
Agile development approach for the observatory control software of
the DAG 4m telescope

B. Bülent Güçsav*a, Deniz Çokera, Cahit Yeşilyapraka, Onur Keskinb, Lorenzo Zagoc, Sinan K. Yerlid

aAtatürk Univ., Astrophysics Research and Application Center (ATASAM), Erzurum, Turkey; bFMV
Işık Univ., Engineering Faculty, Dept. of Mechanical Eng., Istanbul, Turkey; cHaute Ecole

d'Ingénierie et de Gestion du Canton de Vaud, (HEIG-VD), Yverdon-les-Bains/Switzerland; dOrta
Doğu Teknik Üniversitesi (METU), Physics Department, Ankara, Turkey.

ABSTRACT

Observatory Control Software for the upcoming 4m infrared telescope of DAG (Eastern Anatolian Observatory in
Turkish) is in the beginning of its lifecycle. After the process of elicitation-validation of the initial requirements, we have
been focused on preparation of a rapid conceptual design not only to see the big picture of the system but also to clarify
the further development methodology. The existing preliminary designs for both software (including TCS and active
optics control system) and hardware shall be presented here in brief to exploit the challenges the DAG software team has
been facing with. The potential benefits of an agile approach for the development will be discussed depending on the
published experience of the community and on the resources available to us.

Keywords: DAG, OCS, software development, OPC-UA, command line interface, 4-m telescope

1. OBSERVATORY CONTROL SYSTEM (OCS) SOFTWARE

The OCS software provides the enterprise level control of the DAG 4 mt class telescope and Focal Plane Instruments
(FPI) and the observatory support systems. Following the requirements given in the Software Requirements
Specifications for Observatory Control System[1] document draft and a series of meetings with DAG project team, three
distinctive design constraints have been set initially.

2. DESIGN CONSTRAINTS

At first glance, the major constraints that should apply to a preliminary design is as follows :

 Programmable control and monitoring interface : The extent of the term programming describes an interface
that makes an user to run automated observations from one or more Command Line Interfaces (CLI).
Additionally, a batch-command execution environment will be available for sequenced jobs.

 Concurrent users and simultaneous subsystems use : The OCS software should support multiple user logins.
Additional concurrency for multiple device/instrument access is also evident.

 Configuration Management : Run time configuration management for operational parameters as well as the
behavior of the running software (i.e. it shall not be required to deploy the software on each configuration)
should be present.

*gucsav@atasam.atauni.edu.tr; phone 90 442 236 3144, atasam.atauni.edu.tr

Software and Cyberinfrastructure for Astronomy III, edited by Gianluca Chiozzi,
Juan C. Guzman, Proc. of SPIE Vol. 9913, 991333 · © 2016 SPIE

CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2234394

Proc. of SPIE Vol. 9913 991333-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Isik University Academic Open Access

https://core.ac.uk/display/333955179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3. THE LIST OF EXISTING AND CANDIDATE SUBSYSTEMS

Service oriented approach as an initial choice of architecture, namely the industry standard OPC-UA [2], has been chosen
for the low-level system access (Figure 1.) In this respect, we define a subsystem as any physical or logical system that is
accessible via OPC-UA connections. We have also classified the subsystems into two groups, primary (TCS [3], aOCS[4],
ECS[5], WFS) and the rest (for ICS, SEMS), based on the control domain for specific type users (sessions). The list of
subsystems (already existing and foreseen) can be given as:

 Telescope Control System (TCS) : It is composed of the Mount Control System (MCS), the Telescope Auxiliary
and Monitoring System (TAMS) and the Telescope Supervisor (TSV). TAMS is responsible for the safety of the
system at all and low-level controls such as Hydro-static Bearing System (HBCS), primary mirror cover and
telemetries.

 active Optics Control System (aOCS) : Active optics controllers and computers for the mirrors.

 Enclosure Control System (ECS) : The rotating enclosure controller and computers.

 Instrument Control System (ICS) : The control domain of this subsystem includes Adaptive Optics Control
System (AdOCS) and six FPI (at most) that can physically be arranged on two Nasmyth platforms. At this early
stage, it seems that it would be beneficial to separate the ICS as a subsystem. This way, a standard approach
could be followed in accessing the low-level systems which will make the implementations a lot easier. The
responsibility domain of this subsystem is to provide connectivity between the OCS and the various FPI and the
necessary services for the OCS software. Following the definition given for the term subsystem, the OCS-ICS
communication will use OPC-UA stack. For the other part of the interface, various connection mechanisms
might exist that link the ICS to a particular FPI. Aside from mentioned above, science data header generation,
depending on the particular FPI, will also be handled by the ICS. The science data header shall include :
Instrument specific information, SEMS data for the particular observation or night, provided time information,
primary subsystem information, session info.

 Wave Front Sensor (WFS) : It requires to be a separate subsystem as it is going to be responsible for the high
order control[6] of the system as a whole.

 Site and Environment Monitoring System (SEMS)[7] :

◦ Atmospheric Quality Measurements : Various measurements will provide atmospheric quality data on a
regular basis.

◦ Meteorological : Weather information data coming from various sources such as conventional
meteorological devices and satellites. Collected weather data is going to be processed and will be sent to
the OCS software as weather forecast information.

◦ Seismic : A system that collects seismic activity data from the stations around the DAG site.

◦ Observation Site Facilities : Infrastructures (power, communication, etc), surveillance and other support
facilities.

4. USERS AND SESSIONS

One of the key concepts of the initial architecture is a session. A user of a session can interact with the nodes from the
particular subsystems and the OCS internal components assigned to its control domain.

A session is created on user login from a GUI or a CLI and it can be uniquely described with the following four
identifiers: Username, Password, Observing Run Id and User Type Request.

Proc. of SPIE Vol. 9913 991333-2

These user provided information shall be cross-checked from the Proposal Unit and Scheduler outputs. A session,
depending on the identifiers, uniquely describes the node space partitioning of the available resources for the particular
user.

Following list shows the user types and their authorized actions :

 WATCHCAT (or SYSTEM USER)

◦ Can monitor all subsystems and OCS components.

◦ Can reach to human beings via some conventional methods (i.e. email, SMS, push notification, physical
LEDs and alarms.)

 OPERATOR

◦ Can control primary subsystems (send commands).

◦ Can control rest of the subsystems other than the primary.

◦ Can monitor all of the subsystems.

◦ Can send HIGH PRIORITY RANKED commands

◦ There can be ONE operator at a time.

 NON-OPERATOR

◦ Can control rest of the subsystems other than the primary and the FPI under operator usage.

◦ Can monitor all of the subsystems.

◦ Can send LOW PRIORITY RANKED commands

◦ There can be MULTIPLE non-operators at a time. (Maximum number of non-operators are restricted to the
available resources.)

 VIEWER

◦ Can monitor all of the subsystems.

◦ Not able to send commands.

◦ There can be MULTIPLE viewers at a time. (Maximum number of viewers are restricted to the available
physical resources (system + network load).)

 ENGINEER

◦ Possesses all the capabilities of the OPERATOR as well as administration (eg. cancellation of active
sessions, system state changes, application of predefined procedures, etc.)

These are OCS internal users. They can either directly be mapped to real world actors (i.e. human beings) or to some
sort of robots that make the observations, calibrations, etc. on behalf of a real world actor. These mappings might or
might not be in one to one correspondence with the actors specified in the Operations Concept Document (OCD)[8].

The given priority ranking of commands in the list above defines the prioritization of one session over another.

Proc. of SPIE Vol. 9913 991333-3

5. OCS INTERNALS (IMPLEMENTATION)

The main idea is -in some sense- to provide a versatile intermediate service layer (or a service network) to the higher
level systems such as Scheduler, post-processing scripts, batch command execution environment, etc..

It is foreseen that the OCS software would mainly be developed on an application server. All the core functionality is
executed by the components that collectively form a core services framework of the OCS. Inter component
communications will be handled by the mechanisms (container services, messaging API) provided by the application
server. The SEMS and the ICS are exceptions in this architectural layout as they reside outside of the application server.
Their proximity to the low-level devices (and services), led us to think their implementations as standalone OPC-UA
servers. In order to be aware of the rest of the subsystems in real time, these OPC-UA servers are going to act as OPC-
UA clients as well (i.e. essentially for monitoring via subscriptions).

Each component family in the application server domain will implement an OPC-UA client per se to perform the
necessary monitoring directly. This way it will enable us to give the power of pub-sub mechanism of OPC-UA
architecture independently to each component. This approach could be given up depending on the possibility of
achieving the soft real-time access requirements of the subsystems via the messaging API (i.e. the greatest common
denominator of the minimum sampling intervals of all subscribed nodes is maintained by messaging API when the
communication network is at full load.)

Figure 1. OPC-UA Client-Server layout of the subsystems. Directions of the arrows show the client-server relationships. Not yet
known connections are shown without arrowheads.

Proc. of SPIE Vol. 9913 991333-4

5.1 Command Line Interface (CLI)

Instead of implementing a brand new command line interface for our own purposes, one viable option is to use a widely
accepted and powerful tool already available. The inherent nature of the requirement has motivated us to think an
interpreted programming language. The diversity of the available scientific frameworks makes Python environment a
suitable candidate. Considering the approach we have developed so far, following issues must be addressed :

 Direct commanding of the subsystems should be available through CLI.

 CLI should provide a programmable interface.

 Users should be able to login through CLI (as well as GUI) which triggers a session start.

 Simultaneous usage of more than one CLI for a particular session (as well as different sessions) shall be
supported.

 There should be an OPC-UA stack and Software Development Kit (SDK) available for the programming
environment or at least by using the libraries and bindings available, a programmer could be able to control and
monitor the subsystems (via some sort of messaging mechanisms) within a script/program.

5.2 Graphical User Interface (GUI)

These family of components shall provide the necessary support for a range of graphical ways of accessibility to the
OCS software. For the classical mode observations, these components are service points for graphical clients which
collectively form the primary source of control and monitor of the system as a whole. In parallel to the classical mode,
these interfaces will provide a helper mechanism for the automated ways of operations. Web based accessibility is also a
matter of concern by means of the provided interfaces.

5.3 Interfaces to the higher level systems

According to the OCD two types of observation are defined; Classical Mode and Queue Based Mode. In order to address
the complexity of the queue based mode, an interface class of components will be defined between the Scheduler and the
OCS. The Proposal Unit is another high level system that should be interfaced within the OCS software.

5.4 Data Handler

A class of components providing the functionality of data storage and access should be implemented by considering the
factors stated below:

 A centralized logging system for both subsystems and OCS internals.

 Storage and accessibility of the ICS produced science data.

 Support for user configurable data formats for science data.

 Various forms of access to the stored data through CLI and GUI.

 An environment for pre-processing and post-processing of science data.

Proc. of SPIE Vol. 9913 991333-5

 Safe replication of all of the data to the tier 2 (ATASAM) storage.

In order to avoid the single point of failure, the services providing the above functionality shall be implemented
distributively.

5.5 Resource Management across the OCS software

The union (logical aggregate) of all subsystems' OPC-UA address space nodes is called node space. It defines all the
control and monitor domain for low-level systems of the OCS software. Different equivalence relations (with respect to
the type of a session, allowed cross-subsystem conditions etc.) might be defined on the node space where each relation
simply means a partitioning of the space. The complexity of concurrency can be handled by selecting the most efficient
partition described by the conditions (Figure 2.)

Figure 2. OCS Internals – Logical Layout.

Proc. of SPIE Vol. 9913 991333-6

Depending on the ideas developed so far it is possible to define -at least- some vague boundaries for the core services
framework. This grouping of services (and the actions taken place) include, session management (handles the requests
from the GUI and the CLI, makes authentications and authorizes the user of a session by interacting with the proposal
unit) , node management (partitions the node space on request and assigns the demanded nodes to a session),
configuration management (apply configurations that might apply to the current state and watch configuration update
requests for a session or subsystem), and state management (coordinates the OCS and the subsystem states, constantly
checks the in house components and communicates with the external watchdog, executes the routine procedures defined
below.)

There shall be well defined procedures for routine actions such as start-up, safe shutdown and safety-emergency.

• Start-up procedure : Successful completion of this procedure implies that all internal components are alive and
the internal communication channels are active. Furthermore, it is assured that all of the node space is
accessible.

• Shutdown : The only reason for existence of this procedure is to test the OCS software working. It describes a
sequence of steps for safe shutdown.

 Safety/Emergency : Although the failing subsystem will not be accessible from the OCS, bringing the rest of the
system to a safe state is the responsibility of the OCS software.

At least the following four OCS internal states seems apparent :

 Fault : This state is ONLY triggered by an OCS internal reason (a software fault). “OCS IN FAULT STATE”
does NOT imply that individual components which are already in operational state will stop working.

 Intermediate state (Idle or Waiting) : OCS is waiting for synchronization with the subsystems, or some internal
condition prevents the OCS to enter into the Operational state.

 Operational : If the system is not in any other state, this means the OCS is operational.

 Engineering : Any subsystem in fault state will bring the OPC-UA connection between the relevant subsystem
and the OCS down automatically. This situation requires human intervention for the faulty subsystem (i.e. the
subsystem can be reached via engineering GUI), whilst the rest of the OCS should be operational/accessible.

Each component knows the current OCS-internal state. These OCS-internal states might also represent (indirectly) the
particular subsystems' states. i.e. During the start-up sequence of each component, interlocks and states of the particular
subsystems will automatically be checked via OPC-UA subscriptions.

6. BEGINNING OF THE NEXT PHASE

In order to able to reach a conclusion about the preliminary architecture , we have to be sure about the following items
by taking immediate actions (i.e. by prototyping)

• Solid understanding of the implementation details of the hypothetical CLI is crucial where the rapid prototyping
plays an important role. To be more specific, the CLI integration with the core services must be checked.

• Although the interactions between the low-level systems is handled by OPC-UA, the heterogeneity in the
implementation styles of the address spaces of different subsystems, push us to define an abstract common

Proc. of SPIE Vol. 9913 991333-7

interface that mitigates the burden of coding difficulties. This abstraction layer might also give a better
opportunity to implement any OPC-UA address space of a future instrument/system.

ACKNOWLEDGEMENTS

Authors would like to thank Atatürk University, Erzurum/Turkey (Project No: 2011K120230); Atatürk University,
Erzurum/Turkey, Astrophysical Research and Application Center (ATASAM), Erzurum/Turkey; Republic of Turkey,
Ministry of Development; Orta Doğu Teknik Üniversitesi, Ankara/Turkey; Işık University, Istanbul/Turkey; Işık
University, Center of Optomechatronics Application and Research (OPAM), Istanbul/Turkey; Haute Ecole d'Ingénierie et
de Gestion du Canton de Vaud (HEIG-VD), Yverdon-les-Bains/Switzerland for their support through out the DAG
project.

REFERENCES

[1] Gucsav, B. B., Coker, D., Yesilyaprak, C., Zago, L., "Software Requirements Specifications," DAG internal
documentation (2016)
[2] OPC Foundation, "OPC Unified Architecture Specification," <https://opcfoundation.org/developer-
tools/specifications-unified-architecture> (June 2016).
[3] ATASAM, "TCS Design Report," (2016).
[4] ATASAM, "active Optics Control System Design Report," (2016).
[5] ATASAM, "Rotating Enclosure Control System Design Report," (2016).
[6] Filgueira, J. M., Bec, M., Liu, N., Peng, C., Soto, J., "End-to-end observatory software modeling using domain
specific languages," Proc. SPIE 9152, (2014).
[7] Sandrock, S., Amestica, R., Duhoux, P., Navarrete, J., Sarazin, M. S., "VLT Astronomical Site Monitor: Control,
Automation, and Data Flow," Proc. SPIE 4009, 338-349(2011).
[8] Coker, D., Gucsav, B. B., "Operations Concept Document," DAG internal documentation (2016)

Proc. of SPIE Vol. 9913 991333-8

