Edit Wiew Favorites Tools Help
Qsack » O - M B | POssarch FrFavotes @ | (- W UE&E@E 3
http: fflocalhostfxpscrumpdi ik, ntRepart, aspy; nkld=19 (| Links

|s| (G search ~ @ & | FoeRerk B popups kay | A% Check = 7%, autolink ~ | AutoFl [Options ¥

arn Use |

»

Assessment Name Reporting Project Assessment

Assessment Purpose The main objective of this assessment is to determine the capability of processes in Reporting
Project and how can these processss improved for further projects in the company.

Assessment Scope CODE .1 Establish Coding Standards
CODE .z Collective Code Ownership
CODE.3 Code Integration
CODE. 4 Provide Sustainable Peace
CODE.5 Configuration Management
CODE..6 Faired Development
COMM .a Public status displays
COMM. 2 Oral communication
COMM.g On-site customer
DSGN.1 Simplicity
DSGN.2 Create System Metaphor
DSGN.g Refactoring
PLAN.1Build Project Team
TEST.1Perform unit tests
TEST.2 Code and fix
TEST.3 Perform Functional Tests

Assessments = The assessment will be conducted by one person
Constrainis = The assessment will take two days
- The output ¢ thiz assessment will be reported to the company management [

&] Done 8 Local intranst

Figure 8.6 A Sample Assessment Report

8.2. Technical Details

This tool is a web based tool. It is created bygdfisual Studio Express and MS SQL
Server 2005.

The requirements for the server are:
* ASP.NET 2.0 Framework

78

* IS 5.0 or higher

e MS SQL Server 2005
* 50 MB free disk

+ 512 MB RAM

The requirements for the clients are:

» Internet Explorer 6.0 or compatible browser.

79

Chapter 9

An Example Assessment

In this chapter, a project will be assessed acngrdo this model. The company is
applying agile methodology but the applied metrodat XP@SCRUM. So the necessary

changes were done in the scope.

9.1. Assessment Scope

Assessment Purposelhe main objective of this assessment is to detegritie capability
of processes in Reporting Project and how can tlpgeeesses improved for further

projects in the company.

Assessment ScopeThe processes below will be assessed in the asspts
COMM.1 Public status displays
COMM.2 Oral communication
COMM.3 On-site customer
PLAN.1 Build Project Team
DSGN.1Simplicity
DSGN.2Create System Metaphor
DSGN.3Refactoring
CODE.1 Establish Coding Standards
CODE.2 Collective Code Ownership
CODE.3 Code Integration
CODE.4 Provide Sustainable Peace
CODE.5 Configuration Management
CODE.6 Paired Development
TEST.1 Perform unit tests
TEST.2 Code and fix
TEST.3 Perform Functional Tests

80

Assessment constraints:
* The assessment will be conducted by one person
* The assessment will take two days

» The output o this assessment will be reportedéactimpany management

9.2. Preparing for Assessment

The assessment will be conducted by project leddwr tool created for this model will be

used.

9.3. Information Collecting and Validation

The information is collected by means of

» Documentation Reviews
* Observation analysis

* Meeting Notes

» Source Code

* Email messages

* Questionnaires

The collected information is validated by develofgam and customer.

9.4. Determining the Actual Rating

The ratings of assessed processes are listedas: bel

COMM.1 Public status displays

Rating Result: Level 1

Evidence & Findings: The project has been divided into milestones. Tustarner could
see the status only at these milestones. Thisdsbeause the customer could not see the

status of the project continuously.

81

COMM.2 Oral communication

Rating Result: Level 3

Evidence & Findings: The communication between the company and custoc®mred
in oral way and these conversations were writtemieyans of email. The communication

between the developer team occurred in oral wayeamails.

COMM.3 On-site customer

Rating Result: Level 1

Evidence & Findings: There was a customer representative but the custome
representative was not dedicated. But he was ikt the phone and two meeting was

held with the customer.

PLAN.1 Build Project Team
Rating Result: Level 3
Evidence & Findings: Before the project starts, the developer team vatiponsibilities

and the customer representative were assigned.

DSGN.1 Simplicity
Rating Result: Level 1
Evidence & Findings: The project is not the simplest solutions becatdgheocomplexity

of the requirements.

DSGN.2 Create System Metaphor

Rating Result: Level 3

Evidence & Findings: The developer team had a vision how the final saféamill be.
The metaphor was created by the system requirengaasment, meeting and phone

conversations.

DSGN.3 Refactoring
Rating Result: Level 1
Evidence & Findings: The refactoring was done only when the performaotea

produced report is low.

82

CODE.1 Establish Coding Standards
Rating Result: Level 1
Evidence & Findings: The coding standard defined by Microsoft is usBte code is

validated by a tool FxCop. The report tells to ma&gections in the code.

CODE.2 Collective Code Ownership
Rating Result: Level 0
Evidence & Findings: Every developer knows only his code. So thereotscollective

code ownership.

CODE.3 Code Integration
Rating Result: Level 1

Evidence & Findings: The code is integrated only before milestones.

CODE.4 Provide Sustainable Peace
Rating Result: Level O

Evidence & Findings: The developers worked more than 40 hours a week.

CODE.5 Configuration Management
Rating Result: Level 2
Evidence & Findings: The CVS tool used for version controlling for ttade. But there

is no version controlling tool for database is used

CODE.6 Paired Development
Rating Result: Level O

Evidence & Findings: There is no paired development.

TEST.1 Perform unit tests
Rating Result: Level 0

Evidence & Findings: There are no automated unit tests.

TEST.2 Code and fix
Rating Result: Level O

83

Evidence & Findings: There is not code and fix method.

TEST.3 Perform Functional Tests

Rating Result: Level 1

Evidence & Findings: The customer performed functional tests after eaitdstone. But
the functional tests were not satisfactory becawee bugs could not be found by the

customer.

9.5. Presenting Assessment Output

The two dimensional chart of the result of the ass®nt is shown in the Figure 9.1.

Reporting Project A

35

254

154

g BN B BN

CODEA CODEZ2 CODE.S CODE4 CODE.S CODES COMM. COMM.2 COMM.3 DEGN.A DSGN.2 DEGH.3 PLAMNT TESTA TEST.2 TEST.S

Chart Director (unregistered) from www advsofteng.com

o

Figure 9.1 Assessment Result of Reporting Project

The result of the assessment says that the comglzadl make improvements in many

processes. The weakest part of the organizatibestng Process Category.

The result of the assessment was presented to dhgpany management and the

management decided to hire a tester to improvéesiteng process category.

84

Chapter 10

Conclusion

In this thesis, a lightweight software process sssent model and a tool for
XP@SCRUM called XP@SCRUM PCI has been propose®/IEE 15504 has been a

reference process assessment framework.

The companies using XP@SCRUM or other agile metlvadseasily adapt this model as
process assessment model, because this modebist pilocess assessment model. There
is no need for a trained assessor. This modelthsesrganizations’ resources. Usually the
Scrum Masters take the role of an assessor. Theeggacategories and the processes are
specific to this agile method. But by customizihg process categories and processes, this

model can be used with other agile methods.

By applying this assessment method and tool, timepemies will increase their ROl and
customer satisfaction. Organizations can deterrtheestrong and weak processes. After

determining the weak processes, the organizatiansnaprove the weak processes.

This model is between “No Assessment” and “Inteomal Standards”. After reaching
Level — 3 for all processes, the company may leasiag this model and apply an
International Standard. The possible InternatioB&ndards are ISO/IEC 15504 and
CMMI. The companies can get a CMMI or ISO/IEC 153ével with a little effort after

reaching Level — 3.

85

References

[1] About Scrum — Overview, http://www.controlchao@m/about

[2] Abrahamson P., Salo, O., Ronkainen, H., & Waaist (2002). Agile Software
Development Methods Review and Analysis, Universitpulu

[3] ADM Inc., “XxP@Scrum”, http://www.controlchaofm/xpScrum.php

[4] Ambler, S.W. (2002b). Modeling Style Home Page,
http://www.agilemodeling.com/style

[5] Andersson. C., & Runeson, P., (2002). “Verifioa and Validation in Industry: A
Quialitative Survey on the State of Practice”, Peadliegs of the International Symposium
on Empirical Software Engineering, Nara, Japan

[6] Beck, K. (1999). Extreme Programming Explair{@d Edition), New York: Addison
Wesley

[7] Beck, K. (2000). Extreme Programming ExplainEdibrace Change (2nd Edition).
New York: Addison-Wesley.

[8] Boehm. B. (2002). Get ready For The Agile MathpWith Care, Computer 35 (1): 64-
69

[8] Boehm, B., & Turner R., (2003). Balancing Agliand Discipline: A Guide for the
Perplexed: New York: Addison Wesley

[10] Cockburn A., & Williams L. (2000). The CostadBenefits of Pair Programming,
University of Utah, Utah, USA

[11] Cockburn, A. & Highsmith, J., (Sept. 2001) 'igSoftware Development: The
Business of Innovation," IEEE Computer, pp. 120-122

[12] Crnkovic, 1., Larsson, M., Luders., F., (Januda000). “State of the practice:
Component-based software engineering course.”doddings of 3rd International
Workshop of Component-Based Software EngineeriBBE Computer Society

[13] Extreme Programming, http://en.wikipedia.ortyMExtreme_Programming

[14] Extreme Programming Practices,
http://en.wikipedia.org/wiki/Extreme_Programmingaétices

[15] Fowler M. Continuous Integration,
http://www.martinfowler.com/articles/continuousigtation.htmi

[16] Fowler, M., (June 1999) Refactoring — Imprayitme Design of Existing Code,
Addison-Wesley, ISBN 0201485672

86

[17] Karlstrom, D., (November 2002). Increasingdhxement in Software Process
Improvement, Lic. Thesis, Technical Report 150

[18] ISO/IEC TR15504:1998 (E), Information Techngo Software Process Assessment
Parts 1to 9

[19] Karlstrom, D., (2004). Integrating Managemantl Engineering Processes in
Software Product Development, Lund University Dépant of Communication Systems
Lund Institute of Technology

[20] Liu, S., (1998). “SOFL: A Formal Engineeringethodology for Industrial
Applications”, IEEE Transactions on Software Engimeg, Vol. 24, No. 1, pp. 24-45
[21] Mar, K., & Schwaber, K., Scrum with XP, httfvivw.informit.com/articles/
article.asp?p=26057&rl=1

[22] Marchesi, M., & Succi, G. (2001). Extreme Pragming Examined (1st Edition).
New York: Addison Wesley

[23] Meloche, T. (2002), How to build a world clagslivery organization. Michigan, The
Menlo Institute

[24] Menon, N. (2006). SCRUM: Saving Projects fréailing, http://www.stylusinc.com/
website/scrum.htm

[25] Miller. G.G. (2001). The Characteristics of ilgSoftware Process. The™39
International Conference of Object-Oriented Langsagnd Systems (TOOLS 39), Santa
Barbara, CA

[26] Nawrocki, J., Walter B., & Poznan, W.W. (200Tpward Maturity Model for
eXtreme Programming, University of Technology, @5%oznan, Poland

[27] Paulk M.C. (2001), Extreme Programming froi@M Perspective, Pittsburgh:
Software Engineering Institute

[28] Principles behind the Agile Manifesto. httpgilemanifesto.org/principles.html

[29] PTY LTD (2006), Scrum Reference Card , ww.cadb.com.au/images/src.pdf

[30] Pyh&jarvi M., (31st November 2004). SeminarQuality Models for Software
Engineering Department of Computer Science, Unityeo$ Helsinki, Helsinki

[31] Royce,W., W., (August 1970). “Managing the dwpment of large software systems:
concepts and techniques”, Proceedings IEEE WESTCON

[32] Schokking A. (2005), Project Planning and kiag System, Competitive analysis,
Eindhoven

87

[33] Schwaber K., & Beedle M., (2002). Agile Soétxe Development with Scrunf2
Edition) , New Jersey: Prentice Hall

[44] Schwaber, K. Scrum Development Process, Kjgfisutherland.com/
oopsla/schwapub.pdf

[34] Schwaber, K. (2004), Project Management wittug (£' Edition), Washington:
Microsoft Press

[36] Sim, S.E., Easterbrook, S., & Holt, R.C. (2D0®sing Benchmarking to Advance
Research: A Challenge to Software Engineeringlhternational Conference on Software
Engineering. Portland: IEEE, pp. 74-83

[37] Software Quality Institute. Software Procesgpiovement and Capability
Determination. http://www.sqi.gu.edu.au/spice

[38] Sommerville, 1. (2001). Software Engineerirgh(Edition), New York: Addison-
Wesley

[39] Visconti, M., & Curtis R., (2004). An Ideal 8cess Model for Agile Methods, Oregon
State University, Oregon, USA

[40] Vriens, C. (2003). Certifying for CMM Level&nd ISO9001 with XP@Scrum,
Philips Research - Software Engineering Servic&S§S

[41] Wells, D., & Williams, L., (2002). “Extreme Bgramming and Agile Methods --
XP/Agile Universe 2002," in Lecture Notes in Conmgrugcience. Berlin: Springer-Verlag
[42] What is Extreme Programming?,
http://www.xprogramming.com/xpmag/whatisxp.htm

[43] Williams, L., Layman, L., & Krebs, W. (2004gxtreme Programming Evaluation
Framework for Object-Oriented Languages Version 1.4

[44] XP Flow Chart, http://www.extremeprogrammingumap/project.html

88

