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ASYMPTOTIC SOLUTIONS OF LOVE WAVE PROPAGATION IN A

COVERED HALF-SPACE WITH INHOMOGENEOUS INITIAL

STRESSES G1
3

E. HASANOGLU1, M. NEGIN1, §

Abstract. The dispersive behavior of Love waves in an elastic half-space substrate

covered by an elastic layer under the effect of inhomogeneous initial stresses has been

investigated. Classical linearized theory of elastic waves in initially stressed bodies for

small deformations is used and the well-known WKB high-frequency asymptotic tech-

nique is applied for the theoretical derivations. Numerical results on the action of the

influence of the initial stresses on the wave propagation velocity for a geophysical example

are presented and discussed.
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1. Introduction

Surface waves play an important role in geophysical studies for site characterization,

determination of shear wave velocity profiles, damping ratios, fault detection and study of

the earthquakes. On the other hand, acoustic surface waves also have enormous applica-

tions in material sciences, electronic devises, non-destructive testing and damage detection

etc. An important issue in the study of this type of elastodynamics problems is the study

of the effect of initial stresses on the wave propagation characteristics. Initial stresses in

Earth’s crustal layers might occur under the action of geostatic and geodynamic forces, for

example as a result of difference of temperature, slow process of creep, differential external

forces, gravity variations and in composite materials or structural elements during their

manufacturing or assembling processes. It also important to note that the stress magni-

tudes in the Earth’s crust are not homogeneous throughout the crustal layers and show

linear increase with depth. These stresses have a profound influence on the propagation

of surface waves.

Propagation of seismic waves is a complicated process and analytical solutions of the

elastodynamics equations in general types of media cannot be solved exactly and usually

numerical methods must be used. High-frequency asymptotic theory is another alterna-

tive and powerful technique introduced to solve these kind of equations approximately.
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The high-frequency asymptotic methods are presented in the form of the ray series, for

this reason, the ray method is also often called the ray series method or the Asymptotic

Ray Theory (ART). In the present study, dispersive behavior of surface Love waves in a

half-space substrate covered by a layer, which are assumed to be linear and elastic, under

the effect of linearly varying initial stress patterns is investigated. Classical linear elastic-

ity theory with small initial deformations is applied and the Wentzel-Kramers-Brillouin

(WKB) high-frequency asymptotic technique is adopted for the theoretical derivations.

Seismic ray theory has been described elaborately in several text books, for example,

Babich and Buldyrev [1], Cerveny [4], Chapman [5]. Number of studies which applied the

high-frequency asymptotic approximation to wave propagation problems are enormous

and here we will present a few of recent studies in the direction of our study purpose.

Li et al. [7] studied the propagation behaviors of Love waves in inhomogeneous medium

using WKB method and obtained the dispersion relations of Love waves for different

gradient variation of material constants. Jin et al. [6] also applied the WKB method to

solve the Rayleigh surface wave propagation in a homogeneous isotropic elastic structures

with curved surfaces of arbitrary form. Liu et al. [8] on the basis of WKB method

derived the dispersion equations for Love wave propagation in layered graded composites

structures using the shear spring model for the rigid, imperfect, and slip interface cases.

Cao et al. [3] employed the WKB technique for the asymptotic solutions of propagation

of Rayleigh surface waves in a transversely isotropic graded piezoelectric half-space when

material properties varying continuously along depth direction. Liu et al. [9] obtained the

asymptotic solutions of Love waves by applying the WKB method and solved the fourth

order differential equation with variable coefficients to investigate the effects of gradient

variations of the piezoelectric and dielectric constants. Qian et al. [10], [11] investigated

the existence and propagation behavior of transverse surface waves in a layered structure

concerning a gradient metal layer by WKB method and obtained the dispersion equation

for such structures. Balogun and Achenbach [2] studied the surface waves generated by

a time-harmonic line load on an isotropic linearly elastic half-space whose elastic moduli

and mass density vary with the depth direction.

2. formulation of the problem

Consider an elastic half-space covered by an elastic layer with thickness h as shown

in Figure 1. Here we determine the positions of the points by the Cartesian system of

coordinates Oxyz with O being any point on the free surface. The layer and the half-

space occupy the regions {−∞ < x < +∞,−∞ < y < +∞, 0 ≤ z ≤ h} and {−∞ < x <

+∞,−∞ < y < +∞, h ≤ z < +∞}, respectively. We assume that Love wave propagate

in the positive direction of x axis. Thus, the displacement component v along y direction

is non-zero while the displacement components along x and z directions, u and w both

are zero, i.e., u = w = 0, v = v(x, z, t). Let the system be under initial compressive

stress σ0
z along z direction and compressive or tensile initial stress σ0

x along x direction,

respectively. The initial compressive stress σ0
z may be due to weight of the material of the

layer and the half-space or some other external loads. However, the initial stress σ0
x might

have been generated through other processes such as creep, temperature difference or some

external forces. Note that the following notation will be used through the formulations:
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Figure 1. The geometry of the problem.

The values related with the covering layer and the half-space are denoted by upper indices

1 and 2, respectively. The values related to the initial stresses, though, are denoted by

upper index 0. The dynamical equations of motion for initially stressed incompressible

medium assuming small initial deformations are written as:

∂σ
(m)
xy

∂x
+

∂σ
(m)
yz

∂z
+ σ0

x

∂2v(m)

∂x2
+ σ0

z

∂2v(m)

∂z2
= ρ(m)∂

2v(m)

∂t2
, (m = 1, 2), (1)

where σ
(m)
xy and σ

(m)
yz are components of the Cauchy stress tensor, v(m) are the components

of the displacement vector along y direction, ρ(m) are the mass density of the layer and

the half-space, respectively. Note that, constitutive relations for a linear isotropic elastic

solid are given by:

σ(m)
xy = µ(m)∂v

(m)

∂x
, σ(m)

yz = µ(m)∂v
(m)

∂z
, (m = 1, 2), (2)

where µ(m) is the shear modulus or Lame’s second parameter. The strain components in

equation (2) can be calculated through the following formula:

ε(m)
x =

∂u(m)

∂x
, ε(m)

z =
∂w(m)

∂z
, ε(m)

zx =
1

2

(
∂u(m)

∂z
+

∂w(m)

∂x

)
, (m = 1, 2). (3)

The displacements components of the considered system can be assumed to have the

following form:

v(m)(x, z, t) = V (m)(z) eik(x−ct), (m = 1, 2), (4)

where k is the wavenumber, c the phase velocity of wave propagation, i =
√
−1, V (1)(z)

and V (2)(z) are two undetermined functions with respect to z coordinate only. This way

we obtain the following equation for V (1)(z) and V (2)(z) from the equation (1)-(4) as:

d2V (1)(z)

dz2
+ k2q(1)(z) V (1)(z) = 0, (5)

d2V (2)(z)

dz2
− k2q(2)(z) V (2)(z) = 0, (6)

where

q(1)(z) =
−µ(1) − σ0

x(z) + ρ(1)c2

µ(1) + σ0
z(z)

, (7)
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q(2)(z) =
µ(2) + σ0

x(z)− ρ(2)c2

µ(2) + σ0
z(z)

. (8)

Equations (5) and (6) are second order differential equation with variable coefficients and

in general obtaining the exact solution of the problem is very difficult. However, for high-

frequency waves whose wavenumber is very large, i.e., k >> 1, the WKB asymptotic

approximation method can be applied to obtain approximate solution of the problem.

Thus by assuming that k is a large number then, ε(= 1/k << 1) will be a very small

number and the equations (5) and (6) in general form can be recast as:

ε2
d2V (z)

dz2
+ q(z) V (z) = 0. (9)

We are looking for the solution of equation (9) in the following form:

V (z) ∼ eiϕ(z)/ε
∞∑
n=0

εnSn(z) (10)

where ϕ and Si, i = 1, 2, 3, ... are undetermined functions of z. Substituting equation (10)

into (9) and equating the coefficients of each power of ε to zero, we get an infinite number

of equations:

ϕ′2S0 − qS0 = 0, (11)

ϕ′′S0 + 2ϕ′S′
0 = 0, (12)

S′′
0 + iϕ′′S1 + 2iϕ′S′

1 = 0, (13)

...

where superscript ′ denotes differentiation with respect to the coordinate z. Equation

(11) is a first order nonlinear differential equation and is called the eikonal equation. Its

solutions can be find easily:

ϕ = ±
∫ √

q(z) dz. (14)

The other equations are linear and determine the higher order terms in the expansion.

The second equation is called the transport equation, then we got the following expression

for S0 from equation (12):

S0 = q−1/4. (15)

We have therefore found that a first-term approximation of the general solution of equa-

tions (5) and (6) are:

v(1)(x, z, t) ∼ q(1)(z)−1/4
(
A1 e

−ik
∫ √

q(1)(z)dz +B1 e
ik
∫ √

q(1)(z)dz
)
eik(x−ct), (16)

v(2)(x, z, t) ∼ q(2)(z)−1/4
(
A2 e

−k
∫ √

q(2)(z)dz
)
eik(x−ct), (17)

where A1, B1 and A2 are arbitrary constants. Note that, the solution of the second

equation in (17) satisfies the decay condition i.e., V (2)(z) → 0, z → ∞. We assume that
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the following boundary conditions on the free face plane of the covering layer and on the

interface plane between the covering layer and the half-space are satisfied:

σ(1)
yz

∣∣∣
z=0

= 0, (18)

σ(1)
yz

∣∣∣
z=h

= σ(2)
yz

∣∣∣
z=h

, (19)

v(1)
∣∣∣
z=h

= v(2)
∣∣∣
z=h

. (20)

Substituting of the equations (16) and (17) and their corresponding stress displacement

components into the equations of motion (1) and considering the boundary conditions (18)-

(20) yields the system of three homogenous algebraic equations for A1, B1 and A2. For

a nontrivial solution the determinant of the coefficients must vanish giving the dispersion

equation of Love wave propagation,

det ∥αij∥ = 0, i, j = 1, 2, 3. (21)

This completes the formulation of the problem and in the case where σ0
x = σ0

z = 0 this

formulation transforms to the corresponding one made within the scope of the classical

linear theory of elastodynamics.

For explicit expressions of dispersion equation (21) and consequently obtaining related

dispersion curves we need to determine the variation pattern of the initial stresses in the

system. It is known that approximately initial stress magnitudes in the Earths crust show a

linear increase with depth (Zang and Stephansson [12]). Accordingly, here we also assume

that the initial stresses vary linearly with depth and the variation pattern of the initial

stresses in both normal and transverse directions are taken as the following relations:

σ0
x(z) = σ0

x · (1 +mz), (22)

σ0
z(z) = σ0

z · (1 + nz), (23)

where σ0
x and σ0

z denote the magnitudes and m, n denote the gradient coefficients of

the inhomogeneous initial stresses in the transverse Ox and in the normal Oz directions,

respectively. Substituting these equations into the equations (7) and (8), respectively, we

got:

q(1)(z) =
−µ(1) − σ0

x · (1 +mz) + ρ(1)c2

µ(1) + σ0
z · (1 + nz)

, (24)

q(2)(z) =
µ(2) + σ0

x · (1 +mz)− ρ(2)c2

µ(2) + σ0
z · (1 + nz)

. (25)

To obtain the displacement components in the covering layer and in the half-space as given

by equations (16) and (17) we have to integrate
√

q(1)(z) and
√

q(2)(z). However, without

loss of generality, we assume that q(z) = a z+b
c z+d to simplify the calculations, and integrate

it in the following general form:∫ √
a z + b

c z + d
=

√
a2d2 − 2abcd+ b2c2√

−ac3
· arctan

(
c2
√

q(z)
√
a2d2 − 2abcd+ b2c2√

−ac3 (ad− bc)

)

+

√
c

a
(ad− bc)

(
√
a c3/2 − c5/2 (az + b)√

a (cz + d)

)−1√
q(z),
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where the expressions for the parameters a, b, c and d in the case of q(1)(z) and q(2)(z)

are given by:

q(1)(z) :


a = −σ0

xm

b = −µ(1) − σ0
x + ρ(1)c2

c = σ0
z n

d = µ(1) + σ0
z

, q(2)(z) :


a = σ0

xm

b = µ(2) + σ0
x − ρ(2)c2

c = σ0
z n

d = µ(2) + σ0
z

.

Inserting these results to the displacement components in the covering layer and the half-

space, equations (16) and (17), and considering the boundary conditions, equations (18)-

(20), yields the system of three homogenous algebraic equations as discussed in the earlier

sections. For a nontrivial solution the determinant of the coefficients must vanish giving the

dispersion equation of Love wave propagation. Since the expressions for the components of

the matrix of the corresponding dispersion determinant are cumbersome we are omitting

here these details. The explicit expressions of the αij in the dispersion equation (21) for

two typical cases when (σ0
x(z) = mz, σ0

z = 0) and (σ0
x = 0, σ0

z(z) = nz) as special cases

are presented in the Appendix A.

3. numerical results

Now we perform numerical calculations to study the quantitative and qualitative influ-

ence of initial stresses on dispersion of Love wave propagation. In the following numerical

example, we assume that ρ(1) = 2800 kg/m3, β(1) = 3000 m/s and ρ(2) = 3200 kg/m3,

β(2) = 5000 m/s and h = 10 km; where ρ(1), ρ(2) are the mass density and β(1), β(2) are

the shear wave velocities in the layer and the half-space, respectively, and h is the thick-

ness of the crustal layer. As discussed above, in the Earth’s crust the lithostatic stress

magnitudes increases linearly with depth, therefore we assume that the gradient coeffi-

cients of the inhomogeneous initial stresses in the transverse and in the normal directions

are m = 9000 MPa/km and n = 27000 MPa/km, respectively. We considered different

possible combinations of the initial stresses in the system as the following cases:

Case 1. σ0
x > 0, σz = 0;

Case 2. σ0
x < 0, σz = 0;

Case 3. σ0
x = 0, σz < 0;

Case 4. σ0
x > 0, σz < 0;

Case 5. σ0
x < 0, σz < 0.

Here we will present only the graphs obtained for the case 1 and case 4. Figure 2 and

Figure 3 show the dispersion curves for the first four modes of Love wave propagation in

this example for the initial stress cases 1 and 4, respectively. Note that each curve in the

graphs is obtained for different values of the initial stresses σ0
x and σ0

z as indicated in the

figures. Dispersion curves related to the free stress cases and constant initial stress cases

are also given in these figures for comparison. Figure 2 shows that the initial stretching

stresses in Ox direction in the covering layer and in the half-space causes to increase the

wave propagation velocity for the first four mode of the propagation. According to the

graphs which are not given here as a result of the initial compression in Oz direction (case

3) the wave propagation velocity for the first and second modes of the wave propagation
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Figure 2. The influence of the inhomogeneous initial stress on the dis-

persion curves for the first four mode of Love wave propagation for Case

1.

also increases. However, the results indicate that existence of initial stretching in Ox

direction (case 2 and case 5) causes to decrease the wave propagation velocity for the first

and the second modes of the propagation. Figure 3 shows that as a result of initial stress

pattern case 4, the wave propagation velocity also increases for the first and the second

modes of the propagation. It is also important to note that the effect of inhomogeneous

initial stresses on the dispersion of Love waves are almost similar to the constant initial

stresses qualitatively for the first two modes of the the propagation, but with more intensive

magnitudes.

4. Conclusion

In this study we exploited WKB high-frequency analysis to solve seismic Love wave

dispersion problem under the effect of different inhomogeneous initial stress patterns.

Theoretical derivations are obtained in the framework of classical linearized theory of

elastic waves in initially stressed bodies for small deformations and numerical examples

are given and discussed. The results indicate that depending on the initial stress pattern

the wave propagation velocity might be increased or decreased, however, the effect of

inhomogeneous initial stresses are more significant in comparison to the constant ones.

Appendix A.

The expressions of the components αij

1. For the case when σ0
x(z) = mz, σ0

z = 0:

α11 = −kexp

(
kµ1 ξ1

3
2 2 i

3mσ0
x

)
ξ1

1
4 i+

m exp

(
kµ1 ξ1

3
2 2 i

3mσ0
x

)
σ0
x

4µ1 ξ1
5
4

,
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Figure 3. The influence of the inhomogeneous initial stress on the dis-

persion curves for the first four mode of Love wave propagation for Case

4.

α12 =
kξ1

1
4 i

exp

(
kµ1 ξ1

3
2 2 i

3mσ0
x

) + m σ0
x

4µ1 ξ1
5
4 exp

(
kµ1 ξ1

3
2 2 i

3mσ0
x

) , α13 = 0,

α21 = − µ1kexp

(
k ξ2

3
2 µ1 2 i

3mσ0
x

)
ξ2

1
4 i+

m exp

(
k ξ2

3
2 µ1 2 i

3mσ0
x

)
σ0
x

4ξ2
5
4

,

α22 =
kµ1 ξ2

1
4 i

exp

(
k ξ2

3
2 µ1 2 i

3mσ0
x

) + mσ0
x

4ξ2
5
4 exp

(
k ξ2

3
2 µ1 2 i

3mσ0
x

) , α23 =
kµ2 ξ3

1
4

exp

(
2k ξ3

3
2 µ2

3mσ0
x

) + mσ0
x ξ3

− 5
4

4exp

(
2k ξ3

3
2 µ2

3mσ0
x

) ,

α31 =
exp

(
k ξ2

3
2 µ1 2 i

3mσ0
x

)
ξ2

1
4

, α32 =

(
exp

(
k ξ2

3
2 µ1 2 i

3mσ0
x

))−1

ξ2
1
4

, α33 = −

(
exp

(
2k ξ3

3
2 µ2

3mσ0
x

))−1

ξ3
1
4

,

where ξ1 =
ρ(1)c2−µ(1)

µ(1) , ξ2 =
ρ(1)c2−µ(1)−hmσ0

x

µ(1) , ξ3 =
µ(2)−ρ(2)c2+hmσ0

x

µ(2) .

2. For the case when σ0
x = 0, σ0

z(z) = nz:

α11 = −

(
exp

(
kµ1

√
ζ1 2 i

nσ0
z

))−1(
k
√
ζ12i− kζ1 i√

ζ1

)
ζ1

1
4

+
n

(
exp

(
kµ1

√
ζ1 2 i

nσ0
z

))−1

ζ1σ0
z

4µ1ζ1
5
4

,

α12 =
exp

(
kµ1

√
ζ1 2 i

nσ0
z

)(
k
√
ζ12i− kζ1 i√

ζ1

)
ζ1

1
4

+
n exp

(
kµ1

√
ζ1 2 i

nσ0
z

)
ζ1 σ0

z

4µ1ζ1
5
4

, α13 = 0,

α21 = −

(
k
√
ζ22i− kζ2 i√

ζ2

)
µ1

exp

(
k(µ(1)+hnσ0

z)
√

ζ2 2 i

nσ0
z

)
ζ2

1
4

+
nσ0

z ζ2µ1(µ(1)+hnσ0
z)

−1

4 exp

(
k(µ(1)+hnσ0

z)
√

ζ2 2 i

nσ0
z

)
ζ2

5
4

,

α22 =

(
k
√
ζ22i− kζ2 i√

ζ2

)
µ1

ζ2
1
4

− nσ0
z ζ2µ1

4(µ(1)+hnσ0
z)ζ2

5
4

 exp

(
k(µ(1)+hnσ0

z)
√
ζ2 2 i

nσ0
z

)
,
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α23 =

(
2k

√
ζ3− kζ3√

ζ3

)
µ(2)

exp

(
2k(µ(2)+hnσ0

z)
√

ζ3

nσ0
z

)
ζ3

1
4

− nµ(2)ζ3σ0
z

4exp

(
2k(µ(2)+hnσ0

z)
√

ζ3

nσ0
z

)
(µ(2)+hnσ0

z)ζ3
5
4

,

α31 =

(
exp

(
k(µ(1)+hnσ0

z)
√
ζ2 2 i

nσ0
z

)
ζ2

1
4

)−1

, α32 =
exp

(
k(µ(1)+hnσ0

z)
√

ζ2 2 i

nσ0
z

)
ζ2

1
4

,

α33 = −
(
exp

(
2k(µ(2)+hnσ0

z)
√
ζ3

nσ0
z

)
ζ3

1
4

)−1

,

where ζ1 =
ρ(1)c2−µ(1)

µ(1) , ζ2 =
ρ(1)c2−µ(1)

µ(1)+hnσ0
z
, ζ3 =

µ(2)−ρ(2)c2

µ(2)+hnσ0
z
.
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