
Univariate decision tree induction

using maximum margin classification

Olcay Taner Yıldız

Department of Computer Engineering, Işık University, TR-34980, Şile, Istanbul, Turkey

Email: olcaytaner@isikun.edu.tr

In many pattern recognition applications, first decision trees are used due to their
simplicity and easily interpretable nature. In this paper, we propose a new decision
tree learning algorithm called univariate margin tree, where for each continuous
attribute, the best split is found using convex optimization. Our simulation results
on 47 datasets show that the novel margin tree classifier performs at least as good
as C4.5 and LDT with a similar time complexity. For two class datasets it generates
significantly smaller trees than C4.5 and LDT without sacrificing from accuracy,
and generates significantly more accurate trees than C4.5 and LDT for multiclass

datasets with one-vs-rest methodology.

Keywords: Statistical Learning Theory; Decision Trees

Received 00 Month 2009; revised 00 Month 2009

1. INTRODUCTION

Machine learning aims to determine a description of
a given concept from a set of examples provided by
teacher and from the background knowledge. Learning
examples can be defined as positive or negative for a
two class problem. Background knowledge contains the
information about the language used to describe the
examples and concepts. For instance, it can include
possible values of variables and their hierarchies or
predicates. The learning algorithm then builds on
the type of examples, on the size and relevance of
the background knowledge, and on the representational
issues [1], [2].
Decision trees are one of the well-known learning

algorithms in Machine learning. They are tree-based
structures which consist of internal nodes having one or
more attributes to test and leaves to show the decision
made. The type of the split determines the type of the
decision tree. In univariate decision trees, the split is
based on one attribute. If that attribute is continuous,
there will be two children of each internal node (C4.5)
[3], if that attribute is discrete, there will be L children
of each internal node corresponding to the L different
outcomes of the test (ID3) [4]. In multivariate linear
decision trees, the split is based on a linear combination
of features (CART) [5]. In this paper, we will deal with
continuous univariate decision trees.
Linear discriminant tree (LDT) [6] is another

univariate decision tree technique which uses a
statistical approach to quickly determine the best split.
Finding the best split with Fisher’s Linear Discriminant
Analysis (LDA) [7] is done as a nested optimization
problem. In the inner optimization problem, Fisher’s

linear discriminant is used for finding a good split for
the given two distinct groups of classes. In the outer
optimization problem, at each node m, one searches for
the best separation of K classes into two groups, CL

m

and CR
m [8].

Maximum margin classifiers [9], especially support
vector machines (SVM), became popular in the recent
years for solving problems in classification, regression,
and one class classification. Maximummargin classifiers
(i) approach the classification problem through the
concept of margin, which is defined to be the smallest
distance between the decision boundary and the closest
data points (called support vectors) (ii) determine the
model parameters by setting up a convex optimization
problem, (iii) use hinge loss instead of misclassification
error, and (iv) usually work for two-class problems.

Although this is the first approach using support
vector machines in the univariate decision tree
induction, the idea of combining multivariate support
vector machines and decision-tree-like methods is
not new. These approaches have been applied for
the decomposition and solving multi-class pattern
recognition problems with tree-structured support
vector machines. Tibshirani and Hastie (2007) [12]
propose a tree-based maximum margin classifier, where
they search the line that partitions the classes into two
groups, that has the maximum margin. Bennett and
Blue (1998) [13] investigate decision trees with support
vector classifiers at each node, but they do not discuss
adaptive construction of the tree topology, i.e., the
trade-off between the overall tree complexity and the
complexity of support vector classifiers at each node
remains to be investigated. Vural and Dy (2004) [14]

The Computer Journal, Vol. ??, No. ??, ????

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Isik University Academic Open Access

https://core.ac.uk/display/333954661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Olcay Taner Yıldız

propose divide-by-2 approach for class decomposition
where they use k-means clustering of the class means
to divide the points in two groups at each node, before
applying a support vector classifier.
In this paper we propose a novel decision tree

classifier which finds the best split for each attribute
at each decision node using convex optimization. Our
simulation results on 47 datasets from UCI repository
[10] show that our univariate margin tree classifier
performs better than C4.5 and LDT in terms of
accuracy and tree size.
This paper is organized as follows: In Section 2 we

present and discuss our proposed Univariate Margin
Tree algorithm. We present the experimental setup
and results in Section 3 where we compare in detail our
proposed algorithm with C4.5 and LDT. Section 4 gives
the conclusions and discusses possible future directions.

2. UNIVARIATE MARGIN TREE

2.1. Theoretical Background

We consider the well-known supervised learning setting
where the learning algorithm uses a sample of N
labeled points S = ((x1, y1), . . . , (xN , yN)) ∈ (X ×
Y)N , where X is the input space and Y the label
set, which is {−1,+1}. The input space X is a
continuous vectorial space of dimension d, the number
of features. The data pairs (xi, yi) are independently
and identically distributed according to an unknown
but fixed distribution.
In training a multivariate linear test, wide margin

classifiers can be used to find the weight vector
w = [w1, w2, . . . , wd]

T and the threshold w0 that best
separates the two classes. In support vector machines,
the classification task is defined as a minimization
problem. The distance from the separating hyperplane
to the instances closest to it on either side is called
margin and the optimal separating hyperplane is the
one that maximizes the margin. For the nonseparable
case, we require

yt(wT
x
t + w0) ≥ 1− ǫt (1)

for each data point x
t with output yt. If ǫt = 0, the

instance is on the separating hyperplane. If 0 < ǫt <
1, the instance is correctly classified but it is in the
margin. If ǫt > 1, it is misclassified. Maximizing margin
is equivalent to minimizing ||w||, and after adding the
penalty term (

∑
ǫt) to the objective function one gets

the following formulation [9]

Min 1

2
||w||2 + C

∑

t

ǫt

s.t. yt(wT
x
t + w0) ≥ 1− ǫt

ǫt ≥ 0

(2)

where C is the penalty factor.
In training a univariate test, one tries to find the

best feature xj and the threshold w0, namely the split

xj + w0 ≥ 0 that best separates two (or K) classes.
To separate K classes as good as possible, C4.5 tries
to minimize the impurity or maximize the information
gain, LDT assumes the two class groups are normally
distributed and tries to maximize the ratio of between
class distance to within class distance. In this paper,
we take the wide margin approach and express finding
best split as a minimization problem. To find the best
threshold for feature j, we require

yt(xt
j + w0) ≥ C − ǫt (3)

for each data point xt
j with output yt, where |C| is the

length of the margin. If ǫt = 0, the instance is on
the separating line. If 0 < ǫt < |C|, the instance is
correctly classified but it is in the margin. If ǫt > |C|,
it is misclassified. Since there is only single variable, and
its weight is 1, we only need the penalty term (

∑
ǫt) in

the objective function. Now the formulation is:

Min
∑

t

ǫt

s.t. yt(xt
j + w0) ≥ C − ǫt

ǫt ≥ 0

(4)

This is a linear programming problem in which ǫt and
w0 are variables. By adding Langrange multipliers
(αt ≥ 0 and µt ≥ 0), the problem can be converted
to

L(w0, ǫ
t, αt, µt) =

∑

t

ǫt−
∑

t

αt[yt(xt
j+w0)−C+ǫt]−

∑

t

µtǫt

(5)
We can remove the primal variables ǫt and w0 by
maximization, i.e. set the following derivatives to zero:

∂L

∂w0

= 0 ⇒
∑

t

αtyt = 0

∂L

∂ǫt
= 0 ⇒ αt + µt = 1 (6)

If the equations 6 are plugged in the equation 5, one
gets:

D(αt, µt) =
∑

t

αt(C − ytxt
j) (7)

Since we have αt ≥ 0, µt ≥ 0, and αt + µt = 1, it
follows 0 ≤ αt ≤ 1. Now the dual optimization problem
becomes

Max
∑

t

αt(C − ytxt
j)

s.t.
∑

t

αtyt = 0

0 ≤ αt ≤ 1

(8)

Neither the primal (Equation 4) nor the dual (Equation
8) is easily solvable. To solve the problem, we search
all possible solutions in terms of the split point w0

exhaustively. The inequality yt(xt
j + w0) ≥ C − ǫt can

be written as

ǫt ≥ C − xt
jy

t − w0y
t (9)

The Computer Journal, Vol. ??, No. ??, ????

Univariate decision tree induction using maximum margin classification 3

Split UnivariateMarginTreeBestSplit(N , d, S, V)
1 bestError = +∞
2 for C = -2.0 to 2.0 step 0.1
3 for i = 1 to d
4 minepsilon = +∞
5 for j = 1 to N

6 w0 =
C − xj

i y
j

yj

7 sumepsilon = 0.0
8 for k = 1 to N
9 ǫk = C − xk

i y
k − w0y

k

10 if ǫk > 0
11 sumepsilon += ǫk

12 if sumepsilon < minepsilon
13 bestw0 = w0

14 error = ErrorOfSplit(xi + bestw0 ≥ 0, V)
15 if error < bestError
16 bestError = error
17 bestSplit = xi + bestw0 ≥ 0
18 return bestSplit

FIGURE 1. The pseudocode of the search algorithm
for finding the best split at each decision node of the
univariate margin tree: N : Number of examples at the
decision node, d: Number of inputs in the dataset, S =
((x1, y1), . . . , (xN , yN)): Sample of N labeled data points
at the decision node, V : Validation data used to optimize
C value

According to the convex optimization theory, the
solution to a convex optimization problem (if there is
a solution) lies in one of the vertices of the convex
polytope and each vertex is specified by a set of n + 1
inequalities tight, where n+1 represents the number of
distinct variables. Setting the left side of the Equation
9 to zero (ǫi = 0) gives us all possible values for

w0 =
C − xt

jy
t

yt
. Then the only remaining thing is to

calculate other ǫj ’s and check for the maximum value
of the objective function

∑

t

ǫt.

2.2. The Algorithm

The pseudocode for finding the best split at each
decision node of the univariate margin tree is given in
Figure 1. For each feature i we search for the optimal w0

exhaustively (Line 3). Given the feature i, there exists
at most N different w0’s corresponding to N different
inequalities shown in Equation 9, where each time a
different ǫt is zero (Line 6). To get the minimum value

of the penalty term
∑

t

ǫt for a specific w0, we set ǫ
k to

zero if C − xk
i y

k − w0y
k < 0 and to C − xk

i y
k − w0y

k

if C − xk
i y

k − w0y
k > 0 (Line 11). The threshold w0

corresponding to the minimum overall penalty will be
selected as a best split candidate (Lines 12 and 13).

Similar to the support vector machines, to optimize the
length of the margin C, we need a separate validation
set. The instances are normalized in order to use the
same C value for each feature. We calculate the error
rate of the current best split candidate on the validation
set and compare it with the best error so far (Lines 14
and 15). We return the split with minimum error as the
best split (Line 17).
For a given data size N and dimension d, the

computational complexity of the algorithm is O(dN2).
But like C4.5, one can sort w0’s (O(N logN)) and
calculate the minimum overall penalty in O(N) time
resulting in a lower computational complexity of
O(dN logN), which is the same as C4.5’s complexity.

3. EXPERIMENTS

3.1. Experimental Setup

In this section, we compare the performance of our
proposed univariate margin tree algorithm (UMT) with
C4.5 and LDT in terms of generalization error and
model complexity as measured by the number of nodes
in the decision tree. We use a total of 47 data sets
where 36 of them are from UCI repository [10] and 11
are bioinformatics cancer datasets [11] (see Table 1).
Our methodology in generating train, validation and

test sets is as follows: A data set is first divided into
two parts, with 1/3 as the test set, test, and 2/3 as
the training set. The training set is then resampled
using 2×5 cross-validation to generate ten training and
validation folds, trai, vali, i = 1, . . . , 10. trai are used to
train the decision trees and vali are used to prune the
decision trees using cross-validation based postpruning.
test is used to estimate the generalization error of the
decision trees. We use k-fold paired t test (α = 0.05) to
compare univariate decision tree construction methods
(in terms of generalization error and tree complexity)
for statistically significant difference.

3.2. Results

Table 2 shows average and standard deviations of error
rates of decision trees generated using C4.5, LDT, and
UMT for K = 2 class datasets. We see from the results
that, UMT is as good as C4.5 and LDT in terms of error
rate. In 3 datasets out of 20 UMT has significantly
smaller error rate than C4.5 and LDT. On the other
hand, C4.5 and LDT have significantly smaller error
rate than UMT in 5 datasets out of 20.
Table 3 shows the average and standard deviations

of number of nodes (including the leaves) of decision
trees generated using C4.5, LDT, and UMT for K
= 2 class datasets. Better than the results above,
UMT is significantly better than both C4.5 and LDT
in terms of tree complexity. In 9 datasets out of 20
UMT generates significantly smaller trees than C4.5
and LDT. Whereas, C4.5 (LDT) generates significantly
smaller trees than UMT in only 1 (0) dataset out of

The Computer Journal, Vol. ??, No. ??, ????

4 Olcay Taner Yıldız

TABLE 1. Details of the datasets. d: Number of attributes, K: Number of classes, N : Sample size

Dataset d K N Source Dataset d K N Source

ads 1558 2 3279 UCI braintumor1 5920 5 90 Bio
breast 9 2 699 UCI braintumor2 10367 4 50 Bio
bupa 6 2 345 UCI dermatology 34 6 366 UCI
dlbcl 5469 2 77 Bio ecoli 7 8 336 UCI
german 24 2 1000 UCI glass 9 6 214 UCI
haberman 3 2 306 UCI iris 4 3 150 UCI
heart 13 2 270 UCI letter 16 26 20000 UCI
hepatitis 19 2 155 UCI leukemia1 5327 3 72 Bio
ironosphere 34 2 351 UCI leukemia2 11225 3 72 Bio
magic 10 2 19020 UCI lungtumor 12600 5 203 Bio
musk2 166 2 6598 UCI ocr 256 10 600 UCI
parkinsons 22 2 195 UCI optdigits 64 10 3823 UCI
pima 8 2 768 UCI pageblock 10 5 5473 UCI
polyadenylation 169 2 6371 UCI pendigits 16 10 7494 UCI
prostatetumor 10509 2 102 Bio segment 19 7 2310 UCI
ringnorm 20 2 7400 UCI shuttle 9 7 58000 UCI
satellite47 36 2 2134 UCI srbct 2308 4 83 Bio
spambase 57 2 4601 UCI vehicle 18 4 846 UCI
transfusion 4 2 748 UCI wave 21 3 5000 UCI
twonorm 20 2 7400 UCI winequality 11 7 6497 UCI
9tumors 5726 9 60 Bio wine 13 3 178 UCI
11tumors 12533 11 174 Bio yeast 8 10 1484 UCI
14tumors 15009 26 308 Bio zipcodes 256 10 7291 UCI

zoo 16 7 101 UCI

TABLE 2. The average and standard deviations of error rates of decision trees generated using C4.5, LDT, and UMT for
K = 2 class datasets. For each dataset the best result is shown in boldface.

Dataset C4.5 LDT UMT

ads 3.36±0.39 3.65±0.42 3.90±0.30
breast 6.92±1.24 6.45±0.51 6.32±1.45
bupa 38.53±4.38 40.78±4.42 41.98±5.19
dlbcl 23.33±8.91 25.56±5.37 21.48±7.16
german 29.43±1.18 29.28±1.40 28.20±1.56
haberman 26.37±0.31 27.25±2.84 26.18±0.93
heart 30.89±3.98 29.00±4.76 32.44±2.81
hepatitis 22.31±3.97 21.73±1.30 19.62±2.53
ironosphere 14.19±4.44 14.87±4.51 11.28±5.85
magic 17.13±0.40 17.70±0.28 19.21±0.41
musk2 4.70±0.60 5.29±0.60 12.70±1.24
parkinsons 15.38±4.47 15.54±5.40 14.92±3.63
pima 28.87±2.72 28.44±4.25 26.26±1.29
polyadenylation 30.58±2.11 29.59±1.73 29.65±1.27
prostatetumor 15.71±2.43 20.29±10.64 22.00±11.43
ringnorm 12.04±0.71 23.13±1.18 15.12±2.02
satellite47 14.59±1.33 15.21±1.17 14.61±0.76
spambase 9.32±1.22 9.19±0.80 10.14±0.56
transfusion 24.00±0.00 23.76±0.76 24.00±0.00
twonorm 17.50±0.64 17.73±0.69 19.14±0.68

20. We can conclude that for two class datasets, UMT
generates smaller trees than C4.5 and LDT without
sacrificing from accuracy.

In UMT, for K > 2 class problems, we take the
most commonly used approach and reduce the single
multiclass problem into multiple binary classification

problems. UMT uses two well-known methods to build
binary classifiers where each classifier distinguishes
between (i) one of the labels to the rest (one-versus-
rest) or (ii) between every pair of classes (one-versus-
one). Table 4 shows average and standard deviations of
error rates of decision trees generated using C4.5, LDT,

The Computer Journal, Vol. ??, No. ??, ????

Univariate decision tree induction using maximum margin classification 5

TABLE 3. The average and standard deviations of number of nodes of decision trees generated using C4.5, LDT, and UMT
for K = 2 class datasets.

Dataset C4.5 LDT UMT

ads 38.80±19.81 50.20±21.60 31.00±11.83
breast 11.50±7.65 10.00±5.66 7.60±3.41
bupa 18.70±15.13 13.30±16.34 8.20±6.96
dlbcl 3.40±1.90 2.50±2.12 1.90±1.45
german 4.30±6.99 10.90±20.88 9.10±8.72
haberman 4.60±8.69 4.60±8.69 2.20±3.79
heart 9.40±5.44 8.20±5.14 4.90±2.85
hepatitis 10.90±9.70 2.50±3.24 4.90±4.48
ironosphere 11.80±6.66 12.40±9.03 12.10±5.84
magic 86.80±28.47 121.30±44.42 63.40±13.33
musk2 114.10±25.18 131.50±28.43 24.40±11.12
parkinsons 9.10±5.84 8.80±4.05 5.80±3.52
pima 15.10±13.27 23.80±24.83 7.60±5.06
polyadenylation 38.50±20.11 54.70±37.35 81.70±28.44
prostatetumor 5.20±2.10 4.90±2.02 3.70±0.95
ringnorm 157.00±44.70 261.10±67.42 70.90±10.96
satellite47 40.60±16.42 27.40±20.29 26.50±9.72
spambase 79.90±31.78 106.60±38.93 54.70±17.69
transfusion 1.00±0.00 1.90±2.85 1.00±0.00
twonorm 225.10±44.95 248.80±51.27 171.70±23.60

TABLE 4. The average and standard deviations of error rates of decision trees generated using C4.5, LDT, UMT (one-vs-
one), and UMT (one-vs-rest) for K > 2 class datasets.

Dataset C4.5 LDT UMT(OVO) UMT(OVR)

9tumors 85.45±1.92 84.55±4.89 78.64±10.51 74.09±8.58
11tumors 46.56±6.05 41.80±5.42 40.98±2.04 34.10±4.69
14tumors 77.39±5.75 75.32±3.85 70.54±2.44 63.42±4.40
braintumor1 37.50±1.47 33.44±5.32 38.75±5.15 39.69±9.55
braintumor2 51.11±8.20 53.89±12.02 44.44±10.14 53.33±12.88
dermatology 12.48±1.52 12.48±1.52 11.12±1.38 9.76±2.26
ecoli 21.30±2.70 18.70±3.36 23.04±3.51 16.52±2.56
glass 37.43±3.43 36.35±4.79 45.27±3.50 40.95±2.78
iris 7.65±1.11 7.45±0.83 7.06±1.89 7.06±2.95
letter 18.44±0.50 19.26±0.57 23.14±0.81 13.76±0.80
leukemia1 15.60±2.27 14.80±3.79 20.40±12.57 15.20±4.92
leukemia2 14.40±5.06 17.60±3.37 30.00±14.88 16.00±7.54
lungtumor 15.65±6.03 13.33±8.53 20.72±5.55 14.49±4.73
ocr 23.65±4.18 23.65±4.18 22.50±2.76 19.80±3.85
optdigits 14.99±0.69 14.57±1.48 11.71±0.49 8.50±0.77
pageblock 3.72±0.48 3.63±0.45 4.79±0.51 4.50±0.36
pendigits 5.90±0.47 6.32±0.58 9.78±0.73 4.66±0.45
segment 4.97±1.14 5.44±0.67 8.43±1.27 6.32±0.98
shuttle 0.07±0.01 0.11±0.02 1.07±2.24 0.39±0.07
srbct 29.31±9.92 23.10±11.84 26.21±8.93 14.83±7.46
vehicle 29.82±2.43 30.35±2.34 32.15±3.43 28.80±1.71
wave 24.67±1.17 24.14±0.58 24.52±0.80 23.19±1.49
winequality 45.58±1.26 46.40±0.76 46.12±0.86 45.10±0.76
wine 10.33±3.58 13.00±6.89 9.17±2.97 8.50±3.09
yeast 47.85±3.16 49.50±2.20 45.06±2.23 42.71±0.94
zipcodes 15.60±0.82 17.30±0.84 12.27±0.61 10.02±0.85
zoo 15.95±4.50 15.95±4.50 18.65±5.62 18.11±3.83

UMT (one-vs-one), and UMT (one-vs-rest)for K > 2
class datasets. We see from the results that, UMT

(one-vs-one) is as good as C4.5 and LDT in terms of
error rate. In 5 datasets out of 27 UMT (one-vs-one)

The Computer Journal, Vol. ??, No. ??, ????

6 Olcay Taner Yıldız

has significantly smaller error rate than C4.5 and LDT,
whereas C4.5 and LDT have significantly smaller error
rate than UMT (one-vs-one) in 8 datasets out of 27.
On the other hand, UMT (one-vs-rest) is significantly
better than C4.5 and LDT in terms of error rate. In 13
datasets out of 27 UMT (one-vs-rest) has significantly
smaller error rate than C4.5 and LDT, whereas C4.5
and LDT have significantly smaller error rate than
UMT (one-vs-rest) only in 3 datasets out of 27.

4. CONCLUSION

In this paper, we propose univariate margin tree, where
the best split is found using convex optimization at each
decision node. The main idea comes from simplifying
the formulation of multivariate linear support vector
machines. Simplification is done by (i) replacing the
multivariate discriminant w with the univariate axis-
orthogonal split xj + w0 ≥ 0, (ii) removing the ||w||2

factor from the objective function since there is only
single variable xj , and (iii) redefining the margin in the
one-dimensional space. None of the resulting primal
and dual formulations are easily solvable, therefore
we resort searching for the optimal w0 exhaustively.
Although the first-come to mind exhaustive search is
expensive, with the same trick applied in C4.5, one can
get a computational complexity of O(dN logN), which
is much better than the usual time complexity of the
traditional support vector machines.
Experimental results on 36 datasets from UCI

repository and 11 bioinformatics datasets show that
for two class problems our proposed univariate margin
tree not only performs as good as C4.5 and LDT
(both univariate decision tree classifiers) in terms of
accuracy, but it produces significantly smaller trees to
do that. For multiclass problems, we tried two well-
known reduction techniques, namely, one-vs-one and
one-vs-rest. In terms of generalization error, one-vs-
rest is significantly better than one-vs-one technique,
which is also as good as C4.5 and LDT.

ACKNOWLEDGEMENTS

This work has been supported by the Turkish Scien-
tific Technical Research Council TÜBİTAK EEEAG
107E127.

REFERENCES

[1] Mitchell, T. (1997) Machine Learning. McGraw-Hill,
MA.

[2] Alpaydın, E. (2010) Introduction to Machine Learning.
The MIT Press, MA.

[3] Quinlan, J. R. (1993) C4.5: Programs for Machine

Learning. Morgan Kaufmann, San Meteo, CA.

[4] Quinlan, J. R. (1986) Induction of decision trees.
Machine Learning, 1, 81–106.

[5] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
C. J. (1984) Classification and Regression Trees. John
Wiley and Sons, New York.

[6] Yıldız, O. T. and Alpaydın, E. (2005) Linear
discriminant trees. International Journal of Pattern

Recognition and Artificial Intelligence, 19, 323–353.

[7] Duda, R. O., Hart, P. E., and Stork, D. G. (2001)
Pattern Classification. John Wiley and Sons, New York.

[8] Guo, H. and Gelfand, S. B. (1992) Classification
trees with neural network feature extraction. IEEE

Transactions on Neural Networks, 3, 923–933.

[9] Vapnik, V. (1995) The Nature of Statistical Learning

Theory. Springer Verlag, New York.

[10] Asuncion, A. and Newman, D. J. (2007). UCI machine
learning repository.

[11] Statnikov, A., Aliferis, C., Tsamardinos, I., Hardin,
D., and Levy, S. (2005) A comprehensive evaluation
of multicategory classification methods for microarray
gene expression cancer diagnosis. Bioinformatics, 21,
631–643.

[12] Tibshirani, R. and Hastie, T. (2007) Margin trees for
high-dimensional classification. Journal of Machine

Learning Research, 8, 637–652.

[13] Bennett, K. and Blue, J. (1998) A support vector
machine approach to decision trees. Proceedings of

the International Joint Conference on Neural Networks,
Anchorage, Alaska, 4-9 May, pp. 2396–2401. IEEE.

[14] Vural, V. and Dy, J. G. (2004) A hierarchical method
for multi-class support vector machines. Proceedings

of the 21st International Conference on Machine

Learning, Banff, Alberta, Canada, 4-8 July, pp. 831–
838. ACM, New York.

The Computer Journal, Vol. ??, No. ??, ????

