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Abstract

Let Sy be the class of all sense-preserving harmonic mappings in
the open unit disc D = {z € C||z| < 1}.
In the present paper the authors investigate the properties of the class
of harmonic mappings which is based on the generalized of R. J. Libera
Theorem [7].
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1 Introduction

Let F' be the class of analytic functions in D, and let S denote those functions
in F' that are univalent and normalized by h(0) = 0, #’/(0) = 1. Furthermore,
let Q be the family of functions ¢(z) regular in D and satisfying the conditions
#(0) =0, |¢(z)| < 1 for every z € D.

Next, for arbitrary fixed numbers A, B, —1 < A <1, —1 < B < A denote by
P(A, B), the family of functions p(z) = 1 + p1z + p22? + ... regular in D and
such that p(z) is in P(A, B) if and only if

14 Ad(2)

p(z) = HTM(Z)

(1)

for some ¢(z) € Q and every z € D. This class was introduced by Janowski
[6].

Moreover, let S*(A, B,b) be denote by the family of functions h(z) € S such
that h(z) is in S*(A, B,b) if and only if (@) # 0,

W(z)
h(z)

1
1+ =(z

2 — 1) =p(z),z € D, (b+# 0, complex) (2)

for some function p(z) € P(A, B) and all z € D. Let C(A, B,b) denote the
family of functions which are regular, such that h(z) is in C'(A, B,b) if and
only if

1 KW'(z)

1 _
e

=p(z),z € D, (b# 0, complex) (3)

for some function p(z) € P(A,B) and all z € D. Let s1(2) = 2z + do2”® + ...
and s3(2) = 2 + e2” + ... be elements of F. If there exists ¢(z) € Q such
that s1(2) = s2(4(2)), then we say that s;(z) is sunbordinate to sy(z) and we
write s1(z) < s2(2). Specially if s9(z) is univalent in D, then s1(z) < sa(2) if
and only if S;(D) C Se(D) and S;1(0) = S9(0) implies S1(D,) C Sa(D,) where
D, ={z||z] <r 0 <r < 1. (Subordination and Lindelof principle [1], [5])

Finally, a planar harmonic mapping in the open disc D ia a complex-valued
harmonic function f, which maps D onto some planar domain f(D). Since
D is simply-connected domain, the mapping f has a canonical decomposition
f = h+7g, where h(z) and g(z) are analytic in D and have the following power

series . -
h(z) = Zanz",g(z) = Z b 2",
n=0 n=0

where a,, b, € C, n = 0,1,2,3,... as usual we call h(z) analytic part of
f(2) and g(z) co-analytic part of f, an elegant and complete treatment of the
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theory of harmonic mapping in given Duren’s monograph [4]. Lewy proved
in 1936 [4] that the harmonic mapping f locally univalent in D if and only if
its Jacobian J; = |I/(2)|* — |¢'(2)|” is different from zero in . In view of this
result locally univalent harmonic mapping in the oopen unit disc D are either
sense-preserving if |h/(z)| > |¢'(z)| in D, or sense-reversing if |¢'(z)| > |h'(2)]
in . Through this paper we will restrict ourselves to the study sense-preserving
harmonic mappings. We also note that f = h(z) + g(z) is sense-preserving in
D if and only if A/(z) does not vanish in D, and the second dilatation w(z) =

(}gl:8> has the property |w(z)| < 1 for all z € D. Therefore the class of all
sense-preserving harmonic mappings in the open unit disc wit ag = by = 0, and
a; = 1 will be denoted by Sy. Thus Sy contains standard class S of univalent
functions. The family of all mappings f € Sy wtih the additional property
g'(0) =0, i.e, by = 0 is denoted by S%. Thus it is clear that S C S% C Sy.
The aim of this paper is to inveastigate some properties of the subclass

1,d(2) 1+ Az
- — ——, 0,00 €C,b#0,|b 1
b(h/(Z) 1)_< 1+BZ’ 00 €L 7é 7’ 1’< )

SHCA,BY) = {f = h(2)+g(2) | 1+

h(z) € C(A, B, b)}.
For the aim of this paper we will need the following lemma and theorem.

Lemma 1.1 (/2]) Let ¢(z) be a non-constant analytic function in the unit
disc D with ¢(0) = 0. If |¢(z)| attains its mazimum value on the circle |z| = r
at the point zy then zo¢'(z0) = kp(z0), k > 1.

Theorem 1.2 ([7]) Let h(z) be an element of C(A, B,b), then

- 1)-1= 1+A44(2)
h(z) 1+ Bo(z)

2 Main Results

Theorem 2.1 Let f = (h(z) + g(2)) be an element of Suc(apy), then

g(2) 1+ Az
h(z) = bll—i—Bz7 )

Proof 2.2 Since f = (h(z) + g(2)) be an element of Spca,pp),then

1,¢'(2) 14+ Az 1,9 (2) 14 A(2)
W TTE T E(hf(z)_ 1)_1+T¢(z):> )
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g(2) b+ UB+bA-DB))e(z)  g(2) b+ (hB+bA-DB)):z
WG 1+ Bo(2) MR 1+ B= (6)

On the other hand the transformation

bi + (b1B +b(A — B))z
1+ Bz

( )

maps |z| = r onto the disc with the centre

by + (b(B2 — AB) — b B

clr) 1 — B?r?
and the radius p(r) = %, therefore using the subordination principle we
can write
g (z) b+ (b(B*— AB) — b B*)r? - |b] (A — B)r )
h'(z) 1 — B2r? -~ 1— B?*?

The inequality (7) shows that all the values of ( i;g) are in the disc

9'(2) b+ (b(B? — AB) — by B*)r?

W (z) - B2 <R

- 1— B2

w(D,) = {=

} (8)

Now, we define the function ¢(z) by,

9(2) _, 1+ A49(2)
hz) 14 Bé(z)

then we see that ¢(z) is analytic in D and

o(2) L+ Ap(0) 0
%z:o:h:blm:wm: (A—B) =0,

J() 14 AME) | (A-B)d(2) h(z)
v =) = T B T Bola)p () )

Using Theorem 1.2 in the equality (9), this equality can be written in the fol-
lowing form:

9'(2) 14 Ag(2) 2
(

) ) A - B)z¢/(2)
YO =) T Be) T+ Bo)

(A—
2+ (b(A— B)+2B))¢(2)

)
(10)

Now, it is easy to realize that the subordination (4) is equivalent to
|6(2)] <1 for all z € D. Indeed we assume the contrary; then



Harmonic mappings related to Janowski convex functions 1455

there is a zy € D such that |¢(20)] = 1 so by I. S. Jack’s Lemma (Lemma 1.1),
200 (20) = ko (z0) for some k > 1 and for such zy we have

w@ﬁ:W%)ZbH+AM%W+ 2k(A — B)o(z) )
W(z) " 1+Bé(z)  (1+Bé(x))(2+ ((A - B) +2B))(z0)
= w(6(z0)) ¢ w(D,)

but this contradicts to (4); so our assumption is wrong, i. e, |¢p(z)| <1 for
all z € D.

Lemma 2.3 Let h(z) be an element of C(A, B,b) then

rF(A, B,|b|, Reb,—r) < |h(z)| < rF(A, B,|b|, Reb,1), B # 0;
re” T < |n(z)| < ret, B = 0.
G(A, B, |b|, Reb, —r) < |h'(2)| < G(A, B,|b|, Reb,r), B # 0;

e—Abr S |h/(2)| S eAbT,B = 0.

where 5 (b et
1 B + Re
FAB, o] Rebyr) — LLF BT =
(1-— Br) (|b|—Reb)
1 B (|b|+Reb)
GOA B, b, Reb, ) — LB i
( 7") (|b|—Rebd)

These inequalities are sharp.

Proof 2.4 Using Theorem 1.2 and subordination principle, then we write

oo ) -
@O+%@%§—U)—U—1§AnB:Q

After the straightforward calculations, we obtain

W(z) 2—(2B%—b(B2— AB))r?)| _ |b|(A— B)r ,
“hiz) 21 — B%?) Soa-pyey P70
' W(z) 1’ < ’blAT,B 0

“nz) 2
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These inequalities can be written in the following form,

— — — _ 2 _ _ 2
2—1b|(A=B)r— (M — Nx)r <glog|h(2)|§2+‘b|(A B)r+ (M — Nx)r

,B#0;

2r(1+ Br)(1 — Br) — or 2r(1+4 Br)(1 — Br)
1 A 1 A
- < — < - = 0.
r 2 or 1 g h() + 2 B=0

where M = 2B?, N = (B? — AB), x = Reb. Then after integration from
the last inequality, we get the result.

Similarly, using subordination principle nad the definition of the class C'(A, B,b),
then we write

1h'(z), 1-— ABr? ( B)r
- . B
’( ) ToB | ST B
1h"(z)
- < Ar, B =0.
vz | S4B =0

These inequalities can be written in the following form,

T’Kl—Ll 8 ] |h,( )| < TK1+L1
(A= Br(1+Br) = or 8 =1 -Bn(1+Br)

B #0;

A< glong)\ <|b| A, B =0.

where K1 = (B*> — AB)Reb, L, = |b| (A — B). After the integration from here,
we get the result.

Corollary 2.5 Let f = (h(2) + g(2)) be an element of Suc(apy), then

|b1| — b (A — B)r — |by B> — bB? + bAB| r*

rF(A, B, b, Reb, —r) e < |g(2)] <
A-B B* — bB% + bAB|r?
F(A, B, o], R, ) P LAZ BN L BB DB L ABIE
— T

re= AU by | — [b] Ar] < |g(=)] < e [1by] + [b] Ar], B = 0.

1| — |b] (A — B)r — [byB*> — bB® + bAB| r*

G(A.B. 1] Feb. —r) by <lg(:)| <
A-B B? — bB? AB|r?
G, .o e, ) LA BN P =B 0ABIE

G(A, B, 0], Reb, —r)[[ba|~Ib] Ar] < |g'(2)| < G(A, B, [b] , Reb, r)[Jby|+]b| Ar], B = 0.
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Proof 2.6 This corollary is a simple consequence of Theorem 1.2 and Lemma
2.2.

Lemma 2.7 Let f = (h(z) + g(2)) be an element of Suca,py), then

|b1] — 7 9'(2) [b1] + 7
< = 11
Tl < O = e S Tl =
(1=r3)(1 = |bu[") 2y _ (L=r)(1 = [bu[")
<(1—|w(z < 12
(1—r)(d+ [bs]) (1+r)(1+ |b1])
< (T4 |w(z)]) < 13
(1 —r)(d = [br]) (1+7r)A — [ba])
< (I—-|w(2)]) < 14
T+l <1 —-lw(z)) < A=) (14)
Proof 2.8 Since f = (h(2) + g(2)) € Suc(apy, then
g'(z) by 4 2bez + ...
= = = 1
’U}(Z) h/(Z) 1+2a22—|—... :>w(0> bl?‘w(z)’ <
so the function
w(z) —w(0 w(z)—0b
1—w0)w(z) 1-bw(z)
satisfies the conditions of Schwarz Lemma. Therefore we have
W(z)  1+bio(z)
This shows that,
w(z) = J'(2) by +_z
W (z) 1+bz
On the other hand, the linear transformation (fﬂfz) maps |z| = r onto the

disc with the center

(1 —r?)Reby; (1 —r?)Imb;

1—r2 7 1—1r2 )

C(r) = (

at the radius )
(1= |bs])°r

1—1r2

p(r) =

then we have the results, easily.
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Corollary 2.9 Let f = (h(z) 4+ g(2)) be an element of Suc(a,p), then

(GA, B b, Reb, —ryy2 Lm0 = 10 ) o (1= r2)(1— )

< Jy < (G(A, B, |b|, Reb,r))

(14 [b1] 7)? (1= |bs]r)2 7
_ 1—72)(1— |by[*) (1—r2)(1— |by[")
e 2A\b|r( < Jr < €2A\b\r 7_B =0
L+ oifry2 == (1= [ba]r)?

Proof 2.10 Since
Jp =) =19 )] = K@) = 1)) w)P

= W (2)]" (1 = [w(2)[*)
Using Lemma 2.7, we get the result.

Corollary 2.11 Let f = (h(z) + g(2)) be an element of Suc(a,py), then

" 1—r)(1—1b ! 1 1+ 1b
[ e mpren, - S0 Bl < < [ m ), ey S DD
0 (L+ [ba]7) 0 (1 + b1 7)
/T €_A|b|r(1 —7)(1—|by]) <If| < /T €A|b|r(1 +7)(1+ ’le,B _0
0 (L4 bufr) =7 7 Jo (L4 [ba]7)
Proof 2.12 Since
(W' () = 1g'()]) ldz] < [df| < (IW' ()] + |g'(2)]) |dz| =
|1(2)] (1= lw(2)]) |dz] < |df| < |h'(2)] (1 + w(2)]) |dz] (16)
Using Lemma 2.7 and after integration we obtain the result.
Theorem 2.13 Let f = (h(z) + g(2)) be an element of Spo(apy), then
n n+1
S TR by — bl < 1= B+ K |ay — bik) (17)
k=2 k=2

Proof 2.14 Using Lemma 2.7 we can write

CJ(z) btz g2 b+ o(z)
YO =) S 1ok T W) T 1+ o)

9'(2)(14D16(2)) = W (2)(bi+6(2)) = (¢'(2) =01l (2)) = (W' (2)=b1g'(2))¢(2) =
(Z bn2") —bi(z + Z a,2") =[(z + Z anz") — bl(z bn2")'0(2) =
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Zk‘bk—blakz k1+2dzk1 [(1—b%) +Zkak—b1bkz)kl]¢(z)

k=n+1 k=2
(18)
Since the last inequality has the form fi1(z) = fa(2)p(2) with |p(z)| < 1, it
follows that
1 27
oo }fl( ’ do < —/ ’fz )’20[‘9 (19)

for each r, (0 < r < 1). Ezxpressing (19) in terms of coefficient in (17) we
obtain the inequality,

n+1
Zk‘bk_blak’ 2k+ Z ‘d ’2 2k Hl_b%’2+zk2’ak_blbk‘2]r2k
k=n+1 k=2

(20)

By letting r — 17 in (20), we obtain desired result. The Proof of this method
is due to Clunie [1].
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