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Abstract

In many pattern recognition applications, feature space expansion is a key step

for improving the performance of the classifier. In this paper, we (i) expand

the discrete feature space by generating all orderings of values of k discrete at-

tributes exhaustively, (ii) modify the well-known decision tree and rule induction

classifiers (ID3 [1] and Ripper [2]) using these orderings as the new attributes.

Our simulation results on 15 datasets from UCI repository [3] show that the

novel classifiers performs better than the proper ones in terms of error rate and

complexity.

Keywords: Feature Extraction, Discrete Space, Decision Tree Induction, Rule

Induction

1. Introduction

In pattern recognition the knowledge is extracted as patterns from a train-

ing sample for future prediction. Most pattern recognition algorithms such as

neural networks [4] or support vector machines [5] make accurate predictions

but are not interpretable, on the other hand decision trees or rule inducers are

simple and easily comprehensible. They are robust to noisy data and can learn

disjunctive expressions. Surveys of work on constructing and simplifying deci-

sion trees can be found in [6] and [7]. [8] is an old but an extended review of

rule induction algorithms.
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Decision trees are tree-based structures where each internal node implements

a decision function, fm(x), each branch of an internal node corresponds to one

outcome of the decision, and each leaf corresponds to a class. In a univariate

decision tree [9], the decision at internal node m uses only one attribute, i.e.,

one dimension of x, xj . If that attribute is discrete, there will be L children

(branches) of each internal node corresponding to the L different outcomes of

the decision. ID3 is one of the best known univariate decision tree algorithm

with discrete features [1].

One of the drawbacks of the L-ary splits is that the training examples are

separated into small subsets, which in turn gives us a poor predictor for the

unseen test instances. One can convert discrete features having L > 2 different

values to L binary features using 1-of-L encoding, this will result in a larger

tree than the former. Although there are alternative approaches to handle the

selection bias that favors the attributes having many values over those with

few values [1], [10], those approaches can not help if the attributes have nearly

similar number of values.

Rulesets are list-based structures where each rule in a ruleset is defined for a

class and composed of a number of conditions, where each condition implements

a decision function, fc(x). In a univariate ruleset [2], like the univariate decision

tree, the decision at internal condition c uses only one attribute. If that attribute

is discrete, the decision function is in the form xi = vij , where i is the selected

attribute and vij is the j’th possible value of the attribute xi.

Another drawback of using discrete attributes in the form of xi = vij is

that there is only a single possible split for each discrete attribute. On the

other hand, there are n − 1 different possible splits for a continuous attribute,

where n represents the number of distinct values of that continuous attribute.

For example, the decision tree in Figure 1 gives an inefficient representation

of a concept. While the instances x1 = hot are described efficiently, there

are two identical subtrees those separating class C2 from class C1. In general,

conjunctions can be described efficiently by decision trees while disjunctions

require a large tree to describe [11], [12]. Replication problem can also occur
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Figure 1: Univariate decision tree corresponding to the same concept represented by the

K-tree in Figure 3.

when the data contains attributes with high arity values i.e., attributes with

large number of possible values. If a tree has high arity attributes (say L ≥ 5)

then it will quickly fragment the data in that node into small partitions.

To increase the number of distinct splits for datasets with discrete attributes,

we define k-ordering, where for each subset (size k) of the attributes, we com-

bine them by generating all possible orderings of the values of those attributes

exhaustively. Then we apply the usual ID3 and Ripper algorithms using these

orderings as the new attributes. In this way, the number of distinct possible

splits for each extracted feature will be n1 × n2 × . . .× nk, where ni represents

the number of distinct values of the selected feature i.

In the earlier version of this work [13], we proposed feature extraction from

discrete space and its application to univariate tree induction; this present pa-

per revisits the feature extraction, introduces its application to rule induction,
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proposes omnivariate versions, and makes a more through comparison with the

original inducers ID3 and Ripper.

This paper is organized as follows: We give the definition of k-ordering in

Section 2, its application to univariate decision tree and rule induction in Sec-

tions 3 and 4 respectively. We discuss omnivariate version of our algorithms in

Section 5. We give experimental results in Section 6, and conclude in Section 7.

2. k-ordering

2.1. Definition

Let a1, a2, . . ., ad be d discrete attributes of a dataset D. Each attribute ai

can have ni distinct values which can be represented as vi1, vi2, . . ., vini
.

Definition 1. For each k attributes as1 , as2 , . . ., ask from a d dimensional

dataset D, k-ordering is defined as the permutation list (p1, p2, . . ., pk), where

pi is a permutation of values of the feature asi (a permutation of vsi1, vsi2, . . .,

vsinsi
).

For example, ((red, blue, green), (yes, no), (large, extralarge, small, medium))

is a 3-ordering, where selected k = 3 features have three, two and four distinct

values respectively. Note that we can use both categorical discrete attributes

(such as red, green, blue) as well as nominal discrete attributes (such as cold,

neutral, warm, very warm) to define the k-ordering. There are

∑

s1,s2,...,sk∈1,2,...,d

ns1 !ns2 ! . . . nsk !

distinct k-orderings of a d dimensional dataset. As an example, given a dataset

with two dimensions having values (red, green, blue) and (yes, no), there are 8

(3! + 2!) and 24 (3! 2! + 2! 3!) distinct 1 and 2-orderings respectively.

2.2. Ordering Relations based on k-ordering

Continuing the definition of k-ordering, we can produce relational operators

that compare two instances. Formally, given a k-ordering of a dataset D and

two instances (x1, x2, . . ., xd) and (y1, y2, . . ., yd) from this dataset;
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Definition 2. (xs1 , xs2 , . . ., xsk) ≺ (ys1 , ys2 , . . ., ysk) if and only if xsi = ysi

for i = 1, . . ., t ≥ 0, and xst+1
comes before yst+1

in permutation pt+1.

Definition 3. (xs1 , xs2 , . . ., xsk) ≻ (ys1 , ys2 , . . ., ysk) if and only if xsi = ysi

for i = 1, . . ., t ≥ 0, and xst+1
comes after yst+1

in permutation pt+1.

Definition 4. (xs1 , xs2 , . . ., xsk) = (ys1 , ys2 , . . ., ysk) if and only if xsi = ysi

for all i = 1, . . ., k.

For example, given the 2-ordering ((red, blue, green), (no, yes)), all possible

values of the instances can be sorted as (red, no) ≺ (red, yes) ≺ (blue, no) ≺
(blue, yes) ≺ (green, no) ≺ (green, yes).

2.3. Splits based on k-ordering

If the instances of a dataset can be sorted based on a k-ordering, we can

also list all possible splits based on that k-ordering. For example, given the

2-ordering ((red, blue, green), (no, yes)), all possible splits are: x � (red, no),

x ≻ (red, no), x � (red, yes), x ≻ (red, yes), x � (blue, no), x ≻ (blue, no), x

� (blue, yes), x ≻ (blue, yes), x � (green, no), x ≻ (green, no).

More formally, since each k-ordering defines a new attribute

∑

s1,s2,...,sk∈1,2,...,d

ns1 !ns2 ! . . . nsk !

new attributes are generated. For each new attribute, we can use one of the

2× ns1 × ns2 × . . .× nsk − 2 distinct splits in a tree node or in a condition of a

rule.

The pseudocode for finding the exhaustive set of k-ordered splits is shown in

Figure 2. First we initialize the result set S (Line 1). For each k-permutation

of the attributes (Line 2) we extract all possible k-orderings by traversing the

attributes iteratively (Lines 3-5). Given an ordering r (Line 6), we also generate

all possible split points for that ordering (Line 7). Each possible k-ordering and

split point sp is added to S (Line 8).
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Set k-OrderingSplitSet(k)

1 S = {}
2 for each attribute permutation (s1, . . ., sk)

3 for each permutation p1 of values of as1

4 . . .

5 for each permutation pk of values of ask

6 r = (p1, . . . , pk)

7 for each split point sp = (t1, . . . , tk) where t1 ∈ p1, . . ., tk ∈ pk

8 S = S ∪ {(r, sp)}
9 return S

Figure 2: The pseudocode of the exhaustive k-ordered split search algorithm: k: parameter

in the k-ordering

3. Application to decision tree induction

In this section, we apply k-ordering to find k-ordered splits in the univari-

ate decision tree algorithm ID3 [1]. The idea is as follows: At each decision

node, we generate all possible k-orderings and split points using the algorithm

in Figure 2. For all attributes and for all split points of those attributes, we cal-

culate impurity and choose the split point and k-ordering that has the minimum

entropy.

Figure 3 shows an example k-tree with two decision and three leaf nodes.

In the root node, the best ordering and the best split for that ordering are

((cold, mild, hot), (short, long)), x � (mild, short) respectively. In this case,

the decision tree shown in Figure 3 gives more efficient representation of the

same concept that is inefficiently represented by Figure 1. This way, K-trees

can effectively solve the replication problem of trees.

Figure 4 shows the pseudocode that finds the impurity of a k-ordered split

for a given k-ordering r. First we initialize the counts of the left and right

branches (Lines 2-3). For each instance x in the instance list X , we compare its
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((cold, mild, hot), (short, long))

((large, small), (true, false))

x � (mild, short)

C1

x � (small, true)

C2

x ≻ (small, true)

C3

x ≻ (mild, short)

Figure 3: An example k-tree (k = 2).

Impurity((sp, r), X )

1 for i = 1 to K

2 NL
i = 0

3 NR
i = 0

4 for i = 1 to X .size

5 x = X [i]

6 j = class of x

7 if x satisfies sp according to ordering r

8 NL
j = NL

j + 1

9 else

10 NR
j = NR

j + 1

11 return entropy calculated from NL
i and NR

i ’s.

Figure 4: The pseudocode of the algorithm that finds the impurity of a k-ordered split sp of

a k-ordering r for an instance list X .

attribute values with the split point sp according to the current k-ordering (Line

7). If x satisfies the split sp according to the k-ordering r, we update counts of

the left branch (Line 8); otherwise we update counts of the right branch (Line

10). Using the class counts of the left and right branches, we can calculate the

impurity using entropy [4], Gini index [14], or any other metric (Line 11).
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C1 C2

(long, no) 5 2

(long, yes) 3 4

(short, no) 2 5

(short, yes) 10 4

((long, short), (no, yes))

(8, 6)

x � (long, yes)

(12, 9)

x ≻ (long, yes)

Figure 5: An example case for calculating the impurity of a 2-ordered split. Given the 2-

ordering ((long, short), (no, yes)), the impurity of the split x � (long, yes) will be calculated

from the counts of the left branch (NL

1
= 8, NL

2
= 6) and right branch (NR

1
= 12, NR

2
= 9).

As an example, given the 2-ordering ((long, short), (no, yes)), all possible

split points will be x � (long, no), x � (long, yes), x � (short, no). Let say

there are 5, 3, 2, 10 instances of class C1 and 2, 4, 5, 4 instances of class C2

having those values respectively. Then the split x � (long, yes) will divide the

instances into two where the left branch will have 5 + 3 = 8, 2 + 4 = 6 instances

from classes C1 and C2 respectively and the right branch will have 2 + 10 =

12, 5 + 4 = 9 instances from classes C1 and C2 respectively (See Figure 5).

4. Application to rule induction

Similar to decision tree case, we can also apply k-ordering to find k-ordered

splits in the univariate rule induction algorithm Ripper [2]. The idea is as

follows: At each condition of a rule, we generate all possible k-orderings and

split points using the algorithm in Figure 2. For all attributes and for all split

points of those attributes, we calculate the information gain and choose the split

point and k-ordering that has the maximum information gain.

IF x ≻ (mild, short) THEN Class = C3

ELSE IF x ≻ (small, true) THEN Class = C2

ELSE Class = C1

Figure 6: An example k-ruleset (k = 2).
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Figure 6 shows an example k-rule with two decision rules and two decision

conditions. In the first condition, the best ordering and the best split for that

ordering are ((cold, mild, hot), (short, long)), x ≻ (mild, short) respectively.

InformationGain((sp, r), X )

1 NPos
c = NNeg

c = 0

2 NPos
u = NNeg

u = 0

3 for i = 1 to X .size

4 x = X [i]

5 j = class of x

6 if x satisfies sp according to ordering r

7 if j is positive class

8 NPos
c = NPos

c + 1

9 else

10 NNeg
c = NNeg

c + 1

11 else

12 if j is positive class

13 NPos
u = NPos

u + 1

14 else

15 NNeg
u = NNeg

u + 1

16 return information gain calculated from Nc and Nu’s.

Figure 7: The pseudocode of the algorithm that finds the information gain of a k-ordered split

sp of a k-ordering r for an instance list X .

Figure 7 shows the pseudocode that finds the information gain of a k-ordered

split for a given k-ordering r. In the separate and conquer approach, which

is the main approach in rule induction, one learns rules for a single class by

separating its instances from the instances of other classes. For that reason,

there are always two classes in rule induction: positive class, whose instances

are tried to be covered, and negative class which is composed of other classes

except the positive class.
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First we initialize the counts of the covered and uncovered positive and

negative classes (Lines 1-2). For each instance x in the instance list X , we

compare its attribute values with the split point sp according to the current

k-ordering (Line 6). If x satisfies the split sp according to the k-ordering r, it

is covered and we update positive (negative) counts of the covered if x is from

positive (negative) class (Lines 7-10). If x is not covered, we update positive

(negative) counts of the uncovered if x is from positive (negative) class (Lines

12-15). Using positive and negative class counts of the covered and uncovered

groups, we can calculate the information gain (Line 16).

5. Omnivariate induction

The omnivariate idea was first used in [15], which can be summarized as

follows: Decision trees are model augmenting structures and each node m tries

to discriminate two class groups using a decision model fm(x). Using a decision

tree with the same type of model at each node, one assumes the same internal

data complexity at all the decision nodes. Omnivariate tree chooses the optimal

model (instead of the same model everywhere) for each decision node depending

on the internal complexity of the data arriving at that node. In the omnivariate

decision tree [15], at each node, three models; univariate, linear multivariate, and

nonlinear multivariate are trained and the optimal model is chosen according

to a statistical test.

In our case, by using the k-ordering with the same k everywhere, we just

assume the same bias at each decision node in the decision trees or decision

condition in the rulesets. So, borrowing the omnivariate idea, we can find the

best ordering and the best split for each k, and then choose the model that has

the minimum entropy in decision trees or maximum information gain in rulesets.

Figure 8 shows the pseudocode of the omnivariate split search algorithm.

We combine the k-orderings and split points produced by the algorithm k-

OrderingSplitSet for i = 1, . . . , k (Line 3).

Note that, the set of splits produced by a k-ordering is always a subset of
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Set OmnivariateOrderingSplitSet(k)

1 S = {}
2 for i = 1 to k

3 S = S ∪ k-OrderingSplitSet(k)

4 return S

Figure 8: The pseudocode of the omnivariate split search algorithm

the set of splits produced by a k+1-ordering. Therefore, the minimum entropy

(maximum information gain) that can be obtained using a k-ordering can never

be better than a k + 1-ordering. But there are cases where k + 1-ordering

produce the same splits as k-ordering, and in those cases choosing k-ordering

corresponds to choosing the best model both in terms of error and complexity.

6. Experiments

We use a total of 15 data sets where 13 of them are from UCI repository [3]

and 2 are (acceptors and donors) bioinformatics datasets (see Table 1). Since

the time complexity of our proposed algorithms change exponentially with the

number of distinct values of an attribute (ni), we run the algorithms for the

datasets with ni ≤ 5.

Our methodology in generating train, validation and test sets is as follows:

A data set is first divided into two parts, with 1/3 as the test set, test, and 2/3

as the training set. The training set is resampled using 2× 5 cross-validation to

generate ten training and validation folds, trai, vali, i = 1, . . . , 10. trai are used

to train the decision trees and vali are used to prune the decision trees using

cross-validation based postpruning. test is used to estimate the expected error

of the decision trees. We use paired t test for pairwise comparison (α = 0.05).

Since we are doing 3 pairwise comparisons on each dataset, to alleviate type I

errors, we use Bonferroni correction and adjust p-value to α / 3 = 0.017.

We also use Nemenyi’s test as the post-hoc test to compare neighboring
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Table 1: Details of the datasets. d: Number of attributes, C: Number of classes, N : Sample

size, n/v: n attributes of the dataset has v distinct values

Dataset d C N n/v

acceptors 88 2 3889 88/4

artificial 10 2 320 10/2

balance 4 3 625 4/5

car 6 4 1728 3/3, 2/4, 1/5

donors 13 2 6246 13/4

hayesroth 4 3 160 1/3, 3/4

krvskp 36 2 3196 35/2, 1/3

monks 6 2 432 2/2, 3/3, 1/4

nursery 8 5 12960 1/2, 4/3, 2/4, 1/5

promoters 57 2 106 57/4

spect 22 2 267 22/2

splice 60 3 3175 60/4

tictactoe 9 2 958 9/3

titanic 3 2 2201 2/2, 1/4

vote 16 2 435 16/2

algorithms for significant difference in rank [16]. Two algorithms lead to classi-

fiers with significantly different performance ranks at significance level α if the

difference of their average ranks is greater than or equal to the critical difference

CD = qα

√

L(L+ 1)

6M
(1)

where L represents the number of algorithms to be compared, M represents the

number datasets on which the comparison is done, and qα is the Studentized

range statistic divided by
√
2. This allows us to find cliques of equally good

subsets which we can represent by underlining them.
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Table 2: The averages and standard deviations of the error rates of decision trees generated

using ID3, Omni-tree, and K-tree algorithms with k = 1, 2. Statistically significant differences

are shown in boldface. The figure below shows the result of post-hoc Nemenyi’s test.

Dataset ID3 1-tree 2-tree Omni-tree

acceptors 15.7 ± 1.7 12.7 ± 0.8 12.0 ± 0.9 12.1 ± 1.1

artificial 0.7 ± 1.6 0.7 ± 1.6 0.7 ± 1.6 0.7 ± 1.6

balance 40.5 ± 2.7 27.1 ± 3.4 24.9 ± 2.3 25.1 ± 2.5

car 12.5 ± 1.9 4.0 ± 0.6 2.4 ± 0.5 2.3 ± 0.6

donors 7.8 ± 0.7 6.2 ± 0.3 6.7 ± 0.4 6.7 ± 0.4

hayesroth 26.7 ± 1.5 21.5 ± 4.1 27.8 ± 4.8 27.3 ± 4.7

krvskp 1.2 ± 0.4 1.0 ± 0.4 0.9 ± 0.4 0.9 ± 0.4

monks 14.7 ± 6.1 12.7 ± 5.8 0.0 ± 0.0 0.0 ± 0.0

nursery 5.5 ± 0.5 1.7 ± 0.3 0.4 ± 0.2 0.4 ± 0.2

promoters 24.4 ± 10.3 27.2 ± 12.2 20.6 ± 4.0 20.0 ± 4.9

spect 20.3 ± 2.5 20.3 ± 2.5 20.9 ± 0.7 20.9 ± 0.7

splice 9.8 ± 0.9 7.1 ± 0.8 6.1 ± 0.6 6.3 ± 1.1

tictactoe 22.8 ± 1.6 10.5 ± 3.7 9.0 ± 2.7 9.1 ± 2.2

titanic 21.8 ± 0.5 21.7 ± 0.5 21.3 ± 0.4 21.3 ± 0.4

vote 5.1 ± 0.4 5.1 ± 0.4 5.0 ± 0.3 5.0 ± 0.3

1 2 3 4

ID3

1-Tree

2-Tree

Omni-Tree

6.1. Decision Trees

In this section, we compare the performance of our proposed decision tree

algorithm (K-tree) with ID3 in terms of generalization error and model com-

plexity as measured by the number of nodes in the decision tree. We run our

proposed algorithm for k = 1 and 2.

Table 2 shows the averages and standard deviations of the error rates of
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decision trees generated using ID3, Omni-tree, and K-tree algorithms with k

= 1, 2. If the difference between ID3 and K-tree is statistically significant, we

show the winner in boldface. We see from the results that, K-tree is significantly

better than ID3 in terms of error rate. 1-tree is significantly better than ID3 in

9 datasets, 2-tree is significantly better than ID3 in 8 datasets, and Omni-tree

is significantly better than ID3 in 8 datasets out of 15. Especially, on balance,

tictactoe, car, and nursery datasets, K-tree has 2, 3, 6, 10 times better error

rate compared to ID3. On monks dataset, 2-tree extracts the hidden rule that

returns us zero error rate. Post-hoc Nemenyi’s test’s results show that the

best algorithm is Omni-tree and there are two cliques of algorithms (Omni-tree,

2-tree, 1-tree) and (1-tree, ID3).

On 11 datasets, increasing k also improves accuracy. On the other hand,

on other datasets such as hayesroth, donors, and spect increasing k may cause

over-fitting, although there is pruning. On artificial, spect, and vote datasets,

the number of distinct values of the attributes is 2, therefore the number of

distinct possible splits for the extracted features are significantly smaller than

other datasets. For this reason, K-tree performs worse on artificial, spect, and

vote than on other datasets.

Table 3 shows the averages and standard deviations of the number of nodes

of decision trees generated using ID3, Omni-tree, and K-tree algorithms with k

= 1, 2. Similar to the results above, on ten datasets K-tree generates smaller

trees compared to ID3. 1-tree is significantly better than ID3 in 2 datasets

out of 15, 2-tree is significantly better than ID3 in 9 datasets out of 15, and

Omni-tree is significantly better than ID3 in 9 datasets out of 15. Especially on

donors, monks, nursery, and splice the K-trees are at least 3 times smaller than

the ID3’s trees. Post-hoc Nemenyi’s test’s results show that the best algorithm

is 2-tree. There are two cliques of algorithms and clique (Omni-tree, 2-tree) is

significantly better than clique (1-tree, ID3).

In most of the cases, as we increase k, the tree complexity decreases. Note

that, if you only store the index of the new feature and the split point as integers,

the decision nodes of K-tree’s are equally complex as the decision nodes of ID3.
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Table 3: The averages and standard deviations of the number of nodes of decision trees

generated using ID3, and K-tree algorithms with k = 1, 2.

Dataset ID3 1-tree 2-tree Omni-tree

acceptors 10.2 ± 6.9 8.8 ± 4.8 7.2 ± 4.0 6.9 ± 4.5

artificial 4.6 ± 0.8 4.6 ± 0.8 2.8 ± 0.4 2.8 ± 0.4

balance 2.2 ± 1.8 12.8 ± 4.6 10.6 ± 2.6 10.4 ± 2.8

car 24.1 ± 3.4 31.6 ± 3.3 18.5 ± 2.1 20.1 ± 3.2

donors 24.2 ± 6.4 19.3 ± 6.4 8.5 ± 4.6 8.3 ± 4.1

hayesroth 5.2 ± 0.8 7.9 ± 1.4 4.5 ± 0.7 4.7 ± 0.7

krvskp 26.9 ± 4.2 25.9 ± 3.1 16.2 ± 1.7 16.4 ± 1.5

monks 15.0 ± 3.8 21.8 ± 7.9 4.0 ± 0.0 4.0 ± 0.0

nursery 103.7 ± 9.4 121.9 ± 6.1 34.3 ± 2.5 34.4 ± 2.6

promoters 1.6 ± 1.1 1.2 ± 0.9 1.5 ± 0.7 1.6 ± 0.8

spect 0.8 ± 2.5 0.8 ± 2.5 0.5 ± 1.6 0.5 ± 1.6

splice 21.3 ± 2.5 15.9 ± 3.1 8.2 ± 1.8 8.0 ± 2.7

tictactoe 23.6 ± 4.7 23.7 ± 3.9 14.5 ± 4.2 14.7 ± 4.9

titanic 3.9 ± 0.7 4.8 ± 1.0 2.5 ± 1.4 2.5 ± 1.4

vote 1.9 ± 1.2 1.9 ± 1.2 2.0 ± 1.8 2.0 ± 1.8

1 2 3 4

ID3

1-Tree

2-Tree

Omni-Tree

6.2. Rule Inducers

In this section, we compare the performance of our proposed rule induction

algorithm (K-rule) with Ripper proper in terms of generalization error and

model complexity as measured by the number of rules in the rulesets. We run

our proposed algorithm for k = 1 and 2.

Table 4 shows the averages and standard deviations of the error rates of

rulesets generated using Ripper, and K-rule algorithms with k = 1, 2. We see
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Table 4: The averages and standard deviations of the error rates of rulesets generated using

Ripper, and K-rule algorithms with k = 1, 2. Statistically significant differences are shown

in boldface (if K-rule is better) and italic (if Ripper is better).

Dataset Ripper 1-rule 2-rule Omni-rule

acceptors 14.9 ± 0.9 11.8 ± 1.1 11.8 ± 1.0 11.4 ± 0.9

artificial 0.4 ± 1.2 0.4 ± 1.2 0.0 ± 0.0 0.0 ± 0.0

balance 34.6 ± 1.1 28.1 ± 2.5 26.0 ± 1.6 27.8 ± 2.3

car 20.4 ± 2.1 10.7 ± 1.9 5.9 ± 2.6 7.1 ± 3.4

donors 6.1 ± 0.3 6.7 ± 0.6 6.7 ± 0.3 6.4 ± 0.3

hayesroth 23.5 ± 4.2 32.4 ± 0.8 32.9 ± 5.2 33.8 ± 7.9

krvskp 1.4 ± 0.6 1.1 ± 0.5 0.9 ± 0.2 0.9 ± 0.3

monks 0.0 ± 0.0 3.0 ± 7.5 0.0 ± 0.0 0.0 ± 0.0

nursery 5.9 ± 0.6 3.8 ± 0.4 1.2 ± 0.5 1.1 ± 0.4

promoters 20.6 ± 3.5 21.4 ± 2.6 21.1 ± 1.9 21.1 ± 4.0

spect 21.3 ± 4.0 21.3 ± 4.0 21.6 ± 1.1 21.2 ± 0.4

splice 6.7 ± 0.8 6.8 ± 1.0 6.3 ± 0.5 7.0 ± 0.9

tictactoe 1.6 ± 0.2 1.6 ± 0.0 9.2 ± 5.1 13.1 ± 8.6

titanic 22.4 ± 0.6 22.2 ± 0.8 22.0 ± 1.0 22.1 ± 0.9

vote 6.0 ± 2.0 6.0 ± 2.0 6.0 ± 2.0 5.6 ± 1.5

1 2 3 4

Ripper

1-Rule

2-Rule

Omni-Rule

from the results that, although K-rule is better than Ripper, the difference is

not as meaningful as the decision tree case. 1-rule wins against Ripper in 4 to

2 out of 15 datasets, 2-rule wins against Ripper in 5 to 3 out of 15 datasets,

and Omni-Rule wins against Ripper in 5 to 3 out of 10 datasets. Nemenyi’s

test also supports this claim, it does not find any significant difference between

algorithms and returns a single clique of algorithms (1-Rule, 2-Rule, Omni-Rule,

16



Table 5: The averages and standard deviations of the number of rules of rulesets generated

using Ripper, and K-rule algorithms with k = 1, 2. Statistically significant differences are

shown in boldface (if K-rule is better) and italic (if Ripper is better).

Dataset Ripper 1-rule 2-rule Omni-rule

acceptors 7.5 ± 1.6 2.6 ± 1.1 2.2 ± 0.8 2.0 ± 0.8

artificial 3.0 ± 0.0 3.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0

balance 4.0 ± 0.8 2.5 ± 0.7 2.0 ± 0.0 2.0 ± 0.0

car 9.0 ± 2.2 6.9 ± 1.4 5.5 ± 0.7 5.4 ± 1.3

donors 10.5 ± 1.6 7.5 ± 1.5 5.0 ± 1.1 5.8 ± 0.8

hayesroth 5.6 ± 0.5 4.0 ± 0.0 3.0 ± 0.5 3.0 ± 0.7

krvskp 12.0 ± 2.4 13.2 ± 1.8 7.7 ± 0.8 7.8 ± 0.8

monks 4.0 ± 0.0 3.8 ± 1.0 3.4 ± 0.5 3.4 ± 0.5

nursery 71.3 ± 9.4 45.1 ± 5.0 18.8 ± 2.3 19.6 ± 3.8

promoters 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

spect 0.8 ± 0.4 0.8 ± 0.4 0.2 ± 0.4 0.1 ± 0.3

splice 8.1 ± 1.8 5.1 ± 1.8 4.7 ± 0.9 4.5 ± 1.0

tictactoe 8.2 ± 0.6 8.1 ± 0.3 7.3 ± 1.3 6.1 ± 2.0

titanic 2.0 ± 0.9 1.4 ± 0.5 1.1 ± 0.3 1.1 ± 0.3

vote 1.3 ± 0.5 1.3 ± 0.5 1.3 ± 0.5 1.1 ± 0.3

1 2 3 4

Ripper

1-Rule

2-Rule

Omni-Rule

Ripper).

On 12 datasets, increasing k also improves accuracy. On the other hand, for

other datasets such as hayesroth, tictactoe, and spect, although there is pruning,

increasing k causes over-fitting.

Table 5 shows the averages and standard deviations of the number of rules

of rulesets generated using Ripper, and K-rule algorithms with k = 1, 2. For
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this case, the results are the same as the decision tree case. K-rule is again

significantly better than Ripper. 1-rule wins against Ripper in 7 to 0 out of

15 datasets, 2-rule wins against Ripper in 11 to 0 out of 15, and Omni-rule

wins against Ripper in 12 to 0 datasets out of 15 datasets. Post-hoc Nemenyi’s

test’s results show that the best algorithm is Omni-rule. There are two cliques

of algorithms and again clique (Omni-rule, 2-rule) is significantly better than

clique (1-rule, Ripper).

The same logic also applies here. In all datasets except promoters and vote,

as we increase k, the ruleset complexity decreases. Note again that, if you only

store the index of the new feature and the split point as integers, the decision

conditions of K-rule’s are equally complex as the decision conditions of Ripper.

7. Conclusions

In this paper, we propose a new framework to order a subset of k discrete

attributes. Using all orderings of values of those k attributes as new extracted

features, we propose two novel classifiers based on ID3 and Ripper. Our simula-

tion results on 15 discrete datasets show that our proposed algorithms performs

better than their counterparts in terms of error rate and tree complexity.

Although k-ordering help both tree and rule algorithms to produce signif-

icantly better classifiers than their counterparts, the time complexity in the

training phase (due to the exhaustive search nature in the induced space) may

prevent them from being good competitors. Since bootstrapping is based on

different combinations and k-ordering is based on different permutations, one

can establish a possible relationship between them. Similar to K-trees, K-

forests based on random forests can be proposed and instead of searching for

the best split on the whole induced space, one can search for the best split on

a significantly smaller and therefore tractable subset of the induced space.
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