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Abstract

Gravity is well tested on several length scales, but some unified theories predict
deviations in the region below 1 mm. In this thesis I will present a method
to search for such deviations in the sub-micrometre length scale. Below 1µm,
the electrostatic and the Casimir force are stronger than the gravitational
force by some magnitudes. To distinguish these forces, I have designed a new
force measurement setup based on the frequency modulation AFM technique.
Utilizing a quartz based parallelogram cantilever, it is feasible to measure
these forces with sufficient accuracy for us to set new constraints for possible
deviations of gravity. In this thesis I will present a new method of measuring
such deviations of gravity, and show the initial results I have obtained using it.
This will show that the measurement concept works, but that improvements
are necessary before we can achieve optimum measurement uncertainty.
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Inhaltsangabe

Gravitation ist auf verschiedenen Längenskalen gut getestet, allerdings sagen
einige vereinheitlichte Theorien Abweichungen bei Abständen unter 1 mm vor-
aus. In dieser Arbeit zeige ich ein Messverfahren, um derartige Abweichungen
im Submikrometerbereich zu untersuchen. Unterhalb von 1µm dominieren die
elektrostatische Kraft und die Casimir-Kraft. Um Gravitation von den ande-
ren Kräften unterscheiden zu können, basiert das neue Kraftmesssystem auf
einem frequenzmodulierten AFM. Ein Parallelogramm-Cantilever aus Quartz
ermöglicht es, die Messgenauigkeit zu erhöhen. Die vorliegende Arbeit hat zum
Ziel, den Aufbau des Messverfahrens sowie die ersten Messergebnisse zu doku-
mentieren. Darüberhinaus wird auf nötige Verbesserungen eingegangen, damit
spätere Messungen genau genug sind, um die Grenzen des Gravitationsgesetzes
zu verschieben.

Schlagworte Gravitation, Yukawa Potential, Casimir Effekt





Diese Fassung unterscheided sich durch kleine sprachliche Korrekturen von
der zur Begutachtung eingereichten Fassung. AuSSerdem wurden die Grafiken
2.2, 5.27 und 6.11 dahingehend geändert, dass Lee et al. 2020 anstatt der
vorläufigen Ergebnisse von 2019 eingezeichnet wurden.
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Chapter 1

Introduction

Although gravity has been well tested on several length scales, some unified
theories predict that it is possible that gravity is different somewhere below
distances of 1 mm. This could happen, for example, through a set of small
extra dimensions. Gravity propagates through all dimensions equally. This
means the same amount of energy has different volumes to fill for different
numbers of dimensions. Therefore, the strength of gravity changes with the
number of dimensions. There are various methods of searching for deviations
from gravitational force.
The first experiment used to measure a direct gravitational effect between
two bodies was the Cavendish experiment. The experiment consisted of two
large fixed spheres, and two small spheres attached to a torsion balance. The
force between the small and the large spheres led to the torsion of the torsion
balance. Knowing the torsion coefficient, it is possible to calculate the
gravitational force. This experiment was used to determine the gravitational
constant for the first time and also to measure the density of the Earth in
1797 and 1798 [1]. Fig. 1.1 shows the schematic of the experiment.

Figure 1.1: Schematic of the torsion balance of the Cavendish experiment [2].

Variations of this experiment are still the most accurate measurement tools
we have determining gravitational force at distances between 1 mm and 1 m.
For larger distances, astronomical observations are used. During the Moon
landing missions between 1969 and 1972, several retroreflectors were placed
on the Moons surface. These retroreflectors make it possible to measure the
distance between the Moon and the Earth [3]. This method is called lunar
laser ranging and it delivers the most precise measurement of Newton’s law
of gravity currently available.
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CHAPTER 1. INTRODUCTION

In 1986 Fischbach et al. [4] reanalyzed experimental data from 1922 the
Eötvös experiment. He proposed, based on the above analysis, that Newton’s
gravitational constant might be material-dependent. This would mean that
gold would fall differently compared to hydrogen, for example. This new type
of gravitational interaction was called the fifth force 1. There is currently no
evidence that this fifth force really exists, but its existence has also yet to be
ruled out either.

1.1 Motivation: The Cosmological Constant
Problem

Wikipedia has a list of unsolved problems in physics [7]. The cosmological
constant problem is part of that list. It refers to the fact that the
cosmological constant in Einstein’s general relativity is several orders of
magnitude smaller than estimates based on quantum field theories would
indicate [8]. In 1948 [9], Dutch physicist Hendrik Casimir predicted an effect,
which was named after him. In quantum field theory, a harmonic oscillator
has an infinite amount of quantized energy states. State zero is the most
important state for this experiment, because a harmonic oscillator has finite
energy without any excitation in this state. This is called zero-point energy.
Standing electromagnetic waves can exist between two perfectly conducting
parallel plates. The distance between the two plates determines which
wavelengths are able to be produced. For each wavelength, there is a
corresponding zero-point energy level. Summing over all zero-point energies
of wavelengths allowed by the boundary conditions results in the total
amount of zero-point energy stored between the plates. This result also
depends on whether a physical theory states a minimal allowed wavelength
or not. Today, the Planck length (∼ 1.6 · 10−35 m) is most often used for
this. This calculation leads to an energy density that would be 10120 times
larger than the energy density of the cosmological constant. If we make a
more sophisticated calculation for the vacuum energy density based on
quantum field theory, then the mismatch is reduced to about 54 orders of
magnitude [10] compared to the cosmological constant.

1.2 Promising theoretical approaches
In 1998, the ADD model [11] was proposed by Arkani-Hamed, Dimopoulos
and Dvali (and named after the authors surnames). The ADD model, also
known as the model with LED (large extra dimensions), describes how
gravity can travel through more dimensions than just the three with which
we are familiar. While electromagnetism can only travel in three dimensions,
in the ADD model, there can be two extra dimensions through which gravity
can travel, and that is just one example. This leads to a weaker gravitational
force in our three dimensions and might explain why gravity is so much
weaker than the electromagnetic force.

1The term fifth force is not only used for a new kind of gravitational force, but for every
possible kind of new fundamental force. For example Krasznahorkay et al. claimed to have
found a fifth force in 2015 [5][6], but this claim was neither proven wrong nor successfully
replicated by another group.
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1.3. EXPERIMENTAL CONCEPT

In 1977, the PecceiQuinn theory [12] tried to explain why the neutron has no
observable electric dipole moment even though quantum physical
considerations indicate that it should have one. This theory proposed a new
hypothetical particle called the axion. The axion is a dark matter candidate.
Dark matter comprises 27% of all mass and energy in the universe, but has
not been directly observed so far. Therefore the search for a dark matter
candidate is mandatory. Dvali and Funcke [13] proposed the domestic axion
hypothesis in 2016. This would also explain why the mass of a neutrino is
not zero. Their model leads to predictions for gravity experiments at small
distances.
Another component of the universe, dark energy, has also not been detected
directly. There is a hypothesis about a particle called the chameleon particle,
which is a dark energy candidate [14]. A chameleon particle’s mass fluctuates
based on local energy density, and this behavior is what gives the chameleon
particle its name. Chameleon particles would cause an additional force, thus
providing another reason why we should experiment on gravity at small
distances.
Edholm et al. [15] proposed a model that tries to resolve the fact that gravity
has singularities in Newtons and Einsteins theories. He also calculated how
this model would change the behavior of Newton’s law of gravity and found
deviations below distances of 1µm. In this model, the gravitational potential
energy is saturated at very small distances, and at these distances a
saturation of potential energy causes the force to decrease.

1.3 Experimental Concept

Most force measurements use a spring-like setup, meaning that a spring or
something that acts like a spring is used. When a force acts on the spring,
the compression or stretching length of the spring is proportional to the
force. This constant of proportionality is called the spring constant and is
usually written as k. The changes in length are easy to measure – one option
is to use a laser interferometer. The smaller the spring constant, the larger
the change in length is. Unfortunately this also means there exists a minimal
distance between the two masses. At a certain distance, the force becomes
high enough to pull the spring all the way to the source mass. This minimal
distance increases with a smaller k.

Figure 1.2: Schematic of an AFM with a cantilever.
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CHAPTER 1. INTRODUCTION

After Binnig, Quate and Gerber [16] introduced the atomic force microscopes
(AFMs), AFMs became more common in the 1990s. AFMs measure the force
between a small tip, attached to a cantilever, and a surface of interest. AFMs
made it possible to scan over surfaces to obtain microscopic images at an
atomic scale. The cantilever is also a kind of spring with its own spring
constant k. One problem with this measurement setup is that the cantilever
tip jumps into contact with the surface. This is a problem, because it leads
to a minimal possible distance for the force measurement and that the tip
may be damaged. One solution to this problem would be to increase the
stiffness of the cantilever. But a higher stiffness reduces the force resolution
of the measurement. To overcome these problems, Giessibl [17] developed the
frequency modulated AFM. The force is measured using a frequency
measurement, rather than the length change described in the previous
method. The resonance frequency of the AFM changes when a non-linear
force is applied. This method allows us to use a higher k with the same
precision as the previous method, which in turn allows us to measure at even
smaller distances.

Figure 1.3: Schematic of a parallelogram flexure.

Testing gravity with an AFM requires some changes to our setup. Instead of
a tip a sphere, or half-sphere is attached to the cantilever. Also, our AFM
does not scan over the surface, instead we measure the force at different
distances between the sphere and the plane surface. If we coat both surfaces
with gold, which is highly dense, then this will create a higher gravitational
effect. Also, unlike other high density metals, gold has a tendency not to
form oxides, a property we can take advantage of when measuring the
Casimir effect, because oxides are less conductive than bare metals. After
measuring the Casimir effect, the electrostatic attraction and the Casimir
effect can be subtracted from our resulting measurements, leaving only noise
and a possible gravitational effect in our data.
Melcher et al. [18] demonstrated that a parallelogram flexure can replace the
cantilever. This means we can achieve force measurements with a resolution
of 14 fN with high Q systems2. Compared to a cantilever, a parallelogram
flexure has no parasitic rotation during vibration. We can use radiation
pressure to drive the vibration. With this method, one can reach a vibration
amplitude as small as 1 nm or below.
Using the parallelogram flexure the gravitational effect distance of 0.1 nm to
100 nm comes into focus. Usually the length scale is written as λ and the

2See section 4.1.3 for a description of the quality factor Q.
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1.3. EXPERIMENTAL CONCEPT

effect size relative to the gravitation force is written as α. Section 3.1.1
describes the easiest modification of gravity in our length scale, known as
Yukawa Potential.
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Chapter 2

Current State of Research

For more than two centuries, Newton’s law of gravity was the main
theoretical model of gravity, until it was replaced by Einstein’s general
relativity in 1915.

2.1 Long Distance: Tests of General Relativity
More than a century has passed and Einstein’s general relativity remains the
best known theory of gravitation. When it was published, it explained
Mercury’s perihelion shift, observed by Le Verrier in 1859 [19]. This chapter
describes some of the experimental tests of general relativity that were
conducted in the last century.

2.1.1 Deflection of Electromagnetic Radiation
The first test of a prediction made by general relativity was to measure
deflected light. The term deflection of light refers to a phenomenon where an
electromagnetic wave that passes an object with a large mass is deflected due
to the gravitational field of that object. The measurements were done by
Dyson et al. [20] during the 1919 solar eclipse. They used three telescopes at
two different locations to measure the deflection, but the results from only
one telescope were sufficient reliable results. The next solar eclipse in 1922
provided better data and was also supporting general relativity over Newton’s
law of gravity [21]. The most spectacular example of deflection of light is
gravitational lensing, and specifically the Einstein ring [22]. Unfortunately,
we do not currently have precise, independent information about the amount
of mass that produces gravitational lensing. In 1989 the Hipparcos satellite
mission was launched to measure the positions of about a hundred thousand
celestial bodies. Its measurements were used by Freoschle et al. [23] to
estimate the deflection of light caused by the Sun. In 2013, the Gaia satellite
was launched as a successor to Hipparcos. Its goal is to measure the
positions of more than a billion celestial bodies with a higher precision than
Hipparcos. Hees et al. [24] expects its deflection of light measurements will be
helpful in constraining alternative gravitational theories.
The best way we currently have of measuring the deflection of light, or
electromagnetic radiation, uses radio astronomy. It does not rely on there
being a solar eclipse, so it can be used to retrieve much more data. Very
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Long Baseline Interferometry allows precise position measurements of radio
sources from across the entire celestial sphere and has been analyzed by
Lambert and Le Poncin-Lafitte [25].

2.1.2 Shapiro Delay
In 1964, Shapiro [26] proposed a new test for general relativity that can be
performed inside our solar system. It is based on the time dilation effect of a
large mass. Electromagnetic radiation passing by a large mass like the Sun or
Jupiter is slowed down. This time delay of a signal compared to a
hypothetical Newtonian mass is called Shapiro delay. One of the first precise
measurements of the Shapiro delay was done using the Viking spacecaft [27].
The Cassini spacecraft provided far more accurate measurements [28]. The
time dilation of general relativity was also measured using atomic clocks on
Earth [29], and is used to make the global positioning service (GPS) [30] more
accurate.
The Shapiro delay is also important in multi messenger astronomy.
Neutrinos and photons arrived on Earth almost simultaneously after the
supernova 1987a occurred [31]. Some alternative theories of gravity claim
that gravitational waves have a different Shapiro delay [32]. The gravitational
wave event GW170817, an event that had an electromagnetic
counterpart1 [33], hardly constrained these theories.

2.1.3 Strong Equivalence Principle
The equivalence principle is one of the theoretical foundations of general
relativity. In its Newtonian form it states that gravitating mass is identical
to inertial mass. There is also the weak equivalence principle (WEP), that
states the universality of free fall [34]:

Test particles with negligible self-gravity behave independently of
their properties in a gravitational field.

The strong equivalence principle (SEP) states [34]:

All test fundamental physics (including gravitational physics) is
not affected, locally, by the presence of a gravitational field.

This means, for example, that the Newtonian gravitational constant G is
constant anywhere and anytime in the universe. General relativity fulfills the
strong equivalence principle. But there are different theories of gravity that
fulfill the WEP but not the SEP. One example for that is a theory called
MOG2 [36][37].
Fig. 2.1 describes the WEP. This depiction could also be used as an example
of the SEP, if a Cavendish-like experiment is performed inside of the
reference frames instead of using a laser beam.
In 2014, a neutron star pulsar with two white dwarf companions was
observed [38]. The inner white dwarf has an orbital period of 1.6 days which
puts it in the strong gravitational field of the neutron star. Strong is defined
in this context so, that first order post Newtonian corrections are insufficient

1Only one gravitational wave with an electromagnetic counterpart has been observed so
far, which means it is possible, though unlikely, that the electromagnetic counterpart was
purely coincidental.

2Short for modified gravity.
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Figure 2.1: Graphical example of the equivalence principle [35]. The upper left
image shows the equivalence of an accelerated reference frame to a reference
frame bound by gravity as shown on the upper right image. A laser beam is
used during the experiment, and in both cases the beam is curved. The lower
left image depicts the equivalence of a reference frame with no gravitational
field affecting it, to free falling in a gravitational field that is shown on the
right. In both cases, the laser beam is straight from the point of view of any
observer inside of the reference frame.

to describe the system. This neutron star system was observed since then,
and in 2018, the currently best constraints on the SEP under strong
gravitational conditions were published by Archbald et al. [39].
Under weak gravitational conditions, the best test for the SEP comes from
data gathered by the NASA Messenger mission, during which NASA
measured Mercury’s orbit [40] as well as from lunar laser ranging [41].
The immutability in time of the gravitational constant G was best obtained
by the ephemeris of Mars [42][19] and is now better constrained by the
ephemeris of Mercury [40]. The Mercury results are only bounded by the
uncertainty of the mass loss of the Sun due to solar wind.

2.1.4 Gravitational Waves
Gravitational waves were postulated by Einstein in 1918 [43], but the first
time they were observed, by Hulse and Taylor in 1974 when they discovered
a pulsar in a binary system, they were only able to be observed indirectly.
They noted that the orbits of both objects in the system changed because of
energy loss, and that this energy loss was consistent with that which would
be lost due to gravitational waves. However, the first direct observation was
done in 2015 after starting the two advanced LIGO detectors [44]. The first
observed gravitational wave was generated by a binary black hole merger.
Since then, most of the observed gravitational waves were binary black holes
mergers. One binary neutron star merger was observed that lead to the
observations stated in section 2.1.2.
Gravitational waves are a good test for general relativity, since we can only
detect waves that are generated under strong gravitational field conditions.
In 2019 the LIGO scientific collaboration published some of the tests [45]
they performed on their data. All results were consistent with general

13



CHAPTER 2. CURRENT STATE OF RESEARCH

Chen16

Ederth00

Kamiya15

Lee20

Pokotilovski06

Roy99

1e+05

1e+12

1e+19

1e+26

1e-04 1e-02 1e+00 1e+02
λ in μm

|α
|

Figure 2.2: The yellow upper right corner marks the excluded parameters for α
and λ in the Yukawa potential. The lines are from specific published measure-
ments: Pokotilovski (2006) [46], Kamiya (2015) [47], Nesvishevsky (2008) [48],
Ederth (2000) [49], Roy (1999) [50], Chen (2016) [51], Lee (2020) [52].

relativity and constrain possible alternatives. One result that may be
important for unified theories of gravity and the standard model of particle
physics is their upper bound on the mass of the hypothetical graviton:

mg ≤ 5.0 · 10−23eV/c2 (2.1)

2.2 Latest Short-Range Experiments
This thesis focuses on short-range deviations from gravity. Section 3.1.1
explains the Yukawa potential and its usage to parameterize deviations from
gravity. It has two free parameters, α and λ, that build a parameter space.
Each experiment that was done so far can be used to rule out a specific set of
α and λ. In Fig. 2.2 the ruled out parameters are shown.
Other experiments are currently under way, such as the third generation of
the qBounce experiment of the Vienna group of H. Abele [53] and the
quantization of gravity experiments by the Aspelmeyer Group [54][55].

2.2.1 Antiprotonic Helium Spectroscopy
Antiprotonic helium is helium where one electron is replaced by an
antiproton. The energy level of the antiproton depends on the gravitational
potential. Therefore a possible Yukawa potential influences the energy levels
and the energy needed for the transition of the antiproton to another energy
level. In Tanaka et al. [56], the antiprotonic helium experiment by Hori et
al. [57] was reanalyzed with the application to the Yukawa potential. In
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Figure 2.3: The antiprotonic helium has an antiproton instead of the second
electron. The energy levels of the antiproton are measured spectroscopically.

Fig. 2.3 the measurement concept is shown. Their results would show up in
Fig. 2.2 on the upper left side if it were extended below 10−10 m.

2.2.2 Neutron Scattering
In Fig. 2.2 the upper left excluded regions come from Pokotilovski [46] and
Kamiya et al. [47] based on neutron scattering experiments. The atomic
nucleus is built from the positive charged proton and the electrically neutral
neutron. Therefore a neutron that hits an atom is mostly scattered by the
atomic nucleus. The inner structure of a neutron consists of electrically
charged quarks. This means neutrons have a charge distribution that leads
to an interaction with the electrons of the electron shell. A possible new kind
of interaction would be detectable due to a different scattering pattern of the
neutrons. In the experiments, slow neutrons were used. That means they
had an energy of about ∼ 1meV. Slow neutrons have a wavelength that is
much larger than the size of the nucleus. Therefore there is no diffraction
pattern due to the nucleus. The energy of phonons in solids is about the
same value of the low energy neutron. This could lead to inelastic scattering,
which changes the scattering pattern. To avoid inelastic scattering gas
targets, e.g. xenon gas or argon gas, were used. Kamiya et al. used the the
HANARO research reactor in south Korea as neutron source [47] and xenon
gas as a target. They calculated the expected scattering pattern using all
known interactions the neutrons have in the experiment. And the deviations
from that pattern were used to calculate limits on possible new interactions
as seen in Fig. 2.2.

2.2.3 Casimir Force Measurements
The Casimir effect was first measured by Sparnaay [58] using parallel plates.
In 1997 Lamoreaux [59] measured the Casimir effect to a higher precision by
changing the geometry to a sphere and a plate. This geometry overcomes
problems like surface profile and parallelism. This geometry was used by Roy
et al. [50] using an atomic force microscope (AFM) to measure the force. A
sphere was attached to a cantilever and the force between the sphere and a
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Piezotube

Cantilever
Crossed
cylinders

Figure 2.4: On the left is the experimental setup used by Roy et al. [50]. It
used a sphere attached to a cantilever. The cantilever deflection was measured
using laser beam that was reflected at the end of the cantilever. A quadrant
photodiode was used to measure this deflection. On the right is the experi-
mental setup used by Ederth et al. [49]. They used crossed cylinders for the
experiment and measured the force using the cantilever deflection.

flat surface was measured using the deflection of the cantilever. For the
deflection measurement, a laser beam was reflected at the end of the
cantilever and was measured with a 4-quadrant photodiode. Ederth et al. [49]
measured the Casimir effect between crossed cylinders. This geometry also
has the advantage to avoid problems with parallelism and large-scale profile.
Fig. 2.4 shows both experiments. After subtracting the Casimir Force from
the measurement results, the residuals were used to calculate the limits of
new gravitational forces in the nanometer range.

2.2.4 Rotating Source Mass
Measurements with rotating source masses are another possibility. The basic
idea is that the source masses have regions with different densities on a disc.
In case of Kapner et al. [60], holes in the discs were used, as they have the
maximal possible density difference to the disc material. One disc on a
torsion pendulum was used as the force sensor, the other disc was used as
rotating source mass. The ratio between the number of holes at both discs
has to be fractional. The frequency of the measurement signal then is not a
harmonic of the rotation frequency, and the force signal is easier to detect.
Between the source mass and the force measurement unit was a shielding
membrane. Electrostatic and the Casimir effect were shielded by that and
only the gravitational effect was measured. The disadvantage of this method
is to calculate all influences on the force due to the specific geometry and a
large simulation is needed. An improved version of that experiment was
performed by Lee et al. [61], and its preliminary results are also shown in
Fig. 2.2.
On the other hand, Chen et al. [51] used different materials within the disc,
but coated a homogeneous layer of 150 nm thick gold on that disc. With this
setup, they measured at a distance below a micron. The gold coating shields
all electrical effects of the disc material, therefore the Casimir effect is
constant during the measurement, and only gravitational effects due to the
density differences have an effect on the measurement. One disadvantage of
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Figure 2.5: On the left: Experiment by Kapner et al. [60] using rotating source
masses in the micrometer range. On the right: Experiment by Chen et al. [51]
using rotating source mass and a torsional oscillator with a sphere attached to
measure the force below the micrometer scale.

this method is, that the minimum possible distance between the density
variations and the sphere is limited by the thickness of the gold coating,
which has to be larger than 135 nm to attenuate the Casimir effect of the disc
material by a factor of 106 [51][62]. The frequency of interest is different from
the rotation frequency, because the density regions have a different
distribution. The force measurement was performed using a torsional
oscillator. Both measurements are shown in Fig. 2.5.

2.2.5 Shielded Cantilever Measurement
Geraci et al. [63] used the deflection of a cantilever to measure the
gravitational force or any deviations from it. But instead of using a sphere
and measuring the Casimir effect like Roy et al. they put a cuboid test mass
on the cantilever, and placed a shielding membrane between the cantilever
and the source mass. Similar to Chen et al. the density of the source mass
was structured. The movement of the source mass had a frequency of a third
of the cantilever resonance frequency. And if there were any deviations from
the Yukawa potential, the amplitude of the cantilever bending would be a
measurement of that deviation. See Fig. 2.6 for further details.

2.3 Epistemology for Gravitation
Plato and Aristotle used the term episteme for knowledge or understanding.
Epistemology is the philosophical field for the theory of knowledge.
Since Karl Popper, one main aspect is that you cannot prove a scientific
theory. A scientific theory can only stand the test of time. The scientific
method since him is to make only falsifiable statements. Another important
concept of the scientific method is Occam’s razor. It says, that if you have
multiple models about the nature that are equally good to explain the
specific field, you should choose the simplest model, i.e. the model with fewer
parameters. For gravity this means, as we have Einstein’s general relativity
which supersedes Newton’s law of gravity as a complete picture of gravity, we
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Figure 2.6: The schematic shows the experiment done by Geraci et al. [63].
With the fiber the movement of the test mass on the cantilever was measured.
The driving mass was structured to induce a different frequency of density
shift on the cantilever than the driving frequency. On the upper right an SEM
image shows the test mass.

still can use Newton’s law of gravity in all cases where general relativity is
very well approximated through Newton’s law of gravity. This is the case for
low energy scales, and the low gravitational potential of small masses at
distances between a nanometer and a micrometer. Newton’s law of gravity is
falsifiable, and the experiment discussed in this thesis is a test of it. The
Yukawa potential is not entirely falsifiable. It is defined by two unknown
parameters α and λ. What is possible is to rule out specific values of both
parameters. This means, that the Yukawa potential with specific parameters
is a falsifiable model. Another aspect is, why should we use the Yukawa
potential to falsify specific possibilities of new non-Newtonian forces? An
explanation based on the laws of physics is that the Yukawa potential comes
into play when a force is mediated by massive particles. But there is no
evidence that this has to be the case, and other potentials are possible. This
is where Occam’s razor comes into play. The Yukawa potential is the easiest
potential with a length scale (λ) and a strength (α).
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Chapter 3

Theoretical Background

Section 1.3 described the rough concept of the experiment described in this
thesis This means, this chapter describes how deviations of gravity are
described by using the Yukawa potential, and how it behaves when a
plate-sphere geometry is used. We also discuss influences on the force
measurement during the experiments like the Casimir effect, different types
of Van der Waals interactions, the electrostatic interaction and the Patch
effect as well as some other influences. Afterwards we describe how the force
gets measured using the frequency modulation, and the influence of the
amplitude of the vibration. In thhe end of this chapter, we describe some
methods that were used for the data analysis.

3.1 Laws of Gravity
Currently Einstein’s general relativity is the most successful theory of
gravity. A great example is the first direct observation of gravitational
waves [44] in 2015 after a century had passed since the first publication about
general relativity and Einstein’s prediction about gravitational waves [43].
Nevertheless Newton’s law of gravity is still a great approximation in cases of
low field energies. The potential VN (r) of Newton’s Law of Gravity is given
by:

VN (r) = −Gm ·M
r

(3.1)

where G is the gravitational constant, m and M are two interacting point
masses and r is their distance. Section 1.2 explained a number of possible
theories that could change Newton’s potential at low field energies and low
distances. Some of the modifications are explained in the further sections.

3.1.1 Yukawa Potential
3.1.1.1 Description of the Yukawa Potential

A possible new potential is commonly parameterized with the Yukawa
potential. It has the advantage that it has a length scale as well as a
strength. The Yukawa potential was introduced by Hideki Yukawa in
1935 [64] and was stated as:

Y (r) = −g2 e
−µr

r
(3.2)
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Figure 3.1: Integration over a plate for a specific point at the center.

g2 and µ are the parameters of the Yukawa potential. g2 is the strength of
the potential and µ = λ−1 is the range of the potential.
The Yukawa part of the potential for gravity is:

VY (r) = −Gm ·M
r

α · e−r/λ (3.3)

This means g2 = G ·M ·m · α, where α is the strength of the Yukawa
potential in relation to Newton’s law of gravity. And the complete
modification of Newton’s law of gravity with the Yukawa potential is given by

V (r) = −Gm ·M
r
·
(

1 + α · e−r/λ
)

(3.4)

3.1.1.2 Calculation for Plate-Sphere Geometry

Eq. (3.4) is the potential for point masses. To calculate the potential for a
more complex geometry, we have to go from the point masses to mass
densities. First we derive the potential for the plate. For this, we integrate
over the volume by assuming a cylindrical geometry of the plate with plate
size defined by a radius Rc and a thickness h2. The mass M is replaced by to
ρ2 as mass density of the cylindrical disc. r is the distance to the point,
where the potential is calculated. Therefore it has the form
r =

√
(x0 + x)2 + y2, where x0 ≥ 0 is the minimum distance between the

point and the plate. These definitions can be seen in Fig. 3.1. The potential
for the plate of the Yukawa part of gravity is given by1:

V (x0) = −
h2∫

0

dx
Rc∫
0

dy · y
2π∫

0

dφGρ2

r
αe−r/λ (3.5)

1m from Eq. (3.4) is omitted from this calculation, because we only calculate the field of
the disc without any other mass near the disc at this point.

20



3.1. LAWS OF GRAVITY

Define γ = 2πρ2G.

V (x0) = −γ
h2∫

0

dxα
Rc∫
0

dy · y√
(x0 + x)2 + y2

e−
√

(x0+x)2+y2
λ (3.6)

= −γ
h2∫

0

dxαλ

(
e−
√

(x0+x)2+R2
c

λ − e− |x0+x|
λ

)
(3.7)

(3.8)

With Rc ≫ |x0 + x| and Rc ≫ λ , e−
√

(x0+x)2+R2
c

λ → 0

V (x0) ≈ +γ
h2∫

0

dxαλe
−x0−x

λ (3.9)

= −γαλ2e
−x−x0

λ

∣∣∣h2

0
(3.10)

= γαλ2
(

e
−x0

λ − e
−h2−x0

λ

)
(3.11)

V (x0) = αγλ2e− x0
λ

(
1− e

−h2
λ

)
(3.12)

With the potential V (x0), the gravitational acceleration g can be calculated:

VY (x0) ≈ −γ
(
αλ2e− x0

λ

(
1− e

−h2
λ

))
(3.13)

gY (x0) = ∂VY (x0)
∂x0

(3.14)

≈ γ
(
αλe− x0

λ

(
1− e−h2/λ

))
(3.15)

To obtain the total force between the two bodies, we have to integrate over
the mass density of the second body, in this case a sphere. A circle with
radius r has an area A = πr2. The share of the force is identical for every
point on the circle. It changes only with the distance, which is represented
by x0. At each different x0, the equipotential circle has a different radius
r(x). With a distance d between the nearest point on the sphere to the plate,
and a radius R for the sphere, the center of the sphere is at point d+R.
These definitions are shown in Fig. 3.2. For any x0 within the sphere, r2 is
defined and can be calculated using the Pythagorean theorem to
r2 =R2−(R2−2R(x0 − d) + (x0 − d)2).

FY ≈
d∫

d+h1

dx0ρ1γA ·
(
αλe− x0

λ ·
(

1− e− h2
λ

))
(3.16)

≈
d∫

d+h1

dx0ρ1γπ
(

2R (x0 − d)− (x0 − d)2
)
·
(
αλe− x0

λ ·
(

1− e− h2
λ

))
(3.17)

Define γ1 = πρ1γα.

FY ≈ γ1λ ·
(

1− e− h2
λ

) d∫
d+h1

dx0

(
2R (x0 − d)− (x0 − d)2

)
· e− x0

λ (3.18)
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Figure 3.2: Integration of the sphere over the gravitational field of the plate.

= γ1λ
2
(

1− e− h2
λ

)
e− d+h1

λ

−h2
1 + 2h1(R− λ) + 2λ

(
eh1/λ − 1

)
(λ−R)︸ ︷︷ ︸

≈−R


(3.19)

= γ1λ
2
(

1− e− h2
λ

)
−2λe

h1−d−h1
λ R+ e− d+h1

λ︸ ︷︷ ︸
≈0

(
−h2

1 + 2h1(R− λ) + 2λR
)

︸ ︷︷ ︸
≈0


(3.20)

= −γ1λ
2 ·
(

1− e− h2
λ

)
2λe−d/λR (3.21)

= −4π2ρ1ρ2Gαλ
3Re−d/λ

(
1− e− h2

λ

)
(3.22)

This result is a very good approximation for e− h1
λ ≪ 1. For example, if

h1 = 100µm and λ = 10µm ⇒ 4.5 · 10−5 ≪ 1. This means, if the spherical
cap (or lens) is about 10 times higher than the range λ of the potential we
want to measure, the approximation of Eq. (3.22) can be used.2
In a real experiment, neither the plate nor the sphere are built from a single
material. The sphere consists of a base material, an adherent layer and a
coating. Therefore at least three different densities are necessary. The outer
two layers have a thickness of tc for the coating and ta for the adherent layer.
In the first stage, only the sphere has a coating:
For the coating, the force is calculated assuming the whole sphere is made of
its material. For the adherent layer, the radius of the sphere changes by the
thickness of the sphere. And for the base material, the same is applied, but
the radius is changed by the sum of both layer thicknesses. This leads to a

2See also Bordag et al. [65].
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change of ρ1 to:

R · ρ1 = Rρc + (R− tc) (ρa − ρc)e− tc
λ + (R− tc − ta) (ρb − ρa)e− tc+ta

λ (3.23)

With R≫ tc and R≫ ta:

ρ1 = ρc + (ρa − ρc)e− tc
λ + (ρb − ρa)e− tc+ta

λ (3.24)

For ρ2, this is the same, but with possibly other materials and thickness
values:

ρ2 = ρ̂c + (ρ̂a − ρ̂c)e− t̂c
λ + (ρ̂b − ρ̂a)e− t̂c+t̂a

λ (3.25)

3.1.2 Power Law
In particle physics, an unknown gravitational potential is typically described
by a power law modification [66] [67]:

V = −GMm

r

(
1 +

(
λ

r

)n)
(3.26)

with r as distance between the point masses and λ as the range of the force
as well as n as the exponent of the power law. The ADD model [11]3 can be
best expressed as a power law. Therefore, the approximation as
Yukawa-potential is not possible for r ≪ λ. But as long as the distances are
at about λ or larger, the approximation as a Yukawa-potential is valid.

3.1.3 Infinite Derivative Gravity
One approach to overcome problems of general relativity (GR) is called
Infinite Derivative Gravity [68] or short IDG. One of these problems is, that
the Newtonian limit of GR leads to a singularity, IDG does not have this
problem [69]. Also it is renormalizable at the quantum level [70] and it is
consistent with cosmological observations without the cosmological constant
of GR [71]. Edholm [72] described how this theory would change the
Newtonian potential at small distances and got an oscillating potential.
Perivolaropoulos analyzed experiments with that [73]. One effective
oscillation potential from Perivolaropoulos is:

V (r) = 1
2r2 −

1
r

(
1 + cos (m̂r)

3

)
(3.27)

where m̂ is a natural number that describes the potential and r is the
distance between point masses. See Fig. 3.3 for a comparison between a
bound Newtonian potential and the oscillating potential. The oscillations of
the potential are spatial, and they cancel out in most cases of Newtonian
potentials. Perivolaropoulos has shown that this potential fits also well the
Kapner [60] experiment using a rotating source mass in the sub-millimeter
range. See also section 2.2.4 for a description of that experiment.

3See section 1.2 for a short description on the ADD model
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Figure 3.3: Example of the oscillating gravity potential [73] with the formula
V (r) = 1

2r −
1
r

(
1 + cos(m̂r)

3

)
and m̂ = 100. It is superposed with the corre-

sponding Newtonian potential.
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Figure 3.4: Casimir effect in 1D. Between two points (shown here as lines to
show the stationary waves), only stationary waves are possible, because of the
boundary condition that the electric field has to be zero at the metal surface.

3.2 The Casimir Effect
The Casimir effect was predicted by Hendrik Casimir in 1948 [9]. It states,
that a force is acting between two conducting surfaces. This type of
interaction is a quantized electromagnetic field, i.e. virtual photons.

3.2.1 The 1D-Casimir Effect
Before we calculate the Casimir Effect for the real 3D case, we start with the
1D case, because it is easier to follow. A harmonic oscillator has in quantum
mechanics a zero-point energy, that goes back to the uncertainty principle.
One example of a quantum harmonic oscillator is an electromagnetic wave
between two perfectly conducting points4. There could be different energy
states. The energy state one is the case, when one photon is in the system,
the energy state two means there are two photons and so on.

Em =
(

1
2

+m

)
ωℏ (3.28)

with m ∈ N. The case with no photons in the system is the zero-point energy:

E0 = 1
2
ωℏ (3.29)

ω is the angular frequency of the photon. Coming back to the case of two
perfectly conducting points of distance d. Then there are different types of
harmonic oscillators possible. Only those types with a frequency
corresponding to an stationary wave are possible. That means each
stationary wave corresponds to a different harmonic oscillator. A stationary
wave can have the following wavelength:

λ = 2d
n

(3.30)

where n is the number of the harmonic. With c = λf , the possible angular
frequencies are:

ω(n) = n
πc

d
(3.31)

4A perfectly conducting point is the 1D repersentation of a perfectly conducting plate.
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And for each angular frequency, the zero-point energy would be:

E0(n) = 1
2
ω(n)ℏ = n

1
2
πcℏ
d

(3.32)

The total energy of the system is the sum of all zero point energies:

Etot =
∞∑

n=1
n
πcℏ
2d

= πcℏ
2d

∞∑
n=1

n (3.33)

This sum is divergent, i.e. — it sums up to ∞. Note that there is the
concept of terminating the summation when the wavelength λ goes below the
Planck length. This was done by Weinberg [8] in his paper on the
cosmological constant problem.
There are two different ways to get a meaningful result from this divergent
sum, both involve regularization.

3.2.1.1 Zeta Function Regularization

Zeta function regularization is a method to remove infinity from a quantum
dynamics calculations, see Razmi et al. [74]. Riemanns ζ-function is defined
by

ζ(s) =
∞∑

n=1

1
ns

(3.34)

In the case of s > 1, the sum is convergent for every real number5. Riemann
said that for each complex number s, this function can be continued
analytically [75, 2.7.3]. The analytical continuation is done with the
functional equation:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ (1− s) ζ (1− s) (3.35)

where Γ(s) is the gamma function, a continuation of the factorial for all
complex numbers. For s = −1, the sum would be:

ζ(−1) =
∞∑

n=1

1
n−1 =

∞∑
n=1

n (3.36)

Using this, Eq. (3.33) can be written as:

Etot = πcℏ
2d

ζ(−1) (3.37)

The following value is obtained using the analytical continuation of
Riemann’s ζ-function for s < 1 from Eq. (3.35):

ζ(−1) = − 1
2π2 Γ(2)ζ(2) Γ(2)=1!=1= − 1

2π2 ζ(2)
ζ(2)= π2

6= − 1
12

(3.38)

This method of finding the corresponding ζ-function to an divergent sum and
using the analytical continuation of it as a finite value is called ζ-function
regularization [75, 2.7.3.4]. This leads to a total energy of:

Etot = −πcℏ
24d

(3.39)

The negative sign means, that the corresponding force would be attractive.
5Actually, this definition is convergent ∀s ∈ C with ℜ(s) > 1
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3.2.1.2 Difference between Ed and E∞

The other method to calculate the Casimir effect for the 1D case is the more
obvious one from a physical point of view. The idea is to find the difference
between the case of two points with distance d and the case where the
distance goes to infinity.
The case of a distance of infinity means the sum of all zero-point energies
outside the two points of distance d. In this case, there are not only positive
integer numbers n allowed, but every possible positive real number. This
means, the sum transforms into an integral:

Eoutside = 1
2
ℏcπ
d

∞∫
0

ndn (3.40)

This integral is also divergent. But we can assume, that at very small
wavelengths, every metal becomes transparent to that wavelength. This
wavelength is called cutoff wavelength. To represent that in both formulas,
we have to introduce a cutoff function g(n) = e−αn. α is a parameter
representing the frequency range of the field and is a very small number, but
α > 0. Afterwards we can write the difference of both energies:

∆E = Etot − Eoutside = πcℏ
2d

∞∑
n=1

ne−αn − ℏcπ
2d

∞∫
0

ne−αndn (3.41)

The next step is using the Euler-MacLaurin formula. The Euler-MacLaurin
formula is given by [75, 0.7.1.3]:

m∑
x=0

f(x) =
m∫

0

f(x)dx+ f(0) + f(m)
2

+ Sm (3.42)

with

Sm =
m∑

p=1

(
B2p

(2p)!
d(2p−1)f

dx(2p−1) (x)
∣∣∣∣
x=0

)
+Rm (3.43)

where B2p are the Bernoulli numbers and Rm is a remainder term. First of
all, the formula has been rearranged to match the structure of Eq. (3.41):

m∑
x=1

f(x)−
m∫

0

f(x)dx = f(0) + f(m)
2

− f(0)− Sm (3.44)

with f(n) = ne−αn and f(0) = 0. In our case m→∞.

lim
m→∞

f(m) =
lim

m→∞
m

lim
m→∞

eαm

L′Hôpital= 1
lim

m→∞
αeαm →∞

= 0 (3.45)

The relevant Bernoulli numbers are: B2 = 1
6 and B4 = − 1

30 . The first term
of S∞ is:

B2

2
dne−αn

dn
= B2

2
(
e−αn − αne−αn

) n=0= B2

2
· 1 = 1

12
(3.46)
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And the second term of S∞ is:

B4

4!
d3ne−αn

d3n
= B4

24
(
3α2e−αn − α3ne−αn

) n=0= B4

8
α2 = 1

240
α2 (3.47)

With a very small α > 0, the second term is much smaller than the first
term, and also every higher order term gets irrelevant. This leads to the
energy difference of:

∆E = −πcℏ
24d

(3.48)

Which is identical to Eq. (3.39).

3.2.2 The Casimir Effect in 3D
Casimir calculated the effect in 3D. That means, we have two perfectly
conducting plates at distance d. The plates are quadratic with side length
L≫ d. First difference to the 1D case is, that electromagnetic waves can
have two different polarizations. Therefore the sum needs a factor 2. On the
other hand, there are not only perpendicular waves between the plates
possible, but any waves in any other direction. Definition of the axes:

0 ≤ x ≤ L (3.49)
0 ≤ y ≤ L (3.50)
0 ≤ z ≤ d (3.51)

For each direction there are wave-numbers:

kx = π

L
nx (3.52)

ky = π

L
ny (3.53)

kz = π

d
nz (3.54)

L is large compared to d, therefore kx and ky can be assumed to be
continuous variables. The overall wave number is:

k =
√
k2

x + k2
y + k2

z =
√
k2

x + k2
y +

(π
d
nz

)2
(3.55)

Esum = L2ℏc
π2

∞∑
n=0

′ ∞∫
0

∞∫
0

kdkxdky (3.56)

The factor L2

π2 is obtained by integrating over kx and ky rather than
integrating only over nx or ny. Note that in the 3D case n starts at 0. That
is because there could be waves propagating only in the kx − ky plane, and
not in kz. But in that case, there are not two different polarizations for
n = 0, because there is no wave in kz. That is what the

∑′ means. When
calculating the sum a factor of 1

2 has to be added to the first summand in
case of n = 0. We also want to compare the energies outside the plates:

Evac = L2ℏc
π2

∞∫∫∫
0

kdkxdkydnz (3.57)
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And the difference between both energies:

∆E = Esum−Evac = L2ℏc
π2

 ∞∑
n=0

′ ∞∫
0

∞∫
0

kdkxdky −
∞∫∫∫
0

kdkxdkydnz

 (3.58)

Transforming k to polar coordinates u, θ in the kx, ky plane gives:

∆E = L2ℏc
π2

π

2

 ∞∑
n=0

′ ∞∫
0

u

(
u2 + n2π2

d2

)1/2

du−
∞∫∫
0

u

(
u2 + n2π2

d2

)1/2

dudn


(3.59)

where dkxdky = ududθ and n means nz from above. The π
2 came from the

integral over θ ∈
[
0, π

2
)
.

Similar to the 1D case a cutoff function g(k) has to be introduced. It is
assumed that metals are transparent to electromagnetic waves of very high
frequencies, which is represented by the cutoff function.
The cutoff function g(0) = 1 for small k and for large k it is g(∞) = 0.

∆E = L2ℏc
2π

( ∞∑
n=0

′ ∞∫
0

u

(
u2 + n2π2

d2

)1/2

g

((
u2 + n2π2

d2

)1/2)
du

−
∞∫∫
0

u

(
u2 + n2π2

d2

)1/2

g

((
u2 + n2π2

d2

)1/2)
dudn

)
(3.60)

The next step is to substitute the integration variable u by v = u2d2/π2. For
the new integration variable follows:

u =
√
vπ2

d2 = π

d

√
v (3.61)

du
dv

= π

d

1
2

1√
v

(3.62)

du = π

2d
1√
v

dv (3.63)

udu = π2

2d2 dv (3.64)(
u2 + n2π2

d

2)1/2

= π

d

(
v + n2)1/2 (3.65)

∆E = L2ℏc
2π

π3

2d3

( ∞∑
n=0

′ ∞∫
0

(
v + n2)1/2

g
(π
d

(
v + n2)1/2

)
dv

−
∞∫∫
0

(
v + n2)1/2

g
(π
d

(
v + n2)1/2

)
dvdn

)
(3.66)

The function we want to apply the Euler-MacLaurin formula from Eq. (3.42)
on, is:
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f(n) =
∞∫

0

(
v + n2)1/2

g
(π
d

(
v + n2)1/2

)
dv (3.67)

Next step for Eq. (3.66) is:

∆E = L2ℏc
2π

π3

2d3

(
1
2
f(0) +

∞∑
n=1

f(n)−
∞∫

0

f(n)dn
)

(3.68)

lim
n→∞

f(n) = 0, because lim
x→∞

g(x) = 0, and an integral over zero is zero.
The cutoff function g(n) is 1 for small n, and 0 for very large n. Therefore
the derivative of g′(n) = 0 for small n. f(n) can also be written as an
integral over w, but with a lower limit of n2:

f(n) =
∞∫

n2

w1/2g
(π
d
w1/2

)
dw (3.69)

The derivatives of f(n) are:

f ′(n) = −2n2g(π
d
n) n=0= 0 (3.70)

f ′′(n) = −4ng(π
d
n) n=0= 0 (3.71)

f ′′′(n) = −4g(π
d
n) n=0= −4 (3.72)

f ′′′′(n) = 0 (3.73)

The Euler-MacLaurin formula in this case delivers:

∞∑
n=1

f(n)−
∞∫

0

f(n)dn = −1
2
f(0)− 1

12
f ′(0) + 1

720
f ′′′(0) + . . . (3.74)

Including Eq. (3.74) into Eq. (3.68), we obtain:

∆E = L2ℏcπ2

4d3

(
1
2
f(0)− 1

2
f(0)− 1

12
f ′(0) + 1

720
f ′′′(0) + . . .

)
(3.75)

Putting in the numbers:

∆E = L2ℏcπ2

4d3

(
− 0

12
+ −4

720

)
= −L

2ℏcπ2

720d3 (3.76)

which is the same result as in Casimirs original paper.
To calculate the force, one has to differentiate by the distance d:

FC = d∆E
dd

= L2ℏcπ2

240d4 (3.77)

3.2.3 Casimir Effect of the Sphere-Plate Geometry
It is not possible to use the method for the parallel plate Casimir effect to
calculate the effect for the plate-sphere geometry. But with the proximity
force theorem by Blocki et al. [76] there exists a method to use the result
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Figure 3.5: To integrate the potential over the sphere using the proximity
force theorem, the force between an infinitesimal annulus parallel to the plate
is summed up for each equipotential circle on the sphere. r is the inner radius
of the annulus and r + dr is the outer radius.

from the parallel plate geometry to calculate the force of the plate-sphere
geometry. The idea of the proximity force theorem is, that in cases where
only a parallel surface contributes to the force, one can split up the surface of
a volume to chunks of parallel surfaces with different distances. First the
sphere is split into a lot of annular equipotential surfaces.
Then the area contributes with its distance to the plate to the overall
potential. The area of an annulus is:

A = π(r2
1 − r2

2) (3.78)

with r1 being the outer and r2 being the inner radius. The limits for
infinitesimally thin annuli delivers the continuous case:

A =
r1∫

r2

2πrdr (3.79)
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V (A) =
R∫

0

2πV (d(r))rdr (3.80)

For d0 being the nearest distance of the sphere surface to the plate and R
being the radius of the sphere, for the distance d we obtain:

d = d0 +R−
√
R2 − r2 (3.81)

The term
√
R2 − r2 is the distance between the sphere center for a given

annulus radius r. Now it is possible to substitute dr with dd:
dd
dr

= r√
R2 − r2

(3.82)

dr =
√
R2 − r2

r
dd (3.83)√

R2 − r2 = d0 +R− d (3.84)
d(r = r1) = d0 (3.85)
d(r = r2) = d0 +R (3.86)

V (A) =
d0+R∫
d0

2πV (d) (d0 +R− d) dd (3.87)

Using partial integration:
b∫

a

f ′(x)g(x)dx = f(x)g(x)
∣∣∣∣b
a

−
b∫

a

f(x)g′(x)dx (3.88)

With f ′(d) = V (d), g(d) = d0 +R− d, g′(d) = −1 and f(d) =
∫
V (d)dd:

V (A) = 2π
(

(d0 +R− d0︸ ︷︷ ︸
=R

)
(∫

V (d)dd
)

(d0)

− (d0 +R− (d0 +R))
(∫

V (d)dd
)

(d0 +R)︸ ︷︷ ︸
=0

+
d0+R∫
d0

∫
V (d)dddd

)
(3.89)

⇒ V (A) = 2π
(
R

(∫
V (d)dd

)
(d0) +

d0+R∫
d0

∫
V (d)dddd

)
(3.90)

The corresponding force to the potential is:

F (A) = dV
dd

= 2πR
d
(∫
V (d)dd

)
dd

(d0)︸ ︷︷ ︸
=V (d0)

+2π d
dd

d0+R∫
d0

∫
V (d)dddd

︸ ︷︷ ︸
=0

(3.91)
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The second part of Eq. (3.91) is zero, because the definite integral does not
depend on d anymore. As result for any force between a sphere and a plate,
where the surface approximation of the PFA (proximity force approximation)
is valid, is:

F (A, d0) = 2πRV (d0) (3.92)

where V (d0) is the potential per unit area of the parallel plate case. In the
case of the Casimir effect this results in:

FC(d0, R) = R
ℏcπ3

360
1
d3

0
(3.93)

3.2.4 Casimir Effect for Real Metals
Real metals are not perfectly conducting. A perfectly conducting metal
would also be a perfect mirror for each wavelength. Gold is not a perfect
mirror for blue light, therefore it is not perfectly conducting. The
conductivity of real metals is also temperature dependent.
Lifshitz modelled the Casimir effect between dielectric materials [77]. The
result for the force per unit area between two plates with dielectric functions
ϵ1 and ϵ2 and in between a medium with ϵ3 delivers:

F (d) = kBT

πc3

∞∑
n=0

′

ϵ
3/2
3 ξ3

n

∞∫
1

p2
((

(s1 + p)(s2 + p)
(s1 − p)(s2 − p)

e
2pξn

c l
√

ϵ3 − 1
)−1

+
(

(s1 + pϵ1/ϵ3)(s2 + pϵ2/ϵ3)
(s1 − pϵ1/ϵ3)(s2 − pϵ2/ϵ3)

e
2pξn

c l
√

ϵ3 − 1
)−1)

dp (3.94)

where si =
√
ϵi/ϵ3 − 1 + p2 and ϵj = ϵj(iξ). ξ is the complex frequency

iξ = ω. In case of vacuum in between and both plates of the same medium
the dielectric functions are ϵ3 = 1 and ϵ1 = ϵ2 = ϵ. The Lifshitz-formula
reduces to:

F (d) = kBT

πc3

∞∑
n=0

′

ξ3
n

∞∫
1

p2
((

(s+ p)2

(s− p)2 e
2pξn

c l − 1
)−1

+
(

(s+ pϵ)2

(s− pϵ)2 e
2pξn

c l − 1
)−1)

dp

(3.95)

where s =
√
ϵ− 1 + p2.

ϵ(iξ) is given by:

ϵ(iξ) = 1 + 2
π

∞∫
0

ωϵ′′(ω)
ω2 + ξ2 dω (3.96)

where ϵ′′ is the imaginary part of dielectricity.

3.2.4.1 Real Metals without Thermal Effect

In case of kBTd/ℏc≪ 1 the passage to the limit of continuous phyics can be
made, thus instead of summation an integration is carried out, where kBT
are replaced by ℏω, see Lifshitz for further details. When d is larger than the
wavelength that characterizes the absorption spectrum of the body, the
integral can be simplified: The values of p where pξd/c ∼ 1 are dominant in
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the integration because of the exponential factor, which leads to a p≫ 1. In
that case s ≈ p. The first term of Eq. (3.95) is zero and for the second term a
new variable of integration can be substituted: x = 2dpξ/c. This leads to:

F = ℏc
32π2d4

∞∫
0

∞∫
1

x3

p2

(
(s+ p)2

(s− p)2 ex − 1
)−1

+
(

(s+ pϵ)2

(s− pϵ)2 ex − 1
)−1

dpdx

(3.97)
with ϵ = ϵ(ixc/2pd). In this case, in the exponential only x ∼ 1 are relevant
to the integration, for large d the argument for ϵ is nearly zero for most of
the integration time. Therefore ϵ can be replaced with the value of the
function in case of ξ = 0:

F = 3ℏc
32π2d4

∞∫
0

∞∫
1

x3

p2

(
(s(0) + p)2

(s(0)− p)2 ex − 1
)−1

+
(

(s(0) + pϵ(0))2

(s(0)− pϵ(0))2 ex − 1
)−1

dpdx

(3.98)
This reduces to the integral:

F = 3ℏc
16π2d4

∞∫
1

1
p2

(
(s(0)− p)2

(s(0) + p)2 + (s(0)− pϵ(0))2

(s(0) + pϵ(0))2

)
dp (3.99)

For a metal ϵ(0)→∞, and the result of the integral is the usual Casimir
effect. But this result is an approximation, and when we want to get the next
term of the expansion, we have to take other values of ϵ into account.
Expanding the integral with powers of 1

d gives, using Drudes model6 of
metals:

F = ℏc
32π2d4

2π4

15
− c

ed

√
m

πN

∞∫
0

x4ex

(ex − 1)2 dx
∞∫

1

p2 + 1
p4 dp

 (3.100)

or:
F = ℏcπ

240d4

(
1− 7.2 c

ed

√
m

N

)
(3.101)

3.2.4.2 Temperature Dependent Casimir Effect

The Lifshitz formula can also be used to calculate the temperature dependent
Casimir effect. In case of metals using the Drude model, Lifshitz obtained:

F = kBT

8πd3

(
1 + 2

(
4πkTd
ℏc

)
e− 4πkT d

ℏc

)
(3.102)

To calculate the force for the sphere-plate geometry, one has first to calculate
the potential before using PFA:

V =
∫
F (d) = − kBT

16πd2

(
1 + 2

(
4πkTd
ℏc

)
e− 4πkT d

ℏc

)
(3.103)

Using PFA Eq. (3.92) delivers for the first term:

Fsphere = R
kBT

8d2 (3.104)
6For the Drude model see later in this chapter.
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3.2.4.3 Drude Model

Drude made the first kinetic theory of free electron movements in metals in
the year 1900 [78] [79] after the discovery of the electron by J. J.
Thomson [80]. Drudes model based on the idea, that electrons in a metal
have the same behavior as molecules in an ideal gas. The Drude model was
the first model that tried to explain the resistance of a metal and it was also
used to explain the color of metals. The color of metals depends on their
interaction with electromagnetic waves, which is the same reason that the
Casimir effect exists. With the difference, that the Casimir effect assumes
perfect conductivity at every frequency and the Drude model is a model,
that explains imperfect conductivity. Therefore the Drude model is used to
correct the Casimir effect for real world metals. The current response, also
known as plasmons, to an electromagnetic field is given by:

σ(ω) = σ0

1 + iωτ
(3.105)

where ω is the frequency of the wave and τ is the time the electron needs to
accelerate.
The dielectric function ϵ is given by:

ϵ = 1 + P

ϵ0E
(3.106)

where P is the polarization density, P = −nex. n is the number of electrons
and x is the displacement. Between the electrical field E and the polarization
density P there is the following relationship:

P = − ne2

mω2E (3.107)

Which delivers the frequency dependence of the dielectric function:

ϵ(ω) = 1− ne2

ϵ0mω
(3.108)

The frequency where the real part of the dielectric function drops to zero and
changes its sign is called plasma frequency ωp and is usually the plasmon
frequency:

ωp =

√
ne2

ϵ0m
(3.109)

3.2.4.4 Comparison Drude model and Plasma model

To calculate the Casimir effect for gold at finite temperature, the real part of
the dielectric functions has to be used to get an accurate result at finite
temperatures. Fig. 3.6 shows the measured dielectric constants of gold.
Unfortunately, it is not possible to measure the dielectricity for gold at every
frequency. For that case, the dielectric function is extrapolated. For example
by using the Drude model.
A more accurate model of the Casimir effect at finite temperature from
Eq. (3.104) has been developed by Sushkov et al. [82] and delivers for the
Drude model:

FC(Drude) = ζ(3)
8

RkbT

d2 (3.110)
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Figure 3.6: The refractive index n and its imaginary part k the extinction
index of gold for different angular frequencies [81].

Bezerra et al. [83] argued, that the Drude model contradicts Nernst’s heat
theorem, and has to be corrected. They came up with the plasma model,
where the transversal electrical mode at zero frequency is not added to the
calculation:

ϵ(ω) = 1−
ω2

p

ω
(3.111)

This leads to a force that is twice as high as in the Drude model:

FC(Plasma) = ζ(3)
4

RkbT

d2 (3.112)

Brevik et al. [84] argued, that the conclusion from Bezerra et al. was wrong,
and that the Drude model does not contradict Nernst’s heat theorem.
The Casimir effect was first measured in 1958 by Marcus Sparnaay in
Eindhoven [58]. More precise measurements were conducted in 1997 by Steve
Lamoreaux [59]. He changed the geometric setup from parallel plates to a
sphere and a plate. A sphere has the advantage that its orientation is
unimportant, while parallel plates need to be adjusted very precisely. The
measurement of Sushkov in 2011 was in favor of the Drude model [82], while
the experiment by Chang in 2012 favored the Plasma model [85].
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3.3 Van der Waals Interaction
Between neutral atoms exists no Coulomb interaction. But a neutral atom or
a molecule can be polarized. There are different types of polarization effects:

• Keesom interaction

• Debye force

• Londen dispersion interaction

If both molecules have a permanent electrical dipole, an electrostatic force
arises. It is called Keesom interaction. If only one molecule has a permanent
dipole and the other molecule or atom does not, the first can induce a dipole
to the second. This force is called Debye force. The last case, where both
molecules or atoms have no permanent dipole, a dipole can arise due to
quantum mechanical fluctuations. This case is called London dispersion
interaction.
All three of the above interactions follow a 1

r6 power law with different
coupling strengths. They are summarized as van der Waals potentials. The
potential of the van der Waals force between atoms is given by:

Vvdw = −C
r6 (3.113)

where C is the constant of proportionality and r is the distance. Starting
from the intermolecular forces, the force between macroscopic objects can be
calculated and is done by pairwise summation of all intermolecular
interactions. This was done by Hamaker [86] by assuming spherical
molecules. This integration for the plate-sphere geometry was done by
Czarnecki [87] and Clayfield et al. [88]. For a distance of a few nanometer,
this leads to the formula [89]:

Vspvdw = − A
6r
R (3.114)

where A is the Hamaker constant, r is the distance between the surfaces and
R is the radius of the sphere. For larger distances this would be more like:

Vspvdw = A

6

(
R

r
+ R

r + 2R
+ ln r

r + 2R

)
(3.115)

The Hamaker constant depends on the material properties. Klimchitskaya et
al. [90] calculated it for gold to:

AAu = (4.31± 0.14)× 10−19 J (3.116)

If the distance of a pair of atoms becomes so small that the electron orbitals
would penetrate Pauli’s principle causes a repulsive force, which is
approximated by a 1

r12 power law. The superposition of the attractive
London potential and the repulsive force in denoted Lennard-Jones potential.

V (r) =
(
a

r12 −
b

r6

)
(3.117)

where a and b are constants that depend on the interacting atoms or
molecules. The r12 part describes the short range repulsive force and the r6

part describes the stated van der Waals forces [91]. The typical
Lennard-Jones-Potential is shown in Fig. 3.7.
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Figure 3.7: The typical form of the Lennard-Jones-Potential. The minimum
of the potential, where the attractive force changes to a repulsive force rm is
often called radius of the molecule or atom. It is defined as rm =

( 2a
b

)1/6.

3.4 Electrostatic Interaction
To calculate the electrostatic force between a sphere and a plate, we need the
capacity of a capacitor built from a plate and a sphere. In Boyer et al. [92]
the capacity for this is:

Csp = 4πϵ sinh (α)
+∞∑
n=1

1/ sinhnα (3.118)

with cosh (α) = 1 + d/R, where d is the distance between the surfaces, R is
the radius of the sphere and ϵ is the permittivity of the insulating interfacial
layer. They calculate an approximation to:

Csp(d) = 2πϵR
(

ln
(
R

d

)
+ ln(2) + 23

20
+ θ

63

)
(3.119)

where θ ∈ [0, 1]. The stored energy of a capacitor is:

W = 1
2
C · V 2 (3.120)

The force is the derivative of the stored energy with respect to the distance:

FV (d) = dW
dd

= πϵRV 2 d
dd

ln
(
R

d

)
(3.121)

= πϵRV 2
(
− d
R
· R
d2

)
(3.122)

= πϵRV 2 1
d

(3.123)

With a superposition of an applied voltage and the contact potential, this is:

FV (d) = πϵ0R
(V − Vm)2

d
(3.124)
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d

R

z

0

Figure 3.8: The left shows a sphere capacitor without roughness and the right
shows the sphere capacitor with roughness.

3.4.1 Electrostatic force with surface roughness
For a sphere-plate capacitor with non-ideal surface topographies Boyer et al.
have developed a model [92] including rough surfaces. With h(z) for the
height distribution (in roughness metrology often refered to as amplitude
distribution) Boyer et al. state:

Crgh ≈d/R≪1= 2πϵR ·
Rt∫
0

h(z) ln
(

R

d+Rt − z

)
dz + 1.843 + θ

63
(3.125)

with θ ∈ [0, 1]. h(z) is a density function of how frequent specific heights are
in the surface profile, it is given by the superposition of the roughness
profiles of both surfaces. It is defined that it fulfills the condition:

Rt∫
0

h(z)dz = 1 (3.126)

Rt is the peak-to-peak roughness. This means the roughness profile is shifted
with respect to the zero line by z = z −min(z). The derivative from the
capacitance in means of the distance leads to:

(
∂Crgh

∂d

)
d/R≪1
≈ −2πRϵ

Rt∫
0

h(z)
d+ p− z

dz (3.127)

And for a roughness much smaller than the distance (d≫ Rt):(
∂Crgh

∂d

)
d/R≪1
≈ −2πRϵ 1

d+Rt −Ra
(3.128)

where Ra is the arithmetic average of the roughness profile. This leads to a
force of:

Frgh(d) ≈ −πRV 2ϵ
1

d+Rt −Ra
(3.129)

For large distances (d≫ Rt) this means, that roughness changes the distance
between sphere and plate only of about the mean roughness. At small
distances (Rt < d or Rt ≈ d), the roughness profile has a larger effect.
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Therefore the roughness profile of the sphere and the plate has to be
measured and to be included in the detailed data analysis.

Frgh(d) ≈ −πRV 2ϵ

Rt∫
0

h(z)
d+ p− z

dz (3.130)

3.4.2 The Patch Effect
The work function indicates how much energy is needed to remove an
electron from the material. The work function depends mostly on the bulk
material, but also on its underlying crystalline structure. Different
alignments of the crystalline structure and defects change the work function,
and a change of the work function leads to a different electrostatic field. The
crystalline structure of gold appears to be like a patchwork, and the variation
of the work function over the surface is named after that patch effect. The
patch effect leads to a root mean square voltage Vrms which acts as an
electrostatic force:

Frms(d) = πϵR
V 2

rms
d

(3.131)

ϵ is the permittivity function, V is the user controlled voltage, Vm is the
offset voltage between the surfaces, Vrms is the voltage that comes from the
patch effect [93][94].

3.5 Other Influences
3.5.1 Gas Pressure on Surfaces
Every gas particle, atoms as well as molecules, that collides with the force
sensor give an impulse to the force sensor. As long as the molecules do not
have preferred directions from where they hit the sensor, this does not lead
to a force, but is a noise source known as Brownian noise. But there are
processes where the impulse directions are no longer purely stochastic such
that they cancel out, but rather have preferred directions summing up to a
resultant force. One process comes into play, if for example parallel plates
have different temperatures. This is used in a so called Knudsen pressure
gauge, which can be used to measure the absolute pressure in vacuum.
Knudsen [95] states as equation for the force between parallel plates:

Fkn =
√
T1

T2
− 1pA

2
(3.132)

where T1 and T2 are the temperatures of the plates, p is the vacuum pressure
and A is the area of the plates. For the Knudsen force for a sphere with
radius R before a plate with a distance d follows using the proximity force
theorem:

Fkn(R) = 2πR
∫
Fkndd = πRpd

√
T1

T2
− 1 (3.133)

3.5.2 Water on Surfaces
One of the main parasitic forces in atomic force microscopy (AFM) are
capillary forces due to a water film on the surfaces. To reduce this effect,
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AFMs are placed in a vacuum, but not the complete water film vanishes [96]
when pumping down. The force between a plate and a sphere due to a water
capillary was measured by Mason et al. [97]. Based on that, Willett et al. [98]
have built a model for non-equal spheres. A plate is a sphere with a radius
lim r →∞. The capillary force can only exist at a distance smaller than the
cubic root of the water volume:

dmax = 3
√
V (3.134)

Assuming there is a monolayer of water molecules on each surface with a
thickness of 0.3 nm, and all the molecules form a circle of radius r = 100 nm,
the maximum distance dmax would be 27 nm. This means that above that
distance the water on the surface does not interfere with the measurements.

3.5.3 Temperature-dependence of Young’s modulus
The elastic constants of every material are temperature dependent. The
temperature dependence of fused silica was measured by McSkimin [99] and
Fig. 3.9 shows Young’s modulus E of fused silica.
For example, the temperature dependence could lead to a frequency shift due
to temperature changes. The following shows an example calculation for that.
The stiffness of a cantilevered beam of a rectangular cross section is given by:

k = Ewt3

4L3 (3.135)

where w is the width, t is the thickness and L is the length of the cantilever.
To compare different temperatures only as a function of Young’s modulus, we
set wt3

4L3 = 10−7 m. The frequency for a cantilever with this k is:

f = 2πω = 2π
√
k/m̂ (3.136)

where m̂ is the effective mass, in this example is m̂ = 10−6 kg.

f(20 ◦C) = 13591.86 Hz (3.137)
f(21 ◦C) = 13593.13 Hz (3.138)

⇒ ∆f
∆T

= f(20 ◦C)− f(21 ◦C)
1 K

≈ 1.3 Hz K−1 (3.139)

3.5.4 Light pressure
When light is reflected on a mirror, the momentum of the light is transferred.
The momentum of a photon is [100]:

|p⃗| = ℏω
c

(3.140)

On a mirror, the transferred momentum is twice of that, because after the
elastic collision, the photon has the same momentum as before, but in the
opposite direction.
The force on a mirror coming from that momentum for N photons is:

F = 2d|p⃗|
dt

= 2ℏω
c

dN
dt

(3.141)
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Figure 3.9: The solid line is Young’s modulus of fused silica measured by Mc-
Skimin [99], the dashed line is the linear fit at 20 ◦C with a slope of 13.5 MPa/K.

The power of a monochromatic light beam is:

P = ℏω
dN
dt

(3.142)

Combining Eq. (3.142) and Eq. (3.141), the force due to light pressure is:

F = 2P
c

(3.143)

3.5.4.1 Light Pressure in a Fabry-Pérot

Light pressure in a Fabry-Pérot cavity is more complicated, since each
photon is reflected multiple times. The finesse F is the average number of
round-trips of a photon [101] and it is given by:

n = F
π

(3.144)

Therefore, the force in a Fabry-Pérot where the incoming light has the power
P is:

F = 2PF
cπ

(3.145)

Loss in a Fabry-Pérot cavity can be described by [102]:

R̂ = Re−αL (3.146)

where R is the reflectivity of the mirrors, L is the length of the cavity and α
is the attenuation coefficient.
The finesse as function of the reflectivity by:

F = π
√
R

1−R
(3.147)

Eq. (3.145) with the attenuated reflectivity results in a length dependent
force:
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F = 2P
c
·
√
Re−αL

(1−Re−αL)
(3.148)

For example, with a low finesse cavity with R = 0.04, L = 25µm, P = 1 mW
and the attenuation coefficient according to Regener et al. [102] of
α = 10.6 m−1:

F = 1.3897pN (3.149)

If for example one mirror oscillates with an amplitude of 1 nm, the force
changes by around 8 · 10−21 N. This means that this effect does not play a
role for the experiments in this thesis.
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Figure 3.10: The potential of an arbitrary field (solid black line) distorts the
potential of a harmonic oscillator (solid blue line) over one oscillation. The
dotted line is the combined potential over one oscillation. A is the amplitude,
z the nearest distance of the oscillator to the source of the distortion potential.

3.6 Force Measurement
For force measurements exist a lot of different kinds of measurement
principles, such as strain gauges, piezoelectricity and electromagnetic
compensation balances. The most obvious method is measuring the force
using Hooke’s law:

F (x) = kx (3.150)

where k is the Spring constant, x is the extension of the spring and F is the
force. This was also the method used at the beginning of atomic force
microscopes. For AFMs exists another technique called frequency modulation
force spectroscopy. With this method, measuring the force is converted to
measuring a frequency.
A cantilever has a spring constant k1 and an effective mass m that determine
its eigenfrequency to:

ω0 =
√
k1

m
(3.151)

The overall potential of the external distance depending force field in the
moving direction of the oscillation and the spring potential adds up to a
potential seen is Fig. 3.10. This distance dependent force field acts like a
spring that is parallel to the cantilever spring as seen in Fig. 3.11. In general
the spring constant is distance dependent and is better called spring function:

k2(d) (3.152)

In case of a linear force field F (x) = k2x, the spring constant is really
constant. For two parallel springs, the effective spring constant is the sum of
both spring constants:

keff = k1 + k2 (3.153)
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k1

k2

m

Figure 3.11: The cantilever in a force field can be seen as a mass with parallel
springs. The stiffness of the cantilever itself is k1, and the force field acts like
a parallel spring with the distance dependent spring function k2(d).

This leads to a new eigenfrequency:

∆ω + ω0 =
√
k1 + k2

m
(3.154)

Or written as frequency shift:

∆ω
ω0

= 1−
√

1 + k2

k1
(3.155)

If |k2| ≪ |k1|, a Taylor series can be used to simplify the square root7:

∆ω
ω0

= 1
2
k2

k1
+ h.c. (3.156)

According to Dürig [103], the frequency shift of any kind of interaction
potential can be derived using a principle of least action. He gives as
interaction integral:

S =
T∫

0

1
2
ψ2(t)− 1

2
dψ(t)

dt
+ ω0

k1
V (ψ0 + ψ(t))dt (3.157)

where ψ(t) is the oscillatory motion, ψ0 is an offset where the spring is
relative to the interaction force source and V () is the potential of the
interaction force. The variation of δS has to vanish:

δS =
T∫

0

(
ω2

0ψ(t) + d2ψ(t)
dt2

+ ω2
0
k1
F (ψ0 + ψ(t))

)
× δψ(t)dt ≡ 0 (3.158)

The function ψ(t) can be assumed as Fourier series:

ψ(t) =
∞∑

n=1
an cos(nωt) (3.159)

7√
1 + x = 1 + 1

2 x + 1
8 x2 + h.c.
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Figure 3.12: Amplitude dependence of the frequency shift for an electrostatic
potential. It was calculated for a voltage of 0.1 V at a distance of 50 nm for
characteristics of the force sensor described in chapter 4.1.1.

with the corresponding variation:

δψ(t) =
∞∑

n=1
δan cos(nωt) (3.160)

Inserting in Eq. (3.158) gives:

δS = π

ω

∞∑
n=1

an

(
ω2

0 − n2ω
)
δan + δSint (3.161)

with

δSint = ωres
2

k1

∞∑
n=1

δan

T∫
0

F

(
ψ0 +

∞∑
n=1

an cos(nωt)

)
× cos(nωt)dt (3.162)

restricting the fourier transform to the lowest harmonic, which means
an = 0∀n ≥ 2 gives:

ω = ω0

√√√√√1 + 2
πa1k1

1∫
−1

F (d+ a1(1 + x)) x√
1− x2

dx (3.163)

where the substitution cos(ωt) = x was used and d is the smallest distance
between the AFM tip and the surface.
The linear case can be seen as the derivative of the distance dependent force.
Putting Eq. (3.163) into Eq. (3.156) gives8:

∆ω
ω0

= − 1
πak

1∫
−1

F (z + a(1 + u)) u√
1− u2

du (3.164)

It follows that a lower amplitude a is better for measuring the frequency shift
at a given distance z. Fig. 3.12 shows the amplitude dependence of the

8See also [104] and [105] for the derivation.
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frequency shift for an electrostatic potential at a 50 nm distance for
conditions described in chapter 4.1.1.
In Sader et al. [105] this formula is inverted for the constant amplitude case,
to get the force out of the frequency shift:

F (z) = 2k
∞∫

z

(
1 + a1/2

8
√
π(t− z)

∆ω(t)
ω0

)
− a3/2√

2(t− z)
d∆ω(t)
ω0dt

dt (3.165)

This equation should be useful, as long as the forces and therefore the
frequency shift diminishes with larger z.

3.7 Resonance Amplitude of a Mechanical
Oscillator

The differential equation of a force mechanical oscillator is:

ẍ+ 2γẋ+ ω2
0x = F0

m
· cosωt (3.166)

ω is the driving frequency, F0 is the amplitude of the driving force, m is the
effective mass off the osscilator, γ is the dampening and ω0 is the
eigenfrequency of the oscillator as was seen in Eq. (3.151). The amplitude of
the stationary state of the forced oscillator is [106, Eq. 11.26]:

A (ω) = F0/m√
(ω2

0 − ω2)2 + (2γω)2
(3.167)

where A (ω) is the amplitude.
The resonance frequency ωR is:

ωR =
√
ω2

0 − 2γ2 (3.168)

The effective mass m of a more complex oscillator is not easily accessible, so
it is replaced with the stiffness k and the eigenfrequency:

m = k

ω0
(3.169)

By putting equations Eq. (3.169) and Eq. (3.168) into Eq. (3.167) it leads to:

A (ωR) = F0ω
2
0/k√√√√(ω2

0 −
(
ω2

0 − 2γ2))2︸ ︷︷ ︸
4γ4

+ 4γ2 (ω2
0 − 2γ2)︸ ︷︷ ︸

4γ2ω2
0−8γ4

(3.170)

A (ωR) = F0ω
2
0/k√

4γ2ω2
0 − 4γ4

(3.171)

Based on the relation of the quality factor Q and the dampening γ from
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Siebert [107], Q = ω0
2γ , follows:

γ= ω0
2Q=⇒ A (ωR) = F0ω

2
0/k√

4ω2
0

ω2
0

4Q2 − 4 ω4
0

16Q4

(3.172)

A (ωR) = F0ω
2
0/k√

ω4
0

Q2 −
ω4

0
4Q4

(3.173)

A (ωR) = F0@@ω
2
0/k

@@ω
2
0

√
1

Q2 − 1
4Q4

(3.174)

A (ωR) = F0/k√
1

Q2

(
1− 1

4Q2

) (3.175)

A (ωR) = Q
F0/k√
1− 1

4Q2

(3.176)

With the definitions D = 1
2Q as dampening coefficient9 and Astat = F0

k as the
displacement with a static force F0, the formula can be rewritten so that the
resonance amplitude depends on the static amplitude Astat and the
dampening D:

Ares = Astat

2D
√

1−D2
(3.177)

After removing the driving force, or with a different kind of excitation, the
oscillation decays:

x(t) = Ae−γt cos (ωdt+ φ) = Ae−ω0t/2Q cos (ωdt+ φ) (3.178)

with ωd =
√
ω2

0 − γ2 [106]. This can be used to measure the quality factor.

9Note that D is a dampening per oscillation, it can also be written as D = γ
ω0

.
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Figure 3.13: Nested intervals [108]. Starting from the top interval, in each in-
teraction the interval is refined until a specific lower interval length is reached.

3.8 Data Analysis

3.8.1 Nested Intervals to Calculate Yukawa Parameters
for a Given Frequency

While Eq. (3.22) can easily be used to calculate α for a given force and a
given λ, this is not possible if only the frequency shift from Eq. (3.164) is
known. To calculate α for a given frequency shift ∆ω and a given length
scale λ a numeric method is needed. For this, a nested interval approach is
used. Fig. 3.13 shows the nested intervals method graphically. Usually the
nested intervals method calculates the mean between the upper boundary
and the lower boundary and calculates the function value at that point and
compares it to the reference value. One example where this method is used is
finding the square root of a number. As the Yukawa plot is logarithmic, a
nested interval method cannot use the upper and lower boundaries itself,
because it would not finish the algorithm in a reasonable number of
iterations. Instead the logarithm of the boundaries is used for the algorithm.
Algorithm listing 1 shows the algorithm.

Algorithm 1 logarithmic nested intervals
1: procedure Nested Intervals
2: lower← log10(lower boundary)
3: upper← log10(upper boundary)
4: tol← minimum goal
5: resultLower← fn(10lower)
6: resultUpper← fn(10upper)
7: loop:
8: while (upper− lower) > tol do
9: mid← (upper + lower)/2

10: resultMid← fn(10mid)
11: if resultMid > 0 then
12: upper← mid
13: resultUpper← resultMid

14: if resultMid < 0 then
15: lower← mid
16: resultLower← resultMid

return mid

49



CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.14: Riemann sum approximation of x2. The right shows a coarse
approximation with five nodes and the left is a finer approximation with 21
nodes.

3.8.2 Numerical Integration
As Eq. (3.164) is not analytically solvable for most of the interaction forces,
numeric integration is used to calculate the frequency shift for a given force.
One definition for an integral is the Riemann integral. The Riemann integral
defines an integral on the interval [a, b] ∈ R. The interval is parted into
subdivisions like:

a = x0 < x1 < x2 < · · · < xn = b (3.179)

Fig. 3.14 shows an example of the Riemann sum approximation. Using these
subdivisions, the Riemann sum is defined as10:

n−1∑
i=0

f(xi) · (xi+1 − xi) (3.180)

The smaller the subdivisions get, the better is the estimate for the integral:

lim
n→∞

n−1∑
i=0

f(xi) · (xi+1 − xi) =
b∫

a

f(x)dx (3.181)

From the Riemann integral follows the simplest way to numerically integrate
any function f(x), just define the subdivisions and calculate the Riemann
sum.
Unfortunately the Riemann sum needs a lot of subdivisions to calculate the
integral to an acceptable accuracy, so a number of other approaches are used
to increase calculation speed.

3.8.2.1 Gaussian Quadrature

Gaussian quadrature is one of those other methods. It is best for functions of
the form:

1∫
−1

f(x) · q(x)dx (3.182)

10Most of the times, not f(xi) is used, but instead f(ti) where ti ∈ [xi, xi+x]. But for
numeric integration the abstract ti is not useful, so we use a definition with a defined value.
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where a polynomial can approximate f(x) and q(x) is a weight function. The
integration transforms into the sum over n chuncks with weights wk and the
integration error En(f)

1∫
−1

f(x) · q(x)dx =
n∑

k=1

wkf(xk) + En(f) (3.183)

The most common Gaussian quadrature is the GaussLegendre
quadrature [75, 7.3.3.3]. In this case is q(x) = 1. It is based on the Legendre
polynomials Pn(x). The n-th polynomial has to be normalized to one:
Pn(1) = 1. Then xk is the k-th root of Pn. The weights are:

wk = 2
(1− x2

k) (P ′
n(xk))2 (3.184)

The weights wk and the nodes xk are tabulated in Zeidler [75, 7.3.3.3]. An
adaptive version of this is the Gauss-Kronrod quadrature where to the n
nodes of the Gauss-Legendre quadrature additional n+ 1 Kronrod nodes are
used. This method is based on the Stieltjes polynomials, and has the great
advantage, that refining the result uses all the results calculated in the first
iteration. The Gauss-Kronrod quadrature method is the basis of the
Quadpack fortran library [109] [110] which is the basis of most numerical
integration functions.

3.8.2.2 ChebyshevGauss Quadrature

Chebyshev-Gauss quadrature [75, 7.3.3.3] is another version of the Gauss
quadrature rule. In this case, the weight function is q(x) = 1√

1−x2 . This
means, this method is useful for every integral of the form:∫ 1

−1
f(x) 1√

1− x2
dx (3.185)

The nodes are:
xk = cos ((2k − 1)π/2n) (3.186)

and the weights are:
wk = π

n
(3.187)

The quadrature error is:

En(f) = 2π
22n(2n)!

d2nf

dx2n
(ξ) (3.188)

with ξ ∈ (−1, 1). This method of numerical integration obviously fits the
needs of Eq. (3.164). This leads to the integration formula:

1∫
−1

F (z + a(1 + u))u 1√
1− u2

du =

n∑
k=1

π

n
F
(
z + a

(
1 + cos

(
(2k − 1) π

2n

)))
cos
(

(2k − 1) π
2n

)
+ En(f) (3.189)
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while the function varies, weight wk and the nodes xk can be preevaluated,
which decreases integration time. For the electrostatic equation (3.124), the
Chebyshev-Gauss quadrature has a relative error of 3 · 10−13 with only 3
nodes.

3.8.3 Mathematical Optimization
Mathematical optimization has the goal to find the best result for a
mathematical function. One major example is fitting the parameters of a
function to measured data.

3.8.3.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is a non-linear least squares method for
curve fitting. It is based on the Gauss-Newton algorithm and adds some
gradient descent method to it. This means, it is only feasable to find local
minima and not necessarily a global minimum [111] [112]. Non-linear least
squares method means, that it minimizes the following function:

g(p) =
m∑

j=1
r2

j (p) (3.190)

p is the vector of fitting parameters. rj are the residuals of a function. For
example is F (x) a number of measured values at the points x and f(x, p) is
the function that should be fitted to the measured values. Then the residuals
are:

rj = F (xj)− f(xj , p) (3.191)

And r2
j is the square in the name for which the sum should be minimized.

The Jacobian J of the residuals is:

J(p) = ∂rj

∂pi
(3.192)

with 1 ≤ j ≤ m and 1 ≤ i ≤ n, and n is the total number of fitting
parameters. At the minimum, the gradient of g(p) is zero and the curvature
or second derivative of g(p) is negative. Both are calculated as:

∇g(p) =
m∑

j=1
rj(p)∇rj(p) = J(p)T r(p) (3.193)

∇2g(p) = H = J(p)TJ(p) +
m∑

j=1
rj(p)∇2rj(p) (3.194)

With the assumption that the residuals are nearly linear the Hessian H is
reduced to

∇2g(p) = H = J(p)TJ(p) (3.195)

The Levenberg-Marquardt algorithm is a stepwise optimiziation method.
This means that a new p̂ that should be closer to the solution is calculated
from the current p. This is done with:

p̂ = p− (H + λdiag(H))−1∇g(p) (3.196)
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The diagonal of the Hessian was introduced by Marquardt to increase the
step size for directions with a small curvature and to reduce the step size in
case of a large curvature. A step is accepted if the error smaller than the
error before the step. Then λ is decreased by a factor of for example 10. If
the step was not accepted, λ gets increased, also for example by a factor of
10. Further details about the algorithm can be found in Madsen et al. [113].

3.8.3.2 Differential Evolution

The Levenberg-Marquardt algorithm can only find a local minimum. This
makes the algorithm not useful in cases with a lot of local minima, such as
fitting sinusoidal functions. One method to find global minima is called
Differential Evolution [114] (DE). DE is inspired by the concept of evolution
in biology. This means a population P of possible parameters p is defined.
For each member of the population, a so called fitness function is calculated.
A possible fitness function could be a reciprocal Eq. (3.190). The best
members of the population are the basis for the next generation. Creating
members of the population of the new generation is done by mutation.
Population Pi means the population of the i-th generation. pi,1 is the first
member of that population. The mutant vi is calculated using three random
members of the population:

vi = pi,1 + λ (pi,2 − pi,3) (3.197)

λ is a scaling parameter and should be less than 1. The new generation Pi+1
contains the best members of Pi and a certain number of mutants vi. This is
done until an arbitrary number of iterations is performed or the error is
smaller than a threshold. A good introduction to using differential evolution
is Ardia et al. [115]. A disadvantage of DE is, that the best member of the
last generation is slightly away from the correct solution. In this case the
Levenberg-Marquardt algorihm is useful as second step to get a more exact
result.

3.8.3.3 Uncertainties of Fit Parameters

A least squares fit optimizes the parameters of a model. But in general it
does not say something about the uncertainties of the fit parameters.

Gaussian Distributed Residuals allow calculation of the uncertainties
of the fit parameters based on the Hessian matrix, especially when using the
Levenberg-Marquardt or related methods. The curvature matrix A is defined
as one-half of the Hessian matrix [116]:

A = 1
2
H (3.198)

This means the components are defined as:

Ajk = 1
2

∂g2

∂pj∂pk
(3.199)

The inverse of the curvature matrix is the covariance matrix C:

C = A−1 (3.200)
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The uncertainty αj of parameter pj is [117]:

αj =
√
Cjj (3.201)

In case of uncorrelated parameters pj , all non-diagonal elements of the
curvature matrix are zero. This leads to the easy way of inverting the matrix
and the uncertainty gets:

αj =
√
Cjj =

√
A−1

jj (3.202)

But for correlated parameters this method does not apply and the matrix A
has to be inverted.

Non-gaussian distributed residuals do not allow to use the Hessian
matrix to calculate the uncertainty. And for the differential evolution
method, the Hessian is not calculated. To calculate uncertainties from
measurements based on any distribution, the bootstrap method can be
used [118]. The bootstrap method is a Monte Carlo method and it goes as
following:

1. Perform random sampling with replacement on the original data set,
until the new data set has the same amount of data as the original data
set. But due to sampling with replacement, some data points of the
original data set occur multiple times, and some data points occur not
at all.

2. Perform the fit routine (or any other statistics like the mean) on the
new data set.

3. Repeat the first two steps a hundred to a thousand times and store
each result.

4. Use the distribution of the results to calculate the desired uncertainty,
for example the 68% confidence interval for the standard error.

This method was very useful for the data analysis is chapter 5.
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Chapter 4

Experimental Setup

This section is about the realization of the experiment.

4.1 Force Sensor
The heart of the experiment is the force sensor. It is based on an idea from
Melcher et al. [18]. They reported a force resolution of about 14 fN. The
measurement method used in our experiments is basically the same as in
frequency modulated atomic force microscopes (FM-AFM). But instead of
scanning over the x-y-plane, we used the force measurement technique to
measure the z-dependence of the force.
The force sensor shown in Fig. 4.1 is based from a parallelogram flexure (G).
On the test mass of the force sensor, we attached a gold-coated ruby
half-sphere (F). The gold coating is used as gravitating mass of the
measurement. The ruby half-sphere needs an electrical connection to a
voltage source. So one leg of the parallelogram flexure is gold coated, with an
intermediate layer of titanium to make the gold coating more robust. We
also integrated two v-grooves (D, E) on the test mass. Two fibers are
attached to the v-grooves as mirrors. One fiber (D) is gold-coated to have a
high reflectivity. It is used for the optical actuation. The other fiber (E) is a
mirror of the Fabry-Pérot interferometer, that is used to measure the
vibration of the force sensor. Opposite to the v-grooves on the test mass are
two v-grooves (A, B) on the connection plate (I) of the force sensor. They
are axially aligned to the v-grooves on the test mass. Both v-grooves are
used to align optical fibers — one aligns the fiber for the optical actuation,
and the other is part of the Fabry-Pérot interferometer. There is also a third
v-groove on the connection plate. It contains the fiber that is also used as an
Fabry-Pérot interferometer to measure the distance of the force sensor to the
plate. Its end is aligned with the ruby sphere, but it is about 100µm farther
away from the measurement plate than the sphere.
The force sensor is made using fused silica by Femtoprint. The force sensor
was placed on a cuboid glass block also made of fused silica using optical
contact bonding.

4.1.1 FEM Characterization of the Force Sensor
The force sensor was characterized using FEM simulations. The force sensor
has a lot of different vibration modes, at different frequencies. Fig. 4.2 a)
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Figure 4.1: Complete force sensor. A is the optical fiber for the optical actu-
ation, B is the fiber to measure the vibration, C is the fiber for the distance
measurement, D is the gold coated mirror fiber for the optical actuation, E
is the uncoated mirror fiber for the Fabry-Pérot interferometer, F is the gold-
coated ruby half-sphere, G is the parallelogram flexure, H is the gold coating
to electrically connect the half-sphere to a voltage supply, I is the connection
plate of the force sensor.

shows the main modes of the sensor.
The geometry of the force sensor and the simulated results are listed in
Table 4.1. Notably, the eigenfrequency drops by a third when the half-sphere
is attached.
The temperature dependence of the eigenfrequency is also shown. The
simulation is based on the temperature dependent Young’s modulus.
Section 3.5.3 describes how the temperature dependence of Young’s modulus
was obtained. Using that value in an FEM simulation gives the temperature
dependence shown in Table 4.1.
All simulated properties of the force sensor were measured after the force
sensor was assembled to obtain a more precise value for them. The simulated
values were necessary to design the experiment around them.
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a) b)

c) d)

e) f)

Figure 4.2: The first six modes of the force sensor. a) is the main operation
mode of the sensor with frequency ω0. The color describes the total amount of
displacement, where red is maximum displacement, yellow medium displace-
ment and blue low or no displacement. Mode b): 1.53ω0. The third mode is
the torsion mode c): 4.29ω0. Mode d): 10.28ω0, mode e): 13.29ω0 and mode
f): 14.49ω0.

L h t d l r k f0 fK,0 df/dT
mm mm mm mm mm mm kN/m kHz kHz Hz/K
2 0.1 0.5 0.5 1 0.5 8.2 15 10 1.052

Table 4.1: Parameters of the force sensor. f0 is the first eigenfrequency with-
out the sphere attached and fK,0 is the frequency of the first mode with an
attached sphere, df/dT is the simulated temperature dependence of the res-
onance frequency. and k is the stiffness of the force sensor. t is the thickness
of the force sensor, L is the length of the legs of the force sensor, d is the
distance between both legs, h is the height of a leg, r is the radius of the half-
sphere and l is the length of the test mass. See also Fig. 4.1 for the geometrical
description.
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Cantilever Yukawa Force Sensor

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.0

0.1

0.2

0.3

0.4

δx [mm]

δ
y
 [
m

m
]

8000
9000
10000
11000
12000
13000

Stiffness [N/m]

Figure 4.3: On the left is the stiffness of a cantilever dependent on the position
of the applied test mass. On the right side is the same plot for the parallelo-
gram flexure. It is obvious that the stiffness is independent of the y-position
of the force.

a) b)

Figure 4.4: a) shows the rotating cantilever movement, and b) shows the linear
movement of the parallelogram flexure.

4.1.2 Comparison to a Cantilever
Typical AFMs make measurements using a cantilever. Mostly they use beam
deflection and a quadrant photodiode for simultaneous detection of bending
and torsion of the cantilever [119]. Other methods are piezoresistivity that
uses the change of the cantilevers resistance as it bends to measure the
bending [120] and piezoelectric cantilevers that are able to actuate the
cantilever at the same time as it is read out [121]. All three methods make it
difficult to directly trace the amplitude of the cantilever. The Fabry-Pérot
interferometer used in this experiment makes it easy to read out the
amplitude and also to fine tune the sensitivity of frequency measurement.
This was also done with a cantilever [122]. But as a cantilever bends, it is not
easy to trace the amplitude of the Fabry-Pérot read-out on the back of the
cantilever directly to the amplitude of an attached sphere. This is due to
different bending amplitudes on different positions of the cantilever as an
effect of a differing stiffness at different positions of the cantilever as seen in
Fig. 4.3. The test mass attached to the parallelogram flexure does not
contribute to the stiffness, and therefore has the same stiffness at all
positions on it.
The test mass has also the advantage of linear movement. Bending a
cantilever results in a rotation of the sphere or cantilever tip, as shown in
Fig. 4.4.
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4.1.3 Quality Factor
The quality factor Q is defined as the quotient of the stored vibration energy
and the energy loss per vibration cycle [123]:

Q = 2π energy stored
energy dissipation

(4.1)

Alternatively, an identical definition of Q is based on the resonance frequency
ωr and its bandwidth ∆ω, the bandwidth means the full width at a half
maximum:

Q = ωr

∆ω
(4.2)

A large Q means a more pure resonance frequency and makes the experiment
more sensitive to small changes in the resonance frequency. A higher quality
factor is obtained by reducing the energy dissipation. That means it is
important to understand the force sensor’s energy sinks. For example: air
dampens vibration and decreases the quality factor.
Sandberg et al. [124] investigated the most important influences on the
quality factor, which leads to the following equation:

1
Q

= 1
Qi

+ 1
Qs

+ 1
Qa

+ 1
Qc

+ 1
Qg

(4.3)

Qi is the intrinsic quality factor of the material. Slocum [125] gives Qi = 106

for fused silica. Qa is the quality factor of the surrounding gas. For air it is
of about Qa ≈ 102. As for Gerberding et al. [126], the Qa in vacuum
< 10−6 mbar does not play a role. Qs is the energy loss due to the support.
A large 10× 10× 20 mm3 cuboid is used as support block, and optical
contact bonding is used as adhesion method. In the cuboid, a hole is milled
to place the sensor over the hole, and to have full support of the cuboid on
the end of the parallelogram flexure. For this setup, the measured Q was
about 105. Therefore the Qs has to be Qs ≈ 1.11 · 105. Another influence
comes into play, when the fibers and the sphere are glued to the sensor, Qg.
The last influence comes from the gold coating Qc.

4.1.3.1 Gold Coating

An electrical contact to the sphere is necessary to measure the distance
between the half-sphere and the plate. For this the force sensor was coated
with a 10 nm titanium layer and 200 nm layer of gold on top. According to
Broch [127] the coating influences the energy loss:

η ≃ 14
(
η2E2

E1

)(
d2

d1

)2

(4.4)

η = 1
Qc

= 2ξ (4.5)

where d1 is the thickness of the sensor strut, E1 is Young’s modulus of the
sensor material, d2 is the thickness of the coating and E2 is Young’s modulus
of the coating. η2 is the loss factor of the coating material.

59



CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.5: Different measurements of the quality factor of the same force
sensor. The force sensor was in the vacuum chamber for the entire timespan
after glueing fibres on it in April 2017. The pressure was about 10−6 mbar.

4.1.3.2 Time Dependence of Q

Since a glue takes some time to set, also Q takes some time until it reaches its
final value. In one measurement, we glued the fibers to the force sensor, then
put it into the vacuum chamber on the 10th of April 2017. Q was measured
several times over a period of two weeks. The results are shown in Fig. 4.5.
As can be seen, Q increased by about a factor of two in two weeks. For this
measurement neither the half-sphere nor the gold coating was applied.

4.1.3.3 Specimen holder

The force sensor itself is a small piece of fused silica with a thickness of
0.5 mm. The energy loss of the oscillator depends a lot on how the the force
sensor is attached to the specimen holder. Two bonding types were compared
to each other. The first one was optical contact bonding [128] and the second
one was hydroxide-catalysis bonding [129].
The quality factor of the oscillator was measured for both bonding types,
and both had similar results of about 20000. But the bonding method isn’t
the only contribution to Q — the position of the force sensor on the
specimen holder is another factor. In the first attempts the oscillating part of
the sensor was in front of the glass block that was used as specimen holder.
This has the disadvantage that the connection of the oscillator to the rest of
the sensor was free floating as it is shown in Fig. 4.6. To improve this, a hole
was milled in the glass block where the oscillating part of the force sensor is
placed. Fig. 4.7 shows how the force sensor is placed on the the glass block
and not longer free floating. With this the quality factor of the oscillator
improved a lot.
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Figure 4.6: The force sensor is placed on a glass block and it is half floating
with its connection plate. The screw nut was used to keep the fibers at place
before they were glued on the glass block.

Figure 4.7: 1) is the specimen holder, 2) is the connection plate of the force
sensor 3) is the parallelogram flexure of the force sensor and 4) is the ruby
half-sphere. As can be seen on the left, the connection plate is not floating,
especially is not the left part of it where the parallelogram flexure is attached.
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Turbomolucular pump

Ion pump

Vacuum gauge ExperimentValve

Feedthroughs

Figure 4.8: Photograph of the vacuum chamber. It shows the turbo pump,
the valve between the turbo pump and the rest of the vacuum chamber, the
ion pump, the vacuum gauge, the flange with the experiment inside and the
fiber and electrical feedthroughs.

4.2 Vacuum Chamber
A high quality factor Q is needed to achieve a good signal for the force
measurement. Air dampening is an important influence that reduces the
quality factor. To get a high quality factor, the experiment is placed in a
vacuum chamber.
The vacuum chamber is built from a cross fitting. On one flange the
experiment is attached. Another flange has the vacuum gauge attached. On
the third flange is a valve and behind that valve is a turbo pump attached.
The turbo pump has a driving frequency of 1500 Hz. The backing pump is
attached to the turbo pump. On the fourth flange of the fitting an ion pump
is attached. The ion pump needs a high vacuum before it can be started.
When this condition is reached and the ion pump runs, the valve will be
closed and the turbo pump as well as the backing pump are turned off. The
ion pump is needed to avoid coupling the rotation of the turbo pump into the
experiment. Fig. 4.8 shows a photograph of the vacuum chamber.

4.2.1 Vacuum Feedthroughs
Measurements inside the vacuum chamber require electrical connections as
well as fiber connections. Fig. 4.9 shows the concept of the vacuum
feedthrough and Fig. 4.10 shows a photograph of the fiber feedthrough.
There are three of those feedthroughs on the flange of the experiment. One
feedthrough is for the three optical fibers, and two feedthroughs are for the
electrical connections, with four wires per feedthrough. The feedthrough
design with the Teflon ferrule comes from Abraham and Cornell [130] and
was modified to fit more fibers and wires inside the vacuum chamber. This
feedthrough design has the advantage over commercial ones that it uses
much less space on the flange and does not need any connectors inside the
vacuum chamber. Also with the optical fibers going directly inside the
vacuum chamber there is no additional fiber coupling loss [131] [132]. The
only disadvantage with this kind of feedthrough is that the pressure inside
the vacuum chamber never got below 1 · 10−7 mbar. With a commercial
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Figure 4.9: The vacuum feedthroughs of the optical fibers and for the electrical
contacts are made from a Swagelok fitting and a Teflon ferrule. The Teflon
ferrule for the optical fibers has three holes with fibers in it. The Teflon ferrule
for the electrical contacts has four holes for the wires.

Figure 4.10: Photograph of the fiber feedthrough. It shows the Swagelok fitting
and the three fibers.

feedthrough ultra high vacuum would be possible [133] but it is not needed
for this experiment [18].
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static friction
(slow movement)

kinetic friction
(quick movement)

Figure 4.11: Function principle of a stick-slip piezo stage as shown in Breguet
et al. [134].

4.3 Piezo Slides
To change the distance between the sphere and the plate, a piezo slide is
used. The slide is a MS5 unit from Scienta Omicron. The MS5 uses the
stick-slip principle. It is shown in Fig. 4.11. A single step is performed, by
slowly increasing the voltage, which leads to a movement of the piezo, and
the slider of the piezo sticks to the piezo. Then the voltage changes polarity
very fast, so the piezo moves fast enough back to the starting position. This
fast movement back leads to a slip. The slider stands still and is not
traveling back.
With this method, the voltage is only applied during a single step. This has
the advantage, that the positioning system applies no additional force due to
piezo voltage during the measurements between the steps. The specified
minimum step size was 40 nm with a total travel distances of 5 mm. One
slide has its movement axis in the force measuring axis. This slide is used for
coarse positioning. The other slide is angled by 15 degrees. We were able to
reduce a minimum step size to about 12 nm. With the angled slide the
average approach of the plate to the sphere is about 3 nm± 1 nm as shown in
Fig. 4.12.
For the measurement of the step size we used a twenty year old manual
controller that was originally built for a scanning tunneling microscope. But
for this experiment we wanted to use a computer-controlled controller. So we
purchased the new MSCUv4 unit by Scienta Omicron. It used a Beckhoff
SPS system to program it. Unfortunately, Scienta Omicron discontinued the
MSCUv4 before they managed to finalize a documentation, and it was not
possible to program it directly. Instead, we had an example application that
allowed manual control. To use that we started the application inside a
virtual machine and simulated the mouse buttons that clicked on the controls
in the application. With this setup it was possible to program the piezo
slides. As the next step we tried to replicate the results of the step size
measurement. Unfortunately we found out that the controller only allowed
for specific step size settings that represented percentages of the maximum
voltage used to control the piezos. The setting allowed only for 20 %-steps
with the minimum being 20 %. That setting resulted in a step size of 40 nm
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Figure 4.12: Step size measurement of the angled piezo slide. Thanks to Z. Li
for providing this measurement.
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Figure 4.13: Schematic of the opto-couplers attached to the Raspberry Pi and
their connection to the old Omicron-controller.

that was documented. On the old controller the step size was adjusted
continuously with a potentiometer. Below a certain setting, the piezo slides
were not able to move at all, but it was possible to find that setting and go
just above it to get a minimum step size.
The logical next step was to analyze the manual control of the old controller
and build our own controller that was adjustable by the computer. For the
four direction keys, we used four opto-couplers that were attached to GPIOs
of a Raspberry Pi mini computer. For the step size control we used a
computer adjustable potentiometer that was also attached to the Raspberry
Pi. The schematic is shown in Fig. 4.13. A setting of 23.7 kΩ proved to be
the optimum setting in this case.
Also the step size was found to be not constant. Over a period of several
hours the step size drifted from 3 nm to 4 nm. The measured mean was
3.1 nm as shown in Fig. 4.14.
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Figure 4.14: The left shows how the step size measured in summer 2016
changed over time and the right shows the distribution of step sizes mea-
sured over a whole week. The mean value of the step sizes was 3.1 nm and its
standard deviation was 0.9 nm.
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Figure 4.15: Simulation model of the thermal drift. The block at the bottom is
the ground plate. The simulations were done for aluminum, Invar and Zerodur
as ground plate materials. The specimen holder and the force sensor were
simulated as fused silica and the piezo slides were simulated as solid blocks of
Invar.

4.4 Thermal Drift
Section 4.1.1 described how the resonance frequency of the force sensor is
temperature dependent. But changing the temperature also has other effects.
Thermal expansion can also cause the distance between the sphere and the
plate to change. This is a parasitic effect that should be avoided. To
optimize the experiment for distance changes due to thermal expansion,
simulations with different materials as base plate were performed. The three
candidates as base plate material were aluminum, Invar and Zerodur. While
aluminum is easy to machine, Invar and Zerodur are optimized materials for
low thermal expansion. Fig. 4.15 shows the simulation model for this
simulation and Table 4.2 shows the results. Zerodur and Invar are an order
of magnitude lower in the distance change than aluminum. While Zerodur
has a lower thermal expansion coefficient than Invar, Invar wins in the
simulation. The reason is, that the piezo slides are made of Invar as well, and
the expansion of the Invar ground plates gets partly compensated by the
expansion of the piezo slides. Following the results of the simulation, we
chose to make the ground plate of the experiment out of Invar. The lateral
position change ∆y and the height change ∆z should in theory not change
the experimental outcome, but it’s possible that a local change in the surface
roughness distribution might cause an effect.

4.4.1 Temperature Measurement
To measure the temperature, a NTC sensor is placed on the Invar ground
plate in the vacuum chamber between the fused silica block and the vacuum
flange. The nominal resistance value of the NTC is 10 kΩ. A BK Precision
2831E Multimeter is used to measure the resistance. The resistance
measurement is performed once every minute, to reduce the amount of heat
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Aluminum Invar Zerodur
αL

µm
m · K 23.1 1.2 0.08

∆T K 1 0.1 1 0.1 1 0.1
distance ∆d nm 500 50 13 1.3 33 3.2
∆y nm 2 0.2 0.2 0.1 0.1 0.1
height ∆z nm 56 6 35 3.4 33 3.3
Time to steady state h <0.5 2 7

Table 4.2: Simulation results of the distance change due to thermal expansion.
The distance change between sphere and plate is in the first line ∆d, ∆y is
the lateral change of the position and ∆z is the height change between sphere
and plate. The simulation model is shown in Fig. 4.15. The values of αL were
taken from COMSOL 5.1, the software that also performed the simulation.

caused by taking the measurement to affect the next measurement. The data
sheet gives the β value of the used NTC: Rref = 10000, β = 3435, T0 = 25 ◦C

T =
(
T0β ln Rref

R

)
/

(
β

ln Rref

R

− T0

)
(4.6)

Measuring the temperature on the ground plate means that a temperature
increase outside the vacuum chamber would reach the temperature sensor a
couple of minutes before reaching the force sensor. This time delay has to be
measured and taken into account when correcting the frequency by
temperature.
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Cavity PhotodiodeLaser

Figure 4.16: Basic Fabry-Pérot design.

4.5 Interferometric Length and Movement
Measurement

The oscillation amplitude of the force sensor is below 1 nm. An
interferometric method is the best approach to measure these small position
changes. In interferometers two or more coherent waves are superposed. The
resulting intensity depends on the phase difference of the waves.
Optical interferometers can be divided into general types depending on the
amount of interfering beams. A Fabry-Pérot type is based on multiple-beam
interference. A Fabry-Pérot is build from two transparent opposing mirrors
with a certain reflectivity. The two mirrors form a cavity. Fig. 4.16 shows the
basic principle of a Fabry-Pérot. In the base setup [135], a beam is launched
into the cavity through a transparent mirror. The beam is subsequently
reflected multiple times at the opposing mirrors while transmitting a part of
itself through the mirror at each reflection. How much of the light gets
reflected in each cycle depends on the reflectivity, which is about 4 % for
uncoated vacuum-glass interface in normal incidence. The geometric phase
difference δ to a directly transmitted beam of a Fabry-Pérot is given by:

δ = 4πLn
λ

cos θ (4.7)

where L is the cavity length, n is the refractive index, λ is the laser
wavelength and θ is the tilt angle between the parallel mirrors. The intensity
of the transmitted light It, after summing up all reflected parts of the beam
inside the cavity, is as stated by Zinth [135]:

It = I0
(1−R)2

1− 2R cos δ +R2 (4.8)

This experiment uses two such interferometers, but instead of the
transmitted light, the reflected light is used. The schematic is shown in
Fig. 4.17. The intensity of the reflected light can be calculated with Eq. (4.9)
under the assumption of an normal incident angle and a neglectable
absorption inside the cavity. The intensity of the reflection at perpendicular
incidence and zero absorption is given by [136]:

Ir(FP ) = 2RI0
1− cos δ

1 +R2 − 2R cos δ
(4.9)

where I0 is the induced optical power, R is the reflectivity of the optics.
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MEASUREMENT

Figure 4.17: Schematic of the fiber Fabry-Pérot interferometer.

Normalizing Eq. (4.9) to the maximal Ir(FP ) gives:

Ir(FP )
Imax

= (1 +R)2

2
1− cos δ

1 +R2 − 2R cos δ
(4.10)

The intensity of the reflected light is measured with a photodiode. The
resulting current was converted to a voltage with a transimpedance amplifier.
We used the avalanche photodiode model PDA10CS-EC by Thorlabs. For
the voltage conversion one needs a constant of proportionality Vp that
depends on the conversion gain and an offset voltage Voff . Then the
measured voltage will be [126]:

V = Voff + Vp
(1 +R)2

2
1− cos δ

1 +R2 − 2R cos δ
(4.11)

The parameters of the movement measurement were calibrated using the
wavelength of the tunable laser Agilent 8164B as calibration standard. We
used two 90/10 Thorlabs 10202Aŋ90ŋAPC fiber couplers and the optical
isolator IOŋHŋ1550APC from Thorlabs. Two single mode patch cables
(Thorlabs P3-1550A-FC-1) were used to cut one end off and place them into
the experiment as ends of the fiber interferometers. The other ends were
connected to the fiber couplers using FC/APC mating sleeves. One 50/50
fiber coupler (Thorlabs 10202A-50) was used to split the signal from the laser
source into two signals for both interferometers. The optical fibers only have
a small aperture and the light emitted at the end of the fibers is divergent.
This leads to a deviation from the optimal Fabry-Pérot and a low finesse. A
low finesse means, that instead of steep peaks, the measurement result of the
intensity vs. cavity length curve is sinusoidal.
To measure the coefficients for the movement measurement the tunable laser
was used to shift the wavelength for at least one period of Eq. (4.11). A
variation of either the distance between the mirrors or the wavelength results
in a periodic signal. Its waveform depends on the offset voltage Voff , the
conversion gain Vp and the reflectivity of the mirrors R. Therefore the
wavelength of the laser was tuned over a range of 1500 nm to 1600 nm. In
vacuum n = 1. An advantage of the normalization of Eq. 4.9 is that
Voff ≈ minV (λ) and Vp ≈ max V (λ)−minV (λ) can be used as a starting
point for the fitting routine. To get the other starting points for the fitting,
the fit was initialized with a genetic algorithm. Genetic algorithms always
have a random component, and tests showed that a quarter of the results for
L were too far away for the non-linear fitting routine to find the optimum fit.
To overcome this problem, the Lgen, the result from the genetic algorithm, is
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Figure 4.18: Measurement of the vibration cavity on Feb. 2nd 2018. The
purple line is the fit of the interferometer, the vertical green line shows λset.
The pink line is the linear fit for the voltage to amplitude conversion from
Eq. (4.13).

used and a grid search [116] is performed. This means L iterates from
Lgen − 5µm to Lgen + 5µm with a step-size of 10 nm. For each step, the
cross-correlation function between the current fit function and the measured
data was calculated. After that, the L̃, for which the cross-correlation
function is maximized, is chosen as a starting point for the non-linear fit
routine. See chapter 3.8.3.1 for the nonlinear fit routine.
The precision of the distance variation measurement is the highest, where
Eq. (4.11) has the steepest slope. The wavelength where the slope is the
steepest is λset, and it is calculated with:

λset = 2L
round

( 2L
1550 nm

)
+ 1

4
(4.12)

Around λset the measurement voltage Vmeas is proportional to the distance
variation ∆L. As long as the distance variation is small compared with the
wavelength λset, a linear fit function can be used to calculate the sensitivity
factor for the distance variation:

∆L = a · Vmeas + b (4.13)

The sensitivity factor is a and the offset b. An example of Fabry-Pérot fit is
shown in Fig. 4.18.
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Phase
Detection

Loop Filter/
Controller VCO

Figure 4.19: A basic PLL has an input signal (left) and then a phase detector.
Afterwards the phase is fed into a loop filter (or a controller) which generates
the input signal for the voltage controlled oscillator (VCO). The output of the
VCO is used in the phase detection to compare it with the input signal. The
VCO is also known as a local oscillator.

4.6 Frequency Measurement using a Phase
Locked Loop

It is not possible to measure the force directly. Therefore it is necessary to
determine the force by means of another effect. In this case, we use the effect
whereby a distance dependent force shifts the frequency of an oscillator, as
seen in chapter 3.6. The oscillator is driven by an amplitude modulated laser
source. We selected the oscillator’s resonance frequency as the modulation
frequency. This frequency has to be adjusted as the resonance frequency
changes during the measurement due to the force. This is done with a
feedback loop. The basis of the feedback loop is a phase locked loop, or PLL
for short. The basic PLL design is shown in Fig. 4.19.
Usually a PLL is used to lock a local oscillator to an external reference. This
allows us to measure the phase and the frequency of the external reference.
The local oscillator drives the laser modulation, which drives the oscillation
of the force sensor. This oscillation is measured and fed into the PLL as an
external reference. This requires some adjustments to the PLL design.
The PLL is implemented as an all digital phase locked loop using the Red
Pitaya board. It is built using a Xilinx Zynq 7010 FPGA board and two
14-bit ADCs and two 14-bit DACs. The source code for the FPGA is
implemented using Verilog as hardware description language. A very
thorough introduction to all digital phase locked loops can be found in the
fourth chapter of O. Gerberding’s [137] PhD thesis. I will only recount the
main aspects as well as my modifications. The design of our PLL is shown in
Fig. 4.20.

4.6.1 ADC of the Red Pitaya
The ADC of the Red Pitaya has 14 bit at 125 MHz sampling rate. The PLL
uses a lower sampling rate by a factor of 32. That means a sampling rate of
3.90625 MHz. The input voltage of the ADC is in the [−1, 1] V interval.

4.6.2 Phase Detector of the PLL
The input signal of the PLL has a bit depth of 14 bit. The output DAC also
has 14 bit, therefore a 14 bit LuT is used for sine and cosine. The 14 bit sine
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Figure 4.20: Schematic of the phase locked loop. The optical signal hits the
photodiode and is transferred with a transimpedance amplifier (TIA) to a
voltage signal. To use the whole bit range of the ADC, the signal is bandpass
filtered and amplified. The ADC is part of the Red Pitaya board and is
connected to the FPGA. On the FPGA the signal is compared with the signal
of the local oscillator. The error signal is bandpass filtered and goes into
the PI-controller. In the phase increment register (PIR), the phase is stored.
The PIR value is accumulated in the phase accumulator (PA) which is fed
as phase into the look up tables (LuT). The PIR and the LuT form together
the local oscillator. Also another LuT is used for a phase shifted signal, that
goes to the DAC. This output signal is optimized to amplitude modulate a
laser diode, which drives the optomechanical resonator. And with a laser
interferometer, the oscillations of the resonator are measured, and close the
loop at the photodiode. With a cascaded integrator comb (CIC), the frequency
as well as the in-phase and quadrature components are down sampled and can
be read out at a computer interface.
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signal is multiplied with the input signal to build up the phase detector,
which leads to a 28 bit detected phase signal.

sinφi · cosφPLL = 1
2

(sin (φi − φPLL) + sin (φi + φPLL)) (4.14)

where φi is the input phase and φPLL is the internal phase. ϵ = φi − φPLL is
the phase error between the local oscillator and the input. sin (ϵ) ≈ ϵ for the
small phase error. The φi + φPLL component is filtered out with a low-pass
filter.

4.6.3 Low-Pass Filter
As low pass filter, a simple IIR exponential smoothing filter is used. The
filter is defined as:

mi = αϵi + (1− α)mi−1 (4.15)
= αϵi +mi−1 − αmi−1 (4.16)

where mi is the i-th value filter output and ϵi is the i-th input value. α is the
smoothing factor. With an α = 2−c, where c is an integer. For the
multiplication, bit shifts are used to make the filter efficient.

4.6.4 Controller inside the PLL
After obtaining the error signal, the signal is fed into a servo. The purpose of
the servo is to calculate the control signal to set the output phase to match
the input phase. Its output signal goes into the phase increment register or
PIR. The servo is built using a PI controller with an double integrator added.
A double integrator is a second-order control system used to control single
degree of freedom motion [138][139] and is therefore suitable to control the
motion of our force sensor. The transfer function of the servo is [140][141]:

GPI(s) = Y (s)
U(s)

= κp + κi
1
s

+ κi2
1
s2 (4.17)

The servo has two operational modi.
The first is to measure the frequency of the force sensor without closing the
loop. In this case the proportional and the integrator part of the servo are
used κp ̸= 0 and κi ̸= 0 and the double integrator is deactivated with κi2 = 0.
The second mode has the closed feedback loop, where the PLL drives the
force sensor. In this case the proportional part is deactivated κp = 0 and the
double integrator is active, i.e. κi2 ̸= 0.
In the FPGA implementation, both integrators have their own registers.
They are implemented as saturating registers. This means, if they overflow,
they are set to the maximum possible value. And in case of an underflow,
they are set to the minimum possible value.

4.6.5 Phase Accumulator
The servo drives the phase increment register which determines the
frequency of the local oscillator. To get a continuous sine one needs a phase
accumulator, which is a register where at each cycle the PIR is added to the
current value. The periodicity of the phase accumulator is done using a
register that overflows. This leads to a saw tooth characteristic for the phase
accumulator.
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4.6.6 Output Phase Shift
The force sensor as well as the band pass filter that are used to optimize the
signal for the ADC on the Red Pitaya introduce a phase shift to the
oscillation. This phase shift has to be corrected for when generating the
signal to modulate the laser diode. A constant phase shift φc is applied to
the output signal with respect to the local oscillator.

4.6.7 Sine and Cosine Lookup Table
To generate the sine and cosine signal, a lookup table is used. It uses 16 bit
of the phase accumulator as input and has 14 bit output for the DAC and
the phase detector. As only one quadrant of a sine has to be present in the
lookup table (LuT), it has 214 values, and the other quadrants are derived
from that.

4.6.8 Phase and Amplitude Readout
A signal s(t) of a specific frequency ω with a phase modulation φ(t) on it can
be written as:

s(t) = A cos (ωt+ φ(t)) (4.18)

The in-phase I(s(t)) component and the quadrature component Q(s(t)) are
defined by:

I(s(t)) = A cos (φ(t)) (4.19)
Q(s(t)) = A sin (φ(t)) (4.20)

To get I and Q from the measured signal, the signal is multiplied by the sine
and cosine of the reference frequency [142]:

I(s(t)) = s(t) · cos (ωt) (4.21)
Q(s(t)) = s(t) · sin (ωt) (4.22)

The PLL can detect the input phase using the in-phase I and quadrature Q
components of the input signal.
The phase is:

φ = tan−1
(
Q

I

)
(4.23)

And the amplitude is:
A =

√
I2 +Q2 (4.24)

In one measurement procedure, a lot of individual measurements are
performed. If the data fits a Gaussian distribution, the arithmetic mean and
the standard deviation are calculated to summarize multiple linear
measurements. But for a circular quantity a simple mean or standard
deviation is not feasible. To get the mean of an angle, one has to calculate
the center of mass of all points on a unit circle [143]:

ϕ̄ = tan
(∑

i sinϕi∑
i cosϕi

)
(4.25)
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and

r̄ =

√√√√( 1
N

N∑
i

sinϕi

)2

+

(
1
N

N∑
i

cosϕi

)2

(4.26)

where ϕi is the i-th measured phase angle and ϕ̄ is the mean phase angle, N
the total number of measurements and r̄ is the mean radius of the circle. If
r ≈ 1, the ϕ̄ is sharp at that phase and if r ≈ 0, the phase are pretty much
equally distributed.1

4.6.9 Cascaded Integrator Comb
To get data out of the FPGA, a cascaded integrator comb (CIC) was
used [144]. The cascaded integrator comb is an accumulator register with
n+m bit. n is the number of bits of the output signal and 2m is the number
of FPGA-cycles. In each cycle, the current value is added (integrated) to the
accumulator. After 2m cycles, the most significant n bits are stored as down
sampled output value. Also the accumulator register is zeroed afterwards.
This is equivalent to the mean value out of 2m samples:

q̄ = 1
2m

2m∑
i=1

qi (4.27)

With m = 20, the data is down sampled to 3.73 Hz. With this method, the
in-phase component, the quadrature component, and the frequency are
sampled from the FPGA and read out by the connected computer.

4.6.10 Bandpass Filter of the Vibration Signal
A bandpass filter was placed between the photodiode of the vibration
measurement interferometer and the phase locked loop to optimize the input
signal for the ADC of the PLL. Two Sallen-Key bandpass filters were
connected in series. Fig. 4.21 shows the transfer function of one bandpass,
and Fig. 4.22 shows the schematic and, a picture of the circuit board.

4.6.11 Starting the PLL
To start the PLL, the feedback loop has to be closed. Also a default PIR
offset that is near the resonance frequency is used to make coarse
adjustments. The servo does the fine readjustment of the PIR. The PLL
starts at the coarse offset frequency and it takes some time until the resonant
frequency is reached. The frequency read-out using the CIC reads out the
PIR and is calculated back to the resonance frequency. Fig. 4.23 shows the
transient response of the PLL started at 10906 Hz.

1See https://en.wikipedia.org/wiki/Von_Mises_distribution for the circular equiva-
lent of the normal distribution
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Figure 4.21: Transfer function of the bandpass used to optimize the photodiode
signal.
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Figure 4.22: Bandpass filter. Both Sallen-Key filters have an adjustable filter
gain.
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Figure 4.23: Transient response of the PLL, when started at a Frequency of
10906 Hz. During the transient response sometimes a phase shift jump occurs.
If the output phase shift of the PLL was set to the correct value, the phase
jumps did not happen in the settled down PLL.
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4.7. ALTERNATIVE: FREQUENCY MEASUREMENT USING A
LOCK-IN AMPLIFIER

4.7 Alternative: Frequency Measurement
using a Lock-In Amplifier

While the phase locked loop was a great tool to measure and track the
resonant frequency, it was not always possible to use it. If the resonance
amplitude was very small, the PLL was not sensitive enough to measure. In
those cases a different frequency measurement technique was used. The
modulation of the laser source was done by a frequency generator. The same
signal was also fed to a lock-in amplifier as reference. The lock-in amplifier
converted the amplitude of the signal into a constant voltage that was
measured with a PicoScope USB oscilloscope. The measurement was done at
different frequencies around the expected resonance frequency. That lead
into a resonance curve. Afterwards the resonance curve was fitted and
resulted in some information about the resonance frequency and the quality
factor Q. The main disadvantage of this measurement method was that it
took a couple of minutes to measure one resonance curve and is therefore
much more prone to thermal drift than the PLL method. We used the SR830
Lock-in amplifier model. It uses two power spectral densities (PSDs) to
calculate the amplitude and the phase difference between the signal and the
reference signal. However, they state that the phase output works best with
higher amplitudes. The analog amplitude output represents Vrms.
When plotting the resulting resonance curve with frequency on the x-axis and
the squared amplitude Vrms, the curve follows a Cauchy-Lorentz distribution:

y(f) = y0 + A

π

(
s

(f − f0)2 + s2

)
(4.28)

where y(f) is the amplitude function, y0 is the offset, A is the area scale of
the distribution, s is the half width at half maximum, meaning that 2s is the
full width at half maximum, and f0 is the resonance frequency. The quality
factor is now:

Q = f0

2s
(4.29)

The maximum y(f) is at the resonance frequency ymax = y(f0):

ymax = A

π

( s
s2

)
(4.30)

With the normalization factor n̄, the gain of the lock-in amplifier T and the
voltage to digital conversion factor Vx, the real amplitude at resonance is:

Vrms = √ymax · n̄ · Vx · T−1 (4.31)

With a 16-bit signed integer representation of a 10 V signal this leads to a
conversion factor of:

Vx = 10
215

V
skt

(4.32)

In the case of the example resonance curve in Fig. 4.24, the measured
parameters are n̄ = 830.2206 skt and maximum ymax = 5.50. The sensitivity
setting of the lock-in amplifier was set to 2 mV. That means that an
amplitude of 2 mV would be measured as 10 V on the output of the lock-in
amplifier and it results to a gain factor of T = 5000 V

V .
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Figure 4.24: Measurement of the resonance curve from 12th December 2016
using the SR830 lock-in amplifier.

The real amplitude voltage Vrms is:

Vrms = 118.85µV (4.33)

At the time2 of the measurement of the resonance curve, the voltage to
length calibration factor of the interferometer was:

a = (61.546± 0.094) nm
V

(4.34)

The amplitude at resonance of the force sensor vibration is now:

xrms = a · Vrms = 7.31 pm (4.35)

The theoretical amplitude for a perfect square wave shaped 8 mW laser
actuation is, following eq. (4.41):

x̄pp = Q · 6.37fm = 29.9 pm (4.36)
⇒ x̄rms = 10.78 pm (4.37)

The theoretical maximum possible amplitude at the given Q is about 45 %
larger than the measured amplitude in this case. Section 4.8.2 describes how
the waveform of the 8 mW laser was optimized.

22016-12-12
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4.8. OPTICAL ACTUATION

Figure 4.25: On the left: Simulated temperature distribution of the force
sensor, the color bar on the right is in Kelvin. The actuation laser radiates at
the white spot on the force sensor and heats it up. On the right: Simulated
heating up the force sensor, averaged over the right face of the test mass.

4.8 Optical Actuation
To use the frequency modulated AFM technique, the parallelogram flexure
has to vibrate. There are different ways to achieve that. Most FM-AFM
applications use piezo crystals. Piezos change their size due to an applied
voltage (as well as the other way round). To get a vibration, large electric
fields are necessary. As shown in section 4.3, these voltages can lead to larger
forces than any gravitational effect. Also piezos have displacement hysteresis
that lead to heating up the system and the heating increases with
frequency [145]. To avoid this, optical actuation is used. Wilkinson et al. at
NIST [146] used this method to calibrate the stiffness of a cantilever. The
optical actuation is built from an amplitude modulated red laser source. One
disadvantage of using the light pressure method is that the light heats up the
parallelogram flexure. This means that it is necessary to get to the
thermodynamic equilibrium before starting a measurement. This takes about
three to five minutes. The temperature distribution through heating up the
force sensor is shown in Fig. 4.25. Fig. 4.25 also shows the simulated time to
equilibrium.

4.8.1 Amplitude of Vibration at Resonance
As described in section 3.5.4, radiation leads to a force on a mirror. This
force was described by Eq (3.143). Taking into account the reflectivity R, it
leads to the force F0:

F0 = 2PR
c

(4.38)

P is the power of the light with perpendicular incident.
Using the Eq. (3.176) for the resonance amplitude derived in section 3.7:

Ares = Q√
1− ( 1

2Q )2

2PR
ck

(4.39)

With Q≫ 1 follows
√

1− ( 1
2Q )2 ≈ 1. This leads to Eq. (3) from Melcher et

al. [18]:

Ares = 2PRQ
ck

(4.40)
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With a Laser power of P = 8 mW and the reflectivity of gold of about
R = 0.98 and a stiffness of k ≈ 8200 N m−1 one gets:

Ares = Q · 6.37fm (4.41)

That means an amplitude of 0.6 nm in case of Q = 105 and 0.06 nm in case of
Q = 104. Values between 0.1 nm and 1 nm are a good compromise between
measuring the force with a lower amplitude as stated in section 3.6 and
having a reasonable high sensitivity of measuring the oscillation as stated in
section 4.5. Note that the calculated amplitude Ares is the peak to peak
amplitude.

4.8.2 Optimization of the Optical Waveform
Melcher et al. [18] used the optical actuation of their cantilever to calibrate
its stiffness. For this application the optical power that goes into the
actuation has to be well known. To achieve this, a pure sine is needed.
However to reach the maximum vibration amplitude, by a given maximum
amplitude of the light source a square wave at the resonance frequency has
the best performance. The Fourier series of a square wave has an amplitude
of the first order [135]:

fsquare = 4
π

cos (ω0t) + h.c. (4.42)

The energy that goes into the system at the resonance frequency is about
4
π ≈ 1.27 times higher that that of a pure sine. The higher harmonics of the
Fourier series have no correspondent vibration modes of the oscillator and do
not lead to any further excitation of the system.
Unfortunately it is not possible to run the used laser source with a pure sine
or a pure square wave signal. The PLL generates a sine wave, and the
waveform of the laser source depends on the offset of the electrical signal as
well as on the amplitude of the electrical signal. To optimize the oscillation
amplitude, the oscillation is measured for a given parameter set and then the
power spectrum is calculated. The frequency used for that measurement is
set apart from the resonance frequency so that the amplitude does not
depend on the frequency shift of the resonance frequency due to temperature
variation. The value of the power spectrum at the actuation frequency is used
as an optimization value – the higher it gets, the better the parameters are.
A genetic algorithm performs the optimization steps. In this case, the fitness
function makes a measurement. As most genetic algorithms search for a
mathematically optimized parameter set, they store the global best result of
the fitness function [114][147]. In this case, a real measurement is performed
for that and a real measurement is influenced by many things, and it is
possible to get a very good result by chance. Therefore the genetic algorithm
for this optimization has to discard every result in each iteration of the
algorithm and only uses mutated values. See chapter 3.8.3.2 for a description
of the algorithm used.
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Figure 4.26: Photograph of the whole measurement setup. It shows the damp-
ened optical table with the vacuum chamber on top. Also the Turbo pump,
the ion pump and the optical fibers are shown. On the right of the vacuum
chamber are the feedthroughs for the optical fibers and the electrical contacts.
The experiment was placed inside of that flange.

4.9 Assembled Experiment
Fig. 4.27 shows a schematic of the complete setup and Fig. 4.26 shows a
photograph of the optical table and the vacuum chamber on top. It consists
of an air damped optical table. The vacuum chamber is attached on top of
that table.
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Figure 4.27: Schematic of the experimental setup. 1: vacuum chamber, 2: air
damped platform, 3: turbopump, 4: rotary vane pump, 5: valve, 6: coarse
positioner, 7: fine positioner, 8: gold coated silicon plate, 9: force sensor, 10:
parallelogram flexure, 11: gold coated sphere, 12: optical fiber, 13: measure-
ment computer, 14: actuating laser source, 15: fiber interferometer, 16: second
fiber interferometer, 17: voltage source, 18: FPGA/PLL, 19: data accumula-
tion, D: gold coated fiber for optical actuation, F: mirror fiber for vibration
measurement.
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Figure 4.28: Schematic of the signals in the experimental setup.

4.9.1 Signals

Fig. 4.28 shows the details of the fiber connections as well as the electronic
signals. The Omicron controller drives the piezo-slides, the Agilent 8164B
laser is connected to the computer via an RS232 interface. The computer sets
the wavelength of the laser. The computer is connected via Ethernet to a
Raspberry Pi. The Pi is connected to a Korad voltage source, and a voltage
switch that is also connected to the Korad. The voltage switch is electrically
connected to the force sensor and the gold coating of the ruby half-sphere.
On the other end the voltage switch is connected to the gold coated plate.
The Raspberry Pi is further connected via GPIOs to the opto-coupler board
from Fig. 4.13. The opto-coupler board drives the controller which drives the
piezo slides. Furthermore the Raspberry Pi is connected to a BK Precision
2831E digital multimeter to measure the resistance of the NTC-sensor placed
on the base plate of the experiment behind the glass block of the force
sensor. The Agilent laser is connected via an optical fiber to an optical
isolator, afterwards a one to two fiber coupler is used to get the signals for
both interferometers. The first interferometer is connected to a 90/10 fiber
coupler, one end of it is dumped, the other end is glued on the force sensor
and placed as the distance interferometer in front of the gold coated plate.
The fiber couplers fourth end with the interferometer signal is measured with
a photodiode which is read out using the Picoscope. The other fiber of the
one to two fiber coupler is also connected to a 90/10 fiber coupler that is
connected to the force sensor and builds the vibration interferometer. The
output fiber of the interferometer is connected to a photodiode. In this case
the signal goes to the Picoscope as well as to a bandpass amplifier that is
connected to an input of the Red Pitaya. The connection to the Picoscope is
used to measure the absolute cavity length to set the optimum wavelength.
The Red Pitaya uses the input signal for the PLL. A reference output of the
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Figure 4.29: The photograph shows the assembled experiment inside the vac-
uum chamber.

Red Pitaya is connected to the Picoscope. The first output of the Red Pitaya
is connected to the red fiber laser. The fiber of this laser goes into a 99:1
fiber coupler. The 1% output goes to a photodiode to measure the waveform
of the laser with the Picoscope. The 99% output of the fiber coupler is
connected to the force sensor for the optical actuation. The Red Pitaya is
connected via Ethernet to the computer, and the computer reads out the
PLL state this way. The Picoscope is connected via USB3 to the computer.

4.9.2 Assembled Experiment Inside the Vacuum
Chamber

Fig. 4.29 shows the inside of the vacuum chamber. The coated plate is shown
attached to the piezo slides in Fig. 4.30. On the left are the two angled piezo
drives. In front of them is the glass block with the force sensor attached.
From the force sensor on are the three optical fibers. The glass block is
clamped onto the base plate. The NTC sensor was positioned on top of the
base plate between the glass and aluminum blocks.
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Figure 4.30: This photograph shows the interior of the vacuum chamber with
a dummy glass block. The gold coated plate is attached to a connecting plate
that is attached to the piezo slides.
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Chapter 5

Experiments and Data
Analysis

5.1 General Overview
The following subchapters describe different experimental runs. Between
those runs the force sensor was changed and there were also changes in other
factors of the experiments. Those are described in the corresponding
subchapter.
Each measurement consisted of different steps. First the quality factor Q and
the resonance frequency fres were measured. Afterwards the optimal
wavelength of the Agilent laser for the vibration measurement was obtained.
The next step was to drive the plate near the sphere and measure the
distance offset for the distance interferometer. The last step was to measure
distance-frequency curves. Additionally the surfaces of the sphere and the
plate were measured for the measurement runs in summer 2017 and winter
2018.

5.1.1 Distance Measurement between Sphere and Plate
To measure the distance between the sphere and the plate, two methods are
implemented. On the side of the force sensor (16/C in Fig. 4.27) is an
additional fiber that has been built together with the plate a fiber
interferometer. The interferometer can be used to measure each step of the
moving plate. With this interferometer it is possible to measure the distance
change during the measurement. The fibers were placed in parallel v-grooves
to minimize possible errors in distance measurement due to an unexpected
angle between interferometer beam and the tangent plane of the sphere. A
less than 2◦ angle error means only 1 nm length error for a 1µm range, which
is smaller than other influences in the current experiment1. To get the
absolute value of the distance between the half-sphere and the plate in the
first place, an electrostatic method is used.
According to Eq. (3.124) from chapter 3.4, the force between the sphere and
the plate can be changed by applying a voltage between them. Applying
different voltages between −10 V and +10 V and measuring the force allows
us to fit the distance d and the contact potential difference Vm.

1 d
cos(α) = dα, with α as angle alignment error and dα as the real distance.

91



CHAPTER 5. EXPERIMENTS AND DATA ANALYSIS

With this it is possible to obtain the distance offset of the interferometer.
The distance offset of the interferometer is defined by:

doffset = dint − d (5.1)

dint is the distance of the fiber to the plate measured using the interferometer.
Because of Eq. (3.124) the applied voltage produces a force. This force can
be combined with Eq. (3.164) to give the frequency shift due to the applied
voltage:

∆ω
ωres

= − 1
πak

∫ 1

−1
πϵ0R

(V − Vm)2

d+ a(1 + u)
u√

1− u2
du (5.2)

= −ϵ0R (V − Vm)2

ak

∫ 1

−1

1
d+ a(1 + u)

u√
1− u2

du (5.3)

k is the spring constant of the force sensor, ωres is the resonance frequency of
that cantilever, ∆ω is the frequency shift and a is the amplitude of the
oscillating cantilever. V is the applied voltage, Vm is the contact potential
difference and R the radius of the sphere. While the frequency fmeas as well
as a are the measured entities, the other free parameters can be fitted.
Combining the measured frequency with the resonance frequency to get the
frequency shift:

∆ω
ωres

= |fres − fmeas|
fres

(5.4)

The fitting parameters are Vm, d and fres. To fit these parameters, a
numerical integration as well as a fitting method is needed. For the
numerical integration, the QUADPACK library [110] is used. For the fit, the
optimization method of differential evolution by Storn et al. [114] is used.
Additionally, the frequency shift of different voltages was measured at
multiple distances, not at just one distance.

5.1.2 Temperature Dependence of the Resonance
Frequency

Section 4.1.1 described that the frequency of the force sensor is temperature
dependent and that simulations were performed using Young’s modulus from
section 3.5.3. The simulation result was 1.052 Hz/K as was shown in
Table 4.1. In Fig. 5.1, the measured temperature as well as the measured
frequency are shown. The frequency change has about 12 minutes delay
compared to the temperature change at the NTC sensor. A linear regression
gives a factor of 0.9888 Hz

K which is only a 6 % variation from the simulated
value.

5.2 Preparations of the Experiments in 2016
Before the first experimental runs were started, the experiment was built and
first measurements were done to learn how the system behaves and what was
needed for the first experiments.
The first assembled force sensor is shown in Fig. 5.2.
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Figure 5.1: The plot shows the measured frequency and the measured tem-
perature during a whole day. It’s clear that both are linearly correlated. The
temperature sensor is placed between the oscillator and the vacuum flange,
therefore every change in temperature from outside hits the temperature sen-
sor before it hits the oscillator. This leads to about 12 minutes delay between
the frequency change and the measured temperature.
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Figure 5.2: On the left a photograph shows the first sensor assembled on a
gauge block. The plot on the right shows the cavity length of the vibration
measurement interferometer depending on the rotation of the whole force sen-
sor. a is the orientation of the image, b is upside down, c is a 90◦ rotation
around x aka standing vertically d is a −90◦ rotation around the x aka down-
ward facing. The zero level of the cavity length is 22370.0 nm.
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Figure 5.3: On the upper plot, the Agilent 8164B laser power was measured
against a photodiode. The result is almost flat between 1500 nm and 1600 nm,
but it has a steep slope below 1500 nm and above 1620 nm. The lower plot
shows the first Fabry-Pérot measurement as dots, and the fit as an unbroken
line.

5.2.1 Fabry-Pérot Measurement

The laser source is the Agilent 8164B. It is a tunable laser with a range of
1490 nm to 1640 nm. The absolute wavelength accuracy was calibrated to
about 1 pm over the whole wavelength range with a repeatability of less than
0.2 pm. The power flatness of the used low SSE output is less than 0.05 dB
across the complete wavelength range, and the power stability over time is
less than 0.0005 dB over an hour2.
First of all, the laser beam, that was supposed to go into the Fabry-Pérot
was measured on a photodiode PDA 10CS from Thorlabs directly after the
end of the fiber. The result is shown in Fig. 5.3.
As result of the measurement a wavelength range that spanned from 1515 nm
to 1600 nm was chosen for the Fabry-Pérot measurements. In that
wavelength range both fiber couplers and both interferometers have the best
transmission. The Fabry-Pérot analysis is performed using Eq. (4.11). The
lower plot in Fig. 5.3 shows one of the first Fabry-Pérot measurements. The
result of the Fabry-Pérot measurement is the length of the cavity. This
length was measured under different conditions as shown in Fig. 5.2. The
two horizontal measurement positions have nearly the same cavity length (a,
b). But if it is measured perpendicularly, as shown by c in Fig. 5.2, the
cavity length increases due to gravity. In case of the inverse perpendicular

2see calibration report
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case d, the cavity length decreases due to gravity:

∆La = 0.04(±0.11) nm (5.5)
∆Lb = −0.04(±0.10) nm (5.6)
∆Lc = 1.35(±0.11) nm (5.7)
∆Ld = −1.89(±0.09) nm (5.8)

After measuring the cavity length of the interferometer, the wavelength of
the laser is set to the value where the interferometer can take the most
sensitive readings. See Eq. (4.12) for that calculation. With a cavity length of
L = 22370 nm this means that the laser was adjusted to λ = 1529.6 nm for
further measurements.

5.2.2 Resonance Frequency using a Ringdown
Experiment

The resonance frequency can be calculated using a FEM simulation.
Parameters such as the exact position of the sphere have an influence on the
resonance frequency. Therefore it is necessary to measure the resonance
frequency before optimizing the PLL parameters. To measure the resonance
frequency, a ringdown experiment is performed. For this experiment, a
wrench is knocked against the vacuum chamber. This causes to a high
amplitude of the force sensor at its resonance frequency of the first vibration
mode. The decay of the vibration is measured and fit to the resonance
frequency and the quality factor Q.

ADC = O +A · e− ω0t
2Q · cos (ω0t+ ϕ) (5.9)

ADC is the read-out value of the ADC, O is the read-out offset and A is the
read-out amplitude. ω0 is the resonance frequency, t is the time and ϕ is the
phase offset. The ringdown experiments shown in Fig. 5.4 characterize the
force sensor to a frequency of 12959 Hz and a quality factor of Q = 499.

5.2.3 Putting the Force Sensor into the Vacuum
Chamber

After finishing the first tests under air conditions, the force sensor was put
into the vacuum chamber. Since the optical fibers need a feedthrough, they
were removed from the force sensor. Afterwards they were put through the
feed-through and then reattached to the force sensor. The description of the
feedthrough can be found in section 4.2.1. At a pressure of about 10−6 mbar,
the quality factor Q was measured again using a ringdown experiment.

5.2.4 Resonance Frequency with a Resonance Curve
After measuring the resonance frequency and the quality factor for the bare
force sensor, a gold sphere was glued onto the force sensor. The gold sphere
is shown at the left of Fig. 5.6. A ringdown experiment showed the change of
the resonance frequency. A higher mass attached to the spring leads to a
smaller resonance frequency. Most notably, the quality factor increased by a
factor of 10. This led us to the false conclusion that the quality factor can be
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Figure 5.4: Ringdown of the force sensor. The first ringdown of the force sensor
was measured under air pressure with a resonance frequency f0 = 12959 Hz
and a quality factor Q = 499. The second ringdown of the same force sensor
was measured in vacuum. The fibers were reglued before bringing the sensor
into the vacuum, which led to a small shift in the resonance frequency f0 =
13242 Hz. The new quality factor was Q = 2564.

Figure 5.5: The left image shows the flange with the fiber feedthrough and the
attached force sensor. The right part of that image shows the strain relief of
the optical fibers. The right image shows the newly glued fibers on the force
sensor.
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Figure 5.6: Ringdown of the force sensor and its resonance curve after a gold
sphere (left) was glued to the force sensor.

increased with a higher mass attached to the force sensor. It is much more
likely that the glue caused this change, rather than the material loss.
The next step was to test the optical actuation. For that purpose, a
resonance curve was measured. This is also another method to measure the
resonance frequency and the quality factor. A function generator is set to
specific frequencies, the function generator drives a laser, and the amplitude
modulated laser light drives the force sensor.
Two different methods to measure the resonance curve were used. The first
method is to directly measuring the voltage of the photodiode with a certain
sampling rate. The power spectral density of the measured signal was
calculated and the value at the set frequency was taken. These were
performed for each of the set frequencies and the result is the resonance
curve. The other method is measuring the amplitude with the SR 830 lock-in
amplifier as described in section 4.7. The lock-in amplifier takes the set
frequency as input signal as well as the photodiode voltage. As output the
lock-in calculates the amplitude and the phase of the signal. The resulting
amplitude signal is a measurement for the root mean squared voltage Vrms.
With a correction factor for the voltage that can be set at the lock-in
amplifier, Vrms is given through the output voltage. To calculate the
Cauchy-Lorentz distribution parameter from the lock-in measurement, the
signal is squared to be comparable with the data based on the power spectral
density method.

5.2.5 Conclusions after the First Measurements
During 2016, a lot of tests were performed and the measurement routine was
optimized. The air conditioner of the laboratory did not work properly, and
on some days the temperature changed by more than 1 ◦C. After adding the
piezo slides, the controller had issues. For example the step size was far from
equidistant. We tried a newer model of the controller, but that one enforced
a minimum step size that was too large for the experiment. So we created a
new computer controlled interface for the old piezo slide controller using a
Raspberry Pi mini computer. Also the PLL was implemented during this
period. We tried to measure the absolute distance between the sphere and
the plate using different applied voltages between them, but we were unable
to measure any frequency change. We later concluded that the gold sphere
was not in electrical contact with the gold coating on the force sensor. This
means a layer of glue was between them and isolated the contact. Our solid
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gold spheres with d = 0.5 mm had a high mass, but a bad surface shape. So
we chose to change from solid gold to ruby spheres with d = 1 mm. The ruby
sphere was milled to a half-sphere. After gluing the ruby half-sphere to the
force sensor, a gold coating was applied. This also enabled us to guarantee
an electrical contact of the half-sphere to the measurement system.
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Figure 5.7: Distance measurement using a Fabry-Pérot cavity. The fitted
cavity length is L = (1.041716 · 10−4 ± 4.95 · 10−10) m.

5.3 Measurements between January 2017 and
March 2017

A new force sensor with a higher Q and a gold coated ruby half-sphere was
assembled in January 2017.

Q = (1.820± 0.5)× 104 (5.10)
f0 = 9829.13 Hz (5.11)

5.3.1 Distance Measurement
The experimental setup consists of two Fabry-Pérot cavities. While the first
is used for the vibration measurement, the second is used to measure the
distance of the force sensor to the sphere. The distance measurement is done
in the same way as the measurement of the first Fabry-Pérot cavity. The
wavelength of the laser is shifted and the reflected light in the glass fiber is
measured. After fitting this, the distance of the end of the fiber and the gold
plate was obtained. Unfortunately, the end of the fiber does not have the
same distance as the sphere to the plate. The fiber has to have a larger
distance from the plate than the sphere. Before using the Fabry-Pérot cavity
to measure the current distance between the half-sphere and the plate, the
distance offset has to be obtained.
Section 5.1.1 describes how the distance offset is measured. The frequency
shift is parabolic as is the electrostatic force. To get a realistic Vm it would
be necessary to use a voltage range from −Vmax to +Vmax. With the Korad
DC Power Supply it was only possible to set voltages in the [0 V, 30 V] range.
Fig. 5.8 shows the results of the distance measurement. The distance
measurement has very high uncertainty levels. Part of the explanation could
be that the measurements were done using the resonance curve method.
After the distance calibration on Feb. 9th 2017 the phase locked loop (PLL)
was optimized as described in section 4.6.
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Figure 5.8: Distance offset measurement. The fitted parameters were
d0 = (1.384± 0.031) µm, V0 = −1.000 V, f0 = (9827.62± 0.01) Hz, k =
(9.09± 0.36) kN m−1. This d0 means, that the distance offset would be
dO = (102.764± 0.031) µm.

On Feb. 28th 2017 a distance frequency curve was measured using the PLL
to measure the frequency. The result is shown in Fig. 5.9.
The fitted patch effect voltage of Vrms = (6.07± 0.54) V is very high. This
could mean, that the electrical connection of the sphere was quite bad or
that there were parasitic voltages at the electrodes.

5.3.2 Lessons Learned from the First Experimental Run
After measuring the first frequency shifts due to the electrostatic force and
also after measuring the first distance-frequency curve, we came to a couple
of conclusions for the next experimental run.
Fig. 5.8 showed that the applied voltage between the half-sphere and the
plate was always positive, because the voltage source was only able to
provide that. Afterwards we implemented a voltage switch, as described in
section 4.9.1, that was able to invert the voltage applied to the sphere and
the plate by just inverting the electrical connections. Also, especially after
changing the voltage back from +30 V to 0 V, the system responded only
with delay to the voltage change with its frequency. So a waiting delay after
applying a different voltage was added for the next experiments. Also in the
first experimental run, we had not yet added a temperature sensor inside the
vacuum chamber and were not able to correct the measured frequency by the
measured temperature. This was also changed before the next experimental
run. When fitting the distance offset, the fitted absolute distance d0 and the
fitted stiffness k were highly correlated with a Pearson correlation coefficient
of −0.86. This means it is necessary to independently measure the stiffness
of the force sensor.
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Figure 5.9: Distance frequency curve measurement from Feb. 28th in 2017.
The dots are measurements taken during the experiment, the solid line is
the fit function. The fit parameters were f0 = 9829.34 Hz and Vrms =
(6.07± 0.54) V.
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5.4 Measuring the Stiffness of the Force
Sensor

After all measurements were concluded, the force sensor used in the
experiments of summer 2017 and winter 2017/2018 were analyzed. During
fitting of the force measurement results, the stiffness and the distance are
correlated. To overcome this, the result of the stiffness measurement is
needed to better analyze the force measurement. The stiffness measurement
was performed by Uwe Brand in summer 2018. The force was measured with
a compensation balance and a 1D positioner (PIFoc) with 100µm travel. It
was used to deflect the parallelogram flexure by 5µm [148][149]. The result of
the stiffness measurement is shown in Fig. 5.10.

kS17,load = (7703.34± 0.14) N/m (5.12)
kS17,unload = (7723.61± 0.15) N/m (5.13)
kW 18,load = (6114.62± 0.24) N/m (5.14)

kW 18,unload = (6122.87± 0.24) N/m (5.15)

It is obvious, that the stiffness for loading and unloading is different. For the
force sensor used between April 2017 and August 2017 the difference was
larger than it was for the force sensor used from September 2017 until
February 2018. A possible explanation for the difference in stiffness for
loading and unloading the parallelogram flexure is the glue that was used to
glue the ruby half-sphere to the parallelogram flexure.
The temperature dependence of the stiffness was not explicitly measured.
But for the force sensor used in the next subchapter, the stiffness
measurement for a total deflection of 10µm was done twice, with different
temperatures. The measurement result is shown in Fig. 5.11.

kload,22.50 ◦C = (7682.66± 0.59) N/m (5.16)
kload,22.60 ◦C = (7675.41± 0.20) N/m (5.17)

kunload,22.50 ◦C = (7700.28± 0.60) N/m (5.18)
kunload,22.60 ◦C = (7690.08± 0.22) N/m (5.19)

Assuming a linear temperature dependence of the stiffness, it is:

∆kload = (−73± 6) N/mK (5.20)
∆kunload = (−102± 6) N/mK (5.21)

The large difference of temperature dependence between loading and
unloading suggests that at least part of the temperature dependence comes
from the same reason as the difference of the stiffness when loading and
unloading. The temperature dependence of k was not measured for the force
sensor used in the last measurements taken after September 2017. Also the
result of the stiffness measurement at 10µm deflection of the force sensor
differs from the stiffness measured at 5µm deflection. Since the vibration
amplitude is much smaller than the deflection during the stiffness
measurement, the result for the 5µm deflection is used in the further analysis.
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Figure 5.10: Stiffness measurement of the two force sensors used in the last
two experimental runs. On the left is the stiffness when a force is applied
until the force sensor deflects 5µm and, on the right is the stiffness when the
force is unloaded from the force sensor. The ambient temperature during the
measurement of the Summer 2017 parallelogram flexure was 22.50 ◦C and for
the Winter 2018 parallelogram cantilever it was 22.70 ◦C.

●

●

●

●

●

●

●

●

●

●
●●

●

●

22.60 °C
22.50 °C

load unload

7665

7675

7685

7695

7660

7680

7700

Measurement direction

S
tif

fn
es

s 
[N

/m
]

Figure 5.11: Temperature dependence of the force sensor stiffness.
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The stiffness used for the data analysis of the experiments is the mean of the
first measurement:

kS17 = 7713 N/m (5.22)
kW18 = 6619 N/m (5.23)

Due to the different stiffness values on loading and on unloading, the
uncertainty of kS17 and kW18 was not obtained. One could argue to use the
difference between both stiffnesses as uncertainty.
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Figure 5.12: A new force sensor was prepared. It was placed on a glass block
with a milled hole right below the moving part of the force sensor. The idea
of this method was, that the energy loss would be lower with the glass plate
attached to the glass block on the right of the force sensor.

5.5 Measurements between April and August
2017

5.5.1 Preparation of the Experiment
A new force sensor was built and attached over a hole in the glass plate to
increase the quality factor as seen in Fig. 5.12. A force sensor without
anything else attached with rounded edges inside the parallelogram flexure
had a quality factor of about 125000. A new ruby half-sphere with
R = 0.5 mm was attached to the sensor. Both were then coated with a
200 nm thick layer of gold. A new plate was cut out of a silicon wafer and
this was also coated with a 200 nm thick layer of gold. After attaching
everything to the new force sensor, the new quality factor was around 35000.
The new resonance frequency was about 10.9 kHz.
Before starting this experiment we added a 10 kΩ-NTC sensor to measure the
temperature.

5.5.1.1 Distance Calibration

The distance calibration was performed similarly to how the distance
measurement was performed in the previous experiment. The results of the
distance calibration are shown in Fig. 5.13.

5.5.1.2 Measurement 2017-08-11
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Figure 5.13: d0 = (1.1575± 0.0005) µm which means that the offset of the
distance Fabry-Pérot cavity is 96.404µm. Vm = (−152± 4) mV and f0 =
10909.52 Hz.

After the preparations with the new force sensor were done, we performed a
measurement of the distance-frequency curve on August 11th.
For each step approaching the force sensor with the plate, the distance is
measured by using the wavelength sweep of the Fabry-Pérot interferometer.
Since both Fabry-Pérot cavities are powered by the same laser source, the
cavity length is measured for both cavities simultaneously. The vibration
measurement cavity has a constant length, when averaging the vibration. If
the detected cavity length changes after a step of the plate, this means that
the force sensor was moved by the moving plate, which indicates a collision.
After a detected collision, the plate is moved away from the sphere. The
measurement routine was programmed to stop the measurement when the
distance is below 30 nm. Unfortunately, the collision detection was always
triggered first. The measurement from Aug. 11th is seen in Fig. 5.14. It was
performed at an applied voltage of 2 V between the half-sphere and the plate.
The idea of using an applied voltage was to make sure that the measurement
routine works as expected and the measurement can be done in principle.
Unfortunately 441 nm was the closest approach possible. At this distance,
the Casimir effect would change the resonance frequency by 73µHz, which
was out of reach of the PLL. For a frequency change of 1 mHz a distance of
230 nm would be needed and for a frequency change of 10 mHz a distance of
128 nm would be needed. As seen in Fig. 5.14 this would easily detectable
with the measurement setup used in this experiment.

5.5.2 Analyzing the Sphere Surface after the
Experiment

After disassembling the experiment in September 2017, the force sensor was
placed under a LeXT laser scanning microscope. The goal was to measure the
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Figure 5.14: Measurement from Aug. 11, 2017. A voltage of 2 V was applied
between the half-sphere and the plate. The measurement stopped because
of a detected collision. This may have been the result of a particle on the
half-sphere or the plate.
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Figure 5.15: Histogram of the residuals of the measurement from Aug. 11,
2017. The binwidth is 1 mHz.
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Figure 5.16: The gold sphere used for the experiments in this chapter. The
image was taken using a LeXT laser scanning microscope. It is obvious that
on top of the surface the height of the sphere is different from the outer surface
of the half-sphere. The LeXT is not capable of measuring steep slopes, so the
measurements shown in the transition between the gray and black surfaces
may be too high. It seems that the gold coating on the gray area is missing in
the middle of the sphere. Fig. 5.18 shows a patch on the gold plate that could
be the missing gold coating.
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Figure 5.17: The gold coated sphere after subtracting the gold surface. A line
cut in the LeXT software indicates that the black area is about 310 nm below
the height of the intact gold coating. Also the line cut indicated a diameter of
the missing gold coating of 53µm.
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Figure 5.18: Measurement of particles on the gold plate using the Sensofar
SNeox. This figure shows roughly 5 % of the surface of the plate. Particles of
at least a height of 125 nm are marked as blue dots. For larger particles see
the legend. On the bottom left a larger patch between 200 nm and 750 nm in
size is visible. That could be the missing gold coating from Fig. 5.16.

exact radius of the half-sphere. Unfortunately a large patch of missing gold
coating was found on the half-sphere as seen in Fig. 5.16. After subtracting a
sphere from the 3D model, it was possible to measure the height of the
missing patch. It was almost constant and about 310 nm deep and had a
diameter of 53µm. The most obvious explanation for this large patch of
missing gold is a collision of the force sensor with the sphere with a severe
impact speed. Most likely is that this happened during the first approach
when the offset for the distance Fabry-Pérot was still unknown. This means
that the results of the experiments with this force sensor are not usable
anymore. This could also explain why in each approach phase during the
measurement a collision was detected: without this large patch of gold, the
distance calibration generated a wrong result. Fig. 5.18 shows a measurement
of the plate after disassembling the experiment. It shows detected particles
on the plate with at least 125 nm height. On field 33 a larger amount of mass
was detected, which could have been the gold fragments from the sphere.
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Figure 5.19: On the left is the half-sphere as a heat map. On the right is only
the surface of the half-sphere.

5.6 Measurements between September 2017
and February 2018

After the large patch of missing gold was detected on the surface of the gold
coated half-sphere, a new measurement was planned.

5.6.1 Surface of the Probes
5.6.1.1 Sphere

Fig. 5.19 shows a measurement with the LeXT confocal laser scanning
microscope.

5.6.1.2 Gold-coated plate

The complete surface of the gold plate was measured with a SNeox confocal
white light interferometer. With a 50× objective it has a lateral resolution of
260 nm and a height resolution of 10 nm. It was used to search the area for
particles. In one measurement the SNeox has a field of view of
(351× 264)µm, therefore the complete surface of 10× 10mm2 was scanned
with 1131 single data acquisitions. A height of 50 nm was used for the
particle threshold. Every pixel above 50 nm was marked as particle and there
were approximately approximately 645 000 particles on the plate in total.
After the measurement, the largest square without any particle on the
surface was searched. The result of that analysis was that an area of
2× 2 mm2 was particle free. This means that the plate is feasible for the
measurement. This measurement is shown in Fig. 5.20.

5.6.2 Force Sensor Characteristics
5.6.2.1 Vibration Measurement Cavity

The vibration measurement cavity has a length of 19.73735µm with a fit
error of 0.114 nm and a repeatability of 0.137 nm for 20 measurements. This
leads to an optimal wavelength for the vibration measurement of
1563.335 nm, with a repeatability of 0.011 nm.
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Figure 5.20: One quadrant of the particle measurement of the gold plate is
shown. The quadrant shows (5 × 5) mm2. At the center of the quadrant is a
2 mm large area which is particle free.
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Figure 5.21: Distance calibration. dOffset = (90.697± 0.008) µm at the dis-
tance d0 = (999± 8) nm, Vm = − (0.10± 0.07) V.

5.6.2.2 Resonance Frequency and Quality Factor

The new measured quality factor and resonance frequency are:

f0 = (9511.14± 0.02) Hz (5.24)
Q = 5540± 490 (5.25)

Unfortunately the low quality factor means, that the vibration amplitude is
lower than in the experiments before. This meant that the PLL was unable
to lock onto the vibration. For all measurements using this force sensor the
resonance curve method was used to measure frequency changes.

5.6.3 Distance Calibration
The distance calibration for the new force sensor and its gold plate was done
at the beginning of February 2018. The approach of the plate to the sphere
was done slowly. After each step the frequency was measured with a high
voltage applied. And since the resonance curve method was used to measure
the frequency, measuring one frequency took about 15 minutes. Fig. 5.21
shows the result of the distance calibration. As can be seen, the
measurement noise is higher than it was in the measurement period of
summer 2017. This comes from the low quality factor and the missing PLL.
The standard error of the distance measurement is with 8.2 nm much higher
than it was for the measurement in summer 2017 (1 < nm).

5.6.4 Distance Frequency Curve Measurement
Three distance-frequency curves were measured in this measurement run.
The first one is shown in Fig. 5.22. The contact potential was compensated
for by applying a voltage of 102 mV, which was measured in the distance
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Figure 5.22: Measurement on February 20th 2018. Vm = 102 mV was compen-
sated accordingly to the contact potential during the distance measurement.
It was not possible to measure any resonance curve below the distance of ap-
proximately 200 nm. The lower plot shows the histogram of the measurement
with a binwidth of 10 mHz.
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Figure 5.23: Measurement taken on February 24th 2018. The measurement
was done with a voltage of 6 V applied between the half-sphere and the plate.
The lower plot shows the residuals after subtracting the calculated frequency
for the electrostatic force due to the applied voltage.
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Figure 5.24: Histogram of the measurement taken on February 24th 2018. The
binwidth is 20 mHz. The small peak at −100 mHz has a too small effect size
to assume anything other than noise for it.

offset measurement. There were two results of the first measurement. First:
it was not possible to measure a resonance curve below a distance of 200 nm.
Possible reasons could be that the amplitude was too low to be detected or
perhaps due to some kind of a particle on the surface let the vibration vanish
altogether. A jump-into-contact was not visible, the cavity length of the
vibration interferometer was the same as before. Second: Above that
distance, there was no trend in the data. A trend could have come for
example from the Casimir force, but the sensitivity of the experiment was
not large enough to measure that.
For the next measurement, a voltage of 6 V was applied between the
half-sphere and the plate. The result is shown in Fig. 5.23. The electrostatic
force is visible, but the residuals do not suggest any additional force. Also in
these cases the Casimir effect was not measured due to a lack in sensitivity.
Their distribution is plotted as histogram in Fig. 5.24. The measurement
with an applied voltage of 6 V was repeated. The results are the same and
shown in Fig. 5.25. Also the distribution of residuals is plotted in Fig. 5.26.
The residuals have a standard deviation of 0.1 Hz. At a distance of 200 nm
this results in not detecting any additional Yukawa-like gravitational effect;
and the corresponding curve as shown as α-λ-plot in Fig. 5.27. As expected,
the result is still in the yellow part of that plot.
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Figure 5.25: Measurement taken on February 25th 2018. The measurement
was done like the former measurement with an voltage of 6 V applied between
the half-sphere and the plate. The lower plot shows the residuals after sub-
tracting the calculated frequency.
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Figure 5.26: Histogram of the measurement on February 25th 2018. The
binwidth is 20 mHz. The count in each bin is too small to give meaning to the
peaks in the histogram.
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Figure 5.27: This experiment placed into the Yukawa α-λ-plot. The result is
calculated with a distance of 200 nm and 0.1 Hz frequency accuracy. Both val-
ues were chosen from the previous measurements, where no significant change
in frequency was measured down to 200 nm that could account to an effect
size of 0.1 Hz.
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Chapter 6

Lessons Learned and
Suggestions for Future
Experiments

In summer 2013 I started working on an experiment to search for deviations
from Newtonian Gravity. Section 6.1 describes the first approach and why it
finally failed. From the mid of 2015 I was developing a new experimental
concept to find deviations from gravity. We faced some difficulties during the
preparation. Some of those difficulties could be solved, but some were not
solved. The two most pressing difficulties were the quality factor of the force
sensor, and the fact that below a distance of 200 nm we were unable to detect
any vibrations of the force sensor. The issue of the quality factor was a
problem in the final experimental run that ran until Feb. 2018, but the force
sensor from summer 2017 had a feasible quality factor. Those ideas are
described from section 6.2 onward.

6.1 Failed First Approach with Shielding
Membranes

My first approach for the experiment [150] was a concept with a parallel
plates geometry instead of the plate sphere geometry. It was based on the
nanonewton force facility developed by Brand et al. [151] shown in Fig. 6.1.
The goal was to measure the force between two parallel plates with a
resolution of 10−12 N after integrating 2 · 104 s. The hard part of the
experiment was shielding it from the Casimir force, to have an experiment
that only measures a gravitational force and not electrical and Casimir forces.
For this purpose S. Bütefisch developed the design of the nanostructured
silicon based Yukawaattraktor. The design of the Yukawaattraktor is shown
in Fig. 6.3. The idea was not to use one large membrane, but ten thousand
small membranes. The plate was split into ten thousand silicon sticks with a
gold coating. The membranes should have been held by a silicon based grid
structure.
The plate parallel to the Yukawaattraktor was called the detector plate. The
pendulum of the nanonewton force facility was placed inside an electrical
field with a small hole in the middle to measure probes on the pendulum.
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Figure 6.1: Nanonewton force facility developed by Brand et al. [151]. A gold
coated plate is suspended between two annulus formed electrodes. The elec-
trodes are used to reduce the stiffness of the pendulum to increase the force
sensitivity. The aimed force sensitivity was planned to be 10−12 N.

But we didn’t want the gravity measurement to be influenced by the
electrical field and we wanted to have larger surface area for the
Yukawaattraktor. So we chose to attach two plates connected with a copper
stick to the pendulum. One of those plates was the detector plate and the
other was to counter balance the detector plate and it was used for the
interferometer that measured the movement of the pendulum. Fig. 6.2 shows
the detector plate and the pendulum.
Also shown in Fig. 6.3 is another important part of the experiment. Since
the goal was to measure the force between parallel plates, it was necessary to
measure any tilting of the plates. The concept was to use two laser beams,
one that reflects on the back of the Yukawaattraktor and one that reflects on
the detector plate. Both beams are split after the reflection using a beam
splitter and are measured at the center of four quadrant photo diodes. With
a four quadrant photodiode it is possible to measure the tilt of a plate.
We had two major issues during building the experiment, which finally led us
stop the the two parallel plates experiment:
1st: After S. Buetefisch tried a few times, we discovered that the membrane
fabrication was not good enough to generate about 10000 intact membranes.
Even a few broken membranes would lead to very large measurement errors.
A picture of the fabricated gold membranes is shown in Fig. 6.4.
2nd: The other problem was that the size needed for the necessary
measurement accuracy of more than a centimeter has the disadvantage that
the surface shape of the two plates was not accurate to a nanometer.
Measurements showed that deviations from a perfect plate were more than a
micrometer. With an aimed distance of a micrometer for the measurement,
this shape of the silicon based plate was unusable. Fig. 6.5 shows the
measurement of the disc pendulum without a copper stick glued on and one
disc pendulum with a copper stick glued on. We also tried an adhesive filled
with micrometer-sized spheres, that work as spacer to reduce shrinkage
effects of the adhesive.
A better solution to shield the Casimir effect for experiments at distances
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Figure 6.2: The left shows the detector plate with the glued copper stick.
The right image shows the pendulum with the copper clamp attached during
a detector plate assemble trial. The round aluminum cylinders were used
as dummy for the electrodes. Also the 25µm gold wire suspension of the
pendulum is visible.

a) b)

c)

Figure 6.3: Measurement concept as shown in my talk at the DPG spring
meeting 2014 [150]. b) shows the whole measurement setup. The pendulum
is shown with both plates attached. The additional plates on the pendulum
were needed to measure outside of the electrodes that were shown in Fig. 6.1.
The left part of b) shows the four quadrant photodiodes. Their purpose was to
measure any tilting of the detector plate and the Yukawaattraktor. a) shows
the Yukawaattraktor facing the detector plate. c) shows a single cell of the
Yukawaattraktor. The stick inside each cell is attached to the silicon base
plate which itself is connected to a piezo slide. The silicon grid that holds the
membrane is also shown at a).
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Figure 6.4: Picture of the gold membranes in a grid. The image to the left
shows a side view of the Yukawaattraktor. It shows the planned distances
between the sticks and the membrane, as well as the distance to the detector
plate. The planned sizes of the sticks and the membranes are shown in the
middle image, which is the front view of the Yukawaattraktor. The image to
the right shows a picture of fabricated membranes on the grid. There are also
some visible imperfections.

Figure 6.5: Shapes of gold coated silicon wafer used as a pendulum in the
nanonewton force facility. On the left is the wafer with a copper stick glued
in the middle. On the right is the pendulum without a copper stick.
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larger than 200 nm was published at end of 2014 on the website arXiv.org,
and finally published 2016 by Chen et al. [51]. The experiment was discussed
in section 2.2.4.
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Figure 6.6: 3D image of the force sensor attached to a glass block. Two
important lessons we learned during our experiments were: First: Use rounded
edges inside the parallelogram flexure. Second: Place the force sensor on the
left where the parallelogram flexure is connected to the glass block completely
on the glass block, and place the moving part of the force sensor over a milled
hole in the glass block.

6.2 Increase Surface Quality
Not being able to measure any vibrations below a distance of 200 nm was one
of the major issues we faced during each experiment. One likely reason for
this problem was the surface imperfections. Figure 5.20 shows particles found
on the plate used in the last experiment. While large parts of the plate have
no particles of a size of 50 nm or larger, there are some larger particles that
are of a size of 1µm and above. We would need to reduce the amount of
particles on the surface to get clearer results. One necessary step against
particles on surfaces is to perform all the preparations inside a clean room.
Large plates with a small roughness can have a larger waviness. This type of
surface imperfection could lead to wrong results of the distance calibration
and should also be avoided. This can occur when gluing a plate to the
specimen holder.
Fig. 5.19 shows another type of imperfection – the sphere has a small hole
that is about 150 nm deep. It is several micrometers away from the center of
the sphere. It would be best to avoid these kinds of imperfections. Bezerra et
al. [152] argues that such small surface imperfections make it impossible to
perform accurate measurements of the Casimir force between a plate and a
sphere. However, the surface imperfections they use for their calculations are
merely artificial and do not represent real surfaces.

6.3 Optimize the Quality Factor
In the last measurement run in winter 2017/2018, the vibration amplitude of
the force sensor was too low to use the PLL. The reason was a low quality
factor Q. During all experiments, we had different quality factors from 2 · 103

to 105. We learned about different influences that correspond to the quality
factor.
Fig. 6.6 shows how the force sensor should be attached on top of the glass
block, and our experiments taught us that rounded edges inside of the
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Figure 6.7: Using the force sensor as the plate, and the half-sphere approaches
it. The relative distance measurement must be performed from the side of the
sphere.

parallelogram flexure are important for a higher quality factor. The gold
coating described in section 4.1.3.1 has a major impact on the quality factor.
It is important to have an electrical connection, but there could be some
other options. For example, if the gold coating is applied not on the side of
the force sensor that faces to the gold plate but just on top of the force
sensor, how does it impact the quality factor? Another idea is not to use
fused silica, but a force sensor made of doted silicon. This would have the
advantage that the bulk material is conducting and no gold coating on the
parallelogram flexure is needed anymore. A gold coating is still needed on
the test mass and the sphere. But it would be sufficient to coat the sphere on
top only, as long as it is electrically connected to the force sensor. But
connecting the sphere to the force sensor electrically without coating the
flexure of the force sensor would be more difficult than just coating
everything with gold after the force sensor and sphere are assembled,
however, gluing the sphere to the test mass of the force sensor is also
suboptimal for the quality factor. One option for this would be to gold coat
only the test mass of the force sensor and use it as plate. The sphere would
be the approaching object as seen in Fig. 6.7. In this case, the distance
measurement Fabry-Pérot should be attached to the specimen holder that
moves the sphere. A 3D positioning system moves the sphere to the center of
the test mass. Using the force sensor as the plate would also have the
advantage of providing a higher resonance frequency. The resonance
frequencies of the force sensor with the half-sphere attached is by 50% lower
than resonance frequency without the half-sphere. A higher resonance
frequency means that the measured signal (∆f) for the same force is higher.
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Figure 6.8: A two-legged force sensor with the test mass in the middle. Both
ends are fixed. It has a depth of 0.5 mm with a length of the legs of 2 mm.
The height of the legs is 0.05 mm. The test mass has a length of 1 mm and a
height of 0.3 mm.

6.4 Changing the Force Sensor to a Smaller
Stiffness

In Eq. (3.164) the stiffness k is inversely proportional to the frequency shift.
This means that a higher stiffness means a lower frequency shift. But if we
could reduce the stiffness while leaving every other property the same, the
frequency shift increases and also increases the measurement sensitivity. The
main obstacle to a small stiffness is the jump-into-contact. This means the
stiffness should be much greater than the force gradient:

dF
dx
≪ k (6.1)

The force gradient for a sphere with radius R = 0.5 mm at a distance of
10 nm is about 20 N/m.
At the parallelogram flexure there are several parameters that influence the
stiffness. Unfortunately, each of these parameters influence the resonance
frequency as well. For example the length, the thickness, and the height of
the flexures. The two-legged force sensor shown in Fig. 6.8 has an
eigenfrequency of 8 kHz and a stiffness of 1 kN/m. Decreasing the height of
the flexures of the parallelogram flexure decreases the stiffness. Increasing
the length of the flexures also reduces stiffness. Both also decreases the
frequency. When the separation of the flexures decreases, the total mass of
the test mass decreases also, which leads to a higher frequency. When gluing
a sphere to the parallelogram flexure, a higher stiffness is necessary to make
sure the force sensor does not bend under the increased weight. But when
using the force sensor as plate, it would be possible to go to an even lower
stiffness. For example, a height of each flexure of 25µm and a length of
2.5 mm and a flexure separation of 300µm leads to a stiffness of 72 N/m at a
resonance frequency of 2 kHz. This would increase the frequency shift
compared to the experiments in this thesis by a factor of 35. But the stiffness
is not that much larger than the force gradient can be. So this stiffness
would a risky choice.

6.5 Using a Different Positioning System
A piezo positioner needs an applied voltage to hold a position, and the
stick-slip positioners can hold the position without an applied voltage. The
stick-slip principle has one large disadvantage. When performing one step,
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6.6. HIGH FINESSE FABRY-PÉROT CAVITY

Figure 6.9: The Weiss domains [153] are randomly ordered (left). Applying a
large voltage leads to completely polarized Weiss domains in the piezo (right).

the piezo movement gives an impulse to the whole system and the force
sensor vibrates with a large amplitude of about 50 nm, which would lead to a
collision during steps at small distances.
Before a piezoceramic is used as a positioner, the Weiss domains have to be
polarized, as shown in Fig. 6.9. After the polarization procedure, it is
possible to deform the piezoceramic with an applied force linear to the
applied voltage [154]. But it is also possible to use an unpolarized
piezoceramic. An applied voltage changes the Weiss domains of the ceramic
and therefore also the size. Changing the Weiss domains means that no
applied voltage is needed to hold the position. On the other hand, a negative
voltage is needed at the piezo to change the Weiss domains back. Most
piezocontrollers do not have the capability to change to an inverse voltage,
because the polarization can be destroyed. Therefore it is necessary to
implement a new controller for that operation mode of a piezo positioner. At
the moment, this is done at PI and called PIRest, as mentioned by their
employees H. Marth and J. Reiser [155]. Since 2018 they are available for
purchase and have a adjustable step size of something below 10 nm.

6.6 High Finesse Fabry-Pérot Cavity
The experiment in this thesis used a low finesse Fabry-Pérot cavity to
measure the vibration and the distance between force sensor and plate. If the
finesse of the vibration measurement cavity was about 3 · 105, the line width
of one signal maximum would be about 1 nm as can be seen in Fig. 6.10.
This would increase the signal for the phase locked loop and make it easier to
measure the frequency. A low amplitude of vibration is harder to measure,
but it is better to estimate the force gradient at a specific distance. A larger
amplitude means that the frequency change depends on different distances.
So an amplitude below 1 nm is better for the measurement, but harder to
measure. A high finesse Fabry-Pérot cavity can help here. Guzmán et
al. [156] were able to achieve a displacement sensitivity of 200 am√

Hz , for
example. A high finesse could be achieved by using focused-ion-beams to mill
the fibers at both ends to get the light collimated after the fiber and then
coating the ends with higher reflecting coatings for example.
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Figure 6.10: Intensity over the cavity length of a high-finesse Fabry-Pérot.
The dashed lines are 2 nm apart.

6.7 Separate Laser Sources for both
Interferometers

In this experiment, the laser source for both interferometers was the same.
This means, when sweeping the wavelength of the distance interferometer to
measure the current distance, the frequency measurement does not work and
the PLL has to lock again afterwards. So it might be better to use different
laser sources for both interferometers. In the experiments of this thesis, the
current cavity length of the vibration measurement interferometer was used
to detect collisions. So while measuring the frequency with a PLL measuring
the absolute value of the vibration interferometer can be done for a collision
detection. Also it would be possible to continuously measure the distance
during the experiments. This could make it easier to make corrections for
temperature changes.
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Scenario k [ N
m ] Q R [mm] f0 [kHz] ∆f [Hz] d0 [nm]

A 1000 105 0.5 8 0.001 50
B 72 105 0.5 2 0.001 50

Table 6.1: Both scenarios are based on the force sensors described in section
6.4. The assumption is to achieve a Q of at least 105, using the same spheres
with radii R that were used for this thesis. The stiffness k and the eigenfre-
quencies f0 came from simulations. The goal is to measure the force gradient
at a minimum distance of d0 at a frequency shift due to the Casimir force of
∆f .
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Figure 6.11: The dotted and the dashed lines are scenarios for improved ex-
periments as described by Table 6.1. The results from this thesis are displayed
for comparison.

6.8 Measurement Scenarios of an Improved
Experiment

The above sections described how an improved experiment could look like.
They can be combined into two scenarios: A, and B. The scenarios are
described in Table 6.1. Both scenarios assume that it is possible to measure
data at a distance between the half-sphere and the plate of d0 = 50 nm, and
that the frequency shift due to the Casimir effect is matched with an
accuracy of 1 mHz. We did not reach a distance below d0 = 200 nm and
measuring still a signal. We do not know the reason for that but surface
imperfections are the best guess so far. All in all to achieve both
assumptions, the hardest part would be to increase the surface quality
enough to measure the Casimir effect with the desired precision; it is not
easy to calculate the Casimir force for real surface imperfections as stated by
Bezerra et al. [152]. In case of scenario B, a lower precision of 10 mHz would
be good enough to get the same boundaries as for scenario A. The possible
new boundaries for both scenarios are shown in Fig. 6.11.

129



CHAPTER 6. LESSONS LEARNED AND SUGGESTIONS FOR
FUTURE EXPERIMENTS

130



Chapter 7

Outlook and Conclusion

7.1 Conclusion
During our first experimental approach, it took us two and a half years to
realize that it was not possible with our resources to get an experiment
running to measure gravitational forces. However, we were able to construct
a completely new experiment within a year. In the year afterwards we
learned a lot while doing experiments with the new setup. Unfortunately, one
year is not enough for this and my contract ended without moving the
boundaries of Newtonian gravity. But, the new experimental setup is looking
promising for any future attempts, and I hope this thesis can help to build
an improved version of the experiment.

7.2 Outlook
In September 2018 the University of Hannover and the PTB were awarded a
grant by the DFG as excellence cluster. The goal of the cluster is to improve
metrology at the quantum frontier. This could be an opportunity to improve
the experiment of this thesis and move forwards in the search for quantum
gravity.
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Appendix A

Appendix: Math

A.1 Plausibility check for Eq. (3.164)
Assume a force that follows Hooke’s Law:

F (x) = k2x (A.1)

Put it into the integral part of 3.164:

F

(
z + a(1 + u) u√

1− u2

)
(A.2)

⇒ k2

(
x+ a(1 + u) u√

1− u2

)
(A.3)

Put this back into the integral:∫ 1

−1

uk2z + k2au+ k2au
2

√
1− u2

du (A.4)

⇒ k2
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|1−1 (A.5)
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−π

2

))
= 1

2
k2aπ (A.6)

⇒(3.164) − 1
πak1

1
2
k2aπ = ∆ω

ωres
(A.7)

⇒ −1
2
k2

k1
= ∆ω
ωres

(A.8)

ω2 is the resonance frequency of the whole system build by two parallel
springs. Parallel springs mean that the stiffness for both of them is the sum
of both spring constants. For ∆ω/ωres this means:

ωres =
√
k1

m
(A.9)

ω2 =
√
k1 + k2

m
(A.10)

ωres − ω2

ωres
= 1− ω2

ωres
(A.11)
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And put it all together:
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And with |k2| ≪ |k1|,
(

k2
k1

)2
→ 0, are both results approximately equal.
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