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Abstract—Recently, an image encryption algorithm based on
compound chaotic sequence was proposed [Tong et al., Image
and Vision Computing 26 (2008) 843]. In this paper, we analyze
the security weaknesses of the proposal. We give chosen-plaintext
and known-plaintext attacks that yield the secret parameters of
the algoritm. Our simulation results show that the computational
complexity of the attacks is quite low.

I. I NTRODUCTION

During the last two decades, there has been a steady increase
in the number of proposals for chaotic cryptosystems. Early
proposals included the use of synchronized dynamical systems.
In synchronization-based systems, a common coupling signal
provides synchronized states. These states are, in turn, used
to encrypt and decrypt messages [1]. Synchronization based
cryptosystems can generate ciphertext with desirable statistical
properties. However, these systems are weak against adaptive
synchronization and identification attacks [2], [3], [4].

More recently, a number of chaotic image encryption sys-
tems have been proposed. Some of them use discretized
chaotic systems in order to obtain algebraic transformations
which operate directly on the plaintext image pixels [5], [6].
Others quantize discrete-time chaotic signals to obtain running
key sequences [7], [8]

Although these approaches provide a framework similar to
the general practice in classical cryptography, we still need
to rigorously analyze each proposal in order to establish trust
in its secure operation. For example, even if the statistical
properties of a cryptosystem are at a desirable level, the
algebraic structure of the system might contain flaws and
weaknesses that can be exploited to compromise its security.
Hence, a healthy co-development of chaos cryptography and
chaos cryptanalysis provides the necessary framework for
designing more secure chaotic cryptosystems.

In this paper, we give a complete break of the image en-
cryption algorithm proposed in [7]. We apply chosen-plaintext
and known-plaintext attacks and show that the algorithm can
be completely broken using only a couple of known or chosen
images. The method we employ is similar in spirit to the
one proposed in [9]. However, in our approach, we use the
particular structure of the permutation to yield an exact break.

The organization of the paper as follows. In the next section
we give the description of the algorithm proposed in [7]. In
Section 3, we give the chosen-plaintext attack. In section 4, we

give known-plaintext attack. Section 5 illustrates the attacks
with simulations. We finish with concluding remarks.

II. D ESCRIPTION OF THE ENCRYPTION SCHEME

The plaintext is an image of sizeh × w, where each
pixel is represented as a byte. The encryption involves three
operations; mixing, row rotation and column rotation.

The scheme uses three chaotic systems to generate the
pseudo-random variables used in the three steps. The key of
the overall system is two real parametersx0, y0 ∈ (−1, 1).

The first chaotic system is a 2D discrete-time system given
as
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(1)

wheref0(u) = 8u4− 8u2 +1 andf1(u) = 4u3− 3u. At each
step, one of the state variablesxn, yn is chosen as

zn =

{

xn if xn−1 + yn−1 < 0
yn if xn−1 + yn−1 ≥ 0

.

Finally, we obtain from zn an integer kn in the set
{0, 1, . . . , 255} as

kn = ⌊128(zn + 1)⌋ .

The chaotic system (1) is iteratedhw times and the sequence
{k1, k2, . . . , khw} is reshaped into an image using row scan.
Let K denote this noise-like image.

The second chaotic system is given by

xn = f0(xn−1). (2)

An integer sequenceρn in {0, 1, . . . , w−1} is obtained using

ρn =
⌊

3
w

2
(xn + 1)

⌋

mod w. (3)

The chaotic system (2) is iteratedh times so, we obtain the
sequence{ρ1, ρ2, · · · ρh}.

The third chaotic system is given by

yn = f1(yn−1). (4)
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Fig. 1. Encryption algorithm.

Again, an integer sequenceσn in {0, 1, . . . , h−1} is obtained
using

σn =

⌊

h

2
(yn + 1)

⌋

. (5)

The chaotic system (4) is iteratedw times so, we obtain the
sequence{σ1, σ2, · · ·σw}.

The generated parametersK, ρ and σ are used in the
encryption as follows.

Let P denote the plaintext image. In the mixing step, the
plaintext is XORed withK to obtain the intermediate value
M as

M = P ⊕ K. (6)

In the row rotation step, each row ofM are circularly rotated
right with rotation amounts given in the sequenceρ. The row
rotation step can be written as

N(i, j+(ρi mod w)) = M(i, j), 1 ≤ i ≤ h, 1 ≤ j ≤ w, (7)

where N denotes the second intermediate variable. Finally,
the columns ofN are circularly rotated down with rotation
amounts taken from the sequenceσ. The column rotation can
be written as

C(i + (σi mod h), j) = N(i, j), 1 ≤ i ≤ h, 1 ≤ j ≤ w. (8)

The imageC is the ciphertext.
The decryption is straightforward. Using the secret param-

eters,x0, y0, we use (1), (2) and (4) to produceK, ρ andσ.

We go fromC to M using (8) then (7). We recoverP with
P = M ⊕ K.

Figure 1 shows the block diagram representation of the
encryption algorithm.

III. C HOSEN PLAINTEXT ATTACK

A naive attack on the cryptosystem might try to reveal the
secret keysx0 andy0. However, we note that the parameters
K, ρ andσ uniquely specify the encryption and the decryption
operations. Hence if an attacker manages to reveal these
parameters, he can decrypt ciphertext images as if he is the
legal recipient. He does not need to know the original keysx0

andy0. In this and the next section, we give attacks that try
to recoverK, ρ andσ.

Assume that the attacker knows a plaintext-ciphertext image
pair (P1, C1). He choses a plaintext imageP2 such that

P2(1, j) = P1(1, j) ⊕ 1, 1 ≤ j ≤ w, (9)

P2(i, j) = P1(i, j), 2 ≤ i ≤ h, 1 ≤ j ≤ w.

Namely, P2 differs from P1 only in the first row, and the
difference in every pixel is just1. The attacker observes the
ciphertextC2.

Using (6), we have

∆M12 = M1 ⊕M2 = P1 ⊕K ⊕P2 ⊕K = P1 ⊕P2 = ∆P12.

Hence,∆M12 is an image with zeros everywhere except on
the first row, where we have 1s. Using this with (7), we have
∆N12 = N1⊕N2 = ∆M12. Namely,∆M12 remains the same
under row rotation. When we apply the column rotation to
∆N12, the row of 1s is distributed according toσ in ∆C12 =
C1 ⊕ C2 as

∆C12(i, j) =

{

1 i = σj + 1,

0 otherwise.

Thus, if the attacker observes that∆C12(i, j) = 1, then he
concludes thatσj = i − 1. Since each column of∆C12 has
only one nonzero pixel, the attacker can thus determineσj ,

1 ≤ j ≤ w.

Now that the attacker knowsσ, he chooses another plaintext
P3 and obtains the ciphertextC3. This time,P3 differs from
P1 only in the first column. Difference is again just 1 in every
pixel. Since the attacker knows∆C13 = C1 ⊕ C3, he uses
(8) to obtain the value of∆N13 = N1 ⊕ N3. He also knows
∆M13 = P1 ⊕ P3. Note that, by the particular choice ofP3,

the first column of∆M13 is 1s and it is zero everwhere else.
Comparing∆M13 with ∆N13 and using (7) we have

∆N13(i, j) =

{

1 j = ρi + 1,

0 otherwise.

Thus, if the attacker sees that∆N13(i, j) = 1, he concludes
that ρi = j − 1.

Once the attacker has revealed the rotation amountsρ and
σ, findingK is straightforward. He starts withC1 and uses (8)
then (7) to obtainM1. Then, he revealsK usingK = P1⊕M1.

The chosen-plaintext attack requires one known and two
chosen plaintext images. The attack requires very little amount
of computation.



IV. K NOWN PLAINTEXT ATTACK

In some cases, it might be difficult for the attacker to choose
a plaintext and apply chosen-plaintext attack. In this section
we describe a known-plaintext attack that requires about two
known plaintext-ciphertext pairs of images.

Assume the plaintext-ciphertext pairs(P1, C1) and(P2, C2)
are known by the attacker. We know that∆M = M1 ⊕M2 =
∆P = P1 ⊕ P2. So the attacker knows∆M. Also, he
calculates∆C = C1 ⊕ C2.

Going from ∆M to ∆C we have first the rows and then
the columns rotated. There are no modifications to the pixel
values of∆M. Assume that the attacker observes

∆M(i1, j1) = ∆C(s1, t1) = ∆C(s2, t2) = · · · = ∆C(sm, tm).

So, the pixel(i1, j1) of ∆M is moved to one of the locations
(s1, t1), (s2, t2), . . . , (sm, tm) in ∆C. Using (7) and (8), we
have

ρi1 ∈ A1 = {t1−j1 mod w, t2−j1 mod w, . . . , tm−j1 mod w}.

Repeating the observation for another pixel∆M(i1, j2) on the
same row, the attacker sees that∆M(i1, j2) is moved to one
of the locations(s̄1, t̄1), (s̄2, t̄2), . . . , (s̄m̄, t̄m̄) in ∆C. Thus,

ρi1 ∈ A2 = {t̄1−j2 mod w, t̄2−j2 mod w, . . . , t̄m̄−j2 mod w}.

Hence, the attacker knows thatρi1 ∈ A1 ∩ A2. Considering
all the pixels on the same row, we obtain

ρi ∈

w
⋂

j=1

Aj .

If the intersection is a single point then the attacker has
found ρi. If not, he uses another plaintext-ciphertext pair.
The attacker repeats the whole procedure for all the rows and
revealsρi, 1 ≤ i ≤ h.

Note that the intersection might shrink to a single point even
with the first fewAj ’s.

Once the attacker has the sequenceρ, he uses a similar set
intersection method to revealσ. First, using (7) and∆M , the
attacker finds∆N. Going from∆N to ∆C, only the columns
are rotated. Now, he compares the pixel value of∆N(i, j) to
the pixel values on thejth column of ∆C. Assume that he
observes,

∆N(i, j) = ∆C(s1, j) = ∆C(s2, j) = · · · = ∆C(sn, j).

Then, he knows that

σj ∈ Bi = {s1 − i modh, s2 − i modh, . . . , sn − i modh}.
(10)

Repeating the observation for all pixels on thejth column, the
attacker obtains

σj ∈

h
⋂

i=1

Bi. (11)

Again, the attacker repeats the set intersection, with additional
known plaintexts if necessary, until the intersection is a single
point. Then, he knows the value ofσj . He repeats the whole
procedure for all the columns.

Once the attacker hasρ and σ, he uses (8) then (7) on a
ciphertext imageC1 to obtainM1. He then recovers the key
asK = M1 ⊕ P1.

The attack requires only a few known plaintext-ciphertext
pairs for moderate image sizes.

V. SIMULATION RESULTS

A. Chosen plaintext attack

In order to better illustrate the steps of the attack, we work
with 16× 16 images. We choose the secret keys asx0 = 0.41
and y0 = 0.87. Using (2), (3), (4) and (5), we obtain the
rotation sequencesρ andσ as

ρ = {5, 13, 0, 13, 6, 4, 3, 9, 2, 15, 10, 14, 9, 15, 7, 1},

σ = {8, 7, 9, 3, 15, 11, 0, 1, 11, 0, 0, 5, 14, 7, 8, 6}.

The key imageK is shown in Figure 2a .

a) b)

c) d)

Fig. 2. a) The keyK b) PlaintextP1 c) ∆P12 d) P2

Assume that the attacker knows that the known plaintextP1

is the two-level checkerboard image shown in Figure 2b. He
chooses the plaintextP2 by flippping the values on the first
row of P1. P2 and∆P12 = P1 ⊕ P2 are shown in Figure 2d
and 2c. Note that∆P12 is all zeros except in the first row
where it is all ones.

In Figure 2a, the pixel values span the full grayscale range
0 − 255. In Figures 2b, 2c and 2d, we used scaling so that a
white square represents a pixel value of 1 rather than 255.

The ciphertextC1 and the difference∆C12 = C1 ⊕C2 are
shown in Figure 3. Obviously,σ appears as the distances of
the nonzero pixels from the first row in∆C12.

Next, the attacker chooses the plaintextP3 shown in Figure
4a. Note thatP3 is obtained by flipping the pixels ofP1 on the
first column. Now that the attacker knowsσ, he applies (8) to
∆C13 and obtains∆N13 = N1 ⊕ N3. The difference∆N13

is shown in Figure 4b. This time,ρ appears as the distances
of nonzero pixels from the first column in∆N13.

Finally, the attacker uses (8) and (7) to getM1 from C1.

He calculatesK asK = M1 ⊕ P1.



a) b)

Fig. 3. a)C1 b) ∆C12

a) b)

Fig. 4. a)P3 b) ∆N13 = N1 ⊕N3

B. Known plaintext attack

Assume that the attacker knows the two plaintext-cipher
text pairs shown in Figures 5a and 5b. The image sizes are
256×256. Assume the secret parametersx0, y0 are as before.
The difference of images,∆P = ∆M = P1 ⊕ P2, is shown
in Figure 5c.

a) b)

c) d)

Fig. 5. a)P1 b) P2 c) ∆P = P1 ⊕ P2 d) ∆N

Starting with the pixel∆M(1, 1), we see that
⋂

38

j=1
Aj

contains just one element. So, we do not need to further
intersect the setsAj , 38 < j ≤ 256, to find ρ1. In general, we
need far fewer number of sets than the number of columns.
Figure 6 shows the number of sets we intersected to pin down

ρi, 1 ≤ i ≤ 256. We see that we need to intersect at most40
sets.

Once the attacker knowsρ, he uses (7) to calculate∆N

from ∆M. ∆N is shown in Figure 5d. Note that∆N does
not look like a random image because it is only the row-rotated
version of∆M = ∆P.
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Fig. 6. The number of set intersections untilρi is uniquely found.

Using (10) and (11), the attacker determinesσj , 1 ≤ j ≤
256. Since the images contain enough variation in their pixel
values, only a fewBi sets need to be intersected. Figure 7
shows the number of sets we intersected to pin downσj , 1 ≤
j ≤ 256. We see that at most2 sets need to be intersected for
everyσj .
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Fig. 7. The number of set intersections untilσj is uniquely found.

Once the attacker hasρ and σ, he uses (8) and (7) to get
M1 from C1. He calculatesK asK = M1 ⊕ P1.

The attack takes less than a minute on MATLAB running on
Mac OS X 10.5.4 with Intel Core 2 Duo 2.16 GHz processor
and 2 GB RAM.

VI. CONCLUSION

In this paper, we gave a complete break of a recently
proposed image encryption algorithm. We have demonstrated



that the secret parameters can easily be found using chosen-
plaintext and known-plaintext attacks. Using simulation exam-
ples on real images, we have shown that our proposed attacks
require very little amount of computation.
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