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AN EXTENSION OF A BOUNDEDNESS RESULT FOR
SINGULAR INTEGRAL OPERATORS

BY

DENIZ KARLI (Istanbul)

Abstract. We study some operators originating from classical Littlewood–Paley the-
ory. We consider their modification with respect to our discontinuous setup, where the un-
derlying process is the product of a one-dimensional Brownian motion and a d-dimensional
symmetric stable process. Two operators in focus are the G∗ and area functionals. Using
the results obtained in our previous paper, we show that these operators are bounded
on Lp. Moreover, we generalize a classical multiplier theorem by weakening its conditions
on the tail of the kernel of singular integrals.

1. Introduction and preliminaries. Boundedness of singular integral
operators has been studied for a long time. There are some well-known
results which were proved first by using classical analytic techniques. In
these techniques, there are some important operators providing intermediate
steps for the proof. Three often used operators are Lusin’s area functional
(Af ), the non-tangential maximal function (Nf

α) and the G∗ functional (G∗f ).
They played an important role in the development of harmonic analysis (see
Stein [17] and [18]).

With the introduction of probabilistic techniques, alternative proofs have
surfaced. In these classical techniques, Brownian motion plays a central role.
One such approach is to consider a (d + 1)-dimensional Brownian motion
on the upper half-space and provide a probabilistic definition of harmonic
functions in terms of martingales. By means of martingales, one can define
Littlewood–Paley functions and hence provide probabilistic proofs of bound-
edness of some operators. (See, for example, Varopoulos [20], Burkholder and
Gundy [7], Burkholder, Gundy and Silverstein [8], Durrett [9] and Bass [2].
For a more detailed literature overview on square functions and these oper-
ators, see Bañuelos and Davis [4].)
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2 D. KARLI

In [12], we studied a more general process in the (d+1)-dimensional half-
space Rd × R+. We would like to obtain generalizations of some theorems
using probabilistic techniques and the weaker conditions imposed on the
process we start with. This paper can be considered as a continuation of [12].

The main results of this paper include (i) boundedness of two important
operators, namely the area functional and the G∗ functional, and (ii) an
extension of a classical multiplier theorem for singular integrals with kernels
κ : Rd → R satisfying the cancelation property

(1.1)
�

r<|x|<R

κ(x) dx = 0 for all 0 < r < R.

Together with a smoothing condition and some control on the tail, it is
known that the corresponding convolution operator is bounded. The classical
version is stated as follows. (The proof of the case d = 1 is given in [2,
Theorem 5.3, p. 270]. For d > 1, the same argument applies easily with a
slight modification. See also [1, Theorem 1.1].)

Theorem 1.1. Suppose κ is the kernel of a convolution operator T . If
κ ∈ C1 and κ satisfies the cancelation condition (1.1), and if

(1.2) |κ(x)| ≤ c|x|−d and |∇κ(x)| ≤ c|x|−d−1, x 6= 0,

then for any 1 < p < ∞ there is a finite constant cp depending only on p
such that

‖T‖Lp(Rd)→Lp(Rd) < cp.

Our goal is to weaken the condition (1.2) by replacing d in the exponent
with d− 1 + α/2 for some α ∈ (1, 2) when |x| > 1 (Theorem 2.8). We note
that for α = 2, we obtain (1.2).

First we introduce our notation and some preliminary results. Through-
out the paper, c will denote a positive constant whose value may change
from line to line.

We consider a d-dimensional right continuous rotationally symmetric
α-stable process (Yt)t≥0 for α ∈ (0, 2), that is, (Yt)t≥0 is a right continuous
Markov process with independent and stationary increments whose charac-
teristic function is E(eiξYs) = e−s|ξ|

α
, ξ ∈ Rd, s > 0. By p(s, x, y), we denote

its (symmetric) transition density such that

Px(Ys ∈ A) =
�

A

p(s, x, y) dy,

and Ps is the corresponding semigroup Ps(f)(x) = Ex(f(Ys)). Here Px is
the probability measure for the process started at x ∈ Rd, and Ex is the
expectation with respect to Px. The transition density p(s, x, 0) satisfies the
scaling property

(1.3) p(s, x, 0) = s−d/αp(1, x/s1/α, 0), x ∈ Rd, s > 0.
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Similarly, we denote by Zs a one-dimensional Brownian motion (inde-
pendent of Ys) and by Pt the probability measure for the process started at
t > 0. The process of interest is the product Xs = (Ys, Zs) started at (x, t) ∈
Rd × R+; the corresponding probability measure and expectation are P(x,t)

and E(x,t), respectively. Define the stopping time T0 = inf{s ≥ 0 : Zs = 0}
which is the first time Xt hits the boundary of Rd × R+. It is clear that T0
and Y are independent since T0 is expressed in terms of Z only.

To provide a connection between probabilistic and deterministic inte-
grals, we will use two tools: a new measure Pma and the vertical Green
function. Denoting the Lebesgue measure on Rd by m(·), we define

Pma =
�

Rd
P(x,a)m(dx), a > 0.

Let Ema denote the expectation with respect to this measure. We note that
the law of XT0 under this measure is m(·). Moreover, the semigroup Pt is
invariant under the Lebesgue measure, that is,

(1.4)
�

Rd
Ptf(x)m(dx) =

�

Rd
f(x)m(dx).

This follows from the symmetry of the kernel and the conservativeness of Y .
Second, for a positive Borel function f , the vertical Green function, which

is the Green function for the one-dimensional Brownian motion, is given by

(1.5) Ea
[T0�
0

f(Zs) ds
]

=

∞�

0

(s ∧ a)f(s) ds.

Harmonic functions play a key role in showing boundedness of Little-
wood–Paley operators. Here we take the probabilistic interpretation of a
harmonic function (with respect to the process X). A continuous function
u : Rd × R+ → R is said to be harmonic (or α-harmonic) if u(Xs∧T0) is
a martingale with respect to the filtration Fs = σ(Xr∧T0 : r ≤ s) and the
probability measure P(x,t) for any starting point (x, t) ∈ Rd × R+. One way
to obtain such a harmonic function is to start with a bounded Borel function
f : Rd → R and define its extension u by

u(x, t) := E(x,t)f(YT0) =

∞�

0

Exf(Ys)Pt(T0 ∈ ds),

where Pt(T0 ∈ ds) is the exit distribution of the one-dimensional Brownian
motion from (0,∞), which is given by (see [14])

µt(ds) := Pt(T0 ∈ ds) =
t

2
√
π
e−t

2/4ss−3/2 ds.

By abuse of notation, we will denote both the function on Rd and its extension
to the upper half-space by the same letter: ft(x) :=f(x, t)=E(x,t)f(YT0).
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Next, we define the semigroup Qt =
	∞
0 Ps µt(ds). It provides a represen-

tation

ft(x) = f(x, t) = Qtf(x) =
�

Rd
f(y)

∞�

0

p(s, x, y)µt(ds) dy.

We note that this is a convolution with the probability kernel

qt(x) =

∞�

0

p(s, x, 0)µt(ds),

whose Fourier transform is e−t|·|
α/2

. So qt(x) can be identified with the den-
sity of a symmetric α/2-stable process, which will allow us to write the
estimate (1.8) below. Moreover, qt(x) is radially decreasing in x. To see this,
it is enough to write

(1.6) p(1, x, 0) =
�

Rd

1

(4πs)d/2
e−|x|

2/(4s)gα/2(1, s) ds,

where gα/2 is the density of an α/2-stable subordinator whose Laplace trans-

form is
	∞
0 e−λvg(s, v) dv = e−sλ

α/2
. (See [16, p. 261] for details.)

One of the key tools in proving certain inequalities is the density esti-
mates on p(s, x, 0). Although there is an infinite series expansion, it is not
easy to work with. For this purpose, we will use the well-known two-sided
estimate

(1.7) c1

(
s−d/α ∧ s

|x− y|d+α

)
≤ p(s, x, y) ≤ c2

(
s−d/α ∧ s

|x− y|d+α

)
for (s, x, y) ∈ R+ × Rd × Rd, which allows us to control the tail of the
transition density. (See [6, Theorem 2.1].) This estimate leads to an estimate
on qt(x) due to the observation that qt(x) coincides with the density of a
symmetric α/2-stable process. We have

(1.8) c1

(
t−2d/α ∧ t

|x|d+α/2

)
≤ qt(x) ≤ c2

(
t−2d/α ∧ t

|x|d+α/2

)
.

In addition, we will need to control the derivative of p(s, x, 0). The fol-
lowing lemma provides this control. Let ∂kxj denote the kth partial derivative
with respect to the jth coordinate.

Lemma 1.2. For k = 1, 2 and j = 1, . . . , d, we have

(i) |∂kxjp(1, x, 0)| ≤ c
(

1 ∧ 1

|x|k

)
p(1, x, 0) and

(ii) |∂kxjp(t, x, 0)| ≤ c
(
t−k/α ∧ 1

|x|k

)
p(t, x, 0) whenever t > 0.
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This lemma is a direct consequence of [3, Proposition 3.3] and the in-
equality (1.7) above.

For the rest of the paper, we will need some results and definitions
from [12]. To keep this paper as self-contained as possible, we repeat some
of them here. For details, we refer to [12]. One of the main results of [12] is
that harmonic functions, as defined above, satisfy the Harnack inequality.
We will use this result to show boundedness of some operators in the next
section. Let Dr be the open rectangular box with center (y, s) ∈ Rd × R+,

Dr = {(x, t) ∈ Rd × R+ : x = (x1, . . . , xd), |xi − yi| < r2/α/2, i = 1, . . . , d,

|s− t| < r/2}.

When using these rectangular boxes, we will consider nested boxes with the
same center. That is why we do not include the center point in the notation,
and just write Dr for simplicity.

Theorem 1.3 ([12, Theorem 3]). There exists c > 0 such that if u is
non-negative and bounded on Rd × R+, harmonic in D16 and in D32, then

u(x, t) ≤ cu(x′, t′), (x, t), (x′, t′) ∈ D1.

Using this inequality, we proved a Littlewood–Paley theorem in [12]. We
define a new operator with respect to our product process Xs = (Ys, Zs).
The horizontal component of the classical operator is replaced by the one
corresponding to the symmetric stable process. The two components are
defined as

−→
Gf (x) =

[∞�
0

t
�

Rd

[ft(x+ h)− ft(x)]2

|h|d+α
dh dt

]1/2
,

G↑f (x) =

[∞�
0

t

[
∂

∂t
f(x, t)

]2
dt

]1/2
,

and hence the Littlewood–Paley operator Gf is defined as

Gf = [(
−→
Gf )2 + (G↑f )2]1/2.

Unlike the Brownian motion case, the Littlewood–Paley Theorem (Theorem
1.4(i)) cannot be extended to p ∈ (1, 2). This seems to be due to the large
jump terms of the horizontal process. Therefore, we truncate the part of the
horizontal component which corresponds to the large jumps. We denote the

new operator obtained after truncation by
−→
Gf,α,

−→
Gf,α(x) =

[∞�
0

t Γα(ft, ft)(x) dt
]1/2

,
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where

(1.9) Γα(ft, ft)(x) =
�

|h|<t2/α
[ft(x+ h)− ft(x)]2

dh

|h|d+α
,

and the new restricted Littlewood–Paley operator is

Gf,α(x) = [(
−→
Gf,α(x))2 + (G↑f (x))2]1/2.

Theorem 1.4. If f ∈ Lp(Rd), then for some constant c > 0:

(i) ‖Gf‖p ≤ c‖f‖p for p ≥ 2,

(ii) ‖G↑f‖p ≤ c‖f‖p for p > 1 and

(iii) ‖
−→
Gf,α‖p ≤ c‖f‖p for p > 1.

Part (i) is due to P. A. Meyer [14]. This is a special case of his study
of symmetric Markov processes. Part (ii) is obtained by E. M. Stein in [19,
Chapter V] in the case of symmetric semigroups. The proof of the third part
is given in [12, Theorem 7].

There are also some recent results based on an analytic approach to a dif-
ferential equation involving the fractional Laplacian. I. Kim and K. Kim [13]
discussed another operator by applying the fractional Laplacian to Ptf(x)
where Pt is defined as above. This operator plays the role of the classical
Littlewood–Paley operator, where the Laplacian is the generator when α = 2
(that is, when the process is a Brownian motion) and hence the authors ob-
tain an analogue of the classical inequality in the fractional Laplacian case.
However, as in Meyer’s result (Theorem 1.4(i)), this inequality holds for
p ≥ 2. One of our main results in [12] (Theorem 1.4(iii)) allows us to gen-
eralize this inequality first by considering the harmonic extension Qtf and
then writing the integrand as the singular integral (1.9) instead of the dif-
ferential ∂αx on a restricted domain to provide some control over the large
jump terms. Without this restriction, it is not possible to extend this result
to p ∈ (1, 2). In this paper, we will make use of this inequality for p > 1.

In addition to the theorem above, it is also not difficult to see that part
(ii) can be written as a two sided-inequality. Here we provide a short proof
by a well-known duality argument.

Lemma 1.5. If p > 1 and f ∈ Lp(Rd) ∩ L2(Rd) then ‖f‖p ≤ c‖G↑f‖p.

Proof. First note that by the Plancherel identity,

(1.10) ‖G↑f‖
2
2 = c

∞�

0

t
�

Rd
|f̂(ξ)|2|ξ|αe−2t|ξ|α/2 dξ dt = c‖f‖2,

since (Qtf )̂(·) = e−t|·|
α/2
f̂(·).
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Second, if h ∈ Lq(Rd) ∩ L2(Rd), where 1/p+ 1/q = 1, then using polar-
ization identity and (1.10), we get

�

Rd
f(x)h(x) dx =

1

4
(‖f + h‖22 − ‖f − h‖22) = c(‖G↑f+h‖

2
2 − ‖G

↑
f−h‖

2
2)

= c
�

Rd

∞�

0

t
∂f

∂t
(x, t)

∂h

∂t
(x, t) dt dx.

Using the Cauchy–Schwarz inequality and then the Hölder inequality, we
obtain�

Rd
f(x)h(x) dx ≤ c

�

Rd
G↑f (x)G↑h(x) dx ≤ c‖G↑f‖p‖G

↑
h‖q ≤ c‖G

↑
f‖p‖h‖q,

where the last inequality follows from Theorem 1.4.
Finally, the result follows if we take the supremum over all such h with

‖h‖q ≤ 1.

In the classical Littlewood–Paley theory, there are some operators which
are often used to prove intermediate steps of boundedness arguments. We
believe that they should also be studied in the present context, and analo-
gous results to the classical theory should be provided in order to obtain a
complete picture. In the next section we will discuss some of these operators
and prove their boundedness in Lp(Rd). Among these operators, two impor-
tant ones are the area functional and the G∗ functional. The area functional
in our setup is given by

Af (x) =
[∞�
0

�

|y|<t2/α
t1−2d/αΓα(ft, ft)(x− y) dy dt

]1/2
.

The reason for this name is that it represents the area of f(D) in the classical
setup (for α = 2 and Γα replaced by |∇|2) where D is the cone {(y, t) :
|y − x| < t} and d = 2.

Second, we define the new G∗ functional by means of its horizontal and
vertical components. But first we set

Kλ
t (x) = t−2d/α

[
t2/α

t2/α + |x|

]λd
, t > 0.

We will take λ > 1. Note that ‖Kλ
t ‖1 = ‖Kλ

1 ‖1 = cd. Hence the normalized
function c−1d Kλ

t is a bounded approximate identity. Using this kernel we
define two components by

−→
G∗λ,f (x) =

[∞�
0

t ·Kλ
t ∗ Γα(ft, ft)(x) dt

]1/2
,

G∗,↑λ,f (x) =

[∞�
0

t ·Kλ
t ∗
(
∂

∂t
ft(·)

)2

(x) dt

]1/2
,
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and the G∗ functional is

G∗λ,f (x) = [(
−→
G∗λ,f (x))2 + (G∗,↑λ,f (x))2]1/2.

2. Singular integral operators and boundedness results. As we
can see from the definitions of the operators, we mostly restrict our domain
of integration to a parabolic-like domain in the upper half-space. By taking
the scaling factor into account, we focus on the set {(y, t) ∈ Rd×R+ : |y−x|
< t2/α} with vertex at x ∈ Rd. Our first observation is that the growth of an
extension function is controlled by the Hardy–Littlewood maximal function
M(·), given by

M(f)(x) = sup
r>0

1

|B(0, 1)| · rd
�

|y|<r

|f(x− y)| dy.

To see this, we define

Nf
α(x) := sup{|ft(y)| : t > 0, |x− y| < t2/α}.

The classical version of this function is sometimes referred to as the (non-
tangential) maximal function (see [19, Chapter II]). In that case, the growth
of this function is studied at a single point x ∈ Rd. In our setup, we should
consider the terms corresponding to jumps of the horizontal process. How-
ever, we still need to restrict our function to small jumps so that comparison
of the points at any given “height” is possible by Harnack’s inequality. For
this purpose, the domain is considered to be the parabolic-like region given
above.

Lemma 2.1. Let p > 1 and f ∈ Lp(Rd). Then

(i) Nf
α(x) ≤ cM(f)(x) for x ∈ Rd,

(ii) Nf
α ∈ Lp(Rd) and ‖Nf

α‖p ≤ c‖f‖p.

Proof. We first show that it is enough to consider positive functions to
prove (i). Indeed, if f is not positive, then we can consider the decompo-
sition f = f+ − f−, where f+, f− ≥ 0. Then we can use linearity of the
semigroup Qt, the inequalities

Nf
α ≤ Nf+

α +Nf−
α and M(f+) +M(f−) ≤ 2M(f)

and the fact that both Qtf
+ and Qtf

− are positive harmonic to prove the
result for f .

So suppose f > 0. Then for a fixed t > 0 and y ∈ B(x, t2/α), Theorem
1.3 applied several times implies that ft(y) ≤ cft(x). Here we emphasize
that the constant c does not depend on t, since these balls scale as t varies
and so the same number of applications of the Harnack inequality suffices
at each t for fixed x.
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Moreover, ft(x) = f ∗ qt(x) where qt is radially decreasing and its
L1-norm equals one. To see this we note that the transition density p(s, x, 0)
is obtained from the characteristic function e−s|x|

α
by the inverse Fourier

transform. Hence we can write p(s, x, 0) as in (1.6). Thus p(s, x, 0) is radi-
ally decreasing in x, and so is qt(x). Then ft(x) ≤ cM(f)(x) for any t > 0

[10, Section 2.1] and Nf
α(x) ≤ cM(f)(x). Finally, using the fact

‖M(f)‖p ≤ c‖f‖p, p > 1,

one can obtain the result.

Before we study the area functional, we define an auxiliary operator L∗f .

This operator is closely related to
−→
G∗λ,f for a particular value of λ, and

hence it provides an intermediate step to prove boundedness of the area
functional. Moreover, the classical version L∗f is used to give a probabilistic
proof of boundedness of the Littlewood–Paley function.

For a given f ∈ Lp(Rd), we define

L∗f (x) =
[∞�
0

t ·QtΓα(ft, ft)(x) dt
]1/2

,

where Γα is as in (1.9). This operator is bounded on Lp(Rd) whenever p > 2.

Theorem 2.2. Let p > 2 and f ∈ Lp(Rd). Then

‖L∗f‖p ≤ c‖f‖p.

Proof. Let f ∈ Lp(Rd), r = 2p and q be the conjugate of r, that is,
1/r+ 1/q = 1. Let h be a continuously differentiable function with compact
support. Then

E(x,a)
[T0�
0

Γα(fZs , fZs)(Ys) ds · h(XT0)
]

=

∞�

0

E(x,a)
[
E(x,a)[1{s<T0}Γα(fZs , fZs)(Ys)h(XT0) | Fs]

]
ds

= E(x,a)
[∞�
0

1{s<T0}Γα(fZs , fZs)(Ys)E(x,a)[h(XT0) | Fs] ds
]

= E(x,a)
[∞�
0

1{s<T0}Γα(fZs , fZs)(Ys)EXs [h(XT0)] ds
]
,

by the Markov property. Then using invariance of the semigroup Pt under the
Lebesgue measure (equation (1.4)) and the vertical Green function (equation
(1.5)), we obtain
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Ema
[T0�
0

Γα(fZs , fZs)(Ys) ds · h(XT0)
]

=
�

Rd
Ea
[T0�
0

Γα(fZs , fZs)(x) · E(x,Zs)[h(XT0)] ds
]
dx

=
�

Rd

∞�

0

(a ∧ t)Γα(ft, ft)(x) · E(x,t)[h(XT0)] dt dx.

Now as a→∞, the last expression above approaches

�

Rd

∞�

0

t · Γα(ft, ft)(x) · ht(x) dt dx.

By the symmetry of the kernel qt(·), this limit equals

�

Rd

∞�

0

t · Γα(ft, ft)(x) · h ∗ qt(x) dt dx

=
�

Rd

∞�

0

t · Γα(ft, ft) ∗ qt(x) · h(x) dt dx

=
�

Rd
h(x)(L∗f (x))2 dx.

Next, by the Hölder inequality with exponents q and r,

Ema
[T0�
0

Γα(fZs , fZs)(Ys) ds · h(XT0)
]

≤ (Ema |h(XT0)|q)1/q
(
Ema

[T0�
0

Γα(fZs , fZs)(Ys) ds
]r)1/r

.

Now denote the martingale f(Xt∧T0) by Mf
t . By [14, p. 158] or [12, Sec-

tion 2],

Ema
[T0�
0

Γα(fZs , fZs)(Ys) ds
]r
≤ cEma

[T0�
0

g(Ys, Zs) ds
]r
≤ cEma [〈Mf 〉T0 ]r,

where

(2.1) g(x, t) =
�

Rd
[ft(x+ h)− ft(x)]2

dh

|h|d+α
+

[
∂

∂t
f(x, t)

]2
.

By the Burkholder–Gundy–Davis inequality, the last term is bounded by a
constant multiple of Ema [sups≤T0 |M

f
s |]2r, which is bounded by cEma |Mf

T0
|2r

by Doob’s inequality. Hence
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lim
a→∞

Ema
[T0�
0

Γα(fZs , fZs)(Ys) ds · h(XT0)
]

≤ c lim
a→∞

(Ema |h(XT0)|q)1/q(Ema |f(XT0)|2r)1/r ≤ c‖h‖q‖f‖22r.

Using the first part gives�

Rd
h(x)(L∗f (x))2 dx ≤ c‖h‖q‖f‖22r.

Finally, if we take the supremum over all such h with ‖h‖q ≤ 1, then[ �
Rd

(L∗f (x))2r dx
]1/r
≤ c‖f‖22r,

which gives the result if we replace r with p/2.

Now, if we consider λ0 = (2d+ α)/(2d) then we find a relation between

L∗f and
−→
G∗λ0,f . Hence we can show boundedness of the area functional Af .

Theorem 2.3. Suppose p > 2 and f ∈ Lp(Rd). Then

(i) For λ > 0, Af ≤ cλ
−→
G∗λ,f .

(ii) If λ0 = (2d+ α)/(2d), then

‖
−→
G∗λ0,f‖p ≤ c‖f‖p.

(iii) ‖Af‖p ≤ c‖f‖p.
Proof. Part (i) is easy when we observe[

t2/α

t2/α + |y|

]λd
≥ 2−λd

for |y| < t2/α. Part (iii) is a corollary of (i) and (ii).
So it is enough to prove (ii). First we recall that

Kλ0
t (x) =

t

(t2/α + |x|)d+α/2
= t−2d/α

(
1

1 + |x|/t2/α

)d+α/2
.

We also know that qt(x) is comparable to

t−2d/α ∧ t

|x|d+α/2
= t−2d/α

(
1 ∧ 1

(|x|/t2/α)d+α/2

)
,

by (1.8). Hence qt is comparable to Kλ0
t and we have

Kλ0
t ≤ cqt(x).

This leads to −→
G∗λ0,f (x) ≤ cL∗f (x).

Then the result follows from Theorem 2.2.
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The result of the previous theorem is not restricted to the horizontal
component with parameter λ0. We can generalize it to the case including
the vertical component and any parameter λ > 1.

Theorem 2.4. If λ > 1, p ≥ 2 and f ∈ Lp(Rd) then

‖G∗λ,f‖p ≤ c‖f‖p.

Proof. Set

gα(y, t) = Γα(ft, ft)(y) +

(
∂

∂t
f(y, t)

)2

.

Assume h ∈ C1K(Rd). Then by the symmetry of Kλ
t (x) in x,

�

Rd
h(x)(G∗λ,f (x))2 dx =

∞�

0

t
�

Rd
h(x)

�

Rd
Kλ
t (x− y)gα(y, t) dy dx dt

=

∞�

0

t
�

Rd
gα(y, t) · h ∗Kλ

t (y) dy dt.

Since Kλ
t is radially decreasing and integrable, h∗Kλ

t (y) ≤ cM(h)(y). Hence
�

Rd
h(x)(G∗λ,f (x))2 dx ≤ c

�

Rd
M(h)(x)(Gf,α(x))2 dx.(2.2)

For p = 2, it is enough to consider h = 1. Then by parts (ii) and (iii) of
Theorem 1.4,

‖G∗λ,f‖2 ≤ c‖Gf,α‖2 ≤ c‖f‖2.

Now suppose p > 2. We take r = p/2 and q > 0 such that 1/r + 1/q = 1.
Using Hölder’s inequality in (2.2) gives

�

Rd
h(x)(G∗λ,f (x))2 dx ≤ c

[ �
Rd

(M(h)(x))q dx
]1/q
·
[ �
Rd

(Gf,α(x))2r dx
]1/r

≤ c‖h‖q‖Gf,α‖2p.

If we take the supremum over all such h with ‖h‖q ≤ 1, we obtain

‖G∗λ,f‖2p = ‖(G∗λ,f )2‖r ≤ c‖Gf,α‖2p.

Finally, using the boundedness of the operator Gf,α when p > 2 (Theorem
1.4), we deduce the desired result.

In the final part of the paper, we discuss an application of the previous
theorem. We will provide a result on boundedness of singular integrals which
is a generalization of Theorem 1.1. We show that the result holds under a
weaker condition on the tail of the kernel. For this purpose, we impose a
boundedness condition in terms of the semigroup Qt.
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Theorem 2.5. Let p > 1. Suppose T is a convolution operator on Lp(Rd)
with kernel κ, that is, Tf(x) = f ∗ κ(x). Suppose further that there exists
λ > 1 such that

(2.3) |∂tQtκ(x)| ≤ ct−1−2d/α
(

t2/α

t2/α + |x|

)λd
= ct−1Kλ

t (x).

Then for f ∈ C1K (that is, f ∈ C1 with compact support)

‖Tf‖p ≤ c‖f‖p.

The condition (2.3) above may not seem very useful in applications.
Hence we will provide a sufficient and more useful condition later in Theo-
rem 2.8.

Proof of Theorem 2.5. First suppose p > 2. We note that by the semi-
group property, we have Qt = Qt/2Qt/2 and qt = qt/2 ∗ qt/2, which leads to
∂tqt = 2qt/2∗∂tqt/2. Next, we observe that ∂tQtTf(x) = 2Qt/2T (∂tQt/2f)(x),
since their Fourier transforms are equal,

̂[2Qt/2T (∂tQt/2f)] = 2q̂t/2 κ̂ ̂(∂tqt/2)f̂ = ̂(2qt/2 ∗ ∂tqt/2) κ̂ f̂

= ∂̂tqt κ̂ f̂ = ̂∂tQtTf.

Then

(G↑Tf (x))2 =

∞�

0

t|∂tQtTf(x)|2 dt = 4

∞�

0

t|Qt/2T (∂tQt/2f)(x)|2 dt.

Using our assumption (2.3), we see that

Qt/2T (∂tQt/2f) = (1/2)∂tQtTf(x)→ 0 as t→∞.

Hence the last line above equals

4

∞�

0

t

∣∣∣∣∞�
t

s

s
∂sQs/2T (∂sQs/2f)(x) ds

∣∣∣∣2 dt.
If we apply the Cauchy–Schwarz inequality first, and then change the order
of the integrals, we get

(G↑Tf (x))2 ≤ c
∞�

0

t
[∞�
t

s−2 ds
]
·
[∞�
t

s2(∂sQs/2T (∂sQs/2f)(x))2 ds
]
dt

= c

∞�

0

∞�

t

s2(∂sQs/2T (∂sQs/2f)(x))2 ds dt

= c

∞�

0

s3(∂sQs/2T (∂sQs/2f)(x))2 ds.



14 D. KARLI

Using the bound in (2.3) and Jensen’s inequality yields

(G↑Tf (x))2 ≤ c
∞�

0

s3[(s−1Kλ
s/2) ∗ (∂sQs/2f)(x)]2 ds

≤ c
∞�

0

sKλ
s/2 ∗ (∂sQs/2f)2(x) ds ≤ c(G∗λ,f (x))2.

Hence for p > 2,

‖Tf‖p ≤ c‖G↑Tf‖p ≤ c‖G
∗
λ,f‖p ≤ c‖f‖p,

by Lemma 1.5 and Theorem 2.4.
For p ∈ (1, 2) we use a duality argument. Let q be such that 1/p+1/q = 1.

First we observe that if κ∗(x) = κ(−x) and T ∗ is the convolution operator
corresponding to κ∗, then (2.3) holds for κ∗. Thus for h ∈ Lq(Rd),∣∣∣ �

Rd
h(x)Tf(x) dx

∣∣∣ =
∣∣∣ �
Rd
T ∗h(x)f(x) dx

∣∣∣ ≤ c‖T ∗h‖q‖f‖p ≤ ‖h‖q‖f‖p
by the first part of the proof. Finally, if we take the supremum over all such
h with ‖h‖q ≤ 1, the result follows.

Before any further discussion, we recall the definition of the measure

µt(ds) =
t

2
√
π
e−t

2/4ss−3/2 ds

and show the following estimates.

Lemma 2.6. For M > 0, we have

(i)

M�

0

|s− 1/2|µ1(ds) ≤
1√
π
M1/2,

(ii)

∞�

M

|1− 1/(2s)|µ1(ds) ≤
1√
π
M−1/2.

Proof. (i) We note that

|s− 1/2|s−1/2e−1/(4s) ≤ 1

for s > 0. Hence the result follows.
(ii) Similarly, we also have

|s− 1/2|e−1/(4s) ≤ 1,

which results in the desired inequality.

Lemma 2.7. Suppose

ψ(x) = (∂tqt(x))t=1 =

∞�

0

p(s, x, 0)

(
1− 1

2s

)
µ1(ds).
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Then for some positive constants c, c1, c2 we have

(i) |ψ(x)| ≤ c1(1 ∧ |x|−d−α/2) ≤ c2q1(x) and
(ii) |∂xiψ(x)| ≤ c(1 ∧ |x|−d−1−α/2), i = 1, . . . , d.

Proof. (i) First note that

|ψ(x)| ≤ c
∞�

0

p(s, x, 0)

∣∣∣∣1− 1

2s

∣∣∣∣s−3/2e−1/(4s) ds
≤ c

∞�

0

∣∣∣∣1− 1

2s

∣∣∣∣s−3/2−d/αe−1/(4s) ds <∞
by the estimate (1.7) on the density p(s, x, 0). Using the same estimate once
again we obtain

|ψ(x)| ≤ c
|x|α�

0

s

|x|d+α

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds) + c

∞�

|x|α
s−d/α

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds)
≤ c

|x|d+α

|x|α�

0

∣∣∣∣s− 1

2

∣∣∣∣µ1(ds) +
c

|x|d
∞�

|x|α

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds).
By Lemma 2.6,

|ψ(x)| ≤ c1(1 ∧ |x|−d−α/2).
The second inequality follows from the estimate (1.8) on q1(x).

(ii) Similarly, using the bound on ∂xip(s, x, 0) (Lemma 1.2), we obtain

|∂xiψ(x)| ≤ c
∞�

0

|∂xip(s, x, 0)|
∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds)
≤ c

∞�

0

∣∣∣∣1− 1

2s

∣∣∣∣ s−3/2−(d+1)/αe−1/(4s) ds <∞

and

|∂xiψ(x)| =
∣∣∣∣∞�
0

∂xip(s, x, 0)

(
1− 1

2s

)
µ1(ds)

∣∣∣∣
≤ c

|x|α�

0

s

|x|d+1+α

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds) + c

∞�

|x|α
s−(d+1)/α

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds)
≤ c

|x|d+1+α

|x|α�

0

∣∣∣∣s− 1

2

∣∣∣∣µ1(ds) +
c

|x|d+1

∞�

|x|α

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds).
Finally, we use Lemma 2.6 to obtain the desired result.
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In the previous theorem, we stated a boundedness condition on the kernel
of a convolution operator by means of the action of the semigroup Qt. In
order for this condition to be more useful, we state an application in purely
analytic language. In Theorem 2.8, we provide two conditions under which
the condition (2.3) of Theorem 2.5 holds.

Theorem 2.8. Suppose α ∈ (1, 2) and κ : Rd → R is a function with
the cancelation property (1.1) such that

(i) |κ(x)| ≤ c

|x|d
1{|x|≤1} +

c

|x|d−1+α/2
1{|x|>1},

(ii) |∇κ(x)| ≤ c

|x|d+1
1{|x|≤1} +

c

|x|d+α/2
1{|x|>1}.

Suppose T is a convolution operator with kernel κ. Then for f ∈ C1K and
p > 1 we have

‖Tf‖p ≤ c‖f‖p.
Proof. First let φ be a smooth function on R such that φ(r) = 1 whenever

|r| ≤ 1 and φ(r) = 0 whenever |r| > 2. Now let

κ1(x) = κ(x)φ(|x|2), κ2(x) = κ(x)(1− φ(|x|2))
and

T1f = f ∗ κ1, T2f = f ∗ κ2.
Then Tf = T1f+T2f . By the classical case (Theorem 1.1), ‖T1f‖p ≤ c‖f‖p.
So without loss of generality we may assume T = T2 and κ = κ2 and
ignore the indices. As before, set ψ(x) = (∂tqt(x))t=1. By scaling, we have
∂tqt(x) = t−1−2d/αψ(x/t2/α). So by Theorem 2.5 and scaling, it is enough
to show that

|(∂tQtκ(x))t=1| ≤
c

(1 + |x|)λd

for some λ > 1. Here we will take λ = 1 + (α− 1)/(2d).
First assume |x| ≤ 1. Then

(2.4) (∂tQtκ(x))t=1 =
�

|y|>1

κ(y)ψ(x− y) dy,

and by Lemma 2.7(i) we have

|(∂tQtκ(x))t=1| ≤
�

|y|>1

|κ(y)| |ψ(x− y)| dy

≤ c
�

|y|>1

|κ(y)|q1(x− y) dy.

Then assumption (i) gives

|κ(y)| ≤ c

|y|d−1+(α/2)
≤ c
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whenever |y| > 1. Thus�

|y|>1

|κ(y)|q1(x− y) dy ≤ c
�

|y|>1

q1(x− y) dy ≤ c
�

Rd
q1(x− y) dy = c,

since q1 is a probability kernel. Hence

(2.5) |(∂tQtκ(x))t=1| ≤ c ≤
c

(1 + |x|)λd
.

Now assume |x| > 1. Consider three subsets of Rd: D1 = {y ∈ Rd : |y| <
|x|/2}, D2 = {y ∈ Rd : |y − x| < |x|/2} and D3 = Rd − (D1 ∪ D2). Split the
integral (2.4) as�

|y|>1

κ(y)ψ(x− y) dy =
�

D1

+
�

D2

+
�

D3

=: I1 + I2 + I3.

Since κ satisfies the cancelation condition (1.1),

|I1| =
∣∣∣ �
D1

κ(y)(ψ(x− y)− ψ(x)) dy
∣∣∣

≤ sup
|z−x|<|x|/2

|∇ψ(z)|
�

D1

c

|y|d−1+α/2
|y| dy ≤ c|x|2−α/2 sup

|z−x|<|x|/2
|∇ψ(z)|.

By Lemma 2.7, the gradient above is bounded by c|x|−d−1−α/2. This gives

|I1| ≤
c

|x|d−1+α
≤ c

|x|λd
.

For I3, we note that c|y| ≤ |x−y| ≤ c′|y| whenever y ∈ D3. So using Lemma
2.7 again yields

|I3| ≤ c
�

D3

1

|x− y|d+α/2
1

|y|d−1+α/2
dy ≤ c

�

|y|≥|x|/2

|y|−2d+1−α dy ≤ c

|x|λd
.

For I2, we use assumption (ii) on ∇κ. By a change of variables, we have

|I2| =
∣∣∣ �

|y−x|<|x|/2

ψ(x− y)κ(y) dy
∣∣∣ =

∣∣∣ �

|y|<|x|/2

ψ(y)κ(x− y) dy
∣∣∣

≤
�

|y|<|x|/2

|ψ(y)| |κ(x− y)− κ(x)| dy + |κ(x)|
∣∣∣ �

|y|<|x|/2

ψ(y) dy
∣∣∣.

First observe that
�

Rd
ψ(y) dy =

∞�

0

�

Rd
p(s, y, 0) dy

(
1− 1

2s

)
µ1(ds) = 0.

Hence∣∣∣ �

|y|<|x|/2

ψ(y) dy
∣∣∣ =

∣∣∣ �

|y|≥|x|/2

ψ(y) dy
∣∣∣ ≤ c �

|y|≥|x|/2

|y|−d−α/2 dy ≤ c

|x|α/2
.
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We also note that if |y| < |x|/2 then using (ii), we obtain

|κ(x− y)− κ(x)| ≤ c |y|
|x|d+α/2

≤ c |y|1/2

|x|d+(α−1)/2 = c
|y|1/2

|x|λd
.

Then

(2.6) |I2| ≤
c

|x|λd
�

Rd
|ψ(y)| · |y|1/2dy +

c

|x|d−1+α
.

If we show that the integral in (2.6) is bounded by a constant, then we
obtain

|I2| ≤
c

|x|λd
.

To show the boundedness of the integral, we consider the cases |y| < 1 and
|y| ≥ 1. Note that�

Rd
|ψ(y)| · |y|1/2 dy ≤

�

|y|<1

|ψ(y)| dy +
�

|y|≥1

c

|y|d+α/2
· |y|1/2 dy

by Lemma 2.7. The second term is convergent since α > 1. The first term
is bounded by

�

|y|<1

∞�

0

p(s, y, 0)

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds) dy ≤ ∞�
0

�

Rd
p(s, y, 0) dy

∣∣∣∣1− 1

2s

∣∣∣∣µ1(ds)
≤

1/2�

0

1

2s
µ1(ds) +

∞�

1/2

µ1(ds) ≤ c.

Hence

(2.7) |(∂Qtκ(x))t=1| ≤ |I1|+ |I2|+ |I3| ≤
c

|x|λd
≤ c

(1 + |x|)λd

whenever |x| > 1. Finally, inequalities (2.5) and (2.7) and Theorem 2.5 imply
that ‖Tf‖p ≤ c‖f‖p for p > 1 and f ∈ C1K , which finishes the proof.
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