Some Inequalities which hold for Starlike Logharmonic Mappings of order alpha

ARTICLE in JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS • JUNE 2014
Impact Factor: 0.48

READS

41

2 AUTHORS, INCLUDING:

S. Melike Aydogan

State University of New York College at Bro...
68 PUBLICATIONS 23 CITATIONS

SEE PROFILE

SOME INEQUALITIES WHICH HOLD FOR STARLIKE LOG-HARMONIC MAPPINGS OF ORDER α

H. Esra Özkan ${ }^{1}$, Melike Aydog̃an ${ }^{2}$
Department of Mathematics and Computer Sciences, Istanbul Kültür University, 34156, Bakirkoy, Turkey
Department of Mathematics, Isik University, 34980, Sile, Istanbul, Turkey
${ }^{1}$ e.ozkan@iku.edu.tr
${ }^{2}$ melike.aydogan@isikun.edu.tr

Abstract

Let $H(D)$ be the linear space of all analytic functions defined on the open disc $D=\{z|\quad| z \mid<1\}$. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation

$$
\overline{f_{\bar{z}}}=w \frac{\bar{f}}{f} f_{z}
$$

where $w(z) \in H(D)$ is second dilatation such that $|w(z)|<1$ for all $z \in D$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
f(z)=h(z) \overline{g(z)}
$$

where $h(z)$ and $g(z)$ are analytic function in D. On the other hand, if f vanishes at $z=0$ but it is not identically zero then f admits following representation

$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}
$$

where $\operatorname{Re} \beta>-\frac{1}{2}, h$ and g are analytic in $D, g(0)=1, h(0) \neq 0$. Let $f=z|z|^{2 \beta} h \bar{g}$ be a univalent log-harmonic mapping.

2000 AMS Mathematics Subject Classification 30C45.
Keywords and phrases: Starlike log-harmonic functions, univalent functions, distortion theorem, Marx-Strohhacker inequality

We say that f is a starlike log-harmonic mapping of order α if

$$
\frac{\partial\left(\arg f\left(r e^{i \theta}\right)\right)}{\partial \theta}=\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}>\alpha, 0 \leq \alpha<1 . \quad(\forall z \in U)
$$

and denote by $S_{l h}^{*}(\alpha)$ the set of all starlike log-harmonic mappings of order α.

The aim of this paper is to define some inequalities of starlike log-harmonic functions of order $\alpha(0 \leq \alpha \leq 1)$.

I. Introduction

Let Ω be the family of functions $\phi(z)$ regular in the unit disc D and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in D$.

Next, denote by $P(\alpha)(0 \leq \alpha<1)$ the family of functions

$$
p(z)=1+p_{1} z+\ldots
$$

regular in D and such that $p(z)$ in $P(\alpha)$ if and only if

$$
p(z)=\frac{1+(1-2 \alpha) \phi(z)}{1-\phi(z)}
$$

for some functions $z \in \Omega$ and every $z \in D$.
Let $S_{1}(z)$ and $S_{2}(z)$ be analytic functions in the open unit disc, with $S_{1}(0)=S_{2}(0)$, if $S_{1}(z)=S_{2}(\phi(z))$ then we say that $S_{1}(z)$ is subordinate to $S_{2}(z)$, where $\phi(z) \in \Omega([4])$, and we write $S_{1}(z) \prec S_{2}(z)$.

Let $H(D)$ be the linear space of all analytic functions defined on the open disc $D=\{z| | z \mid<1\}$. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation

$$
\overline{f_{\bar{z}}}=w \frac{\bar{f}}{f} f_{z}
$$

where $w(z) \in H(D)$ is second dilatation such that $|w(z)|<1$ for all $z \in D$.
It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
f(z)=h(z) \overline{g(z)}
$$

where $h(z)$ and $g(z)$ are analytic function in D.

On the other hand, if f vanishes at $z=0$ but it is not identically zero then f admits following representation

$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)}
$$

where $\operatorname{Re} \beta>-\frac{1}{2}, h$ and g are analytic in $D, g(0)=1, h(0) \neq 0$.
Let $f=z|z|^{2 \beta} h \bar{g}$ be a univalent log-harmonic mapping. We say that f is a starlike logharmonic mapping of order α if

$$
\frac{\partial\left(\arg f\left(r e^{i \theta}\right)\right)}{\partial \theta}=\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}>\alpha, 0 \leq \alpha<1 . \quad(\forall z \in U)
$$

and denote by $S_{l h}^{*}(\alpha)$ the set of all starlike log-harmonic mappings of order $\alpha([3])$.

If $\alpha=0$, we get the class of starlike log-harmonic mappings. Also, let

$$
S T(\alpha)=\left\{f \in S_{l h}^{*}(\alpha) \text { and } f \in H(U)\right\} .
$$

If $f \in S_{l h}^{*}(0)$ then $F(\varsigma)=\log \left(f\left(e^{\varsigma}\right)\right)$ is univalent and harmonic on the half plane $\{\varsigma \mid \operatorname{Re}\{\varsigma\}<0\}$. It is known that F is closely related with the theory of nonparametric minimal surfaces over domains of the form $-\infty<u<u_{0}(v), u_{0}(v+2 \pi)=u_{0}(v)$, see $([1],[2])$.

In this paper, we obtain Marx-Strohhacker Inequality and new distortion theorems using the subordination prinsiple for the starlike log-harmonic mappings of order α, previously studied by Z. Abdulhadi and Y. Abu Muhanna [3] who obtained the representation theorem and a different distortion theorem for the same class.

II. Main Results

Theorem 2.1.Let $f(z)=z h(z) \overline{g(z)}$ be an analytic logaritmic harmonic function in the open unit disc U. If $f(z)$ satisfies the condition

$$
\begin{equation*}
z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)} \prec \frac{2(1-\alpha) z}{1-z}=F(z) \tag{1}
\end{equation*}
$$

then $f \in S_{l h}^{*}(\alpha)$.
Proof. We define the function by

$$
\begin{equation*}
\frac{h}{g}=(1-\phi(z))^{-2(1-\alpha)} \tag{2}
\end{equation*}
$$

where $(1-\phi(z))^{-2(1-\alpha)}$ has the value 1 at $z=0$. Then $w(z)$ is analytic and $\phi(0)=0$. If we take the logarithmic derivative of (2) and the after brief calculations, we get

$$
z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)} \prec \frac{2(1-\alpha) z \phi^{\prime}(z)}{1-\phi(z)}
$$

Now it is easy to realize that the subordination (1) is equivalent to $|\phi(z)|<1$ for all $z \in U$. Indeed assume the contrary: then there is a $z_{1} \in U$ such that $\left|\phi\left(z_{1}\right)\right|=1$, so by I.S. Jack Lemma $z_{1} \phi^{\prime}\left(z_{1}\right)=k \phi\left(z_{1}\right)$ for some $k \geq 1$ and for such $z_{1} \in U$, we have

$$
z_{1} \frac{h^{\prime}\left(z_{1}\right)}{h\left(z_{1}\right)}-z_{1} \frac{g^{\prime}\left(z_{1}\right)}{g\left(z_{1}\right)} \prec \frac{2(1-\alpha) k \phi\left(z_{1}\right)}{1-\phi\left(z_{1}\right)}=F\left(\phi\left(z_{1}\right)\right) \notin F(U)
$$

but this contradicts (1); so our assumption is wrong, i.e, $|\phi(z)|<1$ for all $z \in u$. By using condition (1) we get

$$
\begin{equation*}
1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}=\frac{1+(1-2 \alpha) \phi(z)}{1-\phi(z)} . \tag{3}
\end{equation*}
$$

The equality (3) shows that $f(z) \in S_{l h}^{*}(\alpha)$.

Corollary 2.2.For the starlike logharmonic functions of order α, we have Marx-Strohhacker Inequality is

$$
\left|1-\left(\frac{g}{h}\right)^{\frac{1}{2(1-\alpha)}}\right|<1
$$

g and h are analytic in u and $0 \notin h g(u)$.
Proof. Using theorem 2.1 we have

$$
\begin{aligned}
& (1-\phi(z))^{\frac{1-2 \alpha+1}{-1}}=\frac{h}{g} \Rightarrow(1-\phi(z))^{-2(1-\alpha)}=\frac{h}{g} \Rightarrow \frac{1}{(1-\phi(z))^{2(1-\alpha)}}=\frac{h}{g} \Rightarrow \frac{1}{1-\phi(z)}=\left(\frac{h}{g}\right)^{\frac{1}{2(1-\alpha)}} \Rightarrow \\
& 1-\phi(z)=\left(\frac{g}{h}\right)^{\frac{1}{2(1-\alpha)}} \Rightarrow 1-\left(\frac{g}{h}\right)^{\frac{1}{2(1-\alpha)}}=\phi(z) \Rightarrow\left|1-\left(\frac{g}{h}\right)^{\frac{1}{2(1-\alpha)}}\right|=|\phi(z)|<1 .
\end{aligned}
$$

Theorem 2.3. If $f \in S_{l h}^{*}(\alpha)$ then

$$
\begin{equation*}
\frac{1}{(1+r)^{2(1-\alpha)}} \leq\left|\frac{h}{g}\right|<\frac{1}{(1-r)^{2(1-\alpha)}} \tag{4}
\end{equation*}
$$

Proof. The set of the values of the function $\left(\frac{2(1-\alpha) z}{(1-z)}\right)$ is the closed disc with the centre C and the radius ρ, where

$$
C=C(r)=\left(\frac{2(1-\alpha) r^{2}}{1-r^{2}}, 0\right) \quad, \quad \rho=\rho(r)=\frac{2(1-\alpha) r}{1-r^{2}} .
$$

Using the subordination, we can write

$$
\begin{equation*}
\left|\left(z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right)-\frac{2(1-\alpha) r^{2}}{1-r^{2}}\right| \leq \frac{2(1-\alpha) r}{1-r^{2}} \tag{5}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
-\frac{2(1-\alpha) r}{1+r} \leq \operatorname{Re}\left(z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right) \leq \frac{2(1-\alpha) r}{1-r} . \tag{6}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{h^{\prime}}{h}\right)-\operatorname{Re}\left(z \frac{g^{\prime}}{g}\right)=r \frac{\partial}{\partial r}(\log |h|-\log |g|) . \tag{7}
\end{equation*}
$$

If we consider the relations (5), (6), (7) together we obtain

$$
\begin{equation*}
-\frac{2(1-\alpha)}{1+r} \leq \frac{\partial}{\partial r}(\log |h|-\log |g|) \leq \frac{2(1-\alpha)}{1-r} \tag{8}
\end{equation*}
$$

After the integrating we obtain (4).

Theorem 2.4. If $f \in S_{l h}^{*}(\alpha)$ then

$$
\begin{equation*}
\frac{\left|b_{1}\right|-\left|a_{1}\right| r}{\left|a_{1}\right|-\left|b_{1}\right| r}(1-r)^{2(1-\alpha)} \leq \frac{\left|g^{\prime}(z)\right|}{\left|h^{\prime}(z)\right|} \leq \frac{\left|b_{1}\right|+\left|a_{1}\right| r}{\left|a_{1}\right|+\left|b_{1}\right| r}(1+r)^{2(1-\alpha)} . \tag{9}
\end{equation*}
$$

Proof. Using theorem 2.3 we can write

$$
\begin{equation*}
(1-r)^{2(1-\alpha)} \leq \frac{|g(z)|}{|h(z)|} \leq(1+r)^{2(1-\alpha)} \tag{10}
\end{equation*}
$$

On the other hand, since f is solution of the non-linear elliptic partial differential equation

$$
\overline{f_{\bar{z}}}=w \frac{\bar{f}}{f} f_{z}
$$

then we obtain

$$
\begin{equation*}
w(z)=\frac{\frac{g^{\prime}(z)}{h^{\prime}(z)}}{\frac{g(z)}{h(z)}}=\frac{b_{1}}{a_{1}}+\ldots \tag{11}
\end{equation*}
$$

Now we define the function

$$
\begin{equation*}
\phi(z)=\frac{w(z)-w(0)}{1-\overline{w(0)} w(z)}, z \in D . \tag{12}
\end{equation*}
$$

Therefore $\phi(z)$ satisfies the condition of Schwarz lemma. Using the estimate the Schwarz lemma $|\phi(z)| \leq r$, which given

$$
\begin{equation*}
|\phi(z)|=\left|\frac{w(z)-w(0)}{1-\overline{w(0)} w(z)}\right| \leq r \tag{13}
\end{equation*}
$$

The inequality (13) can be written in the following form

$$
\begin{equation*}
\left|\frac{w(z)-\frac{b_{1}}{a_{1}}}{1-\frac{\bar{b}_{1}}{a_{1}}} w(z)\right| \leq r \Rightarrow\left|w(z)-\frac{b_{1}}{a_{1}}\right| \leq r\left|1-\frac{\overline{b_{1}}}{\overline{a_{1}}} w(z)\right| \tag{14}
\end{equation*}
$$

The inequality (14) is equivalent

$$
\begin{equation*}
\left|w(z)-\frac{\left(1-r^{2}\right)\left|\frac{b_{1}}{a_{1}}\right|}{1-\left(\frac{b_{1}}{a_{1}}\right)^{2} r^{2}}\right| \leq \frac{\left(1-\left|\frac{b_{1}}{a_{1}}\right|^{2}\right) r}{1-\left|\frac{b_{1}}{a_{1}}\right|^{2} r^{2}} \tag{15}
\end{equation*}
$$

The equality holds in the inequality (15) only for the function

$$
\begin{equation*}
w(z)=\frac{\frac{g^{\prime}(z)}{h^{\prime}(z)}}{\frac{g(z)}{h(z)}} \tag{16}
\end{equation*}
$$

From the inequality (15) we have

$$
\begin{equation*}
\frac{\left|\frac{b_{1}}{a_{1}}\right|-r}{1-\left|\frac{b_{1}}{a_{1}}\right| r} \leq|w(z)| \leq \frac{\left|\frac{b_{1}}{a_{1}}\right|+r}{1+\left|\frac{b_{1}}{a_{1}}\right| r} \tag{17}
\end{equation*}
$$

Considering the relation (10), (17) together, end after the simple calculations,

$$
\begin{equation*}
\frac{\left|b_{1}\right|-\left|a_{1}\right| r}{\left|a_{1}\right|-\left|b_{1}\right| r}\left|\frac{g(z)}{h(z)}\right| \leq\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq \frac{\left|b_{1}\right|+\left|a_{1}\right| r}{\left|a_{1}\right|+\left|b_{1}\right| r}\left|\frac{g(z)}{h(z)}\right| \tag{18}
\end{equation*}
$$

using inequality (4) in the inequality (18) we get (8).

References

[1]Abdulhadi, Z., Bshouty, D. : Univalent functions in H. $\bar{H}(D)$, Trans. Amer. Math. Soc., 305, pp. 841-849, 1988.
[2]Abdulhadi, Z., Hengartner, W.: One pointed univalent log-harmonic mappings, J. Math. Anal. Apply. 203(2), pp. 333-351, 1996.
[3]Abdulhadi, Z., Abu Muhanna, Y. : Starlike log-harmonic mappings of order α, JIPAM.Vol.7, Issue 4, Article 123, 2006.
[4]Goodman, A. W. : Univalent functions, Vol I, Mariner Publishing Company, Inc., Washington, New Jersey, 1983.

