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We study the quantum Fisher information (QFI) of W states in the basic decoherence channels.
We show that, as decoherence starts and increases, under i) depolarizing, QFI smoothly decays; ii)
amplitude damping, QFI first exhibits a sudden drop to the shot noise level, then decreases to zero
and finally increases back to the shot noise level; iii) phase damping, QFI is zero for all non-zero
decoherence. We also find that on the contrary to GHZ states, QFI of W states in x and y directions
are equal to each other and zero in z direction.
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Quantum Fisher information (QFI) is the natural ex-
tension of Fisher information in the quantum regime and
QFI of a parameter quantifies the sensitivity of a state
with respect to changes of the parameter [1–3]. The limit
on the variance of the estimation of a parameter φ of
a general density matrix ρ(φ) is given by the quantum
Cramer-Rao bound [2, 3]

∆φ̂ ≥ ∆φQCB ≡ 1√
NmF

(1)

where Nm is the number of experiments, F is the quan-

tum Fisher information and the estimator φ̂ satisfies

〈φ̂〉 = φ. In particular, QFI characterizes the phase sen-
sitivity of a state with respect to SU(2) rotations, i.e.
consider that the parameter φ is acquired by an SU(2) ro-

tation ρ(φ) = UφρU
†
φ, where Uφ = eiφJ~n with the angular

momentum operators on each particle in each direction,
i.e.

J~n =
∑

α=x,y,z

1

2
nασα, (2)

σα being the Pauli matrices. Considering Nm = 1, for
separable states of N particles, F ≤ N , where equality
holds for coherent spin states, for example. Therefore the
precision limit of the estimation with the best separable
states is 1/

√
N , which is called the shot-noise limit. On

the other hand, quantum Fisher information of an entan-
gled state, such as a pure GHZ state can reach N2, im-
plying the fundamental limit 1/N , which also called the
Heisenberg limit. It was shown that QFI provides a suf-
ficient condition to recognize multipartite entanglement:
If QFI of a state surpasses the shot-noise limit, then it is
multipartite entangled and it is called a “useful” state [4].
A basic property of multipartite entangled states is that
they fall into inequivalent classes such as GHZ, W and
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Dicke states, and in general, a state in one class cannot be
converted to a state in another class via local operations
and classical communication (LOCC) [5], and for several
tasks a specific multipartite entangled state is strictly re-
quired [6]. Together with the discovery that not all multi-
partite entangled states exceeds the shot-noise limit -even
when they are free of any decoherence [7–9], this property
makes exploring QFI and the usefulness of each generic
state a crucial step for quantum information science, es-
pecially when the state is subjected to decoherence due to
natural effects. Recently, quantum metrology has been
studied in non-markovian environments [10, 11] and in
dissipative environments [12–15]. It was shown that the
superpositions of pure Dicke states achieves larger QFI
than pure Dicke states themselves [16]. We have stud-
ied the behavior of QFI of pure states in the superposi-
tion of GHZ and W states of several particles [17, 18],
QFI of Bell states under decoherence [19] and proposing
an LOCC optimization, analyzed QFI with entanglement
measured [20]. QFI of NOON states in relativistic chan-
nels [21] and QFI of GHZ states in the basic decoherence
channels have been studied [22]. In the latter, it was
found that in all three channels, there appears a compe-
tition between the phase sensitivities in each direction.
Therefore QFI exhibits sudden change points. Also QFI
of decohered GHZ states exhibit a smooth and continues
decay starting from the QFI of the pure GHZ state.

In this work, we study the QFI of W states in the three
basic decoherence channels, i.e. depolarizing, amplitude
damping and phase damping. On the contrary to GHZ
states [22], we first show that, no matter being pure or
decohered, W states do not provide phase sensitivity in z
direction and the phase sensitivities in x and y directions
are equal to each other, which implies no sudden change
points due to competition between directions. More in-
terestingly we show that phase sensitivity of W states
under decoherence exhibits discontinuities such as a sud-
den drop in amplitude damping channel and even sudden
death in phase damping channel but exhibits a smooth
and continues decay in depolarizing channel.

A general W state of N particles can be written as
|WN 〉 = 1√

N
(|0⊗(N−1)〉|1〉+

√
N − 1|WN−1〉|0〉) for N >
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2, where |W2〉 corresponds to the Bell pair in the form
1√
2
(|01〉+ |10〉) and a W state of 3 particles to the state

|W3〉 = 1√
3
(|001〉+ |010〉+ |100〉).

The maximal mean quantum Fisher information
(QFI), i.e. the quantum Fisher information F per qubit
maximized over directions, F̄max = max{F̄x, F̄y, F̄z} of a
possibly mixed state ρ of N qubits is given in [1, 22] as

F̄max(ρ) =
cmax

N
(3)

where cmax is the largest eigenvalue of the matrix C of
which elements are given as

Ckl =
∑

i6=j

(λi − λj)
2

λi + λj
[〈Vi|Jk|Vj〉〈Vj |Jl|Vi〉

+ 〈Vi|Jl|Vj〉〈Vj |Jk|Vi〉] (4)

where, λi,j and |Vi,j〉 are the eigenvalues and the asso-
ciated eigenvectors of the density matrix of the state ρ
respectively. For a pure state QFI is simplified to max-
imum of 4(∆J~n)

2/N over spin directions x, y and z,
where (∆J~n)

2 is the variance of the operator J~n, be-
ing (∆J~n)

2 = 〈J2
~n〉 − 〈J~n〉2. For a pure GHZ state of

N particles, 4(∆Jx)
2 = 4(∆Jy)

2 = 0 and 4(∆Jz)
2 = N2;

whereas for a pureW state, 4(∆Jx)
2 = 4(∆Jy)

2 = 3N−2
and 4(∆Jz)

2 = 0. In the case of decoherence, matrix
C for W states appears as diag{Cxx, Cyy, Czz} where
Cxx = Cyy, Czz = 0 and the element Ckk represents the
phase sensitivity in k direction. In other words, because
of the form of the J~n operator that imparts the parame-
ter to be estimated, pure or decohered W states have no
phase sensitivity in z direction and sensitivities in x and
y directions are equal to each other.
Decoherence channels for a density matrix ρ can be

given in Kraus representation as [23, 24]

ε(ρ) =
∑

µ

EµρE
†
µ (5)

where the Kraus operators Eµ satisfy the completeness
relation

∑

µ

E†
µEµ = 1. (6)

and 1 is the 2x2 identity matrix.
Below we will study QFI of W states in the basic de-

coherence channels. For each decoherence channel, as
in [22] we assume that each particle of the state is sub-
jected to the same decoherence effect. We find that the
general behavior of QFI of W states does not depend on
the number of particles N , and for the sake of simplicity
we present some of the results for W3, i.e. a W state of
3 qubits. Following the work of Ref.[25] we also relate
the QFI of W states under decoherence to the geometric
representation with the Bloch sphere.

0.2 0.4 0.6 0.8 1.0
p0.0

0.5

1.0

1.5

2.0

2.5

3.0
QFI

FIG. 1: (Color online). QFI of W3 in decoherence channels
with respect to the decoherence strength p. Black dot at 7/3
is for a pure |W3〉 state, i.e. p = 0. Green, blue and red
curves are for a W3 state in depolarizing, amplitude damping
and phase damping channels, respectively.

I. DEPOLARIZING CHANNEL

A d-level quantum system under depolarizing channel
is depolarized with some probability, i.e. replaced by the
maximally mixed state 1/d with some probability or left
untouched. The Kraus operators of depolarizing channel
for a single qubit are given by

E0 =

√

1− 3

4
p1, E1 =

√

p

4
σx,

E2 =

√

p

4
σy , E3 =

√

p

4
σz .

(7)

The eigenvalues ofW3 in the depolarizing channel appear
as λ1 = 1

8 (−2 + p)2p; λ2 = − 1
8 (−2 + p)p2; λ3 = λ4 =

1
24p(8−6p+p2); λ5 = 1

24p(16−24p+11p2); λ6 = 1
24 (24−

52p+ 42p2 − 11p3) and λ7 = λ8 = 1
24 (4p− p3), with the

associated eigenvectors,

|V1〉 = [1, 0, 0, 0, 0, 0, 0, 0]†,
|V2〉 = [0, 0, 0, 0, 0, 0, 0, 1]†,

|V3〉 = [0,− 1√
3
, 0, 0, 1√

3
, 0, 0, 0]†,

|V4〉 = [0,− 1√
3
, 1√

3
, 0, 0, 0, 0, 0]†,

|V5〉 = [0, 0, 0, 1√
3
, 0, 1√

3
, 1√

3
, 0]†,

|V6〉 = [0, 1√
3
, 1√

3
, 0, 1√

3
, 0, 0, 0]†,

|V7〉 = [0, 0, 0,− 1√
3
, 0, 0, 1√

3
, 0]†,

|V8〉 = [0, 0, 0,− 1√
3
, 0, 1√

3
, 0, 0]†.

Using Eq.(4) it is straightforward to find that
F̄max = ((−1 + p)2(435456 + (−2 + p)p(1187088 +
5(−2 + p)p(233008 + (−2 + p)p(96379 + 13872(−2 +
p)p)))))/(972(4+3(−2+p)p)(8+p(−9+4p))(6+p(−7+
4p))). That is, the maximal mean QFI of W3 in depolar-
izing channel, starting from the value of QFI of a pureW3

state, which is 7/3, exhibits a smooth decrease with re-
spect to the depolarization strength and vanishes when
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the depolarization strength is maximum (see the green
curve in Fig.1). QFI of a general WN in depolarizing
channel, exhibiting the same behavior, starts decaying
from 3− 2

N at p = 0; vanishes at p = 1 and only the steep-
ness of the decrease of the QFI depends on the number
of particles. Behavior of QFI of W states in depolariz-
ing channel is similar to that of GHZ states [22]. The
smooth decay of QFI of both GHZ and W states under
depolarization can be linked to the fact that the radius
of the Bloch sphere of a qubit in depolarization chan-
nel is reduced uniformly in each direction, such that the
phase sensitivity of the state is reduced in each direction
uniformly.

II. AMPLITUDE DAMPING CHANNEL

A quantum system dissipating energy to (or receiving
energy from) its environment -such as an atom loosing (or
receiving) a photon- can be modelled as a damping (or
an amplification) in its amplitude. The Kraus operators
of the amplitude damping channel for a single qubit are
given by

E0 = |0〉〈0|+
√

1− p|1〉〈1|, E1 =
√
p|0〉〈1| (8)

where p is the probability of decay from upper level |1〉
to the lower level |0〉 with the damping rate γ i.e. 1−p =
e−γt/2. We find the eigenvalues of the density matrix of
a W3 as λ1 = 1 − p and λ2 = p, with the associated
eigenvectors,

|V1〉 = [0, 1√
3
, 1√

3
, 0, 1√

3
, 0, 0, 0]†,

|V2〉 = [1, 0, 0, 0, 0, 0, 0, 0]†.

For |WN 〉, the eigenvectors are the |WN 〉 itself and |0⊗N〉
with the same eigenvalues. Using Eq.(4) we construct the
C matrix and find the largest eigenvalue of C matrix as
cmax = N(1− 2p)2, therefore F̄max is independent of N .
Therefore the maximal mean quantum Fisher informa-
tion of a W state of N particles in amplitude damping
channel with decoherence strength p is

F̄max =

{

3− 2
N , p = 0,

(1 − 2p)2, 0 < p ≤ 1.
(9)

This result, as plotted in Fig.1 (the blue curve) shows
that, QFI of W states exhibit a sudden drop to shot-
noise level, when subjected to amplitude damping noise,
and as the strength increases, QFI first vanishes and then
increases back to shot-noise level. The reason of this un-
expected revival of QFI of W states for 0.5 ≥ p ≥ 1 is
that, any entangled state decoheres towards the separa-
ble state |000..0〉 (or to the state |111..1〉) in amplitude
damping (or amplifying) channel -where the entire Bloch
sphere shrinks to north (or south) pole- and the states
on the poles provide the shot noise limit. This sudden
change to (1 − 2p)2 for p > 0 is observed in the case of
GHZ states as well, in a sense that when a pure GHZ

state starts to decohere, its F̄x and F̄y exhibit a sudden
jump from 0 to 1. However, since F̄z is dominant until
p = 0.5 and it decays smoothly from N , QFI (i.e. the
maximum of F in each direction) of GHZ states do not
exhibit the sudden change in the final picture. Regarding
W states, F̄z is zero and dominant directions are x and
y. Therefore QFI of W states exhibits sudden drop from
3−N/2 to 1 in amplitude damping channel.

III. PHASE DAMPING CHANNEL

Quantum systems decohere not only due to energy loss
as in amplitude damping but also due to the loss of the
quantum information without loosing energy. This type
of noise is modelled as phase damping channel since the
relative phase between the energy eigenstates of the sys-
tem is lost, decaying the off-diagonal elements of the den-
sity matrix of the system. The Kraus operators for the
phase damping channel for a single qubit system are given
by

E0 =
√

1− p1, E1 =
√
p|0〉〈0|, E2 =

√
p|1〉〈1|. (10)

Phase damping shrinks the Bloch sphere in x and y di-
rections and has no effect on z direction. In the phase
damping channel, the eigenvalues of W3 state appear as
λ1 = 1

3 (3− 4p+2p2) and λ2 = λ3 = 1
3 (2p− p2); with the

associated eigenvectors,

|V1〉 = [0, 1√
3
, 1√

3
, 0, 1√

3
, 0, 0, 0]†,

|V2〉 = [0, 1√
2
,− 1√

2
, 0, 0, 0, 0, 0]†,

|V3〉 = [0,−s,−s, 0, 2s, 0, 0, 0]†.

where s = 0.408248. It is easy to see that 〈Vi|Jk|Vj〉 = 0
for any i, j = 1, 2, 3, i 6= j and k = x, y, z. Therefore
via Eq.(4) we find that at any non-zero strength of phase
damping, QFI vanishes, i.e. for a W state of N qubits in
phase damping channel,

F̄max =

{

3− 2
N , p = 0,

0, 0 < p ≤ 1,
(11)

which shows that W states in phase damping channel do
not provide phase sensitivity in any directions. We also
calculated the quantum Fisher information of the state
|W3(γ, θ)〉 = 1√

3
(|100〉+ eiγ |010〉+ eiθ|001〉) under phase

damping. When p = 0, for the boundary values of γ and
θ, QFI of |W3(γ, θ)〉 converges to 3−2/N but is decreased
for the region 0 < γ < 2π and 0 < θ < 2π. On the other
hand, independent from the values of γ and θ, QFI of
decoheredW3(γ, θ) state is zero for all p > 0. GHZ states
have zero mean spin, i.e. 〈Jx〉 = 〈Jy〉 = 〈Jz〉 = 0. As a
pure GHZ state starts to decohere, the dominant Fisher
information is in z direction and with the shrinking of the
Bloch sphere in x-y plane, Fz smoothly decreases. On the
other hand, for W states 〈Jx〉 = 〈Jy〉 = 0, 〈Jz〉 = 1/2,
i.e. the spin direction of the state is along the z axis but
Fz = 0 and with the shrinking of the Bloch sphere in x-y
plane, Fx and Fy drops to zero.
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IV. CONLUSION

In conclusion, we have studied quantum Fisher infor-
mation (QFI) ofW states with respect to SU(2) rotations
in three decoherence channels. We have shown that the
QFI of W states when subjected to i) depolarization, as
decoherence starts and increases, QFI starts at the level
of pure W state, decreases smoothly and finally vanishes
with full depolarization; ii) amplitude damping, as the
decoherence starts, QFI drops to the shot noise limit,
and with the increasing decoherence, QFI first vanishes
and then starts to increase, reaching the shot-noise level
at full decoherence; iii) phase damping: at any rate of
decoherence, QFI vanishes. We also found that W states
do not provide phase sensitivity in z direction and the
phase sensitivities in x and y directions are equal to each
other. Therefore on the contrary to GHZ states, QFI of

W states do not exhibit sudden change points due to the
competition between directions. Besides the decoherence
effects, quantum Fisher information has also been studied
considering photon losses [26–29]. On the other hand, an
intense effort has been devoted to preparing large-scale
photonic W states [30–38] and Dicke states [39] where
environmental noise is generally not taken into account.
Therefore we believe that our work may be useful for the
efforts in preparing large scale W states, as well as the
quantum critical phenomena and percolation in quantum
networks [40, 41] when the unavoidable natural decoher-
ence effects are taken into account.
This work has been funded by Isik University Scientific
Research Funding Agency under Grant Number: BAP-
14A101. The author thanks to N. G. Kiyak for her con-
tinuous support and S. K. Ozdemir fruitful discussions.
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