ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 1, 2005

BOUNDS FOR THE FABER COEFFICIENTS OF CERTAIN CLASSES OF FUNCTIONS ANALYTIC IN AN ELLIPSE

E. HALILOGLU AND E.H. JOHNSTON

ABSTRACT. Let Ω be a bounded, simply connected domain in **C** with $0 \in \Omega$ and $\partial \Omega$ analytic. Let $S(\Omega)$ denote the class of functions F(z) which are analytic and univalent in Ω with F(0) = 0 and F'(0) = 1. Let $\{\Phi_n(z)\}_{n=0}^{\infty}$ be the Faber polynomials associated with Ω . If $F(z) \in S(\Omega)$, then F(z)can be expanded in a series of the form

$$F(z) = \sum_{n=0}^{\infty} A_n \Phi_n(z), \quad z \in \Omega$$

in terms of the Faber polynomials. Let

$$E_r = \left\{ (x,y) \in \mathbf{R}^2 : \frac{x^2}{(1+(1/r^2))^2} + \frac{y^2}{(1-(1/r^2))^2} < 1 \right\},\$$

where r > 1. In this paper we obtain sharp bounds for the Faber coefficients A_0 , A_1 and A_2 of functions F(z) in $S(E_r)$ and in certain related classes.

1. Introduction. Let S denote the class of functions f analytic and univalent in the unit disk $\mathbf{D} = \{z : |z| < 1\}$ such that

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

The Bieberbach conjecture [2] asserts that if $f \in S$, then $|a_n| \leq n$, $n\geq 2.$ This famous conjecture was proved by de Branges $[\mathbf{3}]$ in 1984.

Key words and phrases. Faber polynomials, Faber coefficients, Jacobi elliptic sine function 1991 AMS Mathematics Subject Classification. Primary 30C45, Secondary

³³C45. Received by the editors on November 19, 1996, and in revised form on September

^{24, 2003.}

Copyright ©2005 Rocky Mountain Mathematics Consortium

It was also shown that equality holds if and only if f is a rotation of the Koebe function

(1.2)
$$k(z) = \frac{z}{(1-z)^2}.$$

168

In this paper, we investigate bounds for the Faber coefficients in domains other than the unit disk \mathbf{D} , especially an elliptical domain.

Let Ω be a bounded, simply connected domain in \mathbf{C} with $0 \in \Omega$. Let g(z) be the unique, one-to-one, analytic mapping of $\Delta = \{z : |z| > 1\}$ onto $\mathbf{C} \setminus \overline{\Omega}$ with

(1.3)
$$g(z) = cz + \sum_{n=0}^{\infty} \frac{c_n}{z^n}, \quad c > 0, \quad z \in \Delta.$$

Suppose that Ω has capacity 1, so that c = 1 in (1.3). The Faber polynomials, $\{\Phi_n(z)\}_{n=0}^{\infty}$, associated with Ω , or g(z), are defined by the generating function relation [5, p. 218]

(1.4)
$$\frac{\eta g'(\eta)}{g(\eta) - z} = \sum_{n=0}^{\infty} \Phi_n(z) \eta^{-n}, \quad \eta \in \Delta.$$

Faber polynomials play an important role in the theory of functions of a complex variable and in approximation theory. On a domain Ω the Faber polynomials, $\{\Phi_n(z)\}_{n=0}^{\infty}$, play a role analogous to that of $\{z^n\}_{n=0}^{\infty}$ in **D**. If $\partial\Omega$ is analytic and F(z) is analytic in Ω , then F(z)can be expanded into a series of the form

(1.5)
$$F(z) = \sum_{n=0}^{\infty} A_n \Phi_n(z), \quad z \in \Omega$$

in terms of the Faber polynomials. This series is called the *Faber series*, and it converges uniformly on compact subsets of Ω . The coefficients A_n , which can be computed via the formula

$$A_n = \frac{1}{2\pi i} \int_{|z|=\rho} F(g(z)) z^{-n-1} dz$$

with $\rho < 1$ and close to 1 are called the *Faber coefficients* of F(z) [12, p. 42].

Let $\phi(z)$ be the unique, one-to-one, analytic mapping of Ω onto **D** with $\phi(0) = 0$ and $\phi'(0) > 0$. Thus a function F(z) which is analytic and univalent in Ω and normalized by the conditions F(0) = 0 and F'(0) = 1 may be written as

(1.6)
$$F(z) = \frac{f(\phi(z))}{\phi'(0)}$$

for some $f \in S$. The Faber coefficients $\{A_n\}_{n=0}^{\infty}$ of a function F(z) of the form (1.6) will be denoted by $\{A_n(f)\}_{n=0}^{\infty}$ to indicate the dependence on $f \in S$.

In order to investigate the Faber coefficients $A_n(f)$, it will be convenient to work with a domain Ω for which the Faber polynomials $\Phi_n(z)$ may be computed via the formula (1.4) in terms of the *exterior* mapping g(z) given by (1.3) with c = 1. We then express the *interior* functions F(z) given by (1.6) in terms of the interior mapping $\phi(z)$. However, it is not easy to deal with both exterior and interior mappings at the same time, so we restrict our interest to the elliptical domain

$$E_r = \left\{ (x, y) \in \mathbf{R}^2 : \frac{x^2}{(1 + (1/r^2))^2} + \frac{y^2}{(1 - (1/r^2))^2} < 1 \right\},\$$

where r > 1, for which both of these functions are manageable.

The function $g(z) = z + (1/r^2 z)$, r > 1, is analytic and univalent in Δ and maps Δ onto $\mathbf{C} \setminus \overline{E_r}$. After doing necessary calculations, we obtain from (1.4) that the Faber polynomials, $\{\Phi_n(z)\}_{n=0}^{\infty}$, associated with E_r are given by

$$\Phi_n(z) = 2^n r^{-n} P_n\left(\frac{rz}{2}\right), \quad n = 0, 1, 2, \dots$$

Here $\{P_n(z)\}_{n=0}^{\infty}$ are the monic Chebyshev polynomials of degree n, which are given by

$$P_0(z) = 1$$

and

$$P_n(z) = 2^{-n} \left\{ \left[z + \sqrt{z^2 - 1} \right]^n + \left[z - \sqrt{z^2 - 1} \right]^n \right\}, \quad n = 1, 2, 3, \dots$$

Let sn(z;q) be the Jacobi elliptic sine function with nome q, and modulus k_0 , and let

$$K = \int_0^1 \frac{1}{\sqrt{1-t^2}\sqrt{1-k_0^2t^2}}\,dt,$$

[8, Chapter 2]. Then the function

$$\varphi(z) = \sqrt{k_0} \left(\frac{2K}{\pi} \sin^{-1} \frac{rz}{2}; \frac{1}{r^4}\right)$$

is the one-to-one mapping of E_r onto **D** with $\varphi(0) = 0$ and $\varphi'(0) = (rK\sqrt{k_0}/\pi) > 0$ [10, p. 296].

We define $S(E_r)$ as the class of functions F(z) which are analytic and univalent in E_r and normalized by the conditions F(0) = 0 and F'(0) = 1. We define two subclasses of $S(E_r)$ as

$$C(E_r) = \{F(z) \in S(E_r) : F(E_r) \text{ is convex}\},\$$

and

170

$$S^{(2)}(E_r) = \{F(z) \in S(E_r) : F(z) \text{ is odd}\}.$$

In addition, we let $P(E_r)$ denote the class of functions analytic in E_r and satisfying the conditions $F(0) = (1/\varphi'(0)) = (\pi/rK\sqrt{k_0})$ and $\operatorname{Re}\{F(z)\} > 0$. (The condition $F(0) = (1/\varphi'(0))$ is imposed for convenience.)

Note that if F(z) is in one of the classes $S(E_r)$, $C(E_r)$, $S^{(2)}(E_r)$ or $P(E_r)$, then F(z) may be written as in (1.6) for some f(z) in the classes S, convex functions C, odd functions $S^{(2)}$ or functions with positive real part P defined for **D**.

It has been conjectured in [7] that if $F(z) \in S(E_r)$, then

$$|A_0(f)| \le A_0(k) = \frac{\pi^3}{8rK^3\sqrt{k_0}(1-k_0)^2\ln r},$$

and

$$|A_n(f)| \le A_n(k) = \frac{\pi^3 n}{4r K^3 \sqrt{k_0} (1-k_0)^2 (1-r^{-2n})}, \quad n \ge 1,$$

whose special case for $r \to \infty$ is the famous Bieberbach conjecture.

In this paper we show that the conjecture is true for n = 0, 1, 2 and the extremal functions are given by

$$f(z) = k(z)$$

or

$$f(z) = -k(-z),$$

where k(z) is the Koebe function given by (1.2). Also similar sharp upper bounds are obtained for the Faber coefficients $A_0(f)$, $A_1(f)$ and $A_2(f)$ for functions in the classes $C(E_r)$ and $P(E_r)$. In each case, there are two extremal functions that are given by

(1.7)
$$f(z) = c(z) = \frac{z}{1-z}$$

or

$$f(z) = -c(-z) = \frac{z}{1+z}$$

and

(1.8)
$$f(z) = p(z) = \frac{1+z}{1-z}$$

or

$$f(z) = p(-z) = \frac{1-z}{1+z},$$

respectively. Here it is important that the number of extremal functions is the same as the number of invariant rotations of the elliptical domain E_r . Although the results for the classes $C(E_r)$ and $P(E_r)$ are contained in [7], the method used in this paper is different from that of [7]. Moreover, the results for the class $S(E_r)$ cannot be obtained by the method of [7], since the extreme points of the closed convex hull of Sare not known at this time. For functions in $S^{(2)}(E_r)$ a sharp bound for $A_1(f)$ is obtained and the corresponding extremal function in $S^{(2)}$

(1.9)
$$o(z) = \frac{z}{1-z^2}.$$

Similar results were obtained in [11], but our approach is completely different from that of [11].

2. Main results. We begin with a

Lemma 1. Let F(z) be analytic in E_r and the Faber series given by (1.5). Then the Faber coefficients $\{A_n\}_{n=0}^{\infty}$ of F(z) are given by the formula

$$A_n = \frac{r^n}{\pi} \int_0^{\pi} F\left(\frac{2\cos\theta}{r}\right) \cos n\theta \,d\theta, \quad n = 0, 1, 2, \dots$$

Proof. Letting $z = (2\cos\theta/r)$ in (1.5) and using $\Phi_n(2\cos\theta/r) = 2r^{-n}\cos n\theta$ yields

(2.1)
$$F\left(\frac{2\cos\theta}{r}\right) = 2\sum_{n=0}^{\infty} A_n r^{-n} \cos n\theta.$$

Multiplying (2.1) by $\cos m\theta$ and then integrating from 0 to π gives the desired result. \Box

As a consequence of this representation it can be shown that if F(z) has the representation (1.6) and belongs to one of the classes $S(E_r)$, $C(E_r)$, $S^{(2)}(E_r)$ and $P(E_r)$, then the Faber coefficients are given by (2.2)

$$A_n(f) = \frac{r^{n-1}}{K\sqrt{k_0}} \int_0^{\pi} f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) \cos n\theta \, d\theta, \quad n = 0, 1, 2, \dots$$

In addition, as it was shown in [6] that if $F(z) \in S^{(2)}(E_r)$, then

$$A_{2n}(f) = 0, \quad n = 0, 1, 2, \dots$$

Another representation formula for the Faber coefficients, $\{A_n(f)\}_{n=0}^{\infty}$, is given in the following corollary.

Corollary 1. The Faber coefficients, $\{A_n(f)\}_{n=0}^{\infty}$, of functions in the classes $S(E_r)$, $C(E_r)$, $S^{(2)}(E_r)$ and $P(E_r)$ are given by

(2.3)
$$A_n(f) = \frac{2^n n! r^{n-1}}{K \sqrt{k_0} (2n)!} \int_0^\pi (f(\varphi(x)))^{(n)}|_{x=(2\cos\theta/r)} \sin^{2n}\theta \, d\theta,$$
$$n = 0, 1, 2, \dots$$

Proof. Since $P_n(\cos \theta) = 2^{1-n} \cos n\theta$, formula (2.2) becomes

$$A_n(f) = \frac{2^{n-1}r^{n-1}}{K\sqrt{k_0}} \int_0^\pi f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right)\cos n\theta \,d\theta, \quad n = 0, 1, 2, \dots$$

Making the change of variable $x = \cos \theta$ yields

$$A_n(f) = \frac{2^{n-1}r^{n-1}}{K\sqrt{k_0}} \int_{-1}^1 f\left(\varphi\left(\frac{2x}{r}\right)\right) \frac{P_n(x)}{\sqrt{1-x^2}} \, dx.$$

Multiplying the identity

$$\frac{P_n(x)}{\sqrt{1-x^2}} = \frac{(-1)^n 2^{1-n}}{1.3\cdots(2n-1)} \frac{d^n}{dx^n} \left[\left(1-x^2\right)^{n-(1/2)} \right]$$

[1, p. 785] by $f(\varphi(2x/r))$ and then integrating from -1 to 1 we obtain

(2.4)
$$\int_{-1}^{1} \frac{P_n(x)}{\sqrt{1-x^2}} f\left(\varphi\left(\frac{2x}{r}\right)\right) dx$$
$$= \frac{(-1)^n 2^{1-n}}{1.3\cdots(2n-1)} \int_{-1}^{1} \frac{d^n}{dx^n} \left[\left(1-x^2\right)^{n-(1/2)}\right] \left(f\left(\varphi\left(\frac{2x}{r}\right)\right)\right) dx.$$

Integrating the righthand side of (2.4) by parts results in

$$\int_{-1}^{1} \frac{P_n(x)}{\sqrt{1-x^2}} f\left(\varphi\left(\frac{2x}{r}\right)\right) dx$$

= $\frac{(-1)^n 2^{1-n}}{1.3\cdots(2n-1)} \int_{-1}^{1} \frac{d^{n-1}}{dx^{n-1}} \left[(1-x^2)^{n-(1/2)} \right] \left(f\left(\varphi\left(\frac{2x}{r}\right)\right) \right)' dx.$

Continuing this process n-times yields

(2.5)
$$\int_{-1}^{1} \frac{P_n(x)}{\sqrt{1-x^2}} f\left(\varphi\left(\frac{2x}{r}\right)\right) dx$$
$$= \frac{(-1)^n 2^{1-n}}{1.3\cdots(2n-1)} \int_{-1}^{1} (1-x^2)^{n-(1/2)} \left(f\left(\varphi\left(\frac{2x}{r}\right)\right)\right)^{(n)} dx.$$

The result follows from (2.2) by letting $x = \cos \theta$ in (2.5), reverting the change of variables. \Box

Theorem 1. If k(z), c(z) and p(z) are given by (1.2), (1.8) and (1.9), respectively, then

(2.6)
$$|A_0(f)| \le A_0(k), \quad f \in S,$$

(2.7)
$$|A_0(f)| \le A_0(c), \quad f \in C,$$

and

(2.8)
$$|A_0(f)| \le A_0(p), \quad f \in P.$$

Equalities occur in (2.6), (2.7) and (2.8) if and only if f(z) = k(z)or f(z) = -k(-z), f(z) = c(z) or f(z) = -c(-z) and f(z) = p(z) or f(z) = p(-z), respectively.

Proof. From (2.2) we have

$$A_0(f) = \frac{1}{rK\sqrt{k_0}} \int_0^{\pi} f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) d\theta.$$

Since $\varphi(z)$ is an odd function we may write (2.9)

$$A_0(f) = \frac{1}{rK\sqrt{k_0}} \int_0^{\pi/2} \left[f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) + f\left(-\varphi\left(\frac{2\cos\theta}{r}\right)\right) \right] d\theta.$$

Substituting (1.1) into (2.9) yields

$$A_0(f) = \frac{2}{rK\sqrt{k_0}} \int_0^{\pi/2} \left(\sum_{n=1}^\infty a_{2n}\varphi^{2n}\left(\frac{2\cos\theta}{r}\right)\right) d\theta.$$

174

Thus

$$|A_0(f)| \le \frac{2}{rK\sqrt{k_0}} \int_0^{\pi/2} \left(\sum_{n=1}^\infty |a_{2n}| \,\varphi^{2n}\left(\frac{2\cos\theta}{r}\right)\right) d\theta$$

since $\varphi(x) \ge 0$ for $x \in [0, (2/r)]$. Hence (2.6) follows from the proof of the de Branges' theorem [3] as

$$|A_0(f)| \le \frac{2}{rK\sqrt{k_0}} \int_0^{\pi/2} \left(\sum_{n=1}^\infty 2n\varphi^{2n}\left(\frac{2\cos\theta}{r}\right)\right) d\theta$$
$$= A_0(k) = -A_0(-k(-z)).$$

Note that the value of $A_0(k)$ is given in (1.7).

In a similar way, the proof of (2.7) follows from the coefficient estimate for the class C [9].

Substituting

(2.10)
$$f(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$$

into (2.9) gives

$$A_0(f) = \frac{2}{rK\sqrt{k_0}} \int_0^{\pi/2} \left[1 + \sum_{n=1}^\infty b_{2n} \varphi^{2n} \left(\frac{2\cos\theta}{r} \right) \right] d\theta.$$

Thus

(2.11)
$$|A_0(f)| \le \frac{2}{rK\sqrt{k_0}} \int_0^{\pi/2} \left[1 + \sum_{n=1}^\infty |b_{2n}| \varphi^{2n} \left(\frac{2\cos\theta}{r}\right)\right] d\theta,$$

since $\varphi(x) \ge 0$ for $x \in [0, (2/r)]$. Using the coefficient estimate $|b_n| \le 2$ for the class P [4] in (2.11) gives (2.8) as

$$|A_0(f)| \le \frac{2}{rK\sqrt{k_0}} \int_0^{\pi/2} \left[1 + 2\sum_{n=1}^\infty \varphi^{2n} \left(\frac{2\cos\theta}{r} \right) \right] d\theta$$

= $A_0(p) = A_0(p(-z)).$

Theorem 2. If k(z), c(z) and p(z) are defined as in Theorem 1 and o(z) is given by (1.9), then

(2.12)
$$|A_1(f)| \le A_1(k), \quad f \in S,$$

(2.13)
$$|A_1(f)| \le A_1(c), \quad f \in C,$$

(2.14) $|A_1(f)| \le A_1(p), \quad f \in P,$

and

(2.15)
$$|A_1(f)| \le A_1(o), \quad f \in S^{(2)}.$$

The extremal functions in (2.12), (2.13) and (2.14) are identical to those given in the statement of Theorem 1. In (2.15) equality holds if and only if f(z) = o(z).

Proof. From (2.2) we have (2.16)

$$A_1(f) = \frac{1}{K\sqrt{k_0}} \int_0^{\pi/2} \left[f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) - f\left(-\varphi\left(\frac{2\cos\theta}{r}\right)\right) \right] \cos\theta \, d\theta,$$

since $\varphi(x)$ is an odd function. Substituting (1.1) into (2.16) gives

$$A_1(f) = \frac{2}{K\sqrt{k_0}} \int_0^{\pi/2} \left[\varphi\left(\frac{2\cos\theta}{r}\right) + \sum_{n=1}^\infty a_{2n+1}\varphi^{2n+1}\left(\frac{2\cos\theta}{r}\right) \right] \cos\theta \, d\theta.$$

Hence

$$|A_1(f)| \le \frac{2}{K\sqrt{k_0}} \int_0^{\pi/2} \left[\varphi\left(\frac{2\cos\theta}{r}\right) + \sum_{n=1}^\infty |a_{2n+1}| \varphi^{2n+1}\left(\frac{2\cos\theta}{r}\right) \right] \cos\theta \, d\theta,$$

since $\varphi(x) \ge 0$ for $x \in [0, (2/r)]$. As in the proof of Theorem 1, inequalities (2.12) and (2.13) result from applying the coefficient estimates for the classes S and C, respectively. Similarly, if $f(z) \in P$ is given by (2.10), then

(2.17)
$$|A_1(f)| \le \frac{2}{K\sqrt{k_0}} \int_0^{\pi/2} \left[\sum_{n=1}^\infty |b_{2n-1}| \varphi^{2n-1} \left(\frac{2\cos\theta}{r} \right) \right] \cos\theta \, d\theta,$$

176

since $\varphi(x) \ge 0$ for $x \in [0, (2/r)]$. Hence, using the coefficient estimate for the class P in (2.17) results in (2.14).

For $f \in S^{(2)}$, (2.16) gives

$$A_1(f) = \frac{2}{K\sqrt{k_0}} \int_0^{\pi/2} f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) \cos\theta \,d\theta.$$

Thus

(2.18)
$$|A_1(f)| \le \frac{2}{K\sqrt{k_0}} \int_0^{\pi/2} \left| f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) \right| \cos\theta \, d\theta.$$

By the distortion theorem

$$|f(z)| \le \frac{|z|}{1-|z|^2}, \quad f \in S^{(2)},$$

[5, p. 70], it follows from (2.18) that

$$|A_1(f)| \le \frac{2}{K\sqrt{k_0}} \int_0^{\pi/2} \frac{\varphi((2\cos\theta)/r)}{1 - \varphi^2((2\cos\theta)/r)} \cos\theta \, d\theta = A_1(o),$$

because $0 \le \varphi(x) < 1$ for $x \in [0, (2/r)]$.

Remark 1. We can also obtain (2.12), (2.13) and (2.14) in the same way, by using (2.3) instead of (2.2) and noting that $\varphi'(x) \ge 0$, since $\varphi(x)$ is increasing for $x \in [-(2/r), (2/r)]$. Also using $\varphi'(x) \ge 0$ for $x \in [-(2/r), (2/r)]$ and the distortion theorem,

$$|f'(z)| \le \frac{1+|z|^2}{\left(1-|z|^2\right)^2}, \quad f \in S^{(2)}$$

[5, p. 70] in (2.3) leads to (2.15).

Theorem 3. If k(z), c(z) and p(z) are defined as in Theorem 1, then

(2.19)
$$|A_2(f)| \le A_2(k), \quad f \in S_2$$

(2.20)
$$|A_2(f)| \le A_2(c), \quad f \in C,$$

and

(2.21)
$$|A_2(f)| \le A_2(p), \quad f \in P.$$

The extremal functions are identical to those given in the statement of Theorem 1.

Proof. From (2.2) we have

$$A_2(f) = \frac{r}{K\sqrt{k_0}} \int_0^{\pi} f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) \cos 2\theta \, d\theta$$

 or

$$A_2(f) = \frac{r}{K\sqrt{k_0}} \int_0^{\pi/2} \left[f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) + f\left(-\varphi\left(\frac{2\cos\theta}{r}\right)\right) \right] \cos 2\theta \, d\theta$$

since $\varphi(z)$ is an odd function. Then

(2.22)

$$A_{2}(f) = \frac{r}{K\sqrt{k_{0}}} \int_{0}^{\pi/4} \left\{ \left[f\left(\varphi\left(\frac{2\cos\theta}{r}\right)\right) + f\left(-\varphi\left(\frac{2\cos\theta}{r}\right)\right) \right] - \left[f\left(\varphi\left(\frac{2\sin\theta}{r}\right)\right) + f\left(-\varphi\left(\frac{2\sin\theta}{r}\right)\right) \right] \right\} \cos 2\theta \, d\theta.$$

Substituting (1.1) into (2.22) gives

$$A_2(f) = \frac{2r}{K\sqrt{k_0}} \int_0^{\pi/4} \left[\sum_{n=1}^\infty a_{2n} \left(\varphi^{2n} \left(\frac{2\cos\theta}{r} \right) - \varphi^{2n} \left(\frac{2\sin\theta}{r} \right) \right) \right] \cos 2\theta \, d\theta.$$

Since $\varphi(x) \ge 0$ and $\varphi(x)$ is increasing for $x \in [0, (2/r)]$, we have

$$\varphi^{2n}\left(\frac{2\cos\theta}{r}\right) - \varphi^{2n}\left(\frac{2\sin\theta}{r}\right) \ge 0, \quad n = 1, 2, 3, \dots, \ 0 \le \theta \le \frac{\pi}{4}.$$

Thus

$$|A_2(f)| \le \frac{2r}{K\sqrt{k_0}} \int_0^{\pi/4} \left[\sum_{n=1}^\infty |a_{2n}| \left(\varphi^{2n} \left(\frac{2\cos\theta}{r} \right) - \varphi^{2n} \left(\frac{2\sin\theta}{r} \right) \right) \right] \cos 2\theta \, d\theta.$$

Hence (2.19) and (2.20) are obtained from the coefficient estimates for the classes S and C, respectively.

If $f(z) \in P$ is given by (2.10), then (2.21) follows from

$$|A_2(f)| \le \frac{4}{K\sqrt{k_0}} \int_0^{\pi/4} \left[\sum_{n=1}^\infty |b_{2n}| \left(\varphi^{2n} \left(\frac{2\cos\theta}{r} \right) - \varphi^{2n} \left(\frac{2\sin\theta}{r} \right) \right) \right] \cos 2\theta \, d\theta$$

by using the coefficient estimate for the class P.

REFERENCES

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publ., Inc., New York, 1972.

2. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss. (1916), 940–955.

3. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. **154** (1985), 137–152.

4. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Pontenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95–115.

5. P.L. Duren, Univalent functions, Springer-Verlag, New York, 1983.

6. E. Haliloğlu, On the Faber coefficients of functions univalent in an ellipse, Trans. Amer. Math. Soc. 349 (1997), 2901–2916.

7. _____, Generalizations of coefficient estimates for certain classes of analytic functions, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 116–121.

8. D.F. Lawden, *Elliptic functions and applications*, Springer-Verlag, New York, 1989.

9. K. Loewner, Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises |z| < 1, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden, S.-B. Sächs. Akad. Wiss. **69** (1917), 89–106.

10. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.

11. W. C. Royster, *Coefficient problems for functions regular in an ellipse*, Duke Math. J. 26 (1959), 361–371.

12. G. Schober, *Univalent functions* – Selected topics, Lecture Notes in Math., vol. 478, Springer-Verlag, New York, 1975.

DEPARTMENT OF MANAGEMENT, IŞIK UNIVERSITY, BÜYÜKDERE CADDESI, MASLAK, ISTANBUL 34398, TURKEY

E-mail address: engin@isikun.edu.tr

Department of Mathematics, Iowa State University, Ames, IA 50011, USA $% \left({{\rm USA}} \right)$

E-mail address: ehjohnst@iastate.edu