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Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between
quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as
concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local
operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these
entanglement measures may lead to different entanglement orderings of the states. On the other hand,
although it is not an entanglement measure and not monotonic under local operations, due to its ability of
detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense
attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of
general two qubit states. Generating a thousand random quantum states and performing an optimization
based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the
maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We
show that there are pairs of states having equal maximized QFI but different values for concurrence, REE
and negativity and vice versa.

Q
uantification and manipulation of entanglement between two or more parties have been one of the
central research directions in quantum mechanics since the seminal EPR paper1 and especially with the
emergence of quantum information theory. Maximum entanglement of two qubits shared between two

parties can appear as one of four orthogonal states, called Bell states, which can be transformed into each other by
local operations and classical communication (LOCC)2 while such a transformation becomes impossible in
multipartite setting, where states fall into inequivalent classes such as GHZ3, Cluster4, W5, and Dicke6 states.
Although efficient generation of GHZ and Cluster states of arbitrary sizes has been achieved so far7,8 currently
there is an intense effort for W9–15 and Dicke states16. What is more, a general measure for quantifying multipartite
entanglement is yet to be found. A basic criterion for a measure to be a valid entanglement measure is the
monotonicity, i.e. since entanglement cannot be increased via LOCC, the value that the measure provides should
not be increased via LOCC. In the bipartite case, there are well-known entanglement measures, such as concur-
rence, relative entropy of entanglement (REE) and negativity17–22. Concurrence and negativity measures are based
on the eigenvalues of the density matrix (after some transformations for Concurrence). REE is based on the
distance of the state to the closest separable state. Although the value of such measures for separable states turns to
be 0, and 1 for maximally entangled states, it was found that this is not the case for the states in between18,23–26:
There are pairs of states that have equal values of one measure but different values of another measure; and even
more surprisingly, for one measure, the value of the first state is larger than the second but for another measure,
the value of the first state is smaller than the second. This result on ordering the states with respect to different
entanglement measures can be interpreted as, each of these measures is probably reflecting some other peculiarity
of entanglement.

When it comes to detect entanglement, quantum Fisher information (QFI) has been found to be a useful tool27.
In particular, if a state exceeds the shot-noise level (SNL) that the best separable states can achieve, which is 1, then
that state is entangled. For an N particle state, the fundamental limit or the Heisenberg limit (HL) of QFI is N,
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which is achievable by GHZ states, for example. Therefore, besides
providing information for the phase sensitivity of the state with
respect to SU(2) rotations in the context of quantum metrology28–38;
QFI has received an intense attention with the entanglement in the
focus39–45. There are attempts to find a QFI based general entangle-
ment measure that can quantify not only bipartite but also multipart-
ite states and even bound entangled states43. A recent work has shown
that bound entangled states can reach the Heisenberg level44. Since
QFI provides information for the sensitivity of a state with respect to
changes in the state, including unitary operations, it is naturally non-
invariant with respect to changes in general. Therefore when com-
paring the QFI of a state with entanglement measures (which are
invariant with respect to unitary rotations), it would be plausible to
perform an optimization to find the maximal QFI of the state over all
possible local unitary rotations.

Since QFI plays an important role in various aspects of entangle-
ment, in this work, we extend the state ordering problem which was
studied in the context of the standard entanglement measures, with
the maximized QFI. We generate a thousand two-qubit states, cal-
culate their concurrence and negativity values, run a simulation for
obtaining the relative entropy of entanglement values, calculate QFI
and maximize the QFI with respect to general local unitary opera-
tions and finally analyze these results. We find that there are pairs of
states such that maximized QFI of the first state can be larger than the
second, whereas any standard entanglement measure of the second
being larger than the first, and vice versa. We believe that our work
may contribute to this lively field.

Results
We generated a thousand random two-qubit states of which 625
turns to be separable and the rest to be entangled, in accordance with

the results of18,46. Calculating the entanglement measures and max-
imized QFI (MQFI) values for each state, we found pairs of states {r1,
r2}, in each possible class of different orderings with respect to
standard entanglement measures and MQFI, as presented in
Table 1. Since any entanglement measure of the separable 625 states
turns to be zero, we treat them to be in the same set, i.e.
Entanglement(r1)5Entanglement(r2)50. For the entangled states
which possibly have different orderings with respect to concurrence,
REE and entanglement (as presented in18,23–26), in Table 1 we can treat
pairs of entangled states in one of three possible classes.

In Figure 1, we present the results of state orderings with respect to
(a) concurrence, (b) negativity and (c) REE versus (blue dots) QFI,
(red dots) LOCC Maximized QFI and (green dots) LOCC Minimized
QFI. A main result presented in this figure is that the results of18,23–26

can be reflected the best when QFI is maximized, especially when
considering the ordering with respect to REE. This result would
suggest that when studied in the context of entanglement, QFI should
be LOCC maximized, because the boundaries of the region of not the
blue or the green dots but only of the red dots reflect the comparison
results, presented in Figure 1 of Ref. 25. In particular, only the red
dots are compatible with the curves of comparing REE with concur-
rence and comparing REE with negativity.

Discussion
It was found that in two-qubit systems, state ordering with respective
to quantification of entanglement, highly depends on the entangle-
ment measure used18,23–26. For example, considering a pair of states,
negativity of the first state can be larger than the negativity of the
second state, whereas the concurrence of the second state can be
larger than the concurrence of the first state. This finding opened
new insights in our understanding the entanglement in the bipartite
case and has the potential to give rise to even more interesting results
in the multipartite settings. Regarding the detection of multipartite
entanglement and providing information for the phase sensitivity of
a state with respect to SU(2) rotations, quantum Fisher information
(QFI) is a practical tool and is being studied within the context of
entanglement27,43.

Incorporating QFI, we have extended the state ordering problem
of general two qubit systems. Since QFI is not monotonic under
LOCC, we have maximized (and minimized) QFI with respect to
general Euler rotations of each qubit. We have chosen the maximal
(and minimal) values of QFI and compared these values with the
values obtained by the entanglement measures for each state. The
main result is that regardless of being maximized or minimized by
LOCC, QFI of two-qubit states behave similar to the entanglement
measures in such a comparative analysis: For a pair of states, QFI of
the first state can be larger than the QFI of the second whereas any

Table 1 | Ordering the general two-qubit states with respect to
maximized quantum Fisher information and standard entangle-
ment measures

Class Comparison with Maximized QFI

Entanglement(r1)5
Entanglement(r2)50

MQFI(r1) . MQFI(r2)
MQFI(r1) 5 MQFI(r2)
MQFI(r1) , MQFI(r2)

Entanglement(r2).
Entanglement(r1).0

MQFI(r1) . MQFI(r2)
MQFI(r1) 5 MQFI(r2)
MQFI(r1) , MQFI(r2)

Entanglement(r1)5
Entanglement(r2).0

MQFI(r1) . MQFI(r2)
MQFI(r1) 5 MQFI(r2)
MQFI(r1) , MQFI(r2)

Entanglement(r1).
Entanglement(r2).0

MQFI(r1) . MQFI(r2)
MQFI(r1) 5 MQFI(r2)
MQFI(r1) , MQFI(r2)

Figure 1 | Comparison of (red) maximized QFI, (blue) QFI and minimized (green) QFI with respect to entanglement measures: (a) Concurrence,

(b) Negativity and (c) relative entropy of entanglement of one thousand random states.
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entanglement measure of the second state can be larger than the same
measure of the first.

On the other hand, effect of maximizing QFI becomes significant
for revealing the dynamics of comparison of REE with the other two
measures, in the comparison of QFI with these measures. An inter-
esting result is that QFI of almost all of the generated random states
were both maximized and minimized under LOCC via general Euler

rotations, even with large steps (each being
p

2
) when scanning the

whole space, [0, 2p]. The few states that remained unchanged were

both maximized and minimized as the step size was chosen to be
p

3
.

Observing that QFI of all the random states are both maximized
and minimized via local SU(2) operations might open new questions
for finding non-maximally mixed but QFI non-invariant states
under rotations in a similar vein to quantum discord (QD), since
QD of SU(2) invariant states has been recently studied48,49.

We believe that our results can be useful for understanding the
relation between QFI and entanglement not only in the bipartite but
also in the multipartite settings.

Methods
Concurrence. For a density matrix r, concurrence is given in17 as

C(r)~ maxf0,l1{l2{l3{l4g ð1Þ

where li’s are the square roots of the eigenvalues of the matrix

r(sy6sy)r�(sy6sy) ð2Þ

in decreasing order and si’s are the Pauli spin operators and r* is the complex
conjugate of r. C(r) ranges between 0 for a separable state and 1 for a maximally
entangled state.

Negativity. Negativity can be considered a quantitative version of the Peres-
Horodecki criterion50,51. The negativity for a two-qubit state s is defined as18,19,43:

N(r)~2
X

i

max (0,{mi) ð3Þ

where mi is the negative eigenvalues of the partial transpose of r. Negativity also
ranges between 0 for a separable state and 1 for a maximally entangled state. As shown
by Vidal and Werner19, the negativity is an entanglement monotone which means that
it can be considered as a useful measure of entanglement.

Relative Entropy of Entanglement (REE). Relative Entropy of Entanglement (REE)
of a given state s, which is defined by Vedral et al21,22 as the minimum of the quantum
relative entropy S(rjjs)5Tr(rlogr2rlogs) taken over the set D of all separable states
s, namely

E(r)~ min
r[D

S rjjsð Þ~S(rjj s)
� ð4Þ

where s� denotes a separable state closest to r. In general, REE is calculated
numerically using the methods described in22,46.

Quantum Fisher Information. Defining the fictitious angular momentum operators
on each qubit in each direction,

J~n~
X

a~x,y,z

1
2

nasa ð5Þ

and the quantum Fisher information of a state r of N particles with eigenvalues pi and
the associated eigenvectors jiæ in each direction as F(r,J~n), the maximal mean
quantum Fisher information of the state can be found as

�Fmax~
1
N

max
~n

F(r,J~n)~
lmax

N
: ð6Þ

where lmax is the largest eigenvalue of the 3 3 3 symmetric matrix C, of which
elements can be calculated by45

Ckl~
X
i=j

(pi{pj)
2

pizpj
ijJkj jih jjJl jiizh ijJlj jih jjJkjiih½ � , ð7Þ

where k,l[ x,y,zf g.

Random State Density Matrix Generation. In this work, the density matrices of the
random states are generated as follows:

r~VPV{ ð8Þ

Where P 5 diag(li) diagonal matrix of eigenvalues and V is the unitary matrix18. To
get such random state we have used the methods in the QI package47.

Optimization of QFI. We have performed the maximization via general rotations of
each qubit in the Euler representation

URot (a,b,c)~Ux(a)Uz(b)Ux(c) ð9Þ

where the rotations about axes are defined as Uj(a)~ exp ({ia
sj

2
), j[ x,zf g, with

arbitrary three angles for each qubit between [0, 2p], each with steps of h degrees,

resulting O
2p

h

� �6
 !

QFI calculations. We have found that choosing the steps as

h~
p

2
is sufficient for a good optimization such that the picture, whereas narrowing

the steps could possibly result a better optimization, with the cost of an increase in the
running time of the simulation. For each state, we also found the minimal QFI in the
same general rotation process which is shown as green in Figure 1.

According to the results that we obtained, for the chosen a thousand random states,
%98 of the QFI values are maximized and %99 of the QFI values are minimized with

h~
p

2
and the all the rest with h~

p

3
.
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