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1. Introduction

For understanding the time-frequency behavior of functions in several func-
tion spaces such as Lebesgue, Hardy, Sobolev and Besov, people were in-
terested in windowed Fourier (also known as Gabor or Weyl-Heisenberg)
transform and wavelet (also known as affine) transform. Then, these trans-
forms were used in the theory of persistent signals rather than the transient
ones and people tried to find out a space different from the basic one L2(R).
One important example of such spaces is AP(R), the space of almost pe-
riodic functions (see, e.g. [1],[2],[3],[7]), which is the uniform closure of the
trigonometric polynomials.

A function has limit power if

lim
T→∞

1

2T

∫ T

−T

|f(t)|2 dt

exists, and the set of all such functions is denoted by H2 [10]. AP(R) and the
Besicovitch space B2, which is the completion of AP(R), are the subsets of
H2. It is known that H2 is not closed under addition [9] and this causes some
difficulties in such areas as Robust Control; the necessity of new, larger, nice
spaces arises [8].
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In [11],[13], the space of uniform limit power functions, ULP(R+) and
the space of limit power functions, LP2 are proposed. A function f is said
to have uniform limit power if it is a uniform limit on R

+ of a sequence of
functions in the form

n∑
k=1

ake
iλkt

αk
,

where ak ∈ C, λk ∈ R, and λk ∈ (0,∞). If we restrict αk = 1 for all k,
we get f ∈ AP(R+). Thus, ULP(R+) is a new generalization of AP(R+).
From these works, a number of questions about the uniqueness of the Fourier
series for ULP(R+), approximation of a function f ∈ ULP(R+) by Bochner-
Fejér trigonometric polynomials and generalization of ULP(R+) arise. As in
Gelfand’s theory, a new C∗-algebra containing ULP(R+) and the space of
strong limit power functions SLP([a,∞)) are defined for the solution of this
kind of problems [12]. In [14], the strong limit power functions are extended
from R

+ to R.
In this paper we show the existence of a larger orthonormal basis and de-

note the existence of some limits for the space of strong limit power functions.
Then generalized frame decompositions for SLP functions are constructed
by using windowed Fourier and wavelet transforms.

2. Notations and background material

Let Q(R) consist of functions q in the form

q(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
l=1

λlt
αl , t ≥ 0

−
m∑
l=1

λl(−t)αl , t < 0

(2.1)

where m = 1, 2, . . . , λl ∈ R, l = 1, 2, . . . ,m and α1 > α2 > · · · > αm > 0.
Since q(t) = −q(−t) for all t ∈ R, every q ∈ Q(R) is odd. A function of the
form

P (t) =

n∑
k=1

ake
iqk(t)

is called a generalized trigonometric polynomial on R, where ak ∈ C, qk(t) ∈
Q(R), and k = 1, 2, . . . , n. Denote by Gtrig(R) the set of all such polynomials.

A function f on R is said to have strong limit power if for every ε > 0
there exists a Pε ∈ Gtrig(R) such that

‖f − Pε‖ = sup{|f(t)− Pε(t)| : t ∈ R} < ε. (2.2)

Denote by SLP(R) the set of all such functions. It is obvious that AP(R) ⊂
SLP(R). The inner product of the SLP(R) space is defined by

〈f, g〉 := lim
T→∞

1

2T

∫ T

−T

f(t)ḡ(t) dt
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(see [11],[12],[13],[14]).
A sequence (φk) in a Hilbert space H is called a frame if there exist

constants A, B > 0 such that

A
∑

|〈f, φk〉|2 ≤ ‖f‖2 ≤ B
∑

|〈f, φk〉|2 for all f ∈ H. (2.3)

We shall take the following as our definition of the Fourier transform:

f̂(ω) :=

∫ ∞

−∞
f(t)e−2πiωt dt,

defined for f ∈ L1(R) ∩ L2(R), and extended in the usual way to be an
isometry from L2(R) onto itself.

Let g ∈ L2(R) be fixed. For f ∈ L2(R), the windowed Fourier transform
[6, p. 45] of f can be defined by

f̃(ω, t) =

∫ ∞

−∞
f(s)ḡ(s− t)e−2πiωs ds,

where ḡ(s− t) denotes g(s− t).
The windowed Fourier transform can also be regarded as an inner prod-

uct

f̃(ω, t) = 〈f, gω,t〉,
where gω,t ∈ L2(R) is defined by

gω,t(s) = e2πiωsg(s− t). (2.4)

For nonseparable spaces, such as the space of almost periodic functions,
it is not possible to construct countable frames, and uncountable ones are
of limited use in reconstruction problems. What we would like to do is to
discretize the windowed Fourier transform, and this will allow us to construct
generalized frames.

The natural discretization of the window function gω,t in (2.4) is given
by ω = mω0, t = nt0, for fixed ω0, t0 ≥ 0; thus

gm,n(s) = e2πimω0sg(s− nt0). (2.5)

Let ψ ∈ L2(R) be a function that satisfies the condition

Cψ :=

∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω < ∞.

We call such a ψ an admissible wavelet. For f ∈ L2(R), the wavelet transform
is defined by

f◦(x, y) = |x|−1/2

∫ ∞

−∞
f(t)ψ

(
t− y

x

)
dt,

where x ∈ R \ {0} controls the resolution (scaling), and y ∈ R controls the
positioning (see, e.g. [4, p. 24], [6, p. 63]).

Let γ > 1, β > 0 be fixed and m, n range over Z. The natural dis-
cretization of the wavelet ψx,y(t) = |x|−1/2ψ((t− y)/x) has the form

ψm,n(t) = γ−m/2ψ(γ−mt− βn).
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3. Orthonormal set

It is well known that {eiλt} is a complete orthonormal basis in B2 under the

norm ‖f‖2 = lim
T→∞

1

2T

∫ T

−T

|f(t)|2 dt. As {eiλt}, the set {eiλtα} where λ ∈ R

and 0 < α < ∞ is also orthonormal [13, p. 425].

Now we’ll prove that {eiq(t)} is orthonormal for every q ∈ Q(R). Similar
to the definition (2.1) of q(t), p(t) is defined as

p(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
l=1

μlt
βl , t ≥ 0

−
m∑
l=1

μl(−t)βl , t < 0

(3.1)

where m = 1, 2, . . . , μl ∈ R, l = 1, 2, . . . ,m and β1 > β2 > · · · > βm > 0 and
since p(t) = −p(−t) for all t ∈ R, every p ∈ Q(R) is odd as well.

Theorem 3.1. Let q(t) and p(t) ∈ Q(R). For α1 ≥ β1 > β2 > · · · > βm ≥ 0
with α1 > α2 > · · · > αm ≥ 1 and all nonzero λl’s and μl’s ∈ R where
l = 1, 2, . . . ,m, the following limit

lim
T→∞

1

2T

∫ T

−T

ei(q(t)−p(t)) dt =

{
1, αl = βl, λl = μl (1 ≤ l ≤ m)

0, otherwise

exists uniformly.

Proof. Since q(t)− p(t) is odd, we get

lim
T→∞

1

2T

∫ T

−T

ei(q(t)−p(t)) dt

= lim
T→∞

1

2T

[∫ T

0

ei(q(t)−p(t)) dt+

∫ 0

−T

e−i(q(−t)−p(−t)) dt

]

= lim
T→∞

1

2T

[∫ T

0

ei(q(t)−p(t)) dt+

∫ T

0

e−i(q(t)−p(t)) dt

]

= lim
T→∞

1

2T

[(∫ 1

0

+

∫ T

1

)
ei(q(t)−p(t)) dt+

(∫ 1

0

+

∫ T

1

)
e−i(q(t)−p(t)) dt

]

for every p, q ∈ Q(R).
The proof is obvious for the case αm = βm, λm = μm. We only need to

consider the case αm �= βm, λm �= μm. Integrating by parts, we get∫ T

1

ei(q(t)−p(t)) dt

=
ei(q(t)−p(t))

i(q′(t)− p′(t))

∣∣∣∣∣
T

1

− 1

i

∫ T

1

ei(q(t)−p(t))

[
1

q′(t)− p′(t)

]′
dt

= I1 + I2.
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We have

|I1| ≤ 1

|q′(T )− p′(T )| +
1

|q′(1)− p′(1)|
=

1

Tα1−1 |∑m
l=1 λlαlTαl−α1 −∑m

l=1 μlβlT βl−α1 |
+

1

|∑m
l=1 λlαl −

∑m
l=1 μlβl|

≤ M1

and also

|I2| ≤
∫ T

1

∣∣∣∣− q′′(t)− p′′(t)
[q′(t)− p′(t)]2

∣∣∣∣ dt ≤ M2

∫ T

1

1

tα1
dt

=

⎧⎪⎪⎨
⎪⎪⎩
M2 lnT, α1 = 1

M2

1− α1

[
1− 1

Tα1−1

]
, α1 > 1

where M1 and M2 are constants which are independent of T .
It follows that ∣∣∣∣∣ 1

2T

∫ T

−T

ei(q(t)−p(t)) dt

∣∣∣∣∣ → 0

as T → ∞. The proof is complete. �

Corollary 3.2. Let q(t) ∈ Q(R). For α1 > α2 > · · · > αm ≥ 1 and λl �= 0
where l = 1, 2, . . . ,m, the following limit

lim
T→∞

1

2T

∫ T

−T

eiq(t) dt = 0

exists uniformly.

Proof. If we put μl = 0 for l = 1, 2, . . . ,m in Theorem 3.1, we get the
conclusion. �

Theorem 3.3. Let q(t) and p(t) ∈ Q(R). For 1 > α1 ≥ β1 > β2 > · · · > βm ≥
0 with α1 > α2 > · · · > αm > 0 and all nonzero λl’s and μl’s ∈ R where
l = 1, 2, . . . ,m, the following limit

lim
T→∞

1

2T

∫ T

−T

ei(q(t)−p(t)) dt =

{
1, αl = βl, λl = μl (1 ≤ l ≤ m)

0, otherwise

exists.

Proof. Let T > 1 be so large that

|λ1α1| >
m∑

k=2

|λkαk|+
m∑

k=1

|μkβk| .
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As in the proof of Theorem 3.1, we have

∫ T

1

ei(q(t)−p(t)) dt = I3 + I4.

Since

q′(t)− p′(t) =
m∑
l=1

λlαlt
αl−1 −

m∑
l=1

μlβlt
βl−1

= tα1−1

[
m∑
l=1

λlαlt
αl−α1 −

m∑
l=1

μlβlt
βl−α1

]

and T > 1, we find

I3 =
T 1−α1∑m

l=1 λlαlTαl−α1 −∑m
l=1 μlβlT βl−α1

− 1∑m
l=1 λlαl −

∑m
l=1 μlβl

and therefore

|I3| ≤ T 1−α1

|λ1α1| −
∑m

l=2 |λlαl| −
∑m

l=1 |μlβl|

+
T 1−α1

|λ1α1| −
∑m

l=2 |λlαl| −
∑m

l=1 |μlβl|
≤ M3T

1−α1

where M3 is a constant which is independent of T .

Since

q′′(t)− p′′(t) =
m∑
l=1

λlαl(αl − 1)tαl−2 −
m∑
l=1

μlβl(βl − 1)tβl−2

and

[q′(t)− p′(t)]2 =

[
m∑
l=1

λlαlt
αl−1 −

m∑
l=1

μlβlt
βl−1

]2

= t2α1−2

[
m∑
l=1

λlαlt
αl−α1 −

m∑
l=1

μlβlt
βl−α1

]2

,

we get

q′′(t)− p′′(t)
[q′(t)− p′(t)]2

=

∑m
l=1 λlαl(αl − 1)tαl−2α1 −∑m

l=1 μlβl(βl − 1)tβl−2α1

[
∑m

l=1 λlαltαl−α1 −∑m
l=1 μlβltβl−α1 ]

2
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For the estimation of I4, we have

|I4| ≤
∫ T

1

∣∣∣∣ q′′(t)− p′′(t)
[q′(t)− p′(t)]2

∣∣∣∣ dt
≤

∫ T

1

∑m
l=1

∣∣λlαl(αl − 1)tαl−2α1
∣∣+∑m

l=1

∣∣μlβl(βl − 1)tβl−2α1
∣∣

(|λ1α1| −
∑m

l=2 |λlαl| −
∑m

l=1 |μlβl|)2
dt

≤
m∑
l=1

M3+l(T
αl−2α1+1 − 1) +

m∑
l=1

M3+m+l(T
βl−2α1+1 − 1)

where the constant number M ’s are independent of T .

Since ∣∣∣∣∣ 1

2T

∫ T

−T

ei(q(t)−p(t)) dt

∣∣∣∣∣ → 0

as T → ∞, the proof is complete. �

Theorem 3.4. Let q(t) ∈ Q(R). If f ∈ SLP(R), then the limits

lim
T→∞

1

2T

∫ T

−T

f(t) dt and lim
T→∞

1

2T

∫ T

−T

f(t)e−iq(t) dt

exist.

Proof. We prove the theorem in two parts:
a) Let f ∈ Gtrig(R). Let

f(t) = P (t) = x0 +
n∑

k=1

ake
iqk(t).

Then by Theorems 3.1 and 3.3,

lim
T→∞

1

2T

∫ T

−T

f(t) dt = x0.

b) Let f be an arbitrary function in SLP(R). Then for ε > 0 there ex-
ists a generalized trigonometric polynomial Pε such that (2.2) holds. Since

lim
T→∞

1

2T

∫ T

−T

Pε(t) dt exists, we can find a number T0 such that when T1, T2 >

T0, ∥∥∥∥∥ 1

2T1

∫ T1

−T1

Pε(t) dt− 1

2T2

∫ T2

−T2

Pε(t) dt

∥∥∥∥∥ < ε. (3.2)
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Using (2.2) and (3.2), it is easy to show that∥∥∥∥∥ 1

2T1

∫ T1

−T1

f(t) dt− 1

2T2

∫ T2

−T2

f(t) dt

∥∥∥∥∥
≤ 1

2T1

∫ T1

−T1

‖f(t)− Pε(t)‖ dt

+

∥∥∥∥∥ 1

2T1

∫ T1

−T1

Pε(t) dt− 1

2T2

∫ T2

−T2

Pε(t) dt

∥∥∥∥∥
+

1

2T2

∫ T2

−T2

‖f(t)− Pε(t)‖ dt

< 3ε

when T1, T2 > T0.
The existence of the second limit can be shown by using the same way.

�

4. Main results

Theorem 4.1. There exist constants A, B > 0, such that

A‖f‖2SLP ≤ lim
N→∞

1

2N + 1

N∑
n=−N

∞∑
m=−∞

|〈f, gm,n〉|2 ≤ B‖f‖2SLP . (4.1)

for all strong limit power functions f .

Proof. Let us begin with the case when f is a generalized trigonometric

polynomial f(t) =

K∑
k=1

ake
iqk(t) where qk(t) = λk

m′∑
l=1

tαkl . Take

ĝ

(
mω0 − λk

2π

)

=

∫ ∞

−∞
g

⎛
⎝ m′∑

l=1

tαkl − nt0

⎞
⎠ e

−2πi
(
mω0−λk

2π

)(∑m′
l=1 tαkl−nt0

)
d

⎛
⎝ m′∑

l=1

tαkl

⎞
⎠ .

We calculate

1

2N + 1

N∑
n=−N

∞∑
m=−∞

|〈f, gm,n〉|2

=
1

2N + 1

N∑
n=−N

∞∑
m=−∞

K∑
k=1

K∑
	=1

akā	e
i(λk−λ�)nt0

× ĝ

(
λk

2π
−mω0

)
ĝ

(
λ	

2π
−mω0

)
.
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As N → ∞ this tends to
K∑

k=1

|ak|2h(λk) +
∑ ′akā	j(λk, λ	), (4.2)

where

h(λk) =

∞∑
m=−∞

∣∣∣∣ĝ
(
λk

2π
−mω0

)∣∣∣∣
2

, (4.3)

the second sum in (4.2) is taken over those k, � such that λk−λ	 is a (nonzero)
multiple of 2π/t0, and

j(λk, λ	) =

∞∑
m=−∞

ĝ

(
λk

2π
−mω0

)
ĝ

(
λ	

2π
−mω0

)
. (4.4)

In this case,∣∣∣∑ ′akā	j(λk, λ	)
∣∣∣

=

∣∣∣∣∣
∑ ′akā	

∞∑
m=−∞

ĝ

(
λk

2π
−mω0

)
ĝ

(
λ	

2π
−mω0

)∣∣∣∣∣
=

∣∣∣∣∣∣
∑
λ∈R

∑
s∈Z\{0}

aλāλ+ 2πs
t0

∞∑
m=−∞

ĝ

(
λ

2π
−mω0

)
ĝ

(
λ

2π
+

s

t0
−mω0

)∣∣∣∣∣∣
≤

∑
s∈Z\{0}

( ∞∑
m=−∞

∑
λ∈R

|aλ|2
∣∣∣∣ĝ

(
λ

2π
−mω0

)∣∣∣∣
∣∣∣∣ĝ

(
λ

2π
+

s

t0
−mω0

)∣∣∣∣
)1/2

×
( ∞∑

m=−∞

∑
λ∈R

∣∣∣aλ+ 2πs
t0

∣∣∣2 ∣∣∣∣ĝ
(

λ

2π
−mω0

)∣∣∣∣
∣∣∣∣ĝ

(
λ

2π
+

s

t0
−mω0

)∣∣∣∣
)1/2

≤
∑

s∈Z\{0}

( ∞∑
m=−∞

∑
λ∈R

|aλ|2
∣∣∣∣ĝ

(
λ

2π
−mω0

)∣∣∣∣
∣∣∣∣ĝ

(
λ

2π
+

s

t0
−mω0

)∣∣∣∣
)1/2

×
( ∞∑

m=−∞

∑
λ∈R

|aλ|2
∣∣∣∣ĝ

(
λ

2π
− s

t0
−mω0

)∣∣∣∣
∣∣∣∣ĝ

(
λ

2π
−mω0

)∣∣∣∣
)1/2

≤
∑
λ∈R

|aλ|2
∑

s∈Z\{0}
(Γ(s)Γ(−s))

1/2
,

where Γ(s) = sup
λ∈R

∑
m∈Z

∣∣∣∣ĝ
(

λ

2π
−mω0

)∣∣∣∣
∣∣∣∣ĝ

(
λ

2π
+

s

t0
−mω0

)∣∣∣∣. If we assume

A = inf
0≤λ<ω0

∑
m∈Z

∣∣∣∣ĝ
(

λ

2π
−mω0

)∣∣∣∣
2

−
∑

s∈Z\{0}
(Γ(s)Γ(−s))

1/2
> 0

B = sup
0≤λ<ω0

∑
m∈Z

∣∣∣∣ĝ
(

λ

2π
−mω0

)∣∣∣∣
2

+
∑

s∈Z\{0}
(Γ(s)Γ(−s))

1/2
< ∞,
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hence we get the inequality (4.1) for the generalized trigonometric polyno-
mials. A standard approximation argument completes the proof for general
strong limit power functions. �

We can define the wavelet transform of a strong limit power function,
just as we can for a function in L2(R), at least assuming that ψ ∈ L1(R).
Then we construct generalized frames for strong limit power functions using
the discretized form of the wavelet transform and the ideas in the windowed
Fourier transform case. We write ψm,n(t) = 2m/2ψ(2mt− n), for m, n ∈ Z.

Lemma 4.2. Let f(t) =

K∑
k=1

ake
iqk(t) where qk(t) = λk

m′∑
l=1

tαkl be a generalized

trigonometric polynomial , and let ψ ∈ L1(R). Then

f◦(x, y) = |x|1/2
K∑

k=1

ake
iλkyψ̂

(−xλk

2π

)
, (4.5)

and is hence a trigonometric polynomial in y, for fixed x �= 0.

Proof. We calculate:

f◦(x, y) = |x|−1/2

∫ ∞

−∞
f(t)ψ

(
t− y

x

)
dt

= |x|−1/2
K∑

k=1

ak

∫ ∞

−∞
eiλk

∑m′
l=1 tαkl

× ψ

(∑m′
l=1 t

αkl − y

x

)
d

⎛
⎝ m′∑

l=1

tαkl

⎞
⎠

= |x|1/2
K∑

k=1

ak

∫ ∞

−∞
eiλk(xu+y)ψ(u) du

= |x|1/2
K∑

k=1

ake
iλkyψ̂

(−xλk

2π

)
,

as asserted. �

Theorem 4.3. Let f be a strong limit power function. Then, for fixed x �= 0,
f◦(x, y) is a strong limit power function in y.

Proof. Let f(t) =

K∑
k=1

ake
iqk(t) where qk(t) = λk

m′∑
l=1

tαkl be a generalized

trigonometric polynomial. Then, by Theorem 4.2, f◦(x, y) is a generalized
trigonometric polynomial in y, for fixed x �= 0. Thus it is sufficient to verify
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that, if ‖fn − f‖∞ → 0, then ‖f◦
n(x, y)− f◦(x, y)‖L∞(y) → 0. Since

f◦
n(x, y)− f◦(x, y) = |x|−1/2

∫ ∞

−∞

⎛
⎝fn

⎛
⎝ m′∑

l=1

tαkl

⎞
⎠− f

⎛
⎝ m′∑

l=1

tαkl

⎞
⎠
⎞
⎠

× ψ

(∑m′
l=1 t

αkl − y

x

)
d

⎛
⎝ m′∑

l=1

tαkl

⎞
⎠ ,

we get

‖f◦
n(x, y)− f◦(x, y)‖L∞(y)

= ess. sup
y

|f◦
n(x, y)− f◦(x, y)|

= ess. sup
y

∣∣∣∣|x|1/2
∫ ∞

−∞
(fn(xu+ y)− f(xu+ y))ψ(u) du

∣∣∣∣
≤ |x|1/2‖fn − f‖∞‖ψ‖1,

which gives the result. �

Theorem 4.4. If f is a strong limit power function, then there exist constants
A, B > 0, such that

A
∑
λ 	=0

|aλ|2 ≤
∑
m∈Z

1

γm
lim

N→∞
1

2N + 1

N∑
n=−N

|〈f, ψm,n〉|2 ≤ B
∑
λ 	=0

|aλ|2. (4.6)

Proof. Since 〈f, ψm,n〉 = γ−m/2

∫ ∞

−∞
f(t)ψ(γ−mt − βn) dt = f◦(γm, βnγm),

for every m ∈ Z we have that {〈f, ψm,n〉}∞n=−∞ is a sequence of strong limit
power functions. Moreover, if f is a generalized trigonometric polynomial, we
see that

〈f, ψm,n〉 = γ−m/2

∫ ∞

−∞

K∑
k=1

ake
iλk

∑m′
l=1 tαkl

× ψ

(
γ−m

m′∑
l=1

tαkl − βn

)
d

⎛
⎝ m′∑

l=1

tαkl

⎞
⎠

= γm/2
∑
λ∈R

aλψ̂(λγm)eiλβnγ
m

= γm/2
∑

0≤λ< 1
βγm

(∑
k∈Z

aλ+ k
βγm

ψ̂(λγm + k/β)

)
eiλβnγ

m

.

By using the same method in [5, Theorem 3], we get the generalized frame
(4.6) for the strong limit power functions. �
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