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Multi-frequency radiation of 
dissipative solitons in optical fiber 
cavities
Oliver Melchert1,2 ✉, Ayhan Demircan1,2 & Alexey Yulin2,3

New resonant emission of dispersive waves by oscillating solitary structures in optical fiber cavities is 
considered analytically and numerically. The pulse propagation is described in the framework of the 
Lugiato-Lefever equation when a Hopf-bifurcation can result in the formation of oscillating dissipative 
solitons. The resonance condition for the radiation of the dissipative oscillating solitons is derived 
and it is demonstrated that the predicted resonances match the spectral lines observed in numerical 
simulations perfectly. The complex recoil of the radiation on the soliton dynamics is discussed. The 
reported effect can have importance for the generation of frequency combs in nonlinear microring 
resonators.

In recent time resonant radiation of solitons propagating in fibers with high order dispersion attracts much 
of attention because of both the fundamental interest and practical importance1,2. In the pioneering work by 
Akhmediev and Karlsson3 it was discovered that optical solitons propagating in conservative fibers with focusing 
Kerr nonlinearity and high order dispersion can resonantly emit dispersive waves. The condition of the resonance 
is the equality of the soliton velocity to the phase velocity of a dispersive wave. This effect is similar to the effect 
of Cherenkov radiation of charged particles moving at a superluminal velocity. Later it was shown that Bragg 
solitons moving in a periodic medium emit resonant radiation which is analogous to the transitional radiation of 
charges flying in a periodic system4. Periodical variations of the soliton parameters can lead to resonant radiation, 
too. It has been shown that resonant radiation can be excited by solitons in periodical systems where the motion 
of the solitons results in their oscillations. For the case of optical nonlinear Schrödinger solitons this effect was 
reported in the literature5,6 where it was shown that the radiation appears if phase matching conditions are sat-
isfied. It should be mentioned here that the effect of resonant radiation of oscillating solitons is of general nature 
and can be observed in different physical systems, for example in long Josephson junctions7.

The aim of the present paper is to address the resonant radiation of oscillating optical solitons in the pres-
ence of high-order dispersion and to reveal the analogy of this radiation to the synchrotron radiation of charges 
appearing when the velocity of relativistic charges varies periodically in time8. It should be noted here that from 
the point of view of the field theory the synchrotron radiation can be interpreted as an excitation of resonant 
waves by an oscillating localized source moving at a relativistic velocity. The periodical variations of the velocity 
of a relativistic charge is just a way to obtain the right driving force in the equation for the electromagnetic waves. 
Aiming to develop the analogy between synchrotron radiations of the charges and solitons it is much simpler 
and more instructive to consider one-dimensional oscillating solitons rather than two-dimensional nonlinear 
localized structures relativistically moving along one direction and wobbling in the transverse direction (though 
the latter is also possible).

The effects of Cherenkov and synchrotron radiation are widely used in vacuum electronics, in particular in 
forward- and backward waves oscillators. The optical counterparts of Cherenkov effects can play an important 
role in the generation of new optical frequencies by the solitons propagating in fibers with high order dispersion. 
Indeed, since 1995 when Cherenkov radiation of optical solitons was reported for the first time this effect has 
been actively studied both experimentally and theoretically, especially in the context of the generation of opti-
cal supercontinuum spectra1,2. Recently, studies with focus on Cherenkov emission shed by shock waves9 and 
ultra-short pulses10–13 were published. It was discovered that the effect of Cherenkov radiation affects not only the 
intensity but also the frequency of the resonantly emitted waves14,15.
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All these effects are important for the explanation of the dynamics of solitons and domain walls in 
wave-guiding systems. The effect of synchrotron emission of oscillating solitons can also affect the dynamics of 
the solitons strongly and thus is of interest from both fundamental and practical points of view. For example, it 
can possibly be used for the design of optical analogues of gyrotrons and free-electron lasers. Optical solitons in 
fibers seem to be the best candidates for experimental observation of the discussed effect of synchrotron emission, 
however similar effects can take place in polariton condensates, plasmas, hydrodynamics and other systems of dif-
ferent physical origins. The resonant emission is possible not only in the conservative but also in dissipative sys-
tems providing that the dissipation is not too strong and slowly decaying waves can propagate in the medium. The 
advantage of weakly dissipative systems is that the resonant radiation can occur there in a stationary regime when 
it is not disguised by any transitional processes. For this reason, the present study is focused on weakly dissipative 
annular optical waveguides with high order dispersion, resonantly pumped by external coherent light. Our choice 
is also motivated by the fact that these systems are not only a convenient test bench for investigation of synchro-
tron radiation but are of interest on their own and have been actively investigated in recent years theoretically and 
experimentally. For instance, it was shown that clusters of solitons forming in such systems can be used for infor-
mation storage and processing16. The possibility of frequency comb generation in optic ring microresonators17–21 
is another motivation to study these systems. The effect of high-order dispersion on the dynamics of the solitons 
in such systems was investigated and it was shown that high-order dispersion can be crucial for stabilization or 
destabilization of the soliton clusters22–28. The steering of solitary structures by dispersive waves is an important 
effect discussed in the literature29–32. An important problem of the formation of stable bound states of dissipative 
solitons interacting through the radiation field was considered in detail in terms of a theoretical approach33 and 
the experimental observation of the dispersive waves mediated interaction between solitons in fiber cavities34.

Propagation of oscillating solitons in the presence of high order dispersion was studied experimentally and 
numerically and very rich dynamics of the solitons was reported35–38. Cherenkov radiation of oscillating cavity 
solitons was recently considered39 but the effect of the synchrotron radiation was out of the scope of that paper. In 
the present article we consider synchrotron radiation of oscillating solitons propagating in an optical fiber cavity 
with third order dispersion.

Results
To describe the cavity we adopt a well known Lugiato-Lefever model40 in the form27

A i A i A A i A d A P(1 ) , (1)t x x
2 2

3
3θ∂ = − + + + ∂ + ∂ +

where θ is the detuning between the cavity resonance and the frequency of the pump, P is the amplitude of the 
pump and d3 is the third order dispersion. To make the resonance spectral lines well pronounced we choose the 
detuning to be equal to a realistic value θ = 15, just slightly larger than the value reported by a numerical study 
reported in the literature27. For fiber cavities the boundary conditions are periodic and the spectrum of the eigen-
modes is discrete. In this paper we restrict ourselves to the case of cavities so long that the spectrum of the eigen-
modes can be considered quasi-continuous. However, we remark that in the case of shorter cavities the boundary 
conditions can play an important role41. In the literature, propagation models represented by equations of the 
kind of Eq. (1) are used to describe the propagation of optical pulses in media with high-order dispersion and 
nonlinearity, particularly in microring resonators27,39. Equation (1) has bright soliton solutions that loose stability 
through Andronov-Hopf bifurcation leading to the formation of an oscillating soliton42,43 for the pumps exceed-
ing a threshold value. For the chosen parameters the threshold pump is Pth ≈ 7. It is known that introduction of 
third order dispersion leads to Cherenkov emission of the dispersive waves resulting in a well resolved line in the 
radiation spectra39. Let us now consider the emission of resonant radiation by oscillating dissipative soliton prop-
agating in a cavity with small but non zero third order dispersion. We choose the pump P = 8 corresponding to 
the unstable soliton and wait until instability develops and a stationary oscillating state forms. As initial condition 
for t-propagation in terms of Eq. (1), we use a stationary solution (∂ =A x t( , ) 0t ) of the standard Lugiato-Lefever 
equation (d3 = 0 in Eq. (1)). The construction procedure for these initial conditions is detailed in the 
Supplementary.

Stationary dynamics of dissipative solitons including third-order dispersion.  Examples of the 
resulting dynamics for two choices of the third-order dispersion parameter d3 are shown in Fig. 1. The temporal 
evolution of the intensity |A(x, t)|2 of the field for the small value d3 = 0.02 is shown in Fig. 1a. It is clearly seen that 
the soliton oscillates in time. The behavior of the spectrum is shown is Fig. 1b and temporal oscillations of the 
spectral intensity =S k t A t( , ) ( )k

2 are also clearly visible. Since the third order dispersion is small, the intensity 
of the spectral line of the resonant radiation is much weaker compared to the soliton spectrum. The location of 
the Cherenkov emission at ≈k 50, see the dashed box in the top panel of Fig. 1b, is predicted by the resonance 
condition39. A close up view of the frequency range k ≈ 47–54 in terms of a spectrogram PS(x, k) is shown in 
Fig. 1c (see the Supplementary for details). As evident from the spectrogram, the distinct dispersive waves in the 
x domain exhibit a polychotomous, i.e. multi-peaked, structure in the k domain. The intensity of the resonant 
radiation strongly depends on the strength of high order dispersion and for larger dispersion the radiation spec-
trum becomes more intense, see Fig. 1d–f for the choice d3 = 0.04. While the behavior is qualitatively similar, the 
periodic recoil of the soliton becomes more apparent and the resonant radiation is shifted towards smaller values 
of k to k ≈ 28. The positions of the spectral lines observed in numerical experiment match the predictions of the 
resonant condition if we account for the change of the soliton velocity appearing because of the recoil of the res-
onant radiation. The dependence of the spectral characteristics of the resonant radiation on the strength of 
third-order dispersion in the range d3 = 0.02–0.04 is shown in the Supplementary Information (see Fig. S6a–c).
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An important fact is that the spectrum of the resonant radiation consist not of a single line as it should be in 
the case of Cherenkov radiation but of a series of well resolved peaks. Below we will show that, indeed, one of 
these lines corresponds to Cherenkov radiation whereas the other lines can be refereed to as synchrotron radi-
ation. In Fig. 2a it is also evident that at small k there are narrow lines overlapping with the soliton spectrum. 
These lines can be understood as non-relativistic radiation of the oscillating solitons and thus are analogous to, 
for example, cyclotron radiation of charged particles. Below we refer to this radiation as cyclotron radiation of 
solitons, though it is not the only possible analogy. It is worth mentioning here that Eq. (1) is of course not invar-
iant with respect to Lorentz transformation and in this article we use the term “relativistic radiation” only in the 
sense that the velocity of the soliton is close to the phase velocity of the resonantly generated dispersive waves.

Resonant radiation of oscillating solitons for small values of d3.  To understand the observed phe-
nomenon let us derive the conditions of resonant radiation of oscillating solitons. Here we only sketch the deriva-
tion; the complete analysis will be presented elsewhere. Assuming that the radiation is weak it is possible to look 
for a solution of the form = +A A u t x[ , ]0 , where A0 describes the soliton oscillating with period T and moving 
with velocity v; the term u accounts for the small correction. Here and below the arguments of the functions are 
enclosed by square brackets.

It is convenient to write an equation for u in vector form → =u u u(Re , Im )T, reading

∂ → + → =
→

.ˆu L u f (2)t

Therein the linear operator L̂ has the form
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where =I A0
2. The right hand side is given by 

→
=f f f(Re , Im )T0 0  with
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The left hand side of Eq. (2) describes propagation of waves on the background hosting the soliton. In the 
conservative case the resonance of the right hand side 

→
f  with a delocalized eigenmode of the medium results in 

the formation of a continuous wave propagating away from the soliton. In the dissipative case, of course, the cor-
rection u is always localized but if the dissipation is weak then the resonant radiation have a form of a slowly 
decaying wave with the characteristic length depending on the losses and the group velocity of the radiation. The 
oscillations of the soliton make the coefficients in L̂ to be periodic functions of time. It means that the eigenfunc-
tions of the operator L̂ are Bloch functions in time and can be sought in the form χ ξ= ⋅ ⋅ω ω

ω
ωA t e x[ ] [ ]i t  where 

Figure 1.  Stationary dynamics of dissipative solitons affected by third-order dispersion. Temporal evolution of 
(a) intensity |A(x, t)|2, (b) spectral intensity |Ak(t)|2 (dashed box highlights the resonantly generated radiation), 
and, (c) spectrogram PS(x, k) (see Supplementary for details) for d3 = 0.02. (d–f) same for d3 = 0.04.
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χ χ= +ω ωt t T[ ] [ ] are periodic functions of time. The important fact is that far from the soliton the problem 
becomes uniform in both space and time and thus the asymptotic of the delocalized eigenmodes at → ±∞x  are 
just plane waves ξ ∼ω

ω −ei t ikx parametrized by the frequency ω and the wave vector k. Resolving the equations for 
the asymptotic one can easily obtain the dispersion characteristics of the delocalized eigenmodes of the system. 
This dispersion is, of course, nothing else but the dispersion characteristics of plane waves ω ω= ± k[ ] on the 
background

i d k k I k I( ) ( 3 ) , (5)3
3 2

0
2

0ω θ θ= + ± + − + −±

where = ±∞I I[ ]0  is the intensity of the background.
To proceed, we use the fact that the soliton oscillates with a period T and represents the field in the form 

→
= ∑

→
− ⋅ ωf U x vt e[ ]l l

il t0  where ω π= T2 /0  is the fundamental frequency of the soliton. The functions Ul are the 
amplitudes of the temporal Fourier-expansion of the soliton field in the reference frame moving with the soliton. 
Then each of the terms in the sum can be represented as series over the eigenfunctions of the operator L̂. After 
some straightforward algebra one can establish that the expansion will contain only modes with the frequencies 
ω ω= +kv l 0. The emission of radiation takes place when a harmonic of the right hand side 

→
f  is in resonance 

with an eigenwave of the medium. This gives the condition of the phase synchronism

ω ω= + .± k k v lRe[ ( )] (6)r r 0

For l = 0 this is the condition of Cherenkov radiation. If the condition is satisfied for l ≠ 0 then the radiated 
wave is excited by the l-th temporal harmonic of the oscillating soliton. Let us now discuss how the derived res-
onance conditions explain the results of the numerical experiments. To do this we study the spectrum and the 
resonance conditions at low k and at k close to Cherenkov resonance. We start with the resonances at small wave 
vectors k. The spectrum obtained in numerical simulations is shown in panel (a) of Fig. 2. The spectrum looks 
like a bell-shaped function with the narrow line at k = 0 corresponding to the background. Comparing spectra 
of non-oscillating and oscillating solitons one can notice that in the latter case several additional maxima appear 
on the spectral curve.

To explain the observed maxima on the spectrum we solve the resonance conditions given by Eq. (6) graph-
ically. These solutions for −4 ≤ l ≤ 4 are shown in Fig. 2c. The soliton velocity used in the resonance conditions 
was extracted from numerical simulations. It is seen that the green line [corresponding to l  = 0 in Eq. (6)] does 
not cross the dispersion characteristics of linear waves and so Cherenkov radiation do not occur at low k. In 

Figure 2.  Panel (a) shows the spectrum at low k for the oscillating (black solid line) and non-oscillating solitons 
(blue dashed line). The spectrum in the vicinity of the Cherenkov resonance is shown in panel (b). Graphical 
solutions of the resonance condition, Eq. (6), are shown in panels (c,d), the green dashed line corresponds to 
the Cherenkov resonance and the red ones to the resonances with l ≠ 0. Resonances marked as 1+, 1− on panel 
(a) and by 1 on panel (b) are given by different crossings of the same red line with the dispersion characteristic 
of the linear excitations on the soliton background; the same is for the resonances marked by 2. The third order 
dispersion is d3 = 0.02, the pump is P = 8.

https://doi.org/10.1038/s41598-020-65426-x


5Scientific Reports |         (2020) 10:8849  | https://doi.org/10.1038/s41598-020-65426-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

our case the resonance conditions can not be satisfied for l = ±1 either but for larger |l| ≥ 2 the resonance con-
dition is met. Comparing the positions of the crossings with the positions of the small maxima on the spec-
trum we see that they match perfectly. The phase velocity of these resonant modes are much higher comparing 
to the soliton velocity and thus developing the analogy between the radiation of solitons and moving charges 
we can refer these resonances as cyclotron radiation of solitons. Let us note that the emitted waves with k < 0 
propagate with the group velocity greater than the velocity of the soliton and so the radiation appears in front 
of the soliton. The emitted radiation with k > 0 propagates in the opposite direction and so it always appears 
behind the soliton. Topologically it is obvious that if there is a resonance at a positive k then there is a resonance 
at a negative k and so cyclotron radiation always appears simultaneously in front and behind the soliton, see 
Fig. 3b,c and Supplementary Video SV1, showing the field distributions of oscillating solitons. Now let us con-
sider the radiation with the frequencies close to the Cherenkov resonance. The spectrum of the stationary field 
obtained in numerical simulations and graphical solutions of the resonance conditions are shown in Fig. 2b,d, 
correspondingly. The crossing of the green dashed line (l = 0) with the dispersion characteristics gives the posi-
tion of Cherenkov resonance and it is seen that it matches the position of the one of the spectral lines observed 
in numerical experiment perfectly. The other resonances (l ≠ 0) fit the other spectral lines. So we can explain 
the spectral structure of soliton radiation as a number of lines produced by different temporal harmonics of the 
oscillating soliton. It is obvious that the emitted waves have phase velocities close to the velocity of the soliton (for 
Cherenkov resonance they are exactly equal) and thus these radiations can be interpreted as relativistic radiation 
of the oscillating soliton, i.e. synchrotron radiation. Looking at the dispersion characteristic in the vicinity of 
the resonances one can conclude that in the considered case Cherenkov and synchrotron radiations always have 
group velocities higher than the velocity of the soliton and so the radiation must appear in front of the soliton. 
It is instructive to compare the radiation of oscillating and not oscillating solitons. The blue dashed curves in 
Fig. 2a,b show the spectrum of a non oscillating soliton forming in the case of a weaker pump P = 6. The velocities 
of the solitons are practically the same for P = 6 and P = 8 and so the Cherenkov spectral lines of the oscillating 
and non-oscillating solitons practically coincide. However it is clearly seen that the non-oscillating soliton emits 
neither cyclotron no synchrotron radiation. In the case of third order dispersion the synchrotron resonances are 
always situated on the left and on the right of the Cherenkov spectral line, but it is important to remark here that 
there are dispersion characteristics allowing for synchrotron resonances for l ≠ 0 in the absence of the Cherenkov 
one.

To shed more light on the resonant emission we discuss the shapes of the radiation fields. Figure 3a shows 
stationary Cherenkov radiation of a non-oscillating soliton pumped at P = 6 when third order dispersion is set 
to d3 = 0.02. The resonantly emitted radiation contains only a single mode, see the blue dashed line in Fig. 2b and 
decays exponentially with the rate 1/[vg − v]. An account of the temporal evolution of the corresponding intensity, 
spectral intensity as well as a spectrogram at propagation time t = 10 is given in the Supplementary. For stronger 
pump P = 8 the soliton develops oscillations and, as discussed above, the cyclotron radiation appears in front 
and behind the soliton. This radiation is clearly seen in Fig. 3b. The radiation at low k has small group velocity 
and decays quite quickly in x. Consequently, this radiation is seen only in the immediate vicinity of the soliton. 
Cherenkov and synchrotron radiation at large k have higher group velocities and thus decay slower in x than the 
radiation at low k. In Fig. 3b this radiation (labeled SR) is weak but visible at x ≥ 60 (cf. Fig. 1c). In the case of 
stronger third order dispersion d3 = 0.06 the synchrotron radiation is much more pronounced and clearly seen in 
Fig. 3c (cf. Fig. 1f). The increase of third-order dispersion implies that the zero-dispersion frequency shifts closer 
to the soliton.

A very important fact is that the synchrotron radiation of an oscillating soliton is pulsating (see Supplementary 
Video SV1) whereas Cherenkov radiation of a non-oscillating soliton is a slowly decaying continuous wave (see 
Supplementary Video SV2). The effect of the pulsation can be explained by the interference of synchrotron emis-
sions at close frequencies. The distances between the synchrotron resonances can be estimated as 
Δ ω= −k v v/[ ]gs0  and Δω ω=

| |

| − |

v
v v 0

gs

gs
 where ω= ∂v k( )gs k r  is the group velocity of the radiation. Then the length 

of the radiation pulses is 2πvgs/Δω giving ≈15 at d3 = 0.06 which fits well to the lengths of the pulses observed in 
our numerical simulations.

Figure 3.  (a) Radiation field of a non-oscillating soliton for parameter values P = 6, and d3 = 0.02. (b) Radiation 
of an oscillating soliton for P = 8 and d3 = 0.02. (c) same for P = 8 and d3 = 0.06. In panels (b,c) synchrotron 
radiation is labeled “SR” and cyclotron radiation is labeled “CR”.
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Resonant radiation of oscillating solitons for large values of d3.  Above we considered mostly the case 
of small third order dispersion when the resonant emission is very weak. Now we turn our attention to the case of 
stronger high order dispersion when a recoil from the radiation becomes important, see Fig. 4a. Subsequently, we 
address the recoil from the radiation on the oscillating soliton. From our numerical simulations we extract the 
maximum intensity = ′I t A x t[ ] [ , ]max

2 upon propagation in time and determine the corresponding phase 
ϕ = ′ ′−t A x t A x t[ ] tan {Im( [ , ])/Re( [ , ])}1  at x A x targmax [ , ]x′ = . An example for the dynamics of an oscillating 
soliton at d3 = 0.06 is shown in Fig. 4c. Both, the maximum intensity and phase, parametrically define curves in a 
plane spanned by the variables ϕ ϕ= −q t q t I t t( [ ], [ ]) ( [ ], [ ] )1 2 max . Neglecting the initial transient behavior 
observed for t < 5, the trajectory resulting at d3 = 0.06 reveals a limit-cycle of period 5, see Fig. 4d. The time it takes 
the system to traverse the limit cycle is t0 ≈ 2.7. As evident from the close up view of the synchrotron part of the 
spectrum in Fig. 4b, the intensities and peak-positions vary in time but recur after the temporal period t0.

To summarize the propagation dynamics of oscillating solitons in the parameter range d3 = 0.02 through 0.18, 
we show a bifurcation diagram in Fig. 5a. This portrays the structural change of the distrete-time trajectory 
q t q t( [ ], [ ])1 2  as function of third-order dispersion by computing Poincaré return maps44 for a sequence of param-

eter values d3. Therefore, at each value of d3, we record the coordinates of the trajectory whenever it crosses a 
Poincaré section defined by the line q2 = 0. To accurately determine the value of q1 whenever q2 = 0, we adopt 
Henons extrapolation-free method44,45. The resulting sequence of points = …q n N, 1n1, , is then registered in the 
bifurcation diagram at its respective value of d3. In Fig. 5b–f we illustrate the system dynamics for selected values 
of d3 that exhibit a distinguished steady state behavior. The temporal evolution of the intensity and spectral inten-
sity for these cases is shown in the Supplementary Information (Fig. S5). In case of d3 = 0.02 (Fig. 5b), these points 
appear clustered at the two values q1,1 ≈ 67 and q1,2 ≈ 16, showing that the trajectory alternates between two 
attractors. The underlying trajectory in the (q1, q2)–plane is referred to as a 2-cycle44. This comprises the simplest 
periodic motion in which the soliton periodically oscillates between a unique intensity minimum and maximum. 
Such a behavior is given at very small values of third order dispersion d3 < 0.044. For increasing values of d3 the 
system passes through a sequence of period doublings. E.g., for d3 = 0.047 (Fig. 5c), the trajectory alternates 
between four attractors, yielding a 4-cycle. For d3 = 0.06 (Fig. 4c,d), the trajectory forms a 10-cycle. No discernible 
regularity up to t = 16 is found for d3 = 0.063 (Fig. 5d). Here, the long-time behavior of the system is not predict-
able reminiscent of chaotic dynamics. In the parameter range d3 = 0.07–0.11 the homogeneous stationary state 
can become the only stable solution, portraying an extinction event in which the oscillating soliton can vanish 
completely. An example of this behavior is shown in Fig. 5e for d3 = 0.09. For larger values of d3, remerging bifur-
cation events occur46. E.g., at d3 = 0.175 (Fig. 5f) the trajectory forms again a 2-cycle. For this second region of 
2-cycle dynamics, the dependence of the spectral characteristics of the resonant radiation on the strength of 
third-order dispersion is again shown in the Supplementary Information (see Fig. S6d–f).

Overall, this behavior can be explained by the fact that the pulsations of the synchrotron radiation causes 
a pulsating recoil of the radiation on the soliton. Such a recoil leads to the oscillating variations of the soliton 
velocity and intensity. In its turn, the change of the soliton parameters affects the instantaneous frequencies of 
the radiation. The interplay of these effects can result in a very complex dynamics of the soliton. As evident from 

Figure 4.  Dynamics of an oscillating soliton at d3 = 0.06. (a) Temporal evolution of the intensity (left), and 
spectral intensity (right) for d3 = 0.06. (b) Close up view of the normalized spectrum in the range k = 18–22, i.e. 
the synchrotron part of the spectrum, at selected propagation times. (c) Dynamics in terms of the maximal 
intensity Imax(t) (top) and phase ϕ(t) (bottom). The shaded area indicates an initial transient phase in the range 
t < 5. (d) Dynamics of the soliton in the ϕ ϕ−I( , )max –plane, restricted to t > 5. The dashed line indicates the 
Poincaré section defined by ϕ ϕ=t( ) .
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Fig. 5a, the complex dynamics of oscillating solitons is observed within an intermediate range of the third-order 
dispersion coefficient d3 ≈ 0.44–0.17, whereas nearly periodic oscillations are observed outside this intermediate 
range. Possibly this explains the complicated dynamics of cavity solitons discussed in the literature35.

Summary
In summary, it is shown that oscillating solitons can emit resonant radiation analogous to the synchrotron and 
cyclotron radiations of moving charges. The resonance condition for the radiation is derived and it is demon-
strated that the predicted resonances match the observed spectral lines very precisely. The structure of the field of 
the emitted radiation and the effect of the recoil of the radiation on the soliton dynamics were also addressed in 
the presented study. The reported results are of very general physical nature and thus can be observed not only in 
fiber cavities but in a wide class of physical systems supporting oscillating solitons.
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