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1 Introduction 

Finding the best operating settings for industrial and various other processes is a 
challenging task for quality engineers, as the robustness of the process or product 
depends on different design parameters (inputs) that produce various responses (outputs) 
of interest. In many cases, these responses of interest conflict with each other and cannot 
be optimised simultaneously. Best balance between these competing responses can only 
be achieved by modelling the problem at hand as a multiresponse optimisation problem. 

In order to solve this dilemma, several optimisation techniques have been developed 
with the help of designed experiments and response surface methodology. Desirability 
functions, first introduced by Harrington (1965) and enhanced by Derringer and Suich 
(1980), Wu (2004), and, Aksezer (2008) is one of the most widely used multiresponse 
optimisation method both by researchers and modelling software developers. First, each 
predicted response is plotted to a desirability scale from 0 to 1(0 denoting an undesirable 
and 1 denoting a completely desirable value) based on the response’s target value on the 
specification band and how much it deviates from this target, and then all weighted 
responses are incorporated to an overall desirability function with maximisation 
objective. Taguchi’s signal to noise perspective is also studied by numerous authors 
(Box, 1988; Maghsoodloo, 1990; Sii et al., 2001; Antony et al., 2006; Xue et al., 2008) in 
order to generate cost effective optimisation models. Kraus et al. (2000) which aims to 
maximise the probability of being within the specification limits subject to prediction 
equations on mean and variance of the response that is obtained from experimental model 
and Koksoy and Doganaksoy’s (2003) dual response formulations which is based on 
mean and standard deviation, one being the objective constrained on the other, are the 
examples of mathematical programming approaches proposed within the literature. 

Quadratic loss functions were introduced in the early 80’s by Taguchi and Wu (1979) 
and more recently have been advocated by many researchers and practitioners (Hunter, 
1985; Ross, 1988; Byrne and Taguchi, 1987; Phadke, 1989; Spiring, 1993; Fowlkes and 
Creveling, 1995; Benneyan and Aksezer 2006). Loss function establishes a financial 
measure of the user dissatisfaction with a product’s performance as it deviates from 
target. The loss, L(y), represents the total loss (‘loss to society’) of a response Y, such as a 
critical product dimension, taking on a specific value y. The goal is then to determine the 
design or operating parameters that minimise the total loss or expected loss, which might 
include both immediate and less tangible costs of failure, warranty, rework, replacement, 
customer ill-will, environmental impact, product perception, and others. While Taguchi 
used loss functions as a single response optimisation tool, since then many approaches 
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are developed for utilising these functions in multiresponse problems. These studies focus 
on two different kinds of loss modelling; loss at a certain point on the response design 
surface or mean loss on overall response surface (Pignatiello and Ramberg, 1991;  
Artiles-Leon, 1996; Kapur and Cho, 1996; Ames et al., 1997; Spiring and Yeung, 1998). 

The purpose of this paper is to expand the mean loss modelling to include the 
variance and probabilistic nature of loss functions. Next section briefly revisits the 
variance and probability distribution (PDF) of loss functions and then proposes a new 
optimisation scheme that transforms the problem into a multiresponse optimisation 
problem. Lastly, use of the model is illustrated on an optimal powder metal production 
process. Results gathered are discussed and compared by means of effectiveness and 
applicability. 

Figure 1 Types of response optimisation problems (see online version for colours) 

 

y
TargetNTBTargetSTB TargetLTB

L(y)

0
 

2 Loss functions 

There are three most common quadratic loss functions in the literature for applications in 
which the objectives are to achieve values 

1 as close to a target as possible 

2 as small as possible 

3 as large as possible. 

These 3 general cases [‘nominal-the-best’ (NTB), ‘smaller-the-better’ (STB), and  
‘larger-the-better’ (LTB)] are illustrated in Figure 1 and defined mathematically as: 

Nominal-the-best (NTB): 
2( ) ( )NL Y k Y T= −  (1) 

Smaller-the-better (STB): 



   

 

   

   
 

   

   

 

   

   298 C.S. Aksezer and J.C. Benneyan    
 

    
 
 

   

   
 

   

   

 

   

       
 

2( ) ( )SL Y k Y=  (2) 

Larger-the-better (LTB): 
21( )LL Y k

Y
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3) 

where L(Y) is the total loss due to deviation from target, Y is the random variable of 
interest, T is the target value for the product’s response in the NTB case, and k is a 
constant sometimes referred to as the quality loss coefficient. In each case, increasing 
losses are incurred as the measurement Y deviates by greater amounts from its desired 
target, irrespective of specifications. 

Long term (life cycle) loss optimisation procedure only involves the minimisation of 
expected loss over the response surface. However, in some applications along with a 
measure of location, it also is of interest to measure the variability of the loss acquired 
and the distribution shape of the loss incurred from the process. These properties can be 
helpful in understanding the behaviour of the process in details. For instance; a product 
involving multiple quality characteristics can achieve a small expected loss on a given 
response surface. But in the long run, the deviations from the expected loss are also 
important for the assessment and management of operational risks. In order to calculate 
these effects, practitioners have to go one step further from the classical optimisation 
technique of minimisation of loss per unit or expected loss and should include other 
measures such as variance and distribution of loss into the optimisation model. 

2.1 Expectation and variance of a loss function 

Assume that a response Y with mean E(Y) = μ and variance V(Y) = σ2 is considered with 
kth non-central moment about the origin '( )k

kE Y μ=  and kth central moment about the 
mean μk. Expectation and variance term of each case then can be derived as following. 
For a NTB response; LN(Y) = k(Y – T)2 and since V(Y) = E(Y2) – μ2 with E(Y2) = σ2 + μ2, 
then 

[ ]

( ) ( ) ( )
[ ] ( ) ( )

2 2 2

2 2 2 2 2

22 2 2 2

( ) ( ) 2

(2 ) 2 ( ) ,

( ) 2

N

N

E L Y E k Y T kE Y YT T

k E Y E TY E T k TE Y T

E L Y k T T k T

σ μ

σ μ μ σ μ

⎡ ⎤ ⎡ ⎤= − = − +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − + = + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤= + − + = + −⎣ ⎦ ⎣ ⎦

 

and 

[ ] ( ) [ ]

( ) ( )
( )

( )

2 2

222 2 2

2 4 3 2 2 3 4

2 4 2 2 4

( ) ( ) ( )

( ) ( ) ,

4 6 4

2 ( ) ( ) ,

N N NV L Y E L Y E L Y

E k Y T E k T

k E Y Y T Y T YT T

k T T

σ μ

σ σ μ μ

⎡ ⎤= −⎣ ⎦
⎡ ⎤ ⎡ ⎤= − − + −⎢ ⎥ ⎣ ⎦⎣ ⎦

= − + − +
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which can further be simplified into, 

[ ] ( ) ( )22 ' 2 2 2 ' 2 2
4 3( ) 4 ( ) .NV L Y k T Tμ σ μ σ μ μ σ μ⎡ ⎤= + + + − − +⎢ ⎥⎣ ⎦

 

In a similar fashion, for a STB response; given LS(Y) = kY2 then 

[ ] ( )2 2 2 2( )SE L Y E kY k E Y k σ μ⎡ ⎤⎡ ⎤ ⎡ ⎤= = = +⎣ ⎦ ⎣ ⎦⎣ ⎦  

and 

[ ] [ ] ( ) ( )
( ) ( ) ( )

222 2 4 2 2

2 22 4 2 2 2 ' 2 2
4

( ) ( ) ( ) ,

,

S S SV L Y E L Y E L Y E k Y k

k E Y k

σ μ

σ μ μ σ μ

⎡ ⎤⎡ ⎤= − = − +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − + = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where ( )' ( )k k
k

y

E Y y f y dyμ = = ∫  is the kth (here the 4th) moment about the origin. 

Since in general E(1/X) ≠ 1/E(X), LTB does not have an exact expression for the 
mean and variance loss. However, a series approximation can be used by manipulating 
the formulation. 

[ ]
( )

22

2 2 2 2
1 1( ) 1L

k YE L Y kE kE E
Y Y

μ μ
μμ μμ μ

−⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞−⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⋅ = +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥− + ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦
 

Using the Taylor expansion, this becomes 

[ ]
2 3 4

2

3 5 62 4
2 2 3 4 5 6

( ) 1 2 3 4 5

4 6 73 5
1

L
k Y Y Y YE L Y E

k

μ μ μ μ
μ μ μ μμ

μ μ μμ μ
μ μ μ μ μ μ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎢ ⎥= − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
= + − + − + −⎢ ⎥

⎣ ⎦

…

…

 

since 

( ) 0,E Y μ− =  

where μk = E(Y – μ)k, the kth central moment about the mean. The mean loss therefore can 
be approximated using only the first four central moments as 

[ ]
' '2 2

3 34 4
2 2 3 4 2 2 3 4

4 245 53 45( ) 1 20 .L
k kE L Y

μ μμ μσ σ
μ μ μ μ μ μ μ μ

⎡ ⎤⎡ ⎤
≈ + − + = + − +⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Using a similar series approximation approach, the variance of LL(Y) can be shown as 
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[ ] ( ) [ ]
22

2 2
2 2

24 22

4 2

( ) ( ) ( )

1 1 ,

L L L
k kV L Y E L Y E L Y E E

Y Y

k Y k YE Eμ μ
μ μμ μ

− −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= − = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎢ ⎥= + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 

and by using only the first five terms in each expansion, the approximation becomes 

[ ]
( )
( )

( )

' 4 2 2 '
4 4

2
' 5 3 2 ' 2 '
3 3 412

4 2 4 2 2

165 450 25

( ) 800 2,160 576 240

274 1,520 20, 25

L
kV L Y

μ μ μ σ μ

μ μ μ σ μ μ μ μ
μ

μ σ μ μ σ

⎡ ⎤− − −
⎢ ⎥
⎢ ⎥≈ + + − +⎢ ⎥
⎢ ⎥
− + +⎢ ⎥⎣ ⎦

 

in terms of central and non-central moments, respectively. Note that, if the distribution of 
Y is not very skewed or kurtotic (e.g., normal) so that μ3 ≈ 0 and μ >> μ4, then the higher 
central moments are negligible. Then the mean and variance loss approximates to 

[ ]
2

2 2
3( ) 1L

kE L Y σ
μ μ

⎡ ⎤
≈ +⎢ ⎥

⎣ ⎦
 

and, 

[ ]
2 2

2 2
8( ) 4 9L

kV L Y σ μ σ
μ

⎡ ⎤≈ −⎣ ⎦ . 

2.2 Probability density of a loss function 

Let y be a continuous random variable of a function f(y) with known distribution over a 
sample space and z = h(y) is a strictly increasing or a strictly decreasing function of x 
over the same sample space. Then the PDF of a transformed continuous random variable 

z can be written as [ ]( ) ( )  ,dyp z f y z
dz

=  where dy
dz

 is the Jacobian of the 

transformation and f[y(z)] is the functional relationship substitution between random 
variables z in terms of y. 

The transformation of a discrete random variable can be accomplished in a similar 
fashion and will be identical to the form showed above except for the Jacobian term that 
is used for the mapping of a continuous function. For NTB case, the functional 
relationship between L and Y and the Jacobian term is found as 

2( ) ( )L y k y T y T
k

= = − ⇒ = +∓  

and 

1 .
2

dy
d k

=  
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The probability density function for the NTB loss case then becomes 

1( ) .
2

p f T f T
k kk

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Following a similar notion for STB case, 

2( )L y ky y
k

= = ⇒ = ∓  

and 

1 ,
2

dy
d k

=  

respectively, and the probability density function for STB loss case becomes 

1( ) .
2

p f f
k kk

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Similarly, for LTB case, the functional relationship between L and Y and the Jacobinan 
term are 

2
1( ) kL y k y
y

= = ⇒ = ∓  

and 

3
,

2

dy k
d

=  

respectively, and the probability density function for LTB loss case becomes 

3
( ) .

2

k k kp f f
⎡ ⎤⎛ ⎞ ⎛ ⎞

= + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

Interestingly, expressions for the variance include the first four moments of Y and thus 
are related to not only the mean and variance of the response Y but also its skewness and 
kurtosis. These may then be simplified to common cases where Y follows a normal 
distribution, as well as various other response distributions (lognormal, Weibull, 
exponential, and uniform) where higher ordered moments are readily available. 
Application of normal distribution is especially important since many problems can be 
normalised through proper transformation. Also, normal distribution has a skewness of  
0 and kurtosis of 3 which leads to simplified versions of variance and PDF expressions of 
the associated loss as illustrated in Table 1. Lognormal, Weibull, and exponential 
distributions may also be appropriate in quality and reliability applications or for strictly 
non-negative responses, especially when the mean is close to zero. 
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Table 1 Summary of loss function characteristics 

 

 
N

om
in

al
-th

e-
be

st
 

Sm
al

le
r-

th
e-

be
tte

r 
La

rg
er

-th
e-

be
tte

r 

Lo
ss

 fu
nc

tio
n 

k(
y 

– 
T)

2  
k(

y)
2  

(
)2

1
k

y
 

Ex
pe

ct
ed

 lo
ss

 
k[
σ2  +

 (μ
 +

 T
)2 ] 

k[
σ2  +

 μ
2 ] 

2
3

4
2

2
3

4
4

3
5

1
k

μ
σ

μ
μ

μ
μ

μ
⎡

⎤
≅

+
−

+
⎢

⎥
⎣

⎦
 

V
ar

ia
nc

e 
lo

ss
 

(
)

(
)

2
'

2
2

2
'

2
2

4
3

4
(

)
k

T
T

μ
σ

μ
σ

μ
μ

σ
μ

⎡
⎤

+
+

+
−

−
+

⎣
⎦

 
(

)2
2

'
2

2
4

k
μ

σ
μ

⎡
⎤

−
+

⎢
⎥

⎣
⎦

 
(

)
(

)
(

)

'
4

2
2

'
4

4
2

'
5

3
2

'
2

'
3

3
4

12

4
2

4
2

2

16
5

45
0

25

80
0

21
60

57
6

24
0

27
4

15
20

20
25

k
μ

μ
μ
σ

μ

μ
μ

μ
σ

μ
μ

μ
μ

μ
μ
σ

μ
μ

σ

⎡
⎤

−
−

−
⎢

⎥
⎢

⎥
≅

+
+

−
+

⎢
⎥

⎢
⎥

−
+

+
⎢

⎥
⎣

⎦

 



   

 

   

   
 

   

   

 

   

    Multiresponse optimisation of powder metals via probabilistic loss functions 303    
 

    
 
 

   

   
 

   

   

 

   

       
 

3 Loss modelling 

The classical optimisation approach minimises the expected loss subject to a set of 
constraints on the process parameters such as the relationships among responses and 
process factors (prediction equations), distribution of the quality characteristic in 
evaluation, specific costs incurred from quality control, inspection, maintenance, labour, 
tools etc., tolerance and specification limits on responses, and process capability indices. 
The general form of this kind of model for m responses of interest along with n model 
variables can be given as the following: 

Minimise 

( )
1

,
m

L i i
i

E y T
=
∑  

subject to 

0
1

0
1

n

m j j
j

n

m k k
j

x

x

μ β β

σ α α

=

=

= +

= +

∑

∑
 (4) 

The availability of data necessary to identify the functional relationship between these 
parameters and responses may not readily be available. For example; the costs associated 
from each parameter setting, necessary for the realisation of loss coefficient, cannot be 
easily calculated in many production systems. In reality, this coefficient is calculated 
according to familiarity with the process, meaning that the quality engineer can make the 
judgment of economic losses due to off target response, or if the cost at the specification 
limits are known (this is the cost incurred when the response is totally undesirable), then 
it can be calculated for any point on the response surface. However, there are kinds of 
processes for which the practitioner cannot calculate this coefficient at all. Then, instead 
of true costs, estimates of the comparative importance of different characteristics are 
generally evaluated. These relative importance factors are used to weight the individual 
losses from each response and integrate them into an expected overall loss on the whole 
response surface, such as applied in desirability function methodology. 

A similar approach to the one given above is the minimisation of variance of loss. 
This is especially important since higher variations in loss would signal inconsistencies in 
the product or process. The objective function (5) involves the variance of the associated 
loss function from Table 1 and is the sum of all variances from individual response yj in 
multiresponse problems. The constraints are once again the prediction equations on mean 
and standard deviation of the associated response. If there is a correlation between the 
quality characteristics then the interaction terms and covariances should be included to 
the formulation. Model can be given as the following: 

 



   

 

   

   
 

   

   

 

   

   304 C.S. Aksezer and J.C. Benneyan    
 

    
 
 

   

   
 

   

   

 

   

       
 

Minimise 

( )
1

,
m

L i i
i

V y T
=
∑  

subject to 

0
1

0
1

'
0

1

n

m j j
j

n

m j j
j

n

m j j
j

x

x

x

μ β β

σ α α

μ δ δ

=

=

=

= +

= +

= +

∑

∑

∑

 (5) 

The question to be investigated then becomes what exactly is the difference between 
minimising the expected loss and the variance of loss. While in some problems both lead 
to the same product settings, there are cases where certain tradeoffs must be made 
between these two. 

Sequential minimisation of expected loss and variance of loss clearly illustrates this 
trade-off and proposes a dual response system that minimises these simultaneously. The 
problem becomes a multiple objective model, which can be solved by ε-constraint 
approach that reduces the feasible region by introducing one of the objectives as a 
constraint at its threshold level and optimising the other on this reduced region. The 
problem formulation then becomes: 

Minimise 

( )
1

,
m

L i i
i

E y T
=
∑  

subject to 

( )
1

0
1

0
1

'
0

1

,
m

L i i
i

n

m j j
j

n

m j j
j

n

m j j
j

V y T

x

x

x

ε

μ β β

σ α α

μ δ δ

=

=

=

=

≤

= +

= +

= +

∑

∑

∑

∑

 (6) 

ε: upper bound on variance. 
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This model utilises expected loss as the primary objective and the associated mean loss 
expression is used in the objective function, while the variance of loss becomes 
secondary objective and treated as a constraint bounded by ε, which is the desired lower 
bound constant for variance of loss while minimising the expected loss. It is almost 
always impossible to predetermine ε, instead the analyst goes through several different 
values of ε, which provide the feasible trade-off frontier between mean and variance loss. 
Any point on this frontier will be Pareto optimum and can be chosen as optimal solution, 
based on the decision criteria. 

It is also practical to present a probabilistic constraint to the model that involves the 
distribution of the loss function. This transforms the proposed multiple criteria 
optimisation model into a minimisation of total expected loss subject to minimal valued 
variance of loss and a risk constraint in which the probability of the total loss, given the 
upper bound for sum of the total loss, is limited to a certain value p within the design 
surface. Under the assumption of independency between responses, we can calculate the 
joint probability function as the simple product of all individual PDFs. However, when a 
dependency exists among responses, product of PDFs leads to incorrect results. Instead, 
the PDFs of individual responses have to be convoluted on each other and be used in the 
model. Because of the complexity of PDFs, there is no closed form to this convolution. 
Only when the number of competing responses is assumed to be large enough and 
independent, we know from the central limit theorem that the resulting overall 
distribution should approach to normal distribution. 
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 (7) 

ε: upper bound on variance 

p: probabilistic risk level (0 < p < 1). 
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4 Numerical example 

To illustrate the application of the models given above, we will use an example from 
powder metal production. Today, spherical metal powders are used in many applications 
ranging from aerospace to medical implants for paint and varnish material production, as 
catalyst in chemical processes, for thermal diffusion, and as antifriction and antiwear 
components in forms of aluminium, titanium, zinc, copper etc. They are desirable in these 
applications because of the flow characteristics of the powder and the resulting packing 
efficiencies for increased part densities (Upadhyaya, 1998; Minagawa et al., 2005). In 
order to benefit from these characteristics, metal powders must be perfectly spherical and 
clean. While the sphericity of a certain particle is measured by its desirable diameter, the 
cleanliness is measured by the smoothness of the surface. This smoothness can only be 
achieved by manufacturing the particle surface free of satellites. Satellites are the smaller 
particles that are sintered to the powder itself (around the surface). 

There exist several manufacturing methods in the literature for powder metallurgy. 
Solid state reduction, atomisation and centrifugal disintegration are the most prominent 
methods used in practise. Problem at hand is based on manufacturing via centrifugal 
disintegration method in which the metal to be powdered is formed into a rod that is 
introduced into a chamber through a rapidly rotating spindle. Opposite to the spindle tip 
there is an electrode from which an arc is established, heating the metal rod. As the tip 
material fuses, the rapid rod rotation throws off tiny melt droplets, which solidify before 
hitting the chamber walls. A circulating gas sweeps particles from the chamber. Based on 
these production goals, the design has two response characteristics: 

• mean diameter (micron, μm) 

• satellites (ratio, %). 

Note that the chosen powder characteristics are usually based on compromise, since 
many of the factors are in direct conflict with each other. Obtaining larger spherical 
particles will increase irregularity on the surface since contact surface gets larger. The 
first response is an NTB type of response where the target is to produce particles at a 
certain size and the second is an STB type of response seeking to minimise the satellites 
on the particle. Since these particles are very small, the measure to be minimised will be 
the percentage of the ratio of the largest satellite diameter on the surface of the particle to 
the powder diameter. 

Typical process parameters that affect the output characteristics of powder metal 
production with centrifuging are the rotational speed (x1) of the electrode which is 
typically between 15,000–17,000 rotations per minute, amperage (x2) supplied to 
generate a plasma arc is being between 925–1,025 amps and gas pressure (x3) necessary 
to flow the particles out of the chamber is measured to be between 90–110 psi. These 
process settings are used in a 2-level full factorial design with two replications as 
illustrated on Table 2 in standard order with coded terms. Higher level designs or 
inclusion of centre points are not generally advisable to be used in multiresponse 
optimisation schemes. One of the reasons for not considering this type of designs is the 
high ordered (e.g., quadratic) nature of the resulting prediction equations. Such non-linear 
response equations are not always guaranteed to be globally optimised by common 
algorithms used in statistical software packages. These designs also require more runs 
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and complicating data collection process even further when used in conjunction with 
replications. 

The process constraints for this kind of problem are the specification levels for the 
diameter. The process has a lower specification level of 90 μm and an upper specification 
limit of 110 μm and the target value is the midpoint of this specification band which is 
100 μm. 
Table 2 Data for 23-full factorial replicated design 

Run# Speed Amperage Pressure Mean diameter Smoothness 

1 – – – 125 26 
2 + – – 103 22 
3 – + – 121 23 
4 + + – 88 19 
5 – – + 88 18 
6 + – + 82 11 
7 – + + 84 21 
8 + + + 75 9 
9 – – – 112 29 
10 + – – 117 20 
11 – + – 110 22 
12 + + – 95 16 
13 – – + 86 20 
14 + – + 77 16 
15 – + + 94 17 
16 + + + 78 13 

  Speed (rpm) Amperage (amp) Pressure (Ib/in2)  
 – 15,000 925 90  
 + 17,000 1,075 110  

Prediction equations for diameter: 

1 2 3 1 2 2 3ˆ 96 6.56 2.81 13 2.56 2.56x x x x x x xμ = − − − − +  

1 2 3ˆ 5.74 0.62 0.27 2.21x x xσ = − − −  

Prediction equations for smoothness: 

1 2 3 1 3 2 3ˆ 18.88 3.13 1.38 3.25 0.25 0.75x x x x x x xμ = − − − − +  

1 3 1 3ˆ 2.12 0.35 0.53 0.18x x x xσ = + + +  

The process is found to be normally distributed after a least squares fit of each response 
and an R-sqr > 0.98, allowing the use of the simplified moment terms in the general form 
of the loss equations, which only require the mean and standard deviation. As noted by 
Pignatiello (1993), loss function-based optimisation methodologies can only be used with 
multiply replicated experimental design, in which the experiment itself can be costly 
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because of the multiple runs. However, multiple runs are crucial to identify the necessary 
prediction equations for the standard deviation, the third and the fourth moment terms. 

Solving this problem separately both for minimisation of expected loss (4) and 
variance of loss (5), yields to the following minimum achievable values. Note that these 
are optimised individually without being constraint on each other. 

( ) $356.25
( ) $9,447

L

L

Min E
Min V

=
=

 

Although these values imply some economical terms, this study assumes fictitious dollar 
units since there exist no reasonable loss coefficient k available at hand. We simply 
ignored this constant and assumed it as 1 for all responses. This means that deviations 
from each response will cause same amount of financial impact. 

These two responses of interest are then combined by the proposed hybrid model. 
This model provides a general idea of how the two objectives interact with each other 
within the objective space and whether they could be optimised simultaneously. Solving 
the problem simultaneously by minimising the expected loss, subject to constraint on 
different feasible values of the variance loss leads to the trade-off frontier shown in 
Figure 2. Analyses of the frontier allow us to understand the tradeoffs of the process and 
to find a Pareto optimum point, which best fits the process or product needs. The steep 
slope of the curve shows that by sacrificing some from the mean loss, the process gains 
much from the minimisation of the variability of the loss. 

Figure 2 Trade-off frontier for mean and variance of loss 

9000

10000

11000

12000

350 355 360 365 370 375 380 385 390

Mean Loss ($)

V
ar

ia
nc

e 
L

os
s (

$)

 

As previously discussed, the application of the last model involves the PDF convolution 
for the responses. This convolution should be included in the model as the probabilistic 
constraint that balances the probability of total loss being less than a certain value. Once 
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again, selecting the total loss risk level requires familiarity with the process at hand, but 
by also running the model for different values of total loss, the analyst can find the 
feasible value that leads to the desired solution. For the given example, this last model 
can be constructed as following: 

Minimise 

LE  

subject to 

( )
$10,000

$500 0.7
1 1,     1

L

i

V
P Total Loss

x i n

≤

≤ ≥

− ≤ ≤ = …
 (8) 

Solution of this final and most insightful model yields to a result of minimum expected 
loss of, EL = $369, coded parameter setting of (x1, x2, x3) = (1, –0.91, –0.23) and actual 
parameter setting of (17,000, 932, 97.7). 

5 Conclusions 

This paper presents the use of variances and probability distributions of quadratic loss 
functions in various optimisation schemes. Since loss functions are an invaluable tool for 
multiresponse design optimisation problems, inclusion of these characteristics to the 
model will extend the current expected loss minimisation conception to analyse the 
further aspects of behaviour of the product or process in question under the assumption of 
known response distributions. Previous results indicate that all three types of loss 
functions frequently exhibit high variance and high skew, which can be important in 
determining optimal production and operating conditions. In many cases, the loss 
distributions are significantly asymmetrical and unique in shape proving the importance 
of using these characteristics in the optimisation schemes. 

The proposed models provide the opportunity of an in depth look both from 
practitioners’ and theoreticians’ point of view by minimising expected loss along with the 
variance of loss in a dual manner, producing a flexible and beneficial Pareto optimal 
solution set that consists all optimal solution pairs. The solution can also be illustrated in 
a more fashionable way by constructing a collection of all Pareto optimal solutions as a 
trade-off frontier that will even highlight the conflicts between responses clearer. 
Depending on our process characteristics and product needs, most sensitive point on this 
frontier then can be chosen as the solution to the problem at hand where the feasible area 
of the solution set can be reduced by the stated probabilistic constraint written in the form 
of the product of the loss PDFs of the associated response’s. 

The only troublesome part of the optimisation process seems to be the necessity of 
multiple replications in the planning and conducting phase of the experimental design. 
These replications are crucial for the estimation of standard deviation and the necessary 
higher ordered moment terms. More importantly, replicated designs become more robust 
by identifying the noise present in the design. The models also tend to be statistically 
significant as a result of higher sample size used in the estimation of response variance. 
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However, replicated designs can be costly and time consuming depending on the data 
collection process environment so the designer should plan accordingly. 

An increase in the number of competing responses usually complicates the marginal 
rate of substitution mechanism of the Pareto optimal domain, which eventually erodes the 
computational efficiency of any multiresponse modelling technique. Authors are 
currently investigating the performance of the proposed models compared to the 
alternative methods from literature with respect to computational efficiency in reaching 
global optimum. Extension of the models to include the sensitivity analysis of its primary 
parameters (input variables that are excluded from the experimental design; e.g. loss 
coefficient) on the Pareto optimal frontier would also appear to be an important direction 
for future research. 
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