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Abstract

Interconnectedness constitutes a key characteristic of actuarial and financial systems. In
regular times, it facilitates the provision of the systems’ important services to society. In
times of crisis, however, it enables the spread of contagious distress that may adversely
affect the overall economy and amplify crisis situations. In this thesis, we introduce and
analyze two financial and one actuarial network model representing three particular risk
management problems that arise from different forms of interconnectedness.

First, we consider the spread of financial losses and defaults in a comprehensive model
of a banking network. Distress therein may propagate through various forms of connec-
tions such as direct financial obligations, bankruptcy costs, fire sales, and cross-holdings.
For the integrated financial market, we prove the existence of a price-payment equilib-
rium and design an algorithm for its computation. The corresponding number of defaults
is analyzed in several comparative case studies. These illustrate the individual and joint
impact of the considered interaction channels on systemic risk.

Second, we study the problem of minimizing market inefficiencies, defined as devi-
ations of realized asset prices from fundamental values, as a function of the network
of banks’ overlapping asset portfolios. Prices are pressured from trading actions of the
leverage targeting banks, which rebalance their portfolios in response to exogenous asset
shocks. We prove the existence of a network of efficient asset holdings and characterize
its properties and sensitivities. In particular, we find that the standard paradigm of asset
portfolio diversification may cause tremendous market inefficiencies, especially during
crisis situations.

Third, we consider insurance against cyber epidemics. Infectious cyber threats, such
as viruses and worms, diffuse within a network of possibly insured parties. Since the
infection may affect many different agents at the same time, a provider of cyber insurance
is exposed to significant accumulation risk. We build and analyze a stochastic model
of losses generated by infectious cyber threats based on interacting particle systems and
marked point processes. Together with a novel polynomial and mean-field approximation,
our approach allows to explicitly compute prices for different forms of cyber insurance
contracts. Numerical case studies demonstrate the impact of the network topology and
indicate that higher order approximations are indispensable for the analysis of non-linear
contracts.

Keywords: Risk Management, Networks, Systemic Risk, Financial Contagion, Cross-Holdings,
Fire Sales, Bankruptcy Costs, Systemic Significance, Price Pressure, Leverage Targeting, Market
Efficiency, Cyber Insurance, Emerging Risks, Mean-Field Approximation.
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1 Introduction

Interconnectedness constitutes a key characteristic of financial and actuarial systems.
Banks and insurance companies are directly connected through financial and other con-
tractual obligations, such as lending agreements, engagement in joint projects, and/or
indirectly connected through, e.g., similarities in their asset portfolios. Connections arise
naturally as they facilitate the provision of the systems’ important financial and actuarial
services to society: Liquidity can be provided, collaboration may yield symbiotic effects,
and risks can be transferred, shared, and appropriately diversified. However, in times of
distress, it is this interconnectedness that may trigger and amplify financial crises through
contagion effects: If one firm gets into trouble, distress may spread via the connections
within the system, possibly affecting many different firms at the same time.

Different forms of connections may serve as channels for the spread of various forms
of contagious distress. For example, in the 2007-2009 financial crisis, the default of
Lehman Brothers triggered financial losses and defaults among many market participants
worldwide. In addition to direct promised payments that could not be fulfilled, many
financial institutions were indirectly connected through their asset portfolios by holding
large amounts of credit default obligation derivatives that lost dramatically in value as a
consequence of the US house price decline. This created market inefficiencies as asset
prices did not reflect the fundamental asset values anymore. Similar contagion and am-
plification effects can also be observed in other situations, for example, when considering
the spread of (cyber) epidemics caused by, e.g., (computer) viruses.

In order to manage such risks, it is necessary to gain a deeper understanding of the
driving factors behind contagion effects in interconnected systems. Effective risk man-
agement requires the development of suitable tools and models. From a mathematical
perspective, interconnectedness can adequately be captured by the concept of networks.
A network G = (N,E) consists of a set of nodes N connected through (possibly weighted
and/or directed) edges E. In this thesis, we study three different risk management prob-
lems that arise from interconnectedness. They are represented by three different types of
networks illustrated in Figure 1.1:

• As the first topic of this thesis, we consider the propagation of financial losses and
defaults in a banking network comprising different interaction channels. We ana-
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2 1 Introduction

(a) Chapter 2 (b) Chapter 3 (c) Chapter 4

Figure 1.1: Example networks for the models in the three chapters of this thesis.

lyze, for the first time from a joint perspective, the impact of direct financial obli-
gations between market participants, indirect connections through one commonly
held illiquid asset (posing the threat of so-called fire sales), cross-holdings, and
bankruptcy costs on the risk of financial system failure. If one bank is unable to re-
pay its debt to other banks, distress may spread throughout the system. This effect
may be amplified by fire sales and frictions like bankruptcy costs. The underlying
basic financial system is modeled as a directed weighted network, where the nodes
are banks and the edges represent directed financial obligations, see Figure 1.1 (a).
This topic is covered in Chapter 2.

• Second, we study the influence of the structure of banks’ asset holdings on market
inefficiencies. When banks hold similar types of assets and, in response to exoge-
nous asset shocks, are forced to purchase or sell them at the same time (e.g., to
maintain a certain leverage requirement), this may push asset prices away from
their fundamental values, i.e., create market inefficiencies. We develop an explicit
expression for the matrix of those asset holdings that minimize market inefficien-
cies. This matrix can be represented as a bipartite weighted network in which the
edges capture the size of the banks’ holdings in the given assets, see Figure 1.1 (b).
The problem is analyzed in Chapter 3.

• The third and last topic of this thesis is insurance against cyber epidemics. We focus
on cyber threats that spread out in a data network, e.g., viruses, worms or Trojans.
Possibly affecting many different agents at the same time, these threats facilitate
cyber attacks that involve a large proportion of the insured network. An insurance
company covering losses generated by infectious cyber risks is thus faced with sig-
nificant accumulation risk. We provide a method to explicitly calculate prices for
different forms of cyber insurance contracts against infectious cyber threats. The
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underlying interconnectedness is modeled using an undirected network, where a
node may represent an insured party, e.g., an entire firm, a business division or a
single computer that is connected to other agents via, e.g., business contacts, e-mail
correspondence or physical wiring, see Figure 1.1 (c). This topic is analyzed in
Chapter 4.

Network theory thus serves as a unified approach to modeling and analyzing the three
different risk management problems that constitute this thesis. All chapters of this thesis
are self-contained. A review of the related literature is given in each chapter. We provide
the following main contributions.

Contributions of Chapter 2. In Chapter 2, we construct a comprehensive model of a
banking system that integrates multiple interaction channels. Banks interact with each
other directly through credit contracts and cross-shareholdings as well as indirectly through
similarities in asset portfolios (here, modeled by a single illiquid asset). Through these
connections, financial distress may propagate. Bankruptcy costs may additionally amplify
the interaction effects.

(i) To the best of our knowledge, the chapter presents the first joint financial network
model that integrates all of the above mentioned interaction and amplification ef-
fects at the same time.

(ii) In the model, we are able to prove the existence of a (non-necessarily unique) clear-
ing vector that describes the payments made in a hypothetical clearing scenario.
Clearing payments as well as the clearing price of the commonly held illiquid as-
set are characterized as fixed points in a clearing equilibrium and constructed via a
fictitious default algorithm.

(iii) In numerical case studies, we analyze the impact of all single interaction channels
on clearing payments and on the number of defaults. We find that bankruptcy costs
as well as overlapping asset portfolios may trigger and amplify systemic crises.
Cross-shareholdings, in contrast, may possess a stabilizing effect, if they can be
liquidated without any costs.

(iv) Since we provide a joint model, we are able to include multiple interaction chan-
nels at the same time. This allows us, firstly, to assess the robustness of conclusions
regarding the impact of single interaction channels from a general perspective. Sec-
ondly, regulatory policies can be studied in a robust manner. In particular, we ana-
lyze the efficiency of capital requirements. We find that classical capital adequacy
ratios based on risk-weighted assets may be misleading since they may suggest the
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same capital requirement for parameter values that are associated with completely
different levels of risk. In contrast, in our model, the more sophisticated approach
of systemic risk measures is shown to be a much better alternative.

Contributions of Chapter 3. Chapter 3 focuses in detail on one particular interaction
channel in the financial system: overlapping asset portfolios. As seen in Chapter 2, simi-
larities in banks’ asset holdings may create a strong impact on asset prices. In Chapter 3,
prices are now pressured from trading actions of leverage targeting banks, which rebal-
ance their portfolios in response to exogenous asset shocks.

(i) We study market inefficiency, defined as the deviation of asset prices from their
fundamental values, as a function of the structure of banks’ asset portfolios. The
smaller the deviation, the more efficient the financial market. This view comple-
ments the traditional analysis of systemic risk in financial markets, as also done in
Chapter 2, that solely focuses on risk statistics such as the number of defaults or
quantitative measures of the downside risk.

(ii) We identify the key driving factors and characterize the structure of those banks’ as-
set portfolios that minimize market inefficiency. We prove existence, study unique-
ness, and investigate the distance to diversification of such efficient holdings.

(iii) In particular, we show that the standard paradigm of diversification of asset portfo-
lios might lead to tremendous market inefficiencies, if the underlying assets are not
completely homogeneous. This effect is even stronger during times of crisis.

(iv) We analyze the role of leverage targets, liquidation strategies, price elasticities of
a nonbanking sector for various assets, and asset shocks. We identify two key suf-
ficient statistics determining banks’ efficient holdings: systemic significance and
the moments of the distribution of asset shocks. A bank possesses a high systemic
significance, e.g., if it targets a high leverage ratio or liquidates less liquid assets.
Consistent with intuition, we show that in efficient holding situations, a systemi-
cally more significant bank is assigned less risky assets.

(v) Finally, we detect an important tradeoff between bank diversity and asset diver-
sification: Heterogeneity in the systemic significances across banks moves effi-
cient holdings closer to diversification, while heterogeneity of the moments of asset
shock distributions moves efficient holdings away from diversification.
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Contributions of Chapter 4. The final Chapter 4 of this thesis complements our anal-
ysis by extending network risk management to an actuarial context. Firms interact with
each other in different ways, e.g., through e-mail contacts. This creates the possibility of
the spread of certain cyber threats, e.g., viruses, worms or Trojans, which facilitate at-
tacks throughout the firm network and, thus, may cause and amplify financial losses. No
matter how elaborate self-protection and risk management strategies of individual firms
against such infectious cyber threats become, some residual risks will remain that require
insurance solutions.

(i) To the best of our knowledge, Chapter 4 develops the first mathematical model of
insured losses generated by infectious cyber threats. The stochastic model consists
of two key ingredients: a Markov process modeling the spread of the cyber infec-
tion, and a marked point process that captures the number of attacks and loss sizes
at attack times.

(ii) For the spread process, we build on the well-known SIS model in networks and
develop a novel general framework for n-th order mean-field approximations of
its moments. We analyze special cases and properties such as the accuracy of the
approximation.

(iii) From an actuarial perspective, we provide a new methodology to explicitly calculate
an insurance company’s expected aggregate losses. The method is applicable to a
large variety of contract designs and can thus be used for pricing decisions.

(iv) In numerical case studies, we analyze the role of the topology of the network of
insured firms. We show that this structure possesses a significant impact on the size
of expected aggregate losses. Our findings suggest that the infection and healing
parameters of the spread process as well as the network topology are key ingredients
for the pricing of cyber insurance contracts.





2 The Joint Impact of Bankruptcy Costs, Fire Sales, and
Cross-Holdings on Systemic Risk in Financial Networks

The original version of this chapter was previously published in Probability, Uncertainty
and Quantitative Risk, 2(9):1–38, 2017, see Weber and Weske (2017).

“Systemic risk refers to the risk that a financial system as a whole is susceptible to fail-
ures initiated by the characteristics of the system itself.”1 If strong links between finan-
cial institutions are present, a shock to only a small number of entities might propagate
through the system and trigger substantial financial losses. Significant dependence can
thus increase the risk of a system-wide breakdown.

Financial institutions influence each other via direct or indirect channels such as credit
contracts, similar asset portfolios that are jointly exposed to price impact in market crises,
and cross-shareholdings. Frictions like, e.g., bankruptcy costs may amplify the impact of
the effect of the firms’ interaction. The aim of the current chapter consists in constructing
and analyzing a comprehensive model that integrates all effects mentioned above. This
multi-factor setting allows to assess regulatory policies in a robust manner. To the best of
our knowledge, such a contribution is still missing in the literature.

1. We prove the existence of a clearing equilibrium that is not necessarily unique and
provide an algorithm for the computation of the greatest and the least equilibrium.
The equilibrium is characterized by the vector of clearing payments and the price
of the commonly held illiquid asset that is exposed to price effects.

2. We study the impact of bankruptcy costs, fire sales, and cross-holdings on systemic
risk in numerical experiments. We demonstrate that fire sales and bankruptcy costs
can trigger and amplify financial crises. Policies that mitigate their impact might
significantly enhance the resilience of the financial system. Cross-holdings do, in
contrast, have a stabilizing effect, if they can be exchanged for liquid assets. Central
banks that engage in such a market can reduce the number of defaults in the system.

3. We study policy implications and regulatory instruments, including central bank

1See Feinstein et al. (2017)
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8 2 Systemic Risk in Financial Networks

guarantees, quantitative easing, the significance of last wills of financial institu-
tions, and the efficiency of capital requirements. We find that capital adequacy
ratios based on risk-weighted assets reduce systemic risk, if they are sufficiently
high. However, they do not rely on any statistics that capture systemic risk in a
proper way. Comparative statics show that capital adequacy ratios can be equal for
varying parameters of our model that are associated with completely different lev-
els of systemic risk. This demonstrates that classical capital adequacy ratios are a
very rough instrument. A much better alternative are systemic risk measures that
we analyze in the last section.

Previous papers do not allow an assessment of the robustness of their conclusions since
they only focus on particular aspects of systemic risk neglecting all other driving fac-
tors. Our model, in contrast, shows to what extent causal relations that were previously
discovered are preserved within a general framework; it also detects the differences that
might occur. In summary, we find that many of our qualitative results are quite robust
across different network structures and for a large number of driving factors. However,
the relative importance of interacting contagion channels can only be characterized in the
joint model. This justifies—for the first time from a general perspective—the relevance
of previous approaches, but indicates at the same time that quantitative predictions and
the design of regulatory policies require a more sophisticated analysis.

Literature

Our approach extends the equilibrium approach of Eisenberg and Noe (2001). Their
seminal paper models interbank contagion within a network of nominal liabilities and
proves the existence and uniqueness of a clearing payment vector that endogenously cap-
tures losses given default. At the same time, they construct an efficient algorithm for the
computation of the clearing vector. Closely related empirical studies can, e.g., be found
in Cont et al. (2013), Elsinger et al. (2006), Glasserman and Young (2015), and Upper
(2011). These cast doubt that empirical patterns of contagious defaults can solely be
explained by networks of nominal liabilities.

In this chapter, we integrate multiple interaction channels and amplifying mechanisms
of contagion, including bankruptcy costs, fire sales, and cross-holdings. While we in-
vestigate their joint impact, up to now the literature has only been studying these factors
separately: Bankruptcy costs are, for example, considered by Rogers and Veraart (2013),
Elliott et al. (2014), Elsinger (2009), and Glasserman and Young (2015); cross-holdings,
e.g., by Suzuki (2002), Elsinger (2009), Elliott et al. (2014), Fischer (2014), and Karl and
Fischer (2014). Cifuentes, Ferrucci, and Shin (2005) incorporate fire sales into the set-
ting of Eisenberg and Noe (2001); their approach is further extended by Gai and Kapadia
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(2010), Nier et al. (2007), Amini et al. (2013), Chen et al. (2016), and Feinstein (2017).
Most of these papers consider only one extension of the basic framework.2 For a detailed
review of the literature see also Staum (2013).

All of these mechanisms are important channels of contagion. In contrast to direct
liabilities and cross-holdings that are described by network structures, fire sales are a
global transmission mechanism. It is, for example, defined in Shleifer and Vishny (2011):

“A fire sale is essentially a forced sale of an asset at a dislocated price. The
asset sale is forced in the sense that the seller cannot pay creditors without
selling assets. The price is dislocated because the highest potential bidders
are typically involved in a similar activity as the seller, and are therefore them-
selves indebted and cannot borrow more to buy the asset. Indeed, rather than
bidding for the asset, they might be selling similar assets themselves. Assets
are then bought by nonspecialists who, knowing that they have less expertise
with the assets in question, are only willing to buy at valuations that are much
lower.”

Evidence is discussed in several papers including Brunnermeier (2009), Cont and Wa-
galath (2016), Coval and Stafford (2007), Jotikasthira et al. (2012), Khandani and Lo
(2011), and Shleifer and Vishny (1992). In real markets, fire sales typically refer to the
liquidation of portfolios. Empirical data show that this is related to increased correlations
as well as price impact. A single representative illiquid asset can thus be used as a first
approximation. This is the approach that we take in our model in order to keep the sug-
gested framework simple. For an analysis of market inefficiencies as a function of the
banks’ holding network of multiple (illiquid) assets, we refer to Chapter 3 of this thesis.

Outline

This chapter is organized as follows. In Section 2.1, we present our model of the finan-
cial system and provide a preliminary analysis of net worth, price impact, and clearing
payment vectors. The existence of a price-payment equilibrium consisting of a clearing
payment vector and a clearing price of the illiquid asset is demonstrated in Section 2.2.
Moreover, we provide an extension of the fictitious default algorithm of Eisenberg and
Noe (2001) in order to compute the greatest and least equilibrium. Section 2.3 focuses

2Elliott et al. (2014) and Elsinger (2009) consider both cross-holdings and bankruptcy costs. However,
the underlying network model of Elliott et al. (2014) does not explicitly feature direct liabilities, but
aggregates instead all dependencies linearly including cross-holdings. Elsinger (2009) uses a modified
Eisenberg–Noe model, but only includes a stylized form of bankruptcy costs. This is primarily done in
order to illustrate that the profitability of bailouts depends on these costs.
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on numerical case studies which constitute a key part of this chapter. These illustrate the
individual and joint impact of bankruptcy costs, fire sales, and cross-holdings on systemic
risk, measured as the number of defaults in the greatest price-payment equilibrium. We
describe various regulatory policies and analyze their efficiency. The main conclusions
and questions for future research are discussed in Section 2.4. All proofs of the results in
Sections 2.1 and 2.2 are presented in Section 2.5.

2.1 An Integrated Financial Network Model

We analyze default in a one-period interbank market model in which banks are connected
to each other via three different channels:

• Direct liabilities: Banks have nominal liabilities against each other. These liabilities
are promises that will only partially be fulfilled if some of the banks default.

• Fire sales: If the portfolios of different banks include common assets, changes in
asset prices simultaneously influence the net worths of these banks. Common hold-
ings may give rise to substantial systemic risk, if illiquid assets are sold in large
quantities and prices decrease significantly. For simplicity, our model assumes the
existence of a single (representative) illiquid asset.

• Cross-holdings: Banks may, in addition, hold shares of each other. In this case, the
net worths of banks depends on the net worths of other banks due to these cross-
holdings.

The single period is interpreted as a snapshot of a banking system that continues to exist
afterwards. The net worth of each bank in the financial network depends on the realized
payments, the price of the commonly held illiquid asset, and the net worths of the other
banks. In the first step, we will describe how the value of asset holdings of an individual
bank can be computed if these three key factors are exogenously fixed. In the second step,
we will construct and analyze an equilibrium model that allows an endogenous computa-
tion of the net worths of all banks, a clearing payment vector, and a realized average price
of the illiquid asset.

2.1.1 Assets and Liabilities

Letting N = {1, . . . ,n} be the set of banks in the financial system, we denote by p ∈ Rn
+

the realized payments of the banks, by w ∈ Rn
+ the vector of net worths of the banks, and

by q ∈ R+ the price of the representative illiquid asset. In the first step, we suppose that
these quantities are exogenously specified.
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External Assets. As suggested by Cifuentes et al. (2005), we consider banks that hold
two assets which are external to the banking system: an amount of r ∈ Rn

+ shares of a
liquid asset (e.g., cash) and s ∈ Rn

+ shares of an illiquid asset. Assuming that the liquid
asset’s price remains constant at one monetary unit, the value of bank i’s external assets
is given by ri + siq, if the price of the illiquid asset is q.

Liabilities. Each bank has nominal liabilities to the other banks for the considered time
horizon. Analogous to Eisenberg and Noe (2001), we suppose that these liabilities are
represented by a nominal liabilities matrix L ∈ Rn×n: for all i, j ∈ N , Li j ≥ 0 describes
the nominal obligation of bank i towards bank j; no bank may hold a liability against
itself, i.e., Lii = 0 for all i ∈ N . In addition, banks may have further liabilities l ∈ Rn

+ to
entities outside the banking system; here, the component li is interpreted as the liability
of bank i to the outside.

The vector of total liabilities p̄ captures all liabilities of the banks in the system; i.e., its
component p̄i equals the total liabilities of bank i and is given by p̄i =

∑
j∈N Li j + li, for

i ∈ N . If all banks are able to fulfill their total obligations, p̄ indeed equals the realized
payments p of the banks. If, in contrast, some banks do not possess sufficient resources
to meet their obligations, then p ≤ p̄,where the inequality is interpreted componentwise.

Following Eisenberg and Noe (2001), we assume that in case of bank i’s default, its
realized payments pi < p̄i will be distributed proportionally among its creditors according
to the size of each creditor’s claim. Therefore, we define the relative liabilities matrix
Π ∈ Rn×n by Πi j = Li j/p̄i, if p̄i > 0, and Πi j = 0, otherwise. Thus, the entry Πi j captures
the size of the interbank obligations of bank i towards bank j in proportion to the size of
i’s total liabilities. This implies that for a given vector of realized payments p, the value
of bank i’s interbank claims is given by

∑
j∈N Π ji p j .

Cross-Holdings. Each bank may hold shares of the other banks. Following Elsinger
(2009), these holdings will be captured by a cross-holdings matrix C ∈ Rn×n: the com-
ponent Ci j denotes the fraction of bank i’s equity that is held by bank j. We assume that
the cross-holdings are nonnegative, i.e., Ci j ≥ 0 for all i, j ∈ N , and that a bank is not
allowed to hold shares of itself, i.e., Cii = 0 for all i ∈ N . The technical assumption∑

j∈N Ci j < 1, i ∈ N , guarantees that the net worth of each bank, as introduced below, is
well-defined. If both a cross-holdings matrix C and a vector of positive net worths w are
given, the contribution of bank i’s cross-holdings to its net worth is equal to

∑
j∈N Cjiw j .

We also suppose limited liability of cross-holdings, i.e., if bank j’s net worth w j is nega-
tive, cross-holdings of bank j do not negatively affect the net worths of other banks.

It is well-known that cross-holdings inflate the value of the financial system, see Brioschi
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et al. (1989), Fedenia et al. (1994), and Elliott et al. (2014). This, in particular, refers to
the fact that the aggregated net worth of all banks will be larger than the value of total
assets if cross-holdings are present. As argued in Brioschi et al. (1989), Fedenia et al.
(1994), and Elliott et al. (2014), net worths need to be adjusted by an auxiliary factor that
guarantees the conservation of value in the system. The market value of bank i should
thus be computed as (1 −

∑
j∈N Ci j )wi for wi ≥ 0.

Total Net Worth. We will now describe how each bank’s net worth is calculated. In
order to fulfill its obligation p̄i, bank i will first use its liquid external assets ri and its
interbank revenues

∑
j∈N Π ji p j . If these are insufficient, the bank is left with its illiquid

asset and cross-holdings. We assume that bank i’s cross-holdings
∑

j∈N Cjiw j can be
exchanged against cash (possibly involving central banks or governments). However, we
suppose that bank i can only realize a fraction of λi ∈ [0,1]. An alternative way to model
price impact of cross-holdings liquidation via inverse demand functions is presented in
Appendix 2.7.

Each bank decides on the order of liquidation. This decision is captured by an indicator
variable Ii ∈ {0,1}, where Ii = 1 represents the case that bank i exchanges its total
cross-holdings against cash before it starts selling the illiquid asset; Ii = 0 refers to the
reversed order of liquidation. Banks liquidate their cross-holdings proportionally, i.e., the
percentage of cross-holdings that are exchanged against cash can be computed as

νi (p,q,w) := min
(

max(p̄i − ri −
∑

j∈N Π ji p j − (1 − Ii)siq,0)
λi

∑
j∈N Cji max(w j ,0)

,1
)
∈ [0,1].

The remaining share 1− νi (p,q,w) remains on the bank’s balance sheet and is not subject
to the price impact modeled by the factor λi. Setting µi (p,q,w) := νi (p,q,w)λi + 1 −
νi (p,q,w), i ∈ N , the net worth of bank i is given by

wi = ri + siq +
∑
j∈N

Π ji p j + µi (p,q,w)
∑
j∈N

Cji max(w j ,0) − p̄i .

The bank is in default if it cannot cover its liabilities, i.e., if wi < 0.
As mentioned before, due to cross-holdings, the net worths of the banks differ from

their market values, see Brioschi et al. (1989), Fedenia et al. (1994), and Elliott et al.
(2014). We will, however, focus on default count statistics which can be computed in
terms of the vector of net worths. Market values will only be considered explicitly in the
numerical case studies.

As defined above, the net worth of bank i depends on the realized payments p, the price
q of the illiquid asset, and all other banks’ net worths w. In the following sections, we
provide a method to derive these three key quantities endogenously.
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2.1.2 Net Worth

Suppose first that p and q are fixed. In this situation, our aim is to define an equilib-
rium vector of the net worths of the banks. To simplify the notation, we write 0 :=
(0, . . . ,0)T ,1 := (1, . . . ,1)T ∈ Rn, set a ∨ b := (max(a1,b1), . . . ,max(an,bn)) for a,b ∈
Rn, and denote by Diag(µ(p,q,w)) the diagonal matrix whose diagonal entries are given
by the vector µ(p,q,w) := (µ1(p,q,w), . . . , µn(p,q,w))T .

Definition 2.1.1. For p ∈ Rn
+, q ∈ R+, an essential net worths vector is a fixed-point

vector w∗(p,q) ∈ Rn such that

w∗(p,q) = Ψ(w∗(p,q)), (2.1)

where the function Ψ : Rn → Rn is defined by

Ψ(w) := r + sq + ΠT p + Diag(µ(p,q,w))CT (w ∨ 0) − p̄. (2.2)

The essential net worths vector is defined as a solution of the non-linear fixed-point
problem (2.1). The following lemma shows that this equation always possesses a unique
solution. A proof of this result is given in Section 2.5.

Lemma 2.1.2. For all p ∈ Rn
+, q ∈ R+:

(a) The essential net worths vector w∗(p,q) exists and is unique.

(b) The essential net worths vector is increasing in payments and prices:

p1 ≥ p2 =⇒ w∗(p1,q) ≥ w∗(p2,q),

q1 ≥ q2 =⇒ w∗(p,q1) ≥ w∗(p,q2).

2.1.3 Price of the Illiquid Asset

We will now explain how the clearing vector p and the price q of the illiquid asset can
endogenously be derived. The presence of the illiquid asset enables us to incorporate the
effect of fire sales into the model. As described in the introduction, the basic economic
idea is that, if a bank is unable to pay its outstanding debt in the considered period using
its shares of the liquid asset and interbank payments, it can sell a proportion of its illiquid
asset holdings at the current market price. This triggers an increase in the supply of the
asset that can decrease its market price during times of crisis. Consequently, other banks
holding the same asset are also affected by such a price decline. In particular, if they need
to sell an amount of the illiquid asset themselves, the proceeds from this transaction are
diminished. At the same time, the price is further pushed down.
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To integrate this idea into our model, we assume that there exists an exogenously given
positive continuous inverse demand function for the illiquid asset f :

[
0,

∑
i∈N si

]
→

(0,∞), such that the price q of one unit of the illiquid asset is given by q = f (θ), where
θ denotes the quantity of the illiquid asset that is sold in the market. We assume that
f (0) = q0 and that θ 7→ f (θ) is monotonically decreasing which indicates that the illiquid
asset’s price is decreasing in its supply. A fixed-point problem is present, since the amount
sold depends on the price of the illiquid asset itself:

q = f (θ(p,q))

for a given payment vector p and where

θ(p,q) :=
∑
i∈N

min *
,

max[p̄i − ri −
∑

j∈N Π ji p j − Iiλi
∑

j∈N Cji max(w∗j (p,q),0),0]

q
, si+

-
signifies the total amount of the illiquid asset that is sold. If Ii = 1, bank i exchanges
its total cross-holdings against cash before selling the illiquid asset and, obviously, this
decreases the asset’s supply θ; here, w∗(p,q) denotes the unique vector of essential net
worths as introduced in Definition 2.1.1. We assume that all illiquid asset holdings are
marked-to-market at the resulting price. Note that due to our assumptions, the price of the
illiquid asset is both bounded from above by q0 and from below by qmin := f (

∑
i∈N si),

since banks may at most sell their total holdings of the illiquid asset
∑

i∈N si.

2.1.4 Payment Vector

In the final step, we define a price-payment equilibrium that endogenously derives the
price of the illiquid asset as well as a corresponding clearing vector. We integrate one
more effect that influences the clearing process, namely bankruptcy costs. In reality, a
fraction of the recovery value of the assets will be lost to the obligors in case of default
due to, e.g., legal and administrative expenses. Observe that bankruptcy costs and fire
sales impact systemic risk differently. Firstly, bankruptcy costs are only incurred in the
case of a default, while fire sales may also occur if there are no defaults in the system.
Secondly, a fire sale may affect banks that are not connected to the triggering bank via
direct credit contracts. Fire sales are a global channel of contagion, while bankruptcy
costs are an amplifier of credit risk.

Following Rogers and Veraart (2013), we introduce two new parameters 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1, such that 1−α and 1− β determine the frictional costs due to bankruptcy:
A defaulting bank will only realize a fraction α of its external asset value, i.e., the value
of the liquid and illiquid asset, and a fraction β of its interbank asset value, i.e., the value
of interbank claims and cross-holdings. We further postulate that the clearing process
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satisfies the criteria of proportionality, limited liability, and absolute priority of debt, as
outlined by Eisenberg and Noe (2001). Finally, we define a price-payment equilibrium as
follows.

Definition 2.1.3. A price-payment equilibrium is a pair (p∗,q∗) ∈ [0, p̄] × [qmin,q0] ⊆
Rn+1, consisting of a clearing payment vector p∗ and a clearing price q∗, such that

(p∗,q∗) = Φ(p∗,q∗),

where Φ : Rn+1 → Rn+1 is the function defined by

Φi (p,q) :=



χi (p,q), for i = 1, . . . ,n,

f (θ(p,q)), for i = n + 1,

with

χi (p,q) :=



p̄i, if ri + siq + ηi (p,q) ≥ p̄i,

α[ri + siq] + β
[
ηi (p,q)

]
, otherwise,

ηi (p,q) :=
∑
j∈N

Π ji p j + µi (p,q)
∑
j∈N

Cji max(w∗j (p,q),0),

µi (p,q) = νi (p,q)λi + 1 − νi (p,q),

νi (p,q) = min *
,

max(p̄i − ri −
∑

j∈N Π ji p j − (1 − Ii)siq,0)
λi

∑
j∈N Cji max(w∗j (p,q),0)

,1+
-
,

and

θ(p,q) :=
∑
i∈N

min *
,

max(p̄i − ri −
∑

j∈N Π ji p j − Iiλi
∑

j∈N Cji max(w∗j (p,q),0),0)

q
, si+

-
.

In the combined equilibrium, the banks’ clearing payments p∗ are given as the fixed
point of the function χ, and a clearing price of the illiquid asset q∗ is found as a fixed
point of the inverse demand function f . Hence, bank i pays its total liabilities p̄i, if its
total asset value consisting of its external asset value ri + siq∗ and interbank asset value
ηi (p∗,q∗) exceeds its liabilities. If this is not the case, bank i is in default and receives
(and due to absolute priority of debt also pays out) only the given fractions α and β of
its external and interbank asset value, respectively. The interbank asset value of bank i,
ηi (p∗,q∗), depends on the proportion of cross-holdings that are exchanged against liquid
assets, νi (p∗,q∗), and this proportion is multiplied by λi ∈ [0,1] as defined in µi (p∗,q∗).
Finally, the amount of the illiquid asset that is sold in equilibrium is given by θ(p∗,q∗).
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The price-payment equilibrium provides a solution to an integrated financial system
which is characterized by (Π, p̄,r, s,α, β, λ, f ,C, I); here, λ = (λ1, . . . , λn) ∈ [0,1]n and
I = (I1, . . . , In) ∈ {0,1}n. It admits a joint analysis of a network of liabilities, bankruptcy
costs, cross-holdings, and fire sales as well as an analysis of models that incorporate only
some of these effects. Namely, by choosing α = β = 1, s = 0, or C as the zero n × n
matrix, we can simply exclude the corresponding extensions from our system. This shows
that the models of, e.g., Eisenberg and Noe (2001), Rogers and Veraart (2013), Cifuentes
et al. (2005), and Elsinger (2009) are special cases of our integrated financial system.

2.2 Existence of Equilibria and an Algorithm for their Computation

The current section analyzes the existence and computation of equilibria. All proofs are
provided in Section 2.5. We consider the ordered vector space 〈Rn+1,≤〉 equipped with
the partial order x ≤ y :⇔ xi ≤ yi ∀i = 1, . . . ,n + 1 and use the notation x < y :⇔ (x ≤
y and ∃i : xi , yi). We will also use this ordering on linear subspaces. The following
lemma states elementary properties of the function Φ, see Definition 2.1.3.

Lemma 2.2.1. The function Φ has the following properties:

(a) Φ is bounded: For all (p,q) ∈ [0, p̄] × [qmin,q0]: Φ(p,q) ≥ (0,qmin) and Φ(p,q) ≤
(p̄,q0),

(b) Φ is monotone: For (p1,q1) ≤ (p2,q2): Φ(p1,q1) ≤ Φ(p2,q2).

Lemma 2.2.1 enables us to apply Tarski’s fixed-point theorem (Tarski, 1955, Theorem
1) to the function Φ proving the existence of equilibria.

Theorem 2.2.2. Let (Π, p̄,r, s,α, β, λ,C, I) be an integrated financial system. Then, there
always exist a unique greatest and least price-payment equilibrium (p+,q+) and (p−,q−),
i.e., for every price-payment equilibrium (p∗,q∗) it holds that

(p−,q−) ≤ (p∗,q∗) ≤ (p+,q+).

Remark 2.2.3. While the clearing payment vector is unique within the basic setting of
Eisenberg and Noe (2001) under certain technical conditions, extensions allowing sepa-
rately for bankruptcy costs or fire sales may lead to multiple clearing vectors, see (Rogers
and Veraart, 2013, Example 3.3) and (Chen et al., 2016, Example 7). This observation
applies, in particular, to our integrated financial system as shown by an example in Ap-
pendix 2.6. The example also demonstrates that the set of equilibria is not necessarily
connected.
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Amini et al. (2016) prove uniqueness of price-payment equilibria in a model with fire
sales under the additional condition on the inverse demand function f that x 7→ x f (x)
is strictly increasing. They provide the following rational for their assumption: If there
exists a subinterval I := (x0, x1) with I 3 x 7→ x f (x) decreasing, rational banks would
never choose to sell a suboptimal amount x ∈ I of the illiquid asset; they would instead
liquidate less, i.e., only the quantity x0.

The argument of Amini et al. (2016) relies on implicit assumptions. First, it requires
that banks understand both the mechanism of price formation as well as their own price
impact. Second, the price of the illiquid asset depends on the total quantity that is sold
which would have to be known; it does not only depend on the amount that is sold by
an individual bank. However, in contrast to the price, the total quantity sold is hardly
observable in reality. Third, Amini et al. (2016) interpret the one-stage model literally;
the latter could also be seen as a simplified static picture of the true dynamic processes of
prices sliding down the slide while banks continue to liquidate their holdings over time.
For simplicity, we decided to model banks as price takers and do not impose the additional
condition of Amini et al. (2016).

We now explain how equilibria can be determined, generalizing the fictitious default
algorithm of Eisenberg and Noe (2001), and the procedures of Rogers and Veraart (2013),
and Amini et al. (2013). Our method allows the computation of the greatest and least
price-payment equilibrium, see Algorithm 2.2.4 and Remark 2.2.6 below.

Algorithm 2.2.4. Set k = 0, (p(0),q(0)) := (p̄,q0), D−1 := ∅ and determine the starting
essential net worths vector w(0) := w∗(p(0),q(0)) using fixed-point iteration. Determine
the sets of initially defaulting and surviving banks

D0 := {i ∈ N | w(0)
i < 0} and S0 := {i ∈ N | w(0)

i ≥ 0}.

If D0 = D−1 and no bank has to liquidate its illiquid asset holdings, i.e., for all i ∈ N :

ri +
∑
j∈N

Π ji p
(0)
j + Iiλi

∑
j∈N

Cji max(w(0)
j ,0) ≥ p̄i, (2.3)

terminate. Otherwise, go to Step 2.

Step 1: Determine the sets of defaulting and surviving banks

Dk := {i ∈ N | w(k)
i < 0} and Sk := {i ∈ N | w(k)

i ≥ 0}.

If Dk = Dk−1, terminate. Otherwise, go to Step 2.
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Step 2: Set p(k+1)
i = p̄i for all i ∈ Sk , p(k+1)

i = xi for all i ∈ Dk , q(k+1) = y, and
w(k+1) = w∗(x, y), where (x, y) is determined as the maximal solution to the fol-
lowing system of equations:

xi = α
[
ri + si y

]
+ β



∑
j ∈Dk

Π j i x j +
∑
j ∈Sk

[Π j i p̄j + λiCj i max(w∗j (x, y),0)]

, ∀i ∈ Dk , (2.4)

y = f *.
,

∑
i∈Dk

si +
∑
i∈Sk

min *
,

ζ (k )
i (x, y)

y
, si+

-
+/
-
, (2.5)

ζ (k )
i (x, y) := max *.

,
p̄i − ri −

∑
j ∈Dk

Π j i x j −
∑
j ∈Sk

[Π j i p̄j + IiλiCj i max(w∗j (x, y),0)],0+/
-
, ∀i ∈ Sk .

(2.6)

The (sloppy) notation w∗(x, y) refers to the essential net worths vector correspond-
ing to the payment vector p(k+1); its components are equal to xi for the defaulting
banks i ∈ Dk and equal to p̄i for the surviving banks i ∈ Sk .

Set k → k + 1 and go to Step 1.

The algorithm works as follows. Starting with the total liabilities vector for the pay-
ments and the initial price of the illiquid asset q0, it calculates the set of those banks that
will default even if all other banks pay their liabilities in full. This is the set of initially
defaulting banks. If there are no initially defaulting banks and, in addition, no bank has
to liquidate parts of its illiquid asset holdings, we immediately arrive at the end of the
clearing process and terminate. Note that leaving out the extra condition (2.3) in the ini-
tial step may lead to an incorrect result if the contagion cascade is solely triggered by
the asset price effect. This is due to the fact that the price of the illiquid asset and the
corresponding payments must be adjusted if there are banks forced to sell the illiquid
asset. The adjustment is made in Step 2 by solving the fixed-point equations (2.4) and
(2.5) simultaneously. Using the adjusted price-payment pair, in Step 1 of the next round,
we calculate the set of defaulting banks that corresponds to it. If this default set equals
the default set from the previous round, the algorithm terminates with the current pair of
payments and price of the illiquid asset. Otherwise, the procedure continues until the set
of defaulting banks does not change anymore.

The following theorem extends (Rogers and Veraart, 2013, Theorem 3.7) to the case of
cross-holdings and fire sales.

Theorem 2.2.5. Algorithm 2.2.4 produces a sequence of price-payment pairs (p(k),q(k))
that decreases to the greatest price-payment equilibrium in at most n + 1 iterations.
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Remark 2.2.6. Algorithm 2.2.4 computes the least price-payment equilibrium, if we make
the following changes:

• In the initial step: Set (p(0),q(0)) = (0,qmin),D−1 = N , and terminate the algorithm
if D0 = D−1, i.e., condition (2.3) can be eliminated.

• In Step 2: Compute the minimal solution to the system of equations.

The iterations of the procedure that computes the least price-payment equilibrium can
be viewed3 as a process in which financial health spreads throughout a system that is
initially in default. The iterations of the algorithm that determines the greatest price-
payment equilibrium describe, in contrast, how defaults spread in a system that initially
is completely healthy. As we expect the latter situation to be more likely in real world
financial markets, we focus on the greatest equilibrium when conducting our numerical
case studies.

The greatest price-payment equilibrium (p+,q+) corresponds to a set of defaulting
banks

D (p+,q+) := {i ∈ N | w∗i (p+,q+) < 0} = {i ∈ N | p+
i < p̄i}

that is directly provided by Algorithm 2.2.4. The cardinality of this set is a simple measure
of systemic risk. In the following section, we will investigate how this quantity is affected
by bankruptcy costs, cross-holdings, and fire sales—separately and jointly.

2.3 Case Studies

The integrated financial system is characterized by a 10-tuple, (Π, p̄,r, s,α, β, λ, f ,C, I).
The relative liabilities matrix Π and the cross-holdings matrix C will be modeled as ran-
dom quantities. In contrast to a deterministic approach, a probabilistic mechanism allows
for an identification of the structure of a class of networks on the basis of appropriate
statistical quantities. We choose two settings: Erdős–Rényi random networks (Erdős and
Rényi (1959)), and a two-tiered (core-periphery) random graph model adapted to German
interbank market data (extracted from Craig and von Peter (2014)). We also analyze an
extension to multi-layer networks that capture heterogeneous business models.

3This interpretation is due to Rogers and Veraart (2013).
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2.3.1 Erdős–Rényi Random Networks

2.3.1.1 Simulation Methodology

We use a simulation procedure similar to Elliott et al. (2014). Specifically, we choose
two parameters cΠ ∈ [0,1] and dΠ ∈ [0,n − 1] describing the level of integration and
diversification of the relative liabilities network. The parameter cΠ refers to the propor-
tion of total liabilities that are spread across the interbank market while dΠ describes the
expected number of creditors of a bank therein. We generate a homogeneous weighted
random network for Π with n nodes as follows:

1. Construct an adjacency matrix A ∈ Rn×n by letting Ai j , i , j ∈ N , be i.i.d.
Bernoulli random variables, taking the value 1 with probability dΠ/(n − 1) and
0 with probability 1 − dΠ/(n − 1). Set Aii = 0 for all i ∈ N .

2. For all banks i ∈ N , set dout
i =

∑
j∈N Ai j , and letΠi j = cΠ/dout

i if Ai j = 1, otherwise
Πi j = 0, j ∈ N .

The parameter dΠ is the average out-degree of the corresponding directed network, the
parameter cΠ is the row sum of the matrix A.

The cross-holdings matrix C describes an interbank network as well and can be mod-
eled according to an analogous mechanism. We denote by c ∈ [0,1) the corresponding
level of integration, and by d ∈ [0,n − 1] the level of diversification of the cross-holdings
matrix. The parameter c refers to the fraction of net worth that banks sell as cross-holdings
to other banks, d describes the expected number of shareholders within the interbank mar-
ket. We assume that banks can liquidate cross-holdings at their market value, possibly
reduced to a fraction κ ∈ [0,1). We thus set λi = (1 − c)κ, i ∈ N . Buyers could either be
market participants or a central bank that tries to stabilize the financial system.

The number of shares r of the liquid asset and the number of shares s of the illiquid
asset are specified in terms of two parameters δ and ρ; δ denotes the size of a capital
buffer, and ρ the proportion of the illiquid asset:

1. Compute the random vector of the minimal value of assets that prevent the banks
from defaulting (not considering cross-holdings): h := (p̄ − ΠT p̄) ∨ 0.

2. Given a capital buffer δ > 0, set the overall external assets to be e := (1 + δ)h.

3. Given a proportion ρ ∈ [0,1] of the illiquid asset, let r = (1 − ρ)e and s = ρe.

For simplicity, we use the parametric exponential inverse demand function

f (x) = exp(−γx);
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alternative inverse demand functions can also be implemented within our framework. We
assume that all banks follow the same rule regarding the order of liquidation. This means
that either all banks exchange their total cross-holdings against cash before selling the
illiquid asset (i.e., I = 1), or that all banks first liquidate their total holdings of the illiquid
asset before using cross-holdings (i.e., I = 0).

Setting n = 100 and p̄ = 1, the following parameters govern the simulation model:

(cΠ,dΠ, δ,α, β, ρ,γ,c,d, κ, I).

We fix cΠ = 0.15, dΠ = 10, and δ = 0.01, and vary the other parameters as indicated in
Table 2.1.4

Table 2.1: Extension parameters

Parameter Description Range of variation

α Realized fraction of external asset value
in case of bankruptcy [0.5,1]

β Realized fraction of interbank asset value
in case of bankruptcy [0,1]

ρ Proportion of the illiquid asset [0,0.05]
γ Exponent of the inverse demand function [0,1]

c Integration of the cross-holdings matrix [0,0.9]
d Diversification of the cross-holdings matrix [1,90]
κ Realized fraction of cross-holdings’ market value [0,1]

I Order of liquidation {0,1}

Methodological Remark 2.3.1. The numerical case studies are conducted as follows: Π
and C are randomly sampled; the derived random quantities r and s are computed from
the samples. One bank i ∈ N is uniformly sampled at random; its external asset hold-
ings ri and si are set to zero. This corresponds to a local shock to a single bank. For the
resulting scenario, the greatest price-payment equilibrium and the corresponding number
of defaulting firms is calculated. The simulation is repeated a large number of times, and

4The choice of cΠ = 0.15 is consistent with empirical findings for developed countries reported in Upper
(2007) (with data from 2005), in Drehmann and Tarashev (2011) for the 20 largest internationally active
banks, and with integration values for European countries computed in Glasserman and Young (2015).
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sample averages and standard deviations are computed. The exact number of the simula-
tions that were conducted is mentioned below for each case study. We use the following
notation: Parameters corresponding to a basic Eisenberg–Noe model are denoted by EN,
B signifies the incorporation of bankruptcy costs, C cross-holdings, and F fire sales.

2.3.1.2 Separate Effects

First, we focus on the separate impact of individual model ingredients, leaving all other
parameters as in the EN model. Section 2.3.1.3 investigates joint effects.

Bankruptcy Costs and Fire Sales. As expected, both bankruptcy costs and fire sales
amplify the threat of contagion to the system. This is shown in Figure 2.1. Increasing

Number of defaults as a function of bankruptcy costs
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Figure 2.1: Contour plots of the number of defaults for n = 100 banks as a function of (a)
bankruptcy costs and (b) fire sales, averaged over 1000 simulations of Π. The sim-
ulation procedure is explained in Remark 2.3.1.

bankruptcy costs, i.e., decreasing α and β, increases the number of defaults quite quickly,
as shown by Figure 2.1 (a). Part (b) of Figure 2.1 shows a similar phenomenon when both
fire sales parameters are increased. Additionally, a clear threshold effect can be observed
that separates an area of many defaults from an area of few defaults. For low parameter
values of ρ and γ, the financial system exhibits the EN number of defaults (around 11).
Increasing ρ and γ beyond a certain threshold boundary causes defaults of all banks in the
system. The threshold curve can approximately be described by the following power-law
function: ρ = exp(−4.3183) · γ−0.4528.

From a policy point of view, these findings have two important implications:
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1. Bankruptcy costs increase the instability of the financial system significantly. These
costs are mainly incurred due to the impaired operations of financial institutions in
default. Administrative and legal expenses increase significantly for such institu-
tions. Policies that improve the efficiency of managing defaults and restructuring
institutions would mitigate the consequences of financial crises. This could, for
example, be achieved by limiting the complexity of financial products and the op-
erations of financial institutions. Another promising instrument are last wills of
financial institutions, approved by the regulator during their lifetime, that simplify
the processes in default.

2. Illiquidity, i.e., the joint consequences of limited funding and price impact, de-
creases market stability. When markets dry up, the value of financial institutions
that need short-term funding might be significantly impaired. Quantitative easing
would, in this case, be an appropriate instrument to stabilize the banking sector.
This should include the purchase of temporarily illiquid assets.

The simulations also exhibit a sharp boundary between the regimes with few and many
defaults. This indicates that regulatory policies should aim for substantial safety margins
in order to create a resilient system.

Cross-Holdings. Cross-holdings significantly impact the number of defaults. This has
implications for the policies of regulators that we will discuss below.

Integration c generally reduces the expected number of defaults. The dependence on c
is, however, non-monotonic. As shown in Figure 2.2 (a), increasing c to approximately
0.8 decreases their number at a nearly constant rate; beyond this point the number of
defaults increases again. A second observation concerns diversification. For d ≥ 10,
the average number of defaults is largely independent of the value of d. This is also
confirmed in Figure 2.2 (b). In addition to integration and diversification, the number of
defaults also depends on the realized fraction κ of the market value of cross-holdings.
Figure 2.3 presents the expected monotonic effect.

Cross-ownership in the banking sector may stabilize the financial system. However,
this finding relies on the existence of a market with substantial demand for cross-holdings.
Our results show that regulators and central banks might use cross-holdings in order to
stabilize financial markets during financial crises. Regulatory policies that provide incen-
tives to cross-ownership in the financial market as well as a credible promise that these
shares will be purchased, e.g., by the central bank would decrease systemic risk in our
model.

The benefits of cross-holdings rely on the fact that they can be exchanged against cash.
This effect becomes, of course, less significant if the realized fraction κ is smaller. At
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Figure 2.2: Number of defaults for n = 100 banks as a function of (a) integration and (b) diversifi-
cation of the cross-holdings matrix C, realized fraction of cross-holdings’ market value
κ = 0.8, averaged over 100 simulations of Π, each averaged over 100 simulations of
C. The simulation procedure is explained in Remark 2.3.1.
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Figure 2.3: Number of defaults as a function of the realized fraction κ of cross-holdings’ market
value, varying integration and diversification d = 10, averaged over 100 simulations
of Π, each averaged over 100 simulations of C. The simulation procedure is explained
in Remark 2.3.1.
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the same time, there might be an inverse effect on the financial institution whose shares
are sold. If a large sale of its shares decreases its equity price, its solvency is not directly
affected: Solvency is a function of the book value of equity—the latter being computed
from a market consistent balance sheet. The book value of equity may deviate from its
market value. But a decreased equity price may increase the cost of capital and thereby
negatively affect the bank’s solvency indirectly. The closely related topic of the impact of
equity valuation on credit supply to the real economy is, e.g., discussed in Boucinha et al.
(2017).

Random Fluctuations. The preceding sections described the average behavior of the
system. The actual outcomes, however, might significantly deviate from these averages.
Two examples are provided in Figure 2.4. The figures display the standard deviation5 of
the number of defaults as (a) a function of the bankruptcy costs parameters α and β, and
(b) as a function of the level c of integration of the cross-holdings matrix. A comparison
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Figure 2.4: Standard deviation of the number of defaults for n = 100 banks (a) as a function of
both parameters of bankruptcy costs for 1000 simulations of Π, and (b) as a function
of integration of the cross-holdings matrix C for 100 simulations of Π, each averaged
over 100 simulations of C. The simulation procedure is explained in Remark 2.3.1.

of Figure 2.4 (a) and Figure 2.1 (a) leads to the following observation: For values of α
and β that lead to outcomes of either a very low number of defaults (i.e., EN-level) or
the total breakdown of the system, the corresponding standard deviation is relatively low.
However, in the transition area between these regimes, we observe a very high standard

5In the ENC scenario, we computed the standard deviation on the basis of the Π samples and continue to
average over the C simulations, since the conditional variance given Π is relatively low.
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deviation. We observed a similar behavior when analyzing fire sales: while regimes with
a very low or a very high average number of defaults exhibited low standard deviations,
regimes with an intermediate average number of defaults were associated with significant
fluctuations around the averages and thus with significant risk. A refined analysis6 shows
that the empirical distribution of defaults is mainly concentrated on the extreme scenarios
of few or many defaults. Medium levels of bankruptcy costs or fire sales may, on average,
seem acceptable, but are in fact associated with an unstable financial system. This shows
that gradual improvements of the efficiency of the operations of distressed banks or light
quantitative easing do not lead to resilience. Regulatory rules and interventions must be
sufficiently forceful in order to achieve the desired effect of creating a stable financial
system.

In the case of cross-holdings, an analysis of the average number of defaults is not suf-
ficient. Comparing Figure 2.4 (b) with Figure 2.2 (a) shows that increasing integration
has an overall beneficial effect on the average number of defaults, but increases the stan-
dard deviation within the considered parameter range. Features of the network thus have
a quite complex impact on how financial stability and instability spread within the sys-
tem. Moreover, Figure 2.4 (b) demonstrates that increasing diversification increases the
standard deviation, while diversification does almost not affect the average number of de-
faults for d > 10. A diversification of d = 10 (i.e.,

√
n) seems to be an optimal level. It

would be interesting to investigate if such a statement holds more generally. Regulatory
incentives for cross-ownership in the banking sector must therefore be very carefully de-
signed. This requires substantial future research on the exact magnitude of the impact of
cross-holdings in real financial networks.

2.3.1.3 Joint Effects

In the current section, we investigate the joint impact of network effects, bankruptcy costs,
fire sales, and cross-holdings in our integrated model and study the robustness of the re-
sults of the previous section. We focus on the following three questions: (i) Is quantitative
easing in the joint model an appropriate policy for limiting systemic risk? How is this af-
fected by other model drivers? (ii) Are the results modified by the change of the order of
liquidation? (iii) Do cross-holdings have a beneficial effect on the stability of the finan-
cial system if bankruptcy costs and fire sales are included in the model? Which regulatory
policies are appropriate?

(i) First, consider an integrated financial system with α = 0.9, β = 0.9, c = 0.5,

6We include an analysis of the empirical distribution in the joint model in Figure 2.8. These findings were
also confirmed in multiple other case studies for other parameter constellations.
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d = 10, and κ = 0.8. The resulting average number of defaults as a function of the
fire sales parameters is displayed in Figure 2.5.7

Number of defaults as a function of fire sales in the joint model
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Figure 2.5: Contour plot of the number of defaults for n = 100 banks as a function of both param-
eters of fire sales, ρ and γ, for α = 0.9, β = 0.9, c = 0.5, d = 10, κ = 0.8, I = 1
in (a) and I = 0 in (b), averaged over 100 simulations of Π, each averaged over 100
simulations of C. The simulation procedure is explained in Remark 2.3.1.

A comparison of Figures 2.1 (b) and 2.5 (a) reveals that the general structure of the
influence of price impact is preserved if bankruptcy costs and cross-holdings are
added. However, the number of defaults increases and the sharp transition between
the area of few defaults and the area of the breakdown of the system disappears.
Similar qualitative results were all also confirmed in additional case studies based
on both the ENBF and ENCF models. The results indicate that quantitative easing
continues to be a suitable instrument in order to contain the number of defaults in
this case.

(ii) Second, Figures 2.5 (b) and 2.6 deal with the impact of changing the order of liq-
uidation on the number of defaults and the price of the illiquid asset as a function
of the fire sales parameters ρ and γ. These figures show that, regardless of whether
cross-holdings or illiquid asset shares are liquidated first, the observed behavior is
very similar.

(iii) Third, we analyze the effects of integration of cross-holdings in the joint model.
This leads to rather complex, but very interesting features. We investigate a network

7Kinks in the boundary are numerical artifacts. Note that the simulations still took several days to complete
on the RRZN computing cluster.
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Figure 2.6: Contour plot of the price of the illiquid asset for n = 100 banks as a function of both
parameters of fire sales, ρ and γ, for α = 0.9, β = 0.9, c = 0.5, d = 10, κ = 0.8, I = 1
in (a) and I = 0 in (b), averaged over 100 simulations of Π, each averaged over 100
simulations of C. The simulation procedure is explained in Remark 2.3.1.

model with d = 10, κ = 0.8, β = 0.9, γ = 0.2, ρ = 0.02, and varying α. Within the
considered parameter range, increasing integration decreases the average number
of defaults, cf. Figure 2.7 (a). The non-monotonicity observed in Figure 2.2 (a)
disappears. As expected, the higher the realized fraction α, the lower the number of
defaults. However, for α ≤ 0.8 cross-holdings cannot prevent the total breakdown
of the system. Observe that for the chosen value of β = 0.9, the value α = 0.8
corresponds roughly to the critical boundary between the regimes of a very high
(α ≤ 0.8) and a very low (α ≥ 0.9) number of defaults in Figure 2.1 (a).

Figure 2.7 (b) displays standard deviations. These are comparatively small for ex-
treme regimes of the default count statistics, i.e., α ∈ {0.8,0.85,0.95}. For regimes
with an intermediate average number of defaults, i.e., α ∈ {0.9,0.925}, the stan-
dard deviations are large. For fixed α ≤ 0.9, the standard deviation increases as a
function of integration c; for α ≥ 0.925, the standard deviation is decreasing.

This different behavior can easily be understood when analyzing the empirical cu-
mulative distribution functions (CDFs) of the number of defaults. It turns out that
the distributions of the numbers of defaults are very close to Bernoulli distribu-
tions. In this case, the standard deviation is maximal for a success probability of
0.5 and monotonously decreasing if the success probability is either increased or
decreased. As illustrated in Figure 2.8, for α = 0.9, the distribution of defaults for
c = 0.3 roughly corresponds to a success probability of 0.2 – 0.3; for c = 0.7, to
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Figure 2.7: Average (a) and standard deviation (b) of the number of defaults for n = 100 banks as
a function of integration c for d = 10, and for different bankruptcy costs parametrized
by α in an integrated financial system with β = 0.9, γ = 0.2, ρ = 0.02, κ = 0.8, I = 1
averaged over 100 simulations of Π, each averaged over 100 simulations of C. The
simulation procedure is explained in Remark 2.3.1.
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Figure 2.8: Empirical cumulative distribution functions of the number of defaults in 100 simula-
tions of the relative liabilities matrix Π each averaged over 100 simulations of C, for
two integration values c = 0.3 and c = 0.7 for α = 0.9 (a) and α = 0.925 (b).
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a success probability of 0.3 – 0.4. Thus, the standard deviation increases in c. In
contrast, for α = 0.925, the distribution of defaults for c = 0.3 roughly corresponds
to a success probability of 0.5 – 0.6; for c = 0.7, to a success probability of 0.7 –
0.8. Thus, the standard deviation decreases in c.

The approximate Bernoulli distributions are supported by the EN number of de-
faults and a total breakdown of the system. This shows that the system essentially
randomizes between extreme states. While the probability of the negative outcome
can be controlled by cross-holdings for the chosen level of bankruptcy costs and
fire sales, the number of defaults in this adverse scenario is not mitigated.

From a policy point of view, our numerical case studies again indicate the funda-
mental role played by bankruptcy costs, emphasizing the importance of efficient
procedures for managing defaults and restructuring institutions. Regulators should
thus implement policies that lower the costs of bankruptcy. Moreover, if bankruptcy
costs are not too large, a higher integration c of cross-holdings decreases both the
average number of defaults and their variance. More integrated systems are thus
more resilient. These results, of course, rely on the existence of a sufficiently deep
and liquid market for cross-holdings. If this market dries up during a crisis, central
banks might buy cross-holdings or provide guarantees for their purchase in order to
stabilize the financial system. In our model, such a policy, however, does not seem
to be efficient anymore if bankruptcy costs are too high.

2.3.1.4 Capital Adequacy Ratios

Capital requirements are a powerful instrument for the regulation of financial institutions.
We investigate these in Section 2.3.2.4 in more detail. For surveys of the literature on
monetary risk measures, we refer to Föllmer and Schied (2011) and Föllmer and Weber
(2015). A less sophisticated approach than monetary risk measures are capital adequacy
ratios (CAR) based on risk-weighted assets. In the current section, we show in the context
of our model that these are not always well-adopted for regulatory purposes.

We consider a stylized definition of CAR and ignore cross-holdings. For each bank i,
capital Ci is computed as the sum of external asset holdings ei and promised interbank
holdings

∑
j∈N Π ji p̄ j less its liabilities p̄i. We assume that risk-weights8 are 100% and

calculate risk-weighted assets RAi of bank i as the sum of its illiquid assets si and its
interbank holdings

∑
j∈N Π ji p̄ j . The capital adequacy ratio of bank i is defined by C ARi =

Ci/RAi.

8The specific risk-weight that is chosen is irrelevant to our findings.
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Figure 2.9: Level sets of the lowest capital adequacy ratio in the banking system C AR :=
mini∈N C ARi as a function of the buffer δ and the proportion ρ of the illiquid asset in
an ENBF-model with α = 0.925, β = 0.9, and γ = 0.2. The solid line is the boundary
between many (lower right) and few (upper left) defaults. Results are averaged over
100 simulations of Π. The simulation procedure is explained in Remark 2.3.1.

For a model including bankruptcy costs and fire sales, but no cross-holdings (ENBF),
Figure 2.9 displays the level sets of the lowest capital adequacy ratio in the banking sys-
tem, C AR, as a function of the buffer δ and the proportion ρ of the illiquid asset. At the
same time, the boundary between the extreme default scenario (lower right corner) and
few defaults (upper left corner) is shown.

A sufficiently high CAR can indeed prevent default cascades. However, in our case
study, CAR appears to be an inefficient regulatory tool that does not properly measure the
driving forces behind extreme default scenarios. Apparently, the barrier between many
and few defaults and the level sets of CAR are not collinear. While for small values of
ρ a small CAR is sufficient, for large values of ρ a large CAR is necessary in order to
stabilize the system. The results indicate that regulators should base capital regulation on
more sophisticated statistics than risk-weighted assets.
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2.3.2 Core-Periphery Random Networks

So far, we considered homogeneous random network topologies. Recent research on
financial networks, however, suggests that core-periphery network models capture the
structure of the interbank market (see, e.g., Craig and von Peter (2014) for the German
interbank market, and van Lelyveld and in ’t Veld (2014) for the Netherlands): These
consist of a few highly connected nodes (making up the core) and a larger number of only
sparsely connected nodes (referred to as the periphery). Figure 2.10 shows both a sam-
ple of the homogeneous Erdős–Rényi network as well as the hierarchical core-periphery
network.

(a) Erdős–Rényi (b) Core-Periphery

Figure 2.10: Sample of (a) an Erdős–Rényi random network as described in Section 2.3.1.1 and
(b) a core-periphery random network as described in Section 2.3.2.1; here, the highly
connected core nodes are highlighted in red.

In this section, we simulate the relative liabilities matrix Π as a core-periphery random
network and observe how this affects the impact of bankruptcy costs, cross-holdings, and
fire sales on the number of defaults.



2.3 Case Studies 33

2.3.2.1 Simulation Methodology

We divide the set of banks N into a subset of core banks, C, and a subset of periphery
banks, P, with cardinalities nC and nP, with nC + nP = n, respectively. We assume that a
core-periphery relative liabilities matrix Π can be represented by a random block matrix

Π = *
,

CC CP
PC PP

+
-
∈ Rn×n, (2.7)

where, for example, the block CP ∈ RnC×nP
represents the core banks’ liabilities towards

the periphery banks. This matrix is constructed as follows.

1. Adjacency matrix: We first simulate an adjacency matrix A ∈ Rn×n, using exoge-
nously specified connection probabilities pCC ,pCP,pPC , and pPP for each block.

2. Weights: Second, we fix the value of total liabilities ` of all banks. A fraction cΠ
is allocated to the total interbank liabilities; the remaining share models external
liabilities that are uniformly distributed among all banks, i.e., li =

(1−cΠ )·`
n , i ∈ N .

Total interbank liabilities cΠ · ` are allocated to the four matrix blocks in fractions
of xCC , xPC , xCP, and xPP with xCC + xPC + xCP + xPP = 1. The resulting interbank
liabilities per block are uniformly distributed among all existing links within the
block. This is, denoting by lCP =

∑
i∈C

∑
j∈P Ai j the random number of total links

in the CP-block, the corresponding entries of the nominal liabilities matrix L are
Li j =

xCP ·cΠ ·`
lCP , i ∈ C, j ∈ P, if Ai j > 0, and Li j = 0, otherwise. The other blocks are

computed analogously. Finally, with p̄i =
∑

j∈N Li j + li, the entries of the relative
liabilities matrix Π are given by Πi j =

Li j

p̄i
.

As in the other case studies, we set n = 100, cΠ = 0.15, and ` = 100. In addition,
following Craig and von Peter (2014) who analyzed data from the German interbank
market, we choose core-periphery parameters

pCC = 0.66, pCP = 0.15, pPC = 0.07, pPP = 0.001,
xCC = 0.35, xCP = 0.16, xPC = 0.47, xPP = 0.02.

We fix the number of core banks as nC = 10.9 The simulation methodology is analogous
to Section 2.3.1.1. Note, however, that simulation results will depend on whether a core
or periphery bank is hit by an initial shock.

9This number is consistent with the empirical results of van Lelyveld and in ’t Veld (2014), who find a
core of around 10 banks in the Dutch interbank network, where the total number of banks is around our
chosen number of 100.
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2.3.2.2 Results

We focus on three case studies: the separate impact of a) bankruptcy costs and b) fire sales
as well as c) the joint impact of all ingredients while varying the parameters that govern
the fire sales.

Figure 2.11 shows the effects of bankruptcy costs and fire sales in the core-periphery
network, given that initially a core bank is shocked.10 The qualitative results for an initial
periphery shock are similar; however, the total average number of defaults tends to be
higher as an initially shocked core bank may survive the shock due to a high and possibly
stabilizing level of interconnectedness. Comparing Figure 2.11 to Figure 2.1, we observe
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Figure 2.11: Contour plots of the number of defaults for n = 100 banks as a function of (a)
bankruptcy costs and (b) fire sales, conditional on an initial core shock, averaged
over 100 simulations of Π, simulated as a core-periphery random network. The sim-
ulation procedure is explained in Remark 2.3.1.

that bankruptcy costs and fire sales have a similar impact as in the Erdős–Rényi network:
as expected, an increase in the number of defaults for increasing bankruptcy costs and fire
sales; a clear threshold boundary separating an area of many defaults from an area of few
defaults. The exact numbers are, of course, different. For example, in Figure 2.11 (a) the
impact of parameter β on defaults is stronger than before.

Figure 2.12 shows the average number of defaults as a function of both fire sales param-
eters in an ENBCF core-periphery model given that initially a core bank’s external assets
lose their total value. Again, our observations resemble the findings within Erdős–Rényi
random networks.
10Observe that rough boundaries are artifacts of the numerical implementation. Still, computing time on

the RRZN cluster was several days.
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Number of defaults as a function of fire sales in the joint model - Initial core default
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Figure 2.12: Contour plot of the number of defaults for n = 100 banks as a function of fire sales
in the joint model (α = 0.9, β = 0.9,c = 0.5,d = 10, κ = 0.8, I = 1), conditional
on an initial core default, averaged over 100 simulations of Π, simulated as a core-
periphery random network, each averaged over 100 simulations of C simulated as
an Erdős–Rényi random network. The simulation procedure is explained in Remark
2.3.1.
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The considered core-periphery structure was calibrated to German interbank market
data and presents a good description of a real world interbank market. Overall, the above
comparisons indicate that the results we obtained are qualitatively similar to those within
simpler Erdős–Rényi random networks. This shows that the simplified setting is already
representative and relevant for the analysis of systemic risk. The policy implications
discussed in the context of Erdős–Rényi random networks remain valid for the considered
core-periphery structure.

2.3.2.3 Multi-Layer Networks

Our model can be extended to more than two layers and is capable of modeling heteroge-
nous agents. We will illustrate this with three types of agents: banks, depositors, and
borrowers. Depositors hold deposits at banks. Borrowers receive credit from the banks
that act as intermediaries. For simplicity, we neglect bankruptcy costs and cross-holdings
and assume that the banking system consists of 20 banks that form an Erdős–Rényi ran-
dom network with dΠ = 2 and δ = 0.2. We add depositors and borrowers to the system.
The total liabilities of all banks (to other banks and to the depositors) within the consid-
ered time-period are normalized to the total number of banks, i.e., 20. Liabilities within
the banking system are set to 15% of total liabilities, i.e., cΠ = 0.15.

The remaining 85% are liabilities to depositors. The number of depositors is 90, and
each depositor is linked to exactly two banks that are uniformly sampled at random. Each
link is associated with the same liability. We assume that all liabilities are immediately
due. This scenario can be interpreted as a bank run.

There are 90 borrowers outside the banking system. Each borrower is linked to two
banks that are sampled uniformly at random. Borrowers’ short-term liabilities over the
considered time-period are 1/100 per link. Borrowers hold external assets which amount
to 1 + δ of their total short-term liabilities; 40% of these are allocated to the illiquid asset.

All quantities are then computed as in Section 2.3.1.1. Figure 2.13 displays the average
defaults in the banking system as a function of the fire sales parameters. Qualitatively, the
graph resembles previous results and emphasizes their robustness. This shows again that
quantitative easing can stabilize the banking system.

2.3.2.4 Capital Requirements

Another important regulatory tool are capital requirements for banks. In financial net-
works, the financial situation of a bank, of course, does not only depend on its own capital
endowment, but also on the capital of other financial institutions with which it interacts
directly or indirectly. Within a core-periphery network, we discuss the role of capital on
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Figure 2.13: Contour plot of the average number of bank defaults as a function of fire sales pa-
rameters ρbanks and γ in an ENF-model, averaged over 100 simulations of Π and
periphery link choices. The simulation procedure is explained in Remark 2.3.1.

the basis of a framework suggested in Feinstein et al. (2017). We refer to this paper for
further details on systemic risk measures.

In the current case study, all simulations are conducted according to the same method-
ology as described in Section 2.3.2.1. However, we introduce two further parameters kC

and kP which signify additional capital on top of the originally computed external as-
sets e that is held by the core and periphery banks, respectively. As before, the updated
amount of the external assets is then divided into liquid and illiquid assets according to
the parameter ρ, and the simulations are run.

In order to evaluate the effect of the additional capital encoded by the vector k =

(kC , kP) on the system, we use the following approach. Given k, we compute the greatest
clearing vector p∗(k) in our system. The clearing vector is a random quantity. The total
random losses from direct liabilities are then given by:

L(k) =
∑
i∈N

(1 −
∑
j∈N

Πi j ) · (p∗i (k) − p̄i).

Observe that losses are considered negative. If there are no losses, L(k) is equal to 0.
Since financial institutions provide services to society, we assume that a regulator accepts
a small loss or cost of up to t, but higher losses only with probability α. We define the set
R of all k = (kC , kP) ∈ R2 that are compatible with this requirement:

R := {k ∈ R2 : P(L(k) ≤ −t) ≤ α} = {k ∈ R2 : V@Rα (L(k)) ≤ t}.

The set R is a systemic risk measure in the sense of Feinstein et al. (2017).
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We now consider an ENBF model and a core-periphery network as described in Section
2.3.2.1 and choose t = 1/20 and α = 10%. Figure 2.14 (a) displays the boundary of the
set-valued systemic risk measures for varying fractions ρ of the illiquid asset without
bankruptcy costs. Note that by definition, the systemic risk measure is an upper set in
the sense that all points above the boundary are acceptable. As expected, we find that the
higher the proportion of the illiquid asset in the external asset portfolio, i.e., the higher
the ρ, the higher the capital requirement for both core and periphery banks is. The figure
also shows that capital requirements tighten in a similar way for both core and periphery
banks if the proportion of the illiquid asset is increased. This indicates, that according to
our model, regulators should pay attention to the capital requirements of all banks if price
impact is an important factor during crises.
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Figure 2.14: Capital requirements for core and periphery banks as a function of fire sales (varying
ρ and fixed γ = 0.2) (a) separately and (b) together with different levels of bankruptcy
costs (varying β and fixed α = 1).

Figure (b) includes bankruptcy costs for varying β with ρ = 0.5 fixed. While the
capital requirements for the periphery banks are barely affected by decreasing β, the
requirements for the core banks increase strongly. Since core banks are more connected
than periphery banks, the impact of defaults and resulting interbank bankruptcy costs on
core banks is more significant than on periphery banks. In the context of the chosen
model, a regulator would be well advised if she particularly focused on strengthening the
capital endowments of core banks. These can serve as a buffer that reduces systemic risk
even if considerable bankruptcy costs are present.
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2.4 Conclusion

The chapter presents a comprehensive model of a financial system that integrates net-
work effects, bankruptcy costs, fire sales, and cross-holdings. For the integrated financial
market, we prove the existence of a price-payment equilibrium and design an algorithm
for the computation of the greatest and the least equilibrium. The number of defaults
corresponding to the greatest price-payment equilibrium was analyzed in several com-
parative case studies for both simple Erdős–Rényi and more realistic core-periphery and
multi-layer random networks:

1. Systemic risk was studied by shocking the system and computing the average num-
ber of defaults, its variance, and distribution. Outcomes are centered on extreme
scenarios. The risk of extreme adverse events is present, even if averages indicate
a relatively safe system. Regulatory policies should provide substantial safety mar-
gins in order to guarantee stability.

2. Fire sales strongly increase systemic risk, while cross-holdings may improve the
resilience of the banking sector. Central banks might mitigate the risk of de-
fault cascades by purchasing illiquid assets and cross-holdings. Quantitative easing
strengthens the system.

3. Bankruptcy costs are a main driver of systemic risk. Regulators should improve
the efficiency of bankruptcy procedures and limit the associated deadweight losses.
Policies might include reducing the complexity of financial products as well as
operational procedures and requiring last wills of financial institutions.

4. Capital requirements are a powerful instrument, but capital adequacy ratios based
on risk-weighted assets are an extremely rough measure of systemic risk. Instead,
modern systemic risk measures that use capital efficiently could be implemented.

5. We analyzed different interbank network structures and heterogeneous business
models. Our qualitative results were robust. Quantitative predictions, however,
require a precise specification of all driving mechanisms.

The suggested model can be used as a framework for testing the impact of regulatory
policies and their robustness. It can also provide insights into the significance of the fi-
nancial market architecture for systemic risk, e.g., the pros and cons of CCPs. From a
statistical point of view, our comparative statics show that default cascades can be trig-
gered by a combination of various mechanisms. In particular, bankruptcy costs and fire
sales exhibit similar consequences. Their statistical estimation is a challenging issue for
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future research that requires further data on historical bankruptcy procedures and price
impact during crises.

2.5 Proofs

Proof of Lemma 2.1.2.

(a) This follows directly from Banach’s fixed-point theorem applied to the function Ψ.

(b) We prove that the essential net worths vector is increasing in the payments p. The
corresponding claim for the illiquid asset’s price q can be proven analogously. To
simplify the notation, we suppress the dependence on q and write w∗(p) instead
of w∗(p,q) in the following. Now, for each given payment vector p, we define the
following recursive sequence: Starting with w(0) (p) := r + sq + ΠT p − p̄, we set
w(n) (p) = Ψ(w(n−1) (p)), for n = 1,2, . . . . Due to part (a), this sequence converges
with lim

n→∞
w(n) (p) = w∗(p).

For two given payment vectors p1 ≥ p2, it holds that w(n) (p1) ≥ w(n) (p2) for all n.
We prove this statement by induction. For n = 0,

w(0) (p1) = r + sq + ΠT p1 − p̄ ≥ r + sq + ΠT p2 − p̄ = w(0) (p2),

since p1 ≥ p2. For the induction step, n → n + 1, it holds that

w(n+1) (p1) = r + sq + ΠT p1 + Diag(µ(p1,w(n) (p1))CT (w(n) (p1) ∨ 0) − p̄

≥ r + sq + ΠT p2 + Diag(µ(p2,w(n) (p2))CT (w(n) (p2) ∨ 0) − p̄

= w(n+1) (p2),

exploiting the induction hypothesis and the fact that µi (p,w) is by definition in-
creasing in both components. Hence, w(n) (p1) ≥ w(n) (p2) for all n, and this yields

w∗(p1) = lim
n→∞

w(n) (p1) ≥ lim
n→∞

w(n) (p2) = w∗(p2).

Proof of Lemma 2.2.1.

(a) It holds by definition that Φi (p,q) = χi (p,q) ≥ 0 and Φi (p,q) ≤ p̄i for all i =

1, . . . ,n, since the banks will pay at most their total liabilities. For i = n + 1, the
boundedness follows from the definition of the inverse demand function.

(b) Let (p1,q1) ≤ (p2,q2). We have that θ(p1,q1) ≥ θ(p2,q2), because the essential
net worths vector is monotone in the price-payment pairs due to Lemma 2.1.2 (b).
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Hence,

Φn+1(p1,q1) = f (θ(p1,q1)) ≤ f (θ(p2,q2)) = Φn+1(p2,q2),

since f is monotonically decreasing. For i = 1, . . . ,n, monotonicity follows from
a case-by-case analysis extending the arguments of Rogers and Veraart (2013) and
Amini et al. (2013). First, assume that bank i is in default under (p2,q2). This
implies that it is in default under (p1,q1) and that

Φi (p2,q2) = α[ri + siq2] + βηi (p2,q2) ≥ α[ri + siq1] + βηi (p1,q1) = Φi (p1,q1),

due to Lemma 2.1.2 (b). Next, assume that bank i does not default under (p2,q2).
Then, bank i can either survive or default under (p1,q1). In the first case, mono-
tonicity of Φi directly follows from Φi (p2,q2) = p̄i = Φi (p1,q1). In the second
case, if bank i defaults under (p1,q1) but not under (p2,q2), it follows that

Φi (p2,q2) = p̄i > ri + siq1 + ηi (p1,q1) ≥ α[ri + siq1] + βηi (p1,q1) = Φi (p1,q1).

Here, the first inequality holds true, since bank i defaults under (p1,q1). The second
inequality follows from α, β ≤ 1.

Proof of Theorem 2.2.2.

Let F := {(p,q) ∈ [0, p̄] × [qmin,q0] | Φ(p,q) = (p,q)} denote the set of fixed points
of Φ. Lemma 2.2.1 establishes that Φ is an increasing function on the complete lattice
〈[0, p̄] × [qmin,q0],≤〉 with the componentwise ≤-relation. Hence, Tarski’s fixed-point
theorem (Tarski, 1955, Theorem 1) states that F is not empty and, moreover, that 〈F ,≤〉
constitutes a complete lattice itself. In particular, this yields the existence of a unique
greatest and least element of F . Since the elements of F constitute by definition the
price-payment equilibria, this completes the proof.

Proof of Theorem 2.2.5.

This proof is an extension of the proof provided by Rogers and Veraart (2013) and pro-
ceeds in three steps. First, we show that the sequence of price-payment pairs (p(k),q(k))
decreases. Second, we demonstrate that each pair in this sequence is larger than or equal
to the greatest price-payment equilibrium. Third, we observe that when the algorithm ter-
minates, the calculated price-payment pair equals the greatest price-payment equilibrium.

1. For the first step, we claim that

(p(k+1),q(k+1)) ≤ (p(k),q(k)) ∀k = 0,1, . . . ,n − 1. (2.8)

We prove this statement by induction.



42 2 Systemic Risk in Financial Networks

(B.S.) For the base step, k = 0, we need to prove that p(1) ≤ p(0) = p̄ and that
q(1) ≤ q(0) = q0. Regarding the payments, this clearly holds for all i ∈ S0,
since then p(1)

i = p̄i = p(0)
i . Thus, it remains to examine the payments of

the defaulting banks in D0 and the corresponding price of the illiquid asset,
which are jointly given by the maximal solution to the equations (2.4) and
(2.5). In order to calculate this maximal solution, we propose the following
recursive procedure: Start with (x (0), y(0)), where x (0)

i = p(0)
i = p̄i for i ∈ D0

and y(0) = q(0) = q0, and define the sequence (x (ν), y(ν)) recursively by

x (ν+1)
i = α

[
ri + siy

(ν)
]

+ β



∑
j∈D0

Π ji x
(ν)
j

+
∑
j∈S0

[Π ji p̄ j + λCji max(w∗j (x (ν), y(ν)),0)]


for i ∈ D0 and

y(ν+1) = f *.
,

∑
i∈D0

si +
∑
i∈S0

min *
,

ζ (0)
i (x (ν), y(ν))

y(ν) , si+
-

+/
-
,

with ζ (0)
i (x, y) for all i ∈ S0 defined as in Equation (2.6), substituting k with

0. Next, we have to show that

(x (ν+1), y(ν+1)) ≤ (x (ν), y(ν)) ∀ν = 0,1, . . . , (2.9)

which we will prove by induction. First, for the base case, ν = 0, we observe
that for i ∈ D0:

x (1)
i = α

[
ri + siy

(0)
]

+ β



∑
j∈D0

Π ji x
(0)
j

+
∑
j∈S0

[Π ji p̄ j + λCji max(w∗j (x (0), y(0)),0)]


≤ ri + siq(0) +
∑
j∈D0

Π ji p
(0)
j

+
∑
j∈S0

Π ji p̄ j + λ
∑
j∈S0

Cji max(w∗j (p(0),q(0)),0)

= ri + siq(0) +

n∑
j=1

Π ji p
(0)
j + λ

n∑
j=1

Cji max(w∗j (p(0),q(0)),0)

< p̄i = p(0)
i = x (0)

i .
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Here, the first inequality is satisfied because 0 ≤ α, β ≤ 1. The second step
follows from p(0)

j = p̄ j on S0 and w∗j (p(0),q(0)) < 0 for j ∈ D0. The last
step holds according to the definition of D0 and due to the fact that 0 ≤ λ ≤

µi (p(0)) ≤ 1.

Moreover, ∑
i∈D0

si +
∑
i∈S0

min *
,

ζ (0)
i (x (0), y(0))

y(0) , si+
-
≥ 0,

by definition of ζ (0)
i (x (0), y(0)). Thus, since f is monotonically decreasing and

f (0) = q0, it follows that y(1) ≤ q0 = y(0) . Now, suppose that inequality (2.9)
is satisfied up to some ν. Then, one obtains:

ζ (0)
i (x (ν), y(ν)) = max *.

,
p̄i − ri −

∑
j∈D0

Π ji x
(ν)
j

−
∑
j∈S0

[Π ji p̄ j + IiλCji max(w∗j (x (ν), y(ν)),0)],0+/
-

≥ ζ (0)
i (x (ν−1), y(ν−1)),

by the induction hypothesis and Lemma 2.1.2 (b). This yields y(ν+1) ≤ y(ν),
again exploiting the induction hypothesis together with the fact that f is mono-
tonically decreasing.

Analogously, it follows from the recursive definition that x (ν+1)
i ≤ x (ν)

i for
all i ∈ D0. Thus, the sequence continues to decrease for all ν. Hence, the
limit (x, y) := lim

ν→∞
(x (ν), y(ν)) exists and solves Equations (2.4) and (2.5).

Moreover, (x, y) is the maximal solution to these equations by construction.
This completes the base step of the induction argument for the proof of (2.8).

(I.S.) For the induction step, k → k + 1, we first observe that by the induction
hypothesis we have that Dk ⊇ Dk−1 or, equivalently, Sk ⊆ Sk−1. Hence, for
all i ∈ Sk : p(k+1)

i = p̄i = p(k)
i . Thus, we have to investigate the payments of

the defaulting banks and the corresponding price of the illiquid asset, defined
by the maximal solution to Equations (2.4) and (2.5). Analogous to the base
step, we propose the following recursive principle to calculate this maximal
solution. Start with (x (0), y(0)), where x (0)

i = p(k)
i for i ∈ Dk and y(0) =

q(k), and define (x (ν), y(ν)) by the obvious modification of the above recursive
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principle:

x (ν+1)
i = α

[
ri + siy

(ν)
]

+ β



∑
j∈Dk

Π ji x
(ν)
j

+
∑
j∈Sk

[Π ji p̄ j + λCji max(w∗j (x (ν), y(ν)),0)]


(2.10)

for i ∈ Dk and

y(ν+1) = f *.
,

∑
i∈Dk

si +
∑
i∈Sk

min *
,

ζ (k)
i (x (ν), y(ν))

y(ν) , si+
-

+/
-
, (2.11)

with ζ (k)
i (x, y) for all i ∈ Sk defined as in Equation (2.6). Again, we want to

prove that
(x (ν+1), y(ν+1)) ≤ (x (ν), y(ν)), ν = 0,1, . . . . (2.12)

First, note that for ν = 0,∑
j∈Dk

Π ji x
(0)
j =

∑
j∈Dk

Π ji p
(k)
j =

∑
j∈Sk−1\Sk

Π ji p
(k)
j +

∑
j∈Dk−1

Π ji p
(k)
j

=
∑

j∈Sk−1\Sk

Π ji p̄ j +
∑

j∈Dk−1

Π ji p
(k)
j ,

observing Dk = (Sk−1\Sk ) ∪ Dk−1 and p(k)
j = p̄ j for all j ∈ Sk−1. Second,∑

j∈Sk

Cji max(w∗j (x (0), y(0)),0) =
∑

j∈Sk−1

Cji max(w∗j (p(k),q(k)),0),

since w∗j (p(k),q(k)) < 0 for all j ∈ Sk−1\Sk ⊆ Dk . We thus obtain that

x (1)
i = α

[
ri + siy

(0)
]

+ β



∑
j∈Dk

Π ji x
(0)
j

+
∑
j∈Sk

[Π ji p̄ j + λCji max(w∗j (x (0), y(0)),0)]


= α
[
ri + siq(k)

]
+ β



∑
j∈Dk−1

Π ji p
(k)
j

+
∑

j∈Sk−1

[Π ji p̄ j + λCji max(w∗j (p(k),q(k)),0)]

. (2.13)
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For i ∈ Dk−1 this shows that x (1)
i = p(k)

i = x (0)
i . For the remaining case

i ∈ Dk\Dk−1, we have

x (1)
i ≤ ri + siq(k) +

∑
j∈Dk−1

Π ji p
(k)
j +

∑
j∈Sk−1

[Π ji p̄ j + λCji max(w∗j (p(k),q(k)),0)]

= ri + siq(k) +

n∑
j=1

Π ji p
(k)
j + λ

n∑
j=1

Cji max(w∗j (p(k),q(k)),0) < p̄i = p(k)
i

= x (0)
i .

Here, the first inequality holds because 0 ≤ α, β ≤ 1. The first stated equality
follows from p(k)

j = p̄ j for j ∈ Sk−1 and the fact that w∗j (p(k),q(k)) < 0 for all
j ∈ Dk−1 ⊆ Dk . The last inequality results from i ∈ Dk\Dk−1 ⊆ Sk−1.

For the price of the illiquid asset, we first observe that for all i ∈ Sk ,

ζ (k)
i (x (0), y(0)) = ζ (k−1)

i (p(k),q(k))

by using the same arguments as for Equation (2.13). From this it follows that

y(1) = f *.
,

∑
i∈Dk−1

si +
∑

i∈Sk−1\Sk

si +
∑
i∈Sk

min *
,

ζ (k−1)
i (p(k),q(k))

q(k) , si+
-

+/
-

≤ f *.
,

∑
i∈Dk−1

si +
∑

i∈Sk−1

min *
,

ζ (k−1)
i (p(k),q(k))

q(k) , si+
-

+/
-

= q(k) = y(0),

because f is monotonically decreasing and the last step follows from the def-
inition of q(k). This proves (2.12) for ν = 0; the arguments for ν > 0 are
analogous. This implies that (p(k+1),q(k+1)) = limν (x (ν), y(ν)) ≤ (x (0), y(0)) =

(p(k),q(k)). This finishes the induction step k → k + 1, and thus completes
the first step of the proof, i.e., the sequence of price-payment pairs (p(k),q(k))
decreases.

2. In the second step, we need to show that (p(k),q(k)) ≥ (p+,q+) for all k = 0,1, . . . ,n.
Again, this will be established by induction. For k = 0 the assertion is obvious,
since (p(0),q(0)) = (p̄,q0) ≥ (p+,q+) by Lemma 2.2.1 (a).

For the induction step k → k+1, we observe that by the induction hypothesis a bank
that defaults under (p(k),q(k)) does also default under (p+,q+), thus D (p+,q+) ⊇
Dk . Now, for i ∈ Sk , one has p(k+1)

i = p̄i ≥ p+
i . It again remains to analyze

the entries of p(k+1) belonging to banks in Dk . Therefore, we reuse the recursive
principle stated in Equation (2.10) together with (2.11), and prove that for all ν =



46 2 Systemic Risk in Financial Networks

0,1, . . . : x (ν)
i ≥ p+

i (i ∈ Dk), y(ν) ≥ q+. Now, starting again with x (0)
i = p(k)

i for
i ∈ Dk and y(0) = q(k), we obtain for i ∈ Dk that

x (1)
i = α

[
ri + siq(k)

]
+ β



∑
j∈Dk

Π ji p
(k)
j +

∑
j∈Sk

[Π ji p̄ j + λCji max(w∗j (p(k),q(k)),0)]


≥ α
[
ri + siq+] + β



∑
j∈Dk

Π ji p+
j +

∑
j∈Sk

[Π ji p̄ j + λCji max(w∗j (p+,q+),0)]


≥ α
[
ri + siq+] + β



n∑
j=1

Π ji p+
j + λ

n∑
j=1

Cji max(w∗j (p+,q+),0)


= p+
i .

Here, the first inequality holds because of the induction hypothesis and Lemma
2.1.2 (b). The second inequality follows from p̄ ≥ p+ and w∗j (p+,q+) < 0 for
all j ∈ Dk ⊆ D (p+,q+). Finally, (p+,q+) is a price-payment equilibrium by
assumption; thus, the last equality holds for i ∈ Dk ⊆ D (p+,q+) according to
Definition 2.1.3.

Regarding the price of the illiquid asset, we first obtain by the induction hypothesis
that ζ (k)

i (p(k),q(k)) ≤ ζ (k)
i (p+,q+), for all i ∈ Sk . This leads to

y(1) = f *.
,

∑
i∈Dk

si +
∑
i∈Sk

min *
,

ζ (k)
i (p(k),q(k))

q(k) , si+
-

+/
-

≥ f *.
,

∑
i∈D (p+,q+)

si +
∑

i∈S(p+,q+)

min *
,

ζ (k)
i (p+,q+)

q+
, si+

-
+/
-

= q+,

using similar arguments as before. Hence, by the recursive definition of the se-
quence (x (ν), y(ν)), we see that every element of this sequence will be larger than
or equal to the corresponding entries of the greatest price-payment equilibrium.
Overall, this yields (p(k),q(k)) ≥ (p+,q+) for all k = 0,1, . . . ,n, as desired.

3. To finish this proof, we combine all previous arguments. By our first step, the
payment vectors are decreasing with each iteration of the algorithm and hence,
Dk+1 ⊇ Dk , which leads to two possible cases. The first is Dk+1 = Dk . In this
case, the algorithm terminates and due to the fixed-point construction, (p(k),q(k))
is a price-payment equilibrium as in Definition 2.1.3. Moreover, as (p+,q+) is
the unique greatest price-payment equilibrium and by our second step (p(k),q(k)) ≥
(p+,q+), the algorithm terminates with the greatest price-payment equilibrium. The
second possibility for the sequence of default sets is that it is strictly increasing
from one round to another, i.e., Dk+1 ⊃ Dk . This means that a new bank joined
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the default set, and payments and prices have to be adjusted. But since there are at
most n banks that can join the default set, after at most n + 1 iterations11 the default
set does not change anymore. Thus, we eventually end up in the first possible case,
finding the greatest price-payment equilibrium.

2.6 Appendix: Price-Payment Equilibria Example

Price-payment equilibria are non-unique and, moreover, the set of equilibria is not neces-
sarily connected. In the following example, we will construct a financial system in which
for some p ∈ Rn with p− < p < p+ there does not exist a q ∈ [q−,q+] such that (p,q) is a
price-payment equilibrium. We will also show that for given q ∈ R with q− < q < q+ it
is not always possible to find p ∈ [p−,p+] such that (p,q) is a price-payment equilibrium.

For the analysis of the counterexample, we recall two necessary conditions for price-
payment equilibria (p∗,q∗) from Definition 2.1.3:

1. For a given clearing price q∗, the clearing payment vector p∗ satisfies the relation

p∗ = χ(p∗,q∗). (2.14)

For any fixed q ∈ [qmin,q0], we call a corresponding fixed point of equation (2.14)
a clearing vector for q, denoted by p∗q. Its existence is established by Tarski’s
fixed-point theorem, analogous to the proof of Theorem 2.2.2.

2. Analogously, for fixed p ∈ [0, p̄], we define a clearing price for p by

q∗p = f (θ(p,q∗p)). (2.15)

Its existence follows again from Tarski’s fixed-point theorem.

Consider the following financial system:

Π = *
,

0 0.4
0.4 0

+
-
,r = *

,

0.5
0.5

+
-
, s = *

,

1
2

+
-
, p̄ = *

,

1
1

+
-
,

α = β = 0.5, with cross-holdings C set to zero, and the inverse demand function f (x) =

exp(−x). We obtain the greatest and least price-payment equilibrium by Algorithm 2.2.4
and Remark 2.2.6:

(p−,q−) ≈ *
,

*
,

0.3488
0.3695

+
-
,0.0498+

-
, (p+,q+) ≈ *

,
*
,

1
1

+
-
,0.7717+

-
.

11In the first round, k = 0, the default set can be empty as the contagion process may solely be triggered
by the asset price effect.
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We first demonstrate that there is no price-payment equilibrium (p,q) with payments
p = (0.4,0.5)T , although p− < p < p+. If p = (0.4,0.5)T was a clearing vector, then by
(2.14)

pi = χi (p,q) = α(ri + siq) + β(
∑
j∈N

Π ji p j ), i = 1,2.

This follows since both banks are in default and faced with bankruptcy costs. However,
there is no q solving both equations simultaneously. Hence, there is no q ∈ [q−,q+] such
that p = (0.4,0.5)T becomes a clearing vector for q.

Second, we demonstrate that there is no price-payment equilibrium (p,q) with q =

0.05, although q− < q < q+. If q was a clearing price, then by (2.15):

0.05 = q = f (θ(p,0.05)) = exp(−θ(p,0.05)) = exp(−3) = 0.0498,

since θ(p,0.05) = 3 for all p ∈ [p−,p+]. This is a contradiction.

2.7 Appendix: Cross-Holdings with Price Impact

As explained in Section 2.1, we assume that the liquidation of cross-holdings is subject to
price impact. So far, this was simply encoded by the parameter λ ∈ Rn which referred to
a fixed fraction that can be realized. A more sophisticated approach consists in specifying
an inverse demand function for cross-holdings. Letting qC ∈ Rn be the vector of net
worth prices for the cross-holdings in the n banks and θC[w,qC] ∈ Rn the amount of
cross-holdings liquidated for a net worth vector w ∈ Rn, the price vector qC is given as a
fixed point of the inverse demand function f C : Rn → [0,1]n = [0,1] ⊂ Rn, i.e.,

qC = f C (θC[w,qC]),

with f C (0) = 1 and x 7→ f C (x) monotonically decreasing. In case of liquidation, the
value of bank i’s cross-holdings is given by

∑
j∈N Cji max(w j ,0)qC

j .

As before, we suppose that banks liquidate their cross-holdings proportionally; i.e.,
each bank j ∈ N calculates the proportion of cross-holdings it needs to liquidate:

νC
j [w,qC] = min *.

,

max
[
p̄ j − r j −

∑
k∈N Πk j pk − (1 − I j )s jq ,0

]

∑
k∈N Ck j max(wk ,0)qC

k

,1+/
-

;

thus, the total quantity of bank i’s shares that is liquidated by other banks equals

θC
i [w,qC] =

∑
j∈N

Ci j ν
C
j [w,qC].

The net worth price vector qC depends on the banks’ net worths vector w and vice versa.
We characterize these values as a combined equilibrium:



2.7 Appendix: Cross-Holdings with Price Impact 49

Definition 2.7.1. For fixed payments p ∈ Rn
+ and a price of the illiquid asset q ∈ R+, a

net worth equilibrium [w∗,qC∗] ∈ Rn×Rn is a fixed point of the function ΨC : Rn×Rn →

Rn × Rn defined by:

Ψ
C[w,qC]

= {r + sq + ΠT p + Diag(νC)CT Diag(qC)(w ∨ 0) + (I − Diag(νC))CT (w ∨ 0)}

× { f C (θC[w,qC])}.

The existence of a greatest and least net worth equilibrium follows again from Tarski’s
fixed-point theorem, now applied to the function ΨC .

Note that the modeling framework that we consider in the numerical case studies above
is a special case of the general inverse demand function. Setting λi = (1 − c)κ with
0 ≤ κ ≤ 1, the corresponding inverse demand function f C is defined by its components
f C

j (x) = (1 − c)κ, j ∈ N .





3 Market Efficient Portfolios in a Systemic Economy

The original version of this chapter was previously published as a working paper, see
Awiszus, Capponi, and Weber (2020).

Forced asset sales and purchases have been widely observed in financial markets. The
most popular form of forced trading is that of fire sales which has been extensively imple-
mented by hedge funds and broker dealers during the global 2007-2009 financial crisis;
see Brunnermeier and Pedersen (2008) and Khandani and Lo (2011) for empirical evi-
dence.

An asset is sold at a depressed price by a seller who faces financial constraints that
become binding, i.e., when the seller becomes unable to pay his own creditors without
liquidating the asset. For example, members of a clearinghouse need to post additional
collateral if the value of their portfolios drops by a significant amount (Pirrong (2011)).
Similarly, a mutual fund may need to liquidate assets at discounted prices if it faces heavy
redemption requests from its investors and does not have enough cash reserves at disposal
(Chen et al. (2010)). Banks manage their leverage based on internal value at risk models
(Adrian and Shin (2014); Greenlaw et al. (2008)) and may need to liquidate (or purchase)
assets if negative (or positive) shocks hit their balance sheets.

Forced purchases, despite less emphasized, are also important in financial markets. For
instance, empirical evidence (see Coval and Stafford (2007)) suggests that equity mutual
funds substantially increase their existing positions if they experience large inflows, thus
creating upward pressure in the price of stocks held by these funds. Such inflow-driven
purchases produce trading opportunities for outsiders, who would be able to sell their
assets and earn a significant premium.

Asset purchases and sales triggered by financial constraints push asset prices away from
fundamental values (Shleifer and Vishny (1992)), a form of inefficiency that we analyze in
a systemic economy. Typically, when a firm must sell assets to fulfill a financial constraint,
the potential buyers with the highest valuation for the asset are other firms belonging to
the same industry or investors with appropriate expertise. Those firms are likely to be in a
similar financial situation and thus unable to supply liquidity. The buyers of these assets
are then outsiders, who value these assets less. A symmetric argument holds if the firm

51
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executes inflow-driven purchases.
When a firm impacts asset prices through its trading actions, other market participants

who happen to hold the same assets on their balance sheets are also affected and may
in turn violate their financial constraints, making it necessary for them to take trading
actions. Through this process, the trading risk becomes systemic, i.e, it imposes cascading
effects on asset prices and recursively impacts the equity of market participants through
common asset ownership.

We consider an economy consisting of leveraged institutions (henceforth, called banks)
that track a fixed leverage ratio. Empirically, this behavior has been well documented
for commercial banks in the United States, see, e.g., Adrian and Shin (2010). After a
shock hits an asset class, prices change and so does the bank’s leverage ratio. To fulfill
the financial constraint of targeting its leverage, the bank must then liquidate or purchase
assets, depending on whether the experienced shock was positive or negative. Banks trade
assets with other non-banking institutions that we model collectively as a representative
nonbanking sector, assumed to have a downward sloping demand function as in Capponi
and Larsson (2015). The equilibrium price of the asset is uniquely pinned down by the
point at which the demand of the banking and nonbanking sector intersect.

We study market efficiency, measured by the mean squared deviation of fundamen-
tal capitalization, where all banks’ portfolios are valued at the fundamental values, from
market capitalization, where banks’ portfolios are valued at the market prices. The latter
prices internalize the pressure imposed by trading activities, as banks leverage or delever-
age in response to exogenous shocks to asset values. Clearly, the closer prices are to their
fundamental values, the more efficient the market is.

We consider the problem of maximizing efficiency from a centralized planner’s per-
spective. This objective can be micro-founded in terms of increasing the information
content of prices and as a result, better guiding the resource allocation in the economy.
Brunnermeier et al. (2018) provide a simple economic setting, in which maximizing so-
cial welfare is consistent with the objectives of minimizing the deviation of asset prices
from fundamentals and of reducing asset market volatility.1

We develop an explicit characterization of the distribution of banks’ holdings that ex-
ante maximize market efficiency. We refer to those as the f-efficient holdings2. The key

1The important role of prices in aggregating information that is dispersed in the economy has also been
considered in the early work of Hayek (1945). Prices thereby facilitate the efficient allocation of scarce
resources. In the context of secondary markets, this issue is, e.g., discussed in Leland (1992), Dow and
Gorton (1997), Subrahmanyam and Titman (2001), Dow and Rahi (2003), and Goldstein and Guembel
(2008).

2The terminology f-efficient is used to emphasize that the notion of efficiency we consider is related to
fundamentals.
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insight resulting from our approach is the identification of a sufficient statistic, the sys-
temic significance vector, which captures the contribution of each bank to increased price
pressures.

The systemic significance depends on the banks’ target leverage, the banks’ trading
strategies, and the illiquidity characteristics of the assets. We adopt an “aggregate first
then allocate” procedure to construct a solution to the quadratic minimization problem
yielding f-efficient holdings. First, using the statistics of asset shocks, we construct a
vector of auxiliary weighted holdings. Then, we distribute the holdings to the banks
based on their contributions to market inefficiency, which is directly proportional to their
systemic significances.

We show that portfolio diversification is f-efficient if asset price shocks are homoge-
neous and banks are heterogeneous in terms of their systemic significance. Our analysis
suggests that as the shocks hitting an asset class become (statistically) larger, it is bene-
ficial to transfer the holdings of such an asset from a more systemically significant to a
less systemically significant bank to raise efficiency. We demonstrate that the more ho-
mogeneous the economy is in terms of banks’ systemic significances, the further away
the matrix of f-efficient holdings is from the matrix of full asset diversification.

Literature

There is, by now, a large number of studies that have analyzed the systemic implications
of leverage and risk taking in an economy of leveraged institutions. Existing literature
has identified two main channels through which banks are interlinked. The first channel
is through the liability side of the balance sheet. Banks have claims on their debtors and
once they are hit by shocks, they may become unable to honor their liabilities, potentially
triggering negative feedback loops from reduced payments through the system. Seminal
contributions in this direction include Eisenberg and Noe (2001), which provides an algo-
rithm to measure contagion triggered by sequential defaults in the network of obligations,
and Acemoglu et al. (2015), who analyze the stability of various network structures and
their resilience to shocks of different sizes.3

The second channel is through the asset side of the balance sheet, as banks are inter-
linked through common portfolio holdings. Financial contagion arises when banks take
hits on their balance sheets, typically because the price of their assets is subject to pressure
due to forced purchases or sales (see also the discussion in the beginning of this chapter).

3Other related works include Elliott et al. (2014) and Gai and Kapadia (2010). Glasserman and Young
(2015), Capponi et al. (2016), and Rogers and Veraart (2013) account for the impact of bankruptcy costs
at defaults in a counterparty network model of financial contagion. Measures of systemic downside risk
are analyzed in the works by Chen et al. (2013), Feinstein et al. (2017), and Biagini et al. (2019).
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The present chapter contributes to this stream of literature. Our study is related to the
study of Greenwood et al. (2015), who calibrate a model of fire-sale spillovers, assum-
ing an economy of leverage targeting banks. Their work has been extended by Capponi
and Larsson (2015), who consider the higher order effects of fire-sales externalities in a
similar leverage targeting model. Duarte and Eisenbach (2019) construct and empirically
valuate a measure of systemic risk generated by fire-sales externalities. The main com-
ponents of their measure, namely banks’ sizes, leverages, and illiquidity concentration,
also constitute the primary determinants of the systemic significance vector in our model.
Other works have considered models where contagion happens both through the asset
and liability side of the balance sheet; see, for instance, the earlier work of Cifuentes et al.
(2005) and the more recent works of Amini et al. (2013), Chen et al. (2016), and Weber
and Weske (2017) (cf. Chapter 2 of this thesis). The models used in these papers build
on the clearing payment framework of Eisenberg and Noe (2001) and further assume that
banks sell illiquid assets when their available cash holdings plus payments received from
other banks in the network are insufficient.

The analytical infrastructure of our model builds on the work of Greenwood et al.
(2015) and Capponi and Larsson (2015). As in Greenwood et al. (2015), we restrict
attention to the first-order effects of price pressures, i.e., those caused by the first round
of banks’ trading actions in response to shocks. As in Capponi and Larsson (2015), price
impact is endogenous in our model and is determined by the capacity of the unconstrained
nonbanking sector to absorb the trading pressure of the constrained banks. While Green-
wood et al. (2015), Duarte and Eisenbach (2019), and Capponi and Larsson (2015) con-
sider an ex-post model of asset contagion, where banks manage their assets after the shock
has occurred, this chapter conducts an ex-ante analysis of balance sheet holdings.

A related study by Cont and Schaaning (2017) develops a systemic stress testing model
and compares the asset pricing implications of threshold based versus target leveraging.
Wagner (2011) analyzes the tradeoff between diversity on the systemic level and diversi-
fication at the banking level. While we focus on the centralized problem of maximizing
market efficiency, Wagner (2011) considers the privately optimal solution. Specifically,
he analyzes the Nash equilibrium of portfolio holdings in an economy consisting of a
continuum of infinitesimally small investors with limited liability, each of them suffering
liquidation costs only if he is not the only one to liquidate assets.4

Finally, our work is related to a branch of literature that has analyzed the stability of
portfolio allocations, diversification, and heavy tail risks of portfolios. Using a general-

4Portfolio similarity has also been considered in other industry sectors than banking. In the insurance
industry, Girardi et al. (2019) find a strong positive relationship between the portfolio similarity of pairs
of insurance companies and their quarterly common sales during the following year.
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ized branching process approach, Caccioli et al. (2014) identify a critical threshold for
leverage which separates stable from unstable portfolio allocations (see also Raffestin
(2014)). In a risk-sharing context, Ibragimov et al. (2011) analyze the tradeoff of diver-
sity and diversification for heavy-tailed risk portfolio distributions. They show that the
incentives of intermediaries (for diversification) and society (for diversity) are not neces-
sarily aligned. Their findings are confirmed by results of Beale et al. (2011), who analyze
the individually and systemically optimal allocations in a simplified loss model consisting
of a small number of banks and assets.

Outline

The chapter is organized as follows. Section 3.1 summarizes the asset price contagion
model. Our main contributions start from Section 3.2, where we define the quantitative
measure of market efficiency and identify key drivers of this measure such as the vector
of banks’ systemic significances. In Section 3.3, we characterize f-efficient allocations.
Section 3.4 provides case studies for a calibrated version of our model, which highlight
the trade-off between diversification and diversity. Section 3.5 concludes. All proofs are
delegated to Appendix 3.6.

3.1 Model Specification

To begin with, we introduce a few notations and definitions used throughout the chap-
ter. For two (column) vectors u = (u1, . . . ,un)> and v = (v1, . . . ,vn)>, we let u ◦ v =

(u1v1, . . . ,unvn)> denote the componentwise product. Similarly, u
v = (u1/v1, . . . ,un/vn)>

denotes the componentwise ratio. We use Diag(u) to denote the diagonal matrix with
vector u on the diagonal. The identity matrix is denoted by I , the vector or matrix of ones
is denoted by 1, and the vector or matrix of zeros is denoted by 0, where the dimension is
either specified explicitly, e.g., 1K ∈ R

K , or clear from the context.
Our analysis is developed within the one-period version of the price contagion model

by Capponi and Larsson (2015), which we briefly review in this section. They consider
a financial market that consists of two sectors: a banking sector and a nonbanking sector.
Each bank manages its asset portfolio to track a fixed leverage ratio, consistently with
empirical evidence reported in the seminal contribution of Adrian and Shin (2010).5 The

5In practice, banks do not immediately revert to the target leverage. Duarte and Eisenbach (2019) estimate
the speed of leverage adjustment and find that leverage adjustment speed is roughly constant until 2006,
before increasing by over 50% and spiking in 2008 due to the greater delevering through balance sheet
contraction. Because we consider a one period snapshot of the economy, we may simply view the target
leverage as a short-term target leverage.
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nonbanking sector consists of institutions that are primarily equity funded (e.g., mutual
funds, money market funds, insurances, and pension funds) and thus do not engage in
leverage targeting.

There are K types of assets available, whose market prices at time t = 0,1 are denoted
by Pk

t . We write
Pt = (P1

t ,P
2
t , . . . ,P

K
t )>

for the column vector of asset prices. The aggregate supply of each asset is fixed and
given by Qtot = (Q1

tot, . . . ,Q
K
tot)
>. Each asset k is hit by an exogenous shock Z k , which is

modeled as a random variable. We use Z = (Z1, . . . , ZK )> to denote the vector of shocks.
The vector of fundamental values of the assets at time 1 is P0 + Z , while we use P1 to
denote the vector of equilibrium prices which internalize banks’ responses to shocks.

3.1.1 The Banking Sector

The economy consists of N banks, whose stylized balance sheets consist of assets, debt,
and equity. Banks manage their balance sheets by buying or selling assets so to keep their
leverage ratios (debt to equity ratios) at specified target levels. Banks hold a portfolio of
assets at time 0. Then, price shocks occur and banks purchase or sell assets to restore
leverage. These actions impose pressure on prices and as a result, the market value of
bank portfolios at time 1 deviates from its fundamental value.

The quantity (number of units) of asset k held by bank i at time t is denoted by Qki
t .

We use Qi
t = (Q1i

t ,Q
2i
t , . . . ,Q

Ki
t )> ∈ RK to denote the vector of bank i’s holdings at t

and Q := (Qki
0 )k=1,...,K,i=1,...,N ∈ R

K×N to denote the matrix of banks’ holdings at time
zero. We write Ai

t = (A1i
t , A

2i
t , . . . , A

Ki
t )>, where Aki

t = Pk
t Qki

t is the market value of the
i’th bank’s holdings in asset k at t. The total market value of the i’th bank is given by
1>Ai

t =
∑K

k=1 Aki
t .

Banks finance purchases by issuing debt. We use Di
t to denote the total amount of debt

issued by bank i at time t and assume that the interest rate on the debt is zero.6 The main
behavioral assumption in the model is that each bank i targets a fixed leverage ratio (debt
to equity ratio) κi, i.e.,

Di
t

1>Ai
t − Di

t
= κi, t = 0,1, i = 1, . . . ,N. (3.1)

Each bank executes an exogenously specified strategy αi ∈ RK , which specifies how
a change in the amount of debt is offset by purchases or sales of the different assets

6Accounting for an exogenous nonzero interest rate would not qualitatively affect the results. Because our
focus is on the price inefficiencies caused by banks’ trading responses to shocks, we opt for a simpler
model that highlights these effects.
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in the portfolio. Hence, it holds that
∑K

k=1 α
ki = 1. For future purposes, let α :=

(αki)k=1,...,K,i=1,...,N ∈ R
K×N denote the trading strategy matrix and let Li = κi/(1 + κi).

Hence, by the leverage equation (3.1), it always holds that Di
t = Li1>Ai

t for t = 0,1.
The banks’ demand curves, where ∆Qki := Qki

1 − Qki
0 denotes the change in quantities

from period 0 to period 1, admit an explicit expression.

Proposition 3.1.1 (Capponi and Larsson (2015)). The incremental demand of bank i for
asset k is given by

∆Qki = αkiκiQi>
0
∆P
Pk

1

. (3.2)

3.1.2 The Nonbanking Sector

Nonbanking institutions trade the same assets as the banking sector. This gives rise to ad-
ditional demand, which we refer to as the nonbanking demand, and model it in a reduced
form. We assume that demand curves are decoupled across assets, i.e., the nonbanking
demand for asset k only depends on the price of asset k and not on the prices of other
assets.7

At time 0, the nonbanking sector holds a quantity Qk,nb
0 of asset k and we write Ak,nb

0 =

Pk
0 Qk,nb

0 for the corresponding asset value. Unlike the banking sector whose demand
function is upward sloping, the nonbanking sector has a downward sloping demand curve:
it sells an asset if its price is above the fundamental value and purchases an asset if its
price is below its fundamental value. Hence, the nonbanking sector acts as the liquidity
provider when there are shocks and exerts a stabilizing force on the pressure imposed by
banks. The demand for asset k is given by

∆Qk,nb = − γkQk,nb
0
∆Pk − Z k

Pk
1

, (3.3)

where γk is a positive constant. This choice of demand function admits the following
interpretation. Assume no shock occurs, i.e., Z k = 0. Then

∆Qk,nb

Qk,nb
0

= −γk
∆Pk

Pk
1

. (3.4)

The parameter γk can thus be interpreted as the elasticity of the nonbanking demand for
asset k, similar to κiαki in (3.2) for the banking sector. We refer to γk as the illiquidity
characteristic of asset k. Unlike equation (3.4), (3.3) includes the correction term Zk ,

7This modeling choice allows us to focus only on the price impact caused by the banks’ needs of tracking
their leverage requirements.
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because nonbanking demand is due to deviations from fundamental values. We write
Qnb

t = (Q1,nb
t , . . . ,QK,nb

t )>, and denote by γ = (γ1, . . . , γK )> the vector of illiquidity
characteristics.

3.1.3 Asset Prices

In this section, we review the mechanism used to determine prices. The market-clearing
condition is given by

Qnb
t +

N∑
i=1

Qi
t = Qtot, t = 0,1, (3.5)

where the vector Qtot of aggregate supply is constant through time. Capponi and Larsson
(2015) identify the systemicness matrix S defined by S =

∑N
i=1

αi

γ◦Qnb
0
κiQi>

0 ∈ R
K×K , or, in

component-wise form,

Sk` =

N∑
i=1

αki κiQ`i
0

γkQk,nb
0

, k, ` = 1, . . . ,K, (3.6)

as the primary determinant of market prices. This matrix captures how a shock to asset `
propagates to asset k through the banks’ deleveraging activities.

Proposition 3.1.2 (Proposition 2.1. in Capponi and Larsson (2015)). The dynamics of
asset prices are given by

∆P = (I − S)−1 Z, (3.7)

assuming that the matrix inverse exists.

Assumption 3.1.3. We will assume that the spectral radius of S is smaller than one. This
yields invertibility of the matrix I − S, as needed in Proposition 3.1.2, with (I − S)−1 =∑∞

j=0 S
j . The spectral radius ρ(S) for non-negative S is bounded from above by (cf.

Capponi and Larsson (2015) and Horn and Johnson (1985), Corollary 8.1.29):

ρ(S) ≤ max
k=1,...,K

∑N
i=1 κ

iαki ∑K
`=1 Q`i

0

γkQk,nb .

The spectral radius is small if the size of the nonbanking sector is large in comparison to
the size of the leverage targeting banking sector, leverage targets are not too large, and
price elasticities are not too small.
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3.2 Market Inefficiencies and Systemic Significance

In this section, we introduce the measure used to quantify price deviation from fundamen-
tals and characterize the key quantities that determine market efficiency. Section 3.2.1
derives an explicit expression for the price deviation from fundamentals and states the
objective function of minimizing market efficiency in a systemic economy. Section 3.2.2
introduces a key sufficient statistic, a bank’s systemic significance, that quantifies the con-
tribution to price pressures of each bank in the economy.

3.2.1 Market Capitalization and Deviation from Efficiency

Banks actively manage their balance sheets in response to shocks and this imposes a
pressure on asset prices, pushing them away from fundamental values. The value of
market capitalization at the end of period 1 is given by

MCe := Q>totP1 = Q>tot(P0 + ∆P)

= Q>tot

(
P0 + (I − S)−1 Z

)
, (3.8)

where we recall that Z is the vector of exogenous price shocks (cf. equation (3.7)). In
the absence of leverage-tracking banks, changes in prices are driven solely by changes
in fundamentals, i.e., by the exogenous shocks. The resulting market capitalization is
denoted by MC f and given by

MC f := Q>tot(P0 + Z ).

The contribution to realized asset prices arising from the presence of leverage targeting
banks, denoted by D := MCe − MC f , is a measure of market inefficiency.

Under the conditions discussed in Assumption 3.1.3, we obtain the first order approxi-
mation to market capitalization given by

MCa := Q>tot (P0 + (I + S)Z ) ,

where we consider only the first term in the power series expansion of (I − S)−1. Recall
that the i’th column of the matrix Q denotes the initial asset holdings of bank i. We then
obtain the following first order approximation for the fire-sales externalities:

D ≈ MCa − MC f = Q>tot(SZ ) = (Qv)>Z, (3.9)

where
v := Diag(κ)α>

Qtot

γ ◦Qnb
0

∈ RN . (3.10)
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We refer to the vector v as the systemic significance of the N banks and discuss its proper-
ties and economic implications in Section 3.2.2. The vector Qv, i.e., the initial allocation
of assets within the banking sector weighted by the banks’ systemic significances, is a
network multiplier: it describes how an initial price shock Z is amplified through the
network of balance sheet holdings due to the leverage targeting actions of the banks.
Deviation from Efficiency: We use the mean squared deviation criterion

E[D2] ≈ E[(MCa − MC f )2] =: MSD(Q),

to quantify ex-ante these inefficiencies. We use the average of the squares of price de-
viation from fundamentals, i.e., we penalize equally positive and negative deviations of
market prices from fundamental values.

We use µ and Σ to denote, respectively, the expected value and covariance matrix of
shocks, i.e., E[Z] = µ = (µ1, . . . , µK )> and Cov[Z] = Σ ∈ RK×K . Henceforth, we impose
the following assumption on the distribution of asset shocks.

Assumption 3.2.1. Price shocks Zk , k = 1,2, . . . ,K , are uncorrelated with variances σ2 =

(σ2
1, . . . ,σ

2
K )>, i.e., Σ = Diag(σ2), σk > 0, and the initial asset prices are normalized to

Pk
0 = 1, k = 1, . . . ,K .

Assumption 3.2.1 allows us to focus solely on the endogenous correlation, i.e., linkages
between prices arising from the leverage targeting actions of the banks due to overlapping
portfolios.

3.2.2 Systemic Significance

This section discusses the properties of the systemic significance of a bank and its de-
pendence on the model primitives. We start observing that, for any bank i, its systemic
significance equals

vi = κi
K∑

k=1

αki

γk
·

Qk
tot

Qk,nb
0

,

as it easily follows from Eq. (3.10). The systemic significance vi depends on the targeted
leverage κi, banks’ strategies αki, the vector γ of price elasticities, and the initial propor-

tion of assets held by the nonbanking sector
Qk,nb

0
Qk

tot
. If bank i liquidates a large fraction

of an illiquid asset (i.e., αki

γk
is high), then it creates a larger price pressure, especially if

it is targeting a high leverage κi. If the nonbanking sector holds a significant fraction of
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the assets in the economy, then it will be able to better absorb the aggregate demand of
the banking sector and thus the systemic significance of any bank in the system will be
reduced.

Remark 3.2.2. Observe that both D and the square-root of the mean squared deviation√
E[D2] ≈

√
E[(MCa − MC f )2] are positively homogeneous, when viewed as functions

of the systemic significance vector v. In particular, price pressures vanish and the market
becomes efficient when v approaches zero; conversely, as v gets large, inefficiencies are
higher.

The mean and variance of market capitalization can be uniquely characterized by the
matrix of asset holdings and the systemic significances of the banks in the system, as
stated next.

Lemma 3.2.3. It holds that

E[D] ≈ (Qv)>µ, Var[D] ≈ (Qv)> Σ (Qv).

Moreover, the mean squared deviation of price pressures equals

E[D2] = Var[D] + E[D]2

≈ (Qv)> (µµ> + Diag(σ2))︸                  ︷︷                  ︸
=:G∈RK×K

(Qv) = MSD(Q). (3.11)

The formulas above indicate that the mean squared deviation is a function of Qv, i.e.,
the initial allocation of assets within the banking sector weighted by the banks’ systemic
significances and of statistics about fundamental shocks collected in the matrix G. This is
consistent with intuition: larger shocks require banks to trade a higher amount of assets to
restore their leverage targets. As a result, through the network multiplier Qv, these shocks
are amplified more and lead to a higher pressure on prices.

3.3 f-Efficient Holdings

In this section, we study the impact of banks’ portfolio holdings on market efficiency
and develop an explicit construction of holding matrices which minimize the deviation of
market capitalization from its fundamental value. We refer to those matrices as f-efficient
holdings. Section 3.3.1 introduces a two-step procedure, “aggregate first then allocate”
to construct f-efficient holdings. Section 3.3.2 discusses the relation between f-efficient
holdings and the diversification benchmark where each bank fully diversifies its portfolio
holdings.
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3.3.1 Characterization of f-Efficient Holdings

Taking the initial budget of the banks as fixed, we compute the matrix Q of initial holdings
which is f-efficient, i.e., which minimizes the mean squared deviation MSD(Q).8

Let q ∈ RK be the vector of total initial holdings of the banking sector and b ∈ RN the
vector of banks’ initial budgets. The set of initially feasible asset allocations within the
banking sector is then given by

D = D (q,b) := {Q ∈ RK×N | Q1N = q and 1>KQ = b>},

where we have assumed that the initial prices of all assets are normalized (see Assump-
tion 3.2.1). We then obtain

K∑
k=1

qk =

N∑
i=1

bi =: T.

Example 3.3.1. Full portfolio diversification corresponds to the holding matrix

Qdiversified :=
1
T

qb> =
*...
,

b1q1
T · · ·

bN q1
T

...
. . .

...
b1qK

T · · ·
bN qK

T

+///
-

∈ D . (3.12)

In the special case that initial aggregate holdings are the same for all assets, i.e., q1 = q2 =

. . . = qK , full diversification is characterized by the holding matrix

Qdiversified =
*...
,

b1
K · · ·

bN

K
...

. . .
...

b1
K · · ·

bN

K

+///
-

.

Definition 3.3.2. A feasible allocation matrix Q∗ ∈ D such that

Q∗ ∈ argmin
Q∈D

(Qv)>G(Qv)︸           ︷︷           ︸
=MSD(Q)

(3.13)

is called f-efficient.

f-efficient holdings are those which minimize, ex-ante, the mean squared deviation of
asset prices from fundamentals among all feasible allocations. To exclude trivial cases
and make the problem interesting, we make the following assumption, which is typically
satisfied in practice.

8In Appendix 3.8, we study the sensitivity of market inefficiencies to the matrix α of banks’ trading
strategies, taking the initial holdings as given. Consistent with intuition, we find that it is f-efficient for
banks to sell solely the most liquid asset.
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Assumption 3.3.3. There exist some i, j ∈ {1, . . . ,N } such that vi , v j and it holds that
b>v , 0.

Remark 3.3.4. If v1 = . . . = vN then, for each given asset, it does not matter how it is
distributed across the banks because all have the same systemic significance. As a result,
MSD(Q) is constant for all Q ∈ D, taking into account the constraint Q1 = q. The re-
quirement that systemic significance is not identical across banks is satisfied by any econ-
omy, which is not fully homogeneous in terms of targeted leverage and trading strategy.
Empirically, Duarte and Eisenbach (2019), see Table 4 therein, find substantial variation
in banks’ leverage targets, with a size-weighted average of 13.6, an equal-weighted aver-
age of 11.5, and a standard deviation of 3.9.9 If b>v = 0, there must exist banks in the
system which are short some of the assets. Then, the negative price pressure imposed by
some banks in the system would be compensated by a positive price pressure created by
other banks. In this case, diversification would be f-efficient and lead to zero deviation of
asset prices from fundamental values, i.e., MSD(Qdiversified) = ( 1

T qb>v)>G( 1
T qb>v) = 0.

In practice, however, b>v > 0 because the budget and the systemic significance of any
bank in the system are both positive. Banks are long their assets, including consumer
loans, agency and non-agency securities, municipal securities, etc.; see, again, Table 4 in
Duarte and Eisenbach (2019).

We next describe the two-step procedure used to construct f-efficient holding matrices:

• Step 1: Aggregation. In this step, we find the network multiplier y that minimizes
the mean squared deviation and which is consistent with the market structure. Con-
cretely, letDy := {y ∈ RK | 1>K y = b>v}. Such a multiplier is obtained from banks’
initial holdings (and budgets), weighted with the systemic significance vector, i.e.,

y∗ ∈ argmin
y∈Dy

y>Gy. (3.14)

Because of this weighting, the multiplier accounts for the banks’ leverage tracking
behavior, their liquidation strategies, and illiquidity characteristics of the assets. We
refer to the minimizing vector y∗ as the aggregate v-weighted holdings.

• Step 2: Allocation. In this step, we identify an allocation of asset holdings to banks,
which is consistent with the vector of aggregate v-weighted holdings obtained from
the previous step. Specifically, we denote by Q∗ ∈ D the matrix, consistent with the

9Their sample includes the largest 100 banks by assets every quarter, in a sample period from the third
quarter of 1999 to the third quarter of 2016 at the quarterly frequency. They also find that 5% and 95%
of the leverage target distribution are, respectively, 6.8 and 16.9 and that there is more cross-sectional
than time-series variation.
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budget and supply constraints, which distributes the aggregate v-weighted holdings
to individual banks according to their systemic significance, i.e., Q∗v = y∗.

The decomposition discussed above presents both conceptual and computational advan-
tages. From a conceptual perspective, observe that the matrix G of shock statistics and
the vector v of banks’ systemic significances are “sufficient statistics” for the problem. In
the aggregation step, the minimized functional only depends on G, while v only enters
into the constraint set. The allocation step instead, takes the aggregate holdings computed
from the previous step as given and determines the holding matrix only on the basis of
v. From a computational point of view, observe that finding the f-efficient holdings re-
quires solving a K × N dimensional quadratic problem with linear constraints. Using the
proposed decomposition, we first solve a K dimensional quadratic problem with one lin-
ear constraint and subsequently solve a simple K × N dimensional unconstrained linear
system.

The following proposition states that the two-step procedure described above identifies
f-efficient holdings.

Proposition 3.3.5. Let N ≥ 2,K ≥ 1. The following statements are equivalent:

(i) Q∗ ∈ D is f-efficient.

(ii) y∗ = Q∗v for some Q∗ ∈ D and y∗ solves the problem (3.14).

In the rest of the section, we discuss in more detail each step of the procedure above
and highlight the key economic insights.

3.3.1.1 Step 1: Aggregation

We start showing that the minimization problem (3.14) admits a unique solution.

Lemma 3.3.6. The unique solution to problem (3.14) is given by

y∗ :=
b>v
1>K z
· z,

where z := G−11K ∈ R
K .

The above expression indicates that aggregate v-weighted holdings are determined by
the vector v, capturing the systemic significances of banks, weighted by the budget each
bank is endowed with, and by the inverse of the matrix G which captures the size of the
exogenous price shocks. Specifically, the aggregate systemically weighted budget vector
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b>v is split into the K available assets through the inverse of G.

Example 3.3.7. Consider the special case of zero mean shocks, i.e., set µ = 0. Then

y∗k = (b>v) ·
1/σ2

k∑K
`=1 1/σ2

`

. Hence, the higher the variance of price shocks σ2
k , the lower the

fraction of asset k in the aggregate v-weighted holdings portfolio y∗. This is intuitive:
an asset that creates high price pressure when banks manage their assets to restore their
target leverage should, in aggregate, be invested less.

3.3.1.2 Step 2: Allocation

In the second step, the aggregate v-weighted holdings y∗ ∈ RK are allocated to the indi-
vidual banks.

Proposition 3.3.8. For every N ≥ 2,K ≥ 1, there exists a matrix Q∗ ∈ D satisfying
Q∗v = y∗.

In the proof of the proposition, we construct a particular solution Q∗ and describe the
structure of the linear subspace of solutions. The following theorem shows existence,
quantifies the mean squared deviation achieved by a matrix of f-efficient holdings, and
addresses the uniqueness of the allocation.

Theorem 3.3.9. Let N,K ≥ 2.

a) There exists an f-efficient holding matrix Q∗ with mean squared deviation

MSD(Q∗) =
(b>v)2

1>KG
−11K

. (3.15)

b) The f-efficient holding matrix is unique, if and only if there are exactly N = 2 banks.
In this case, the unique f-efficient holding matrix is given by

QN=2 :=
1

v2 − v1

(
v2q − y∗ y∗ − v1q

)
∈ RK×2. (3.16)

3.3.2 When is Diversification f-Efficient?

In this subsection, we provide the conditions under which full diversification is f-efficient.

Theorem 3.3.10. Full diversification Qdiversified is f-efficient, if and only if q and z =

G−11K are linearly dependent.
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A direct consequence of the above theorem is that full diversification is f-efficient if
the system is completely homogeneous, i.e., all asset shocks have the same mean and
variance, and the total initial holdings of the banks are the same. Full diversification is no
longer f-efficient if a little amount of heterogeneity is introduced in the system.

Corollary 3.3.11. If either

a) q1 = . . . = qK , σ2
1 = . . . = σ2

K , µ1 = . . . = µK−1, and µK = µ1 + ε with ε , −K µ1,
or

b) µ1 = . . . = µK , σ2
1 = . . . = σ2

K , q1 = . . . = qK−1, and qK = q1 + ε, or

c) q1 = . . . = qK , µ1 = . . . = µK , σ2
1 = . . . = σ2

K−1, and σ2
K = σ2

1 + ε,

then Qdiversified is f-efficient, if and only if ε = 0.

The result in the above corollary is consistent with intuition. If assets are fully homo-
geneous and the total holdings of the banking sector in each asset are the same, there is
no reason to prefer one asset over the other. In this case, full diversification minimizes
the portfolio liquidation risk and is optimal. However, as soon as assets no longer have
identical characteristics, an f-efficient allocation requires to allocate assets to banks in
accordance with their systemic significances. An alternative proof of Corollary 3.3.11
using the concept of matrix majorization, together with an analysis of the diversity vs.
diversification tradeoff in homogeneous systems, is provided in Appendix 3.9.

3.4 Comparative Statics and Examples

In this section, we construct case studies to analyze the structure of f-efficient holdings.
In the first part of this section, we consider the stylized case N = K = 2 and study the
distance of f-efficient holdings from diversification as a function of key model parame-
ters. For any matrix Q ∈ RK×N , we measure the distance from full diversification by the
Frobenius norm

d(Q) := ‖Q − Qdiversified‖F .

In the second part of the section, we study the minimal distance of f-efficient holdings
from full diversification for the case N = K = 3. In the third part, we compare the
impact of f-efficiency and diversification on the distribution of market capitalization under
different economic scenarios.
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3.4.1 The Case N = K = 2

According to Theorem 3.3.9 b), the f-efficient holding matrix for N = K = 2 is unique
and given by

Q2×2 :=
1

v2 − v1
*
,

v2q1 − y∗1 y∗1 − v1q1

v2q2 − y∗2 y∗2 − v1q2

+
-
. (3.17)

We normalize the total supply of assets within the banking sector and the budgets of
banks to q1 = q2 = b1 = b2 =: x > 0; following Capponi and Larsson (2015), we choose
x = 0.08, where the total supply is normalized to 1 for each asset. Hence, the the total
size of the banking sector is 8% of the total size of the system.

3.4.1.1 Systemic Significance and Asset Riskiness

We start with an exploratory analysis, where we plot the f-efficient holdings of bank 1 and
the distance of f-efficient holdings from diversification d(Q2×2) as a function of the risk-
iness of the first asset. Consistent with Corollary 3.3.11, full diversification is f-efficient
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Figure 3.1: f-efficient holdings of bank 1 Q2×2
k,1 for assets k = 1,2 and distance from diversification,

d(Q2×2) = ‖Q2×2 − Qdiversified‖F , as a function of σ2
1. We fix σ2

2 = 0.2, µ = (0,0)>,
v = (0.04,0.07)>, q = b = (0.08,0.08)>.

if and only if σ2
1 = σ2

2 = 0.2. Figure 3.1 additionally suggests that a systemically more
significant bank would have lower f-efficient holdings in the riskier asset than a systemi-
cally less significant bank: As σ1 increases, bank 2 decreases its holdings in asset 1, while
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bank 1 increases it holdings in that asset. We rigorously formalize these observations in
the following lemma.

Lemma 3.4.1. Let q1 = q2 = b1 = b2 = x > 0 and µ1 = µ2.

a) For σ1 > 0, we have

∂

∂σ1
d(Q2×2)




< 0, if σ2
1 < σ2

2,

> 0, if σ2
1 > σ2

2.

b) If v2 > v1 > 0, then
∂Q2×2

1,1
∂σ1

> 0 for σ1 > 0.

3.4.1.2 Systemic Significance and Shock Sizes

As in the previous subsection, we start with a graphical illustration of the sensitivity of
bank 1’s f-efficient holdings and their distance from diversification to changes in the ex-
pected shock size µ. Figure 3.2 indicates that, as the expected (absolute) size of price
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Figure 3.2: F-efficient holdings of bank 1 Q2×2
k,1 for assets k = 1,2 and distance from diversification

d(Q2×2) = ‖Q2×2−Qdiversified‖F as a function of µ2 for fixed σ2 = (0.1,0.2)>, µ1 = 0,
v = (0.04,0.07)>, q = b = (0.08,0.08)>.

shocks for asset 2 increases, the f-efficient holdings of the least systemically significant
bank (i.e., bank 1) increase. This can be, again, understood in terms of the banks’ systemic
significances: a more systemically significant bank, i.e., one that tracks a higher leverage
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ratio or which trades a larger fraction of illiquid assets, should reduce its holdings of asset
2, because the trading actions in response to the shock impose a higher pressure on the
price and hence a large deviation of prices from fundamentals.

The distance from a full diversification strategy is minimal when the system achieves
the highest possible degree of homogeneity, i.e., µ2 = µ1. As the system becomes more
heterogeneous, the distance increases. As shown in Corollary 3.3.11, the minimal distance
converges to zero as the system becomes fully homogeneous, i.e., σ1 = σ2. We formalize
these observations via the following lemma.

Lemma 3.4.2. Let q1 = q2 = b1 = b2 = x > 0, σ2
1 = σ2

2 and µ1 = 0.

a) It holds that

∂

∂µ2
d(Q2×2)




< 0, if µ2 < 0,

= 0, if µ2 = 0,

> 0, if µ2 > 0.

b) If v2 > v1 > 0, then

∂Q2×2
1,1

∂µ2




> 0, if µ2 < 0,

= 0, if µ2 = 0,

< 0, if µ2 > 0.

3.4.1.3 The Influence of Systemic Significance on f-Efficient Holdings

We analyze how heterogeneity in systemic significances impacts the degree of diversi-
fication of banks’ holdings. Figure 3.3 highlights that, as the two banks become closer
in terms of systemic significance, the distance of f-efficient holdings from diversification
increases. This highlights the fundamental role of systemic significance on banks’ f-
efficient holdings: if two banks are similar in terms of systemic significance (for instance
because they adopt similar trading strategies), then it is beneficial to sacrifice diversifi-
cation benefits to reduce portfolio overlapping and thus price pressures. These intuitions
can be formalized via the following lemma.

Lemma 3.4.3. Let q1 = q2 = b1 = b2 = x > 0, v1 > 0 and |z1 | , |z2 | 10. For 0 < v2 , v1,
it holds that

∂

∂v2
d(Q2×2)




> 0, if v2 < v1,

< 0, if v2 > v1.

10A sufficient condition for |z1 | , |z2 | is that µ1 = µ2 and σ2
1 , σ

2
2 .
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Figure 3.3: F-efficient holdings of bank 1 Q2×2
k,1 for assets k = 1,2 and distance from diversification

d(Q2×2) = ‖Q2×2 − Qdiversified‖F as a function of systemic significance v2 for fixed
σ2 = (0.1,0.2)>, µ = (0,0)>, v1 = 0.04, q = b = (0.08,0.08)>.

3.4.2 The Case N = K = 3

Having established the results for a system consisting of two banks and two assets, we
analyze numerically how the findings would change for a larger economy. If the num-
ber of banks is N > 2, f-efficient holdings are no longer unique (see Theorem 3.3.9 b)).
We then consider the f-efficient holdings whose Frobenius distance from diversification is
minimal. Figure 3.4 plots the minimal distance of f-efficient holdings from diversification
for the case N = K = 3. Noticeably, the qualitative findings remain similar to the setting
N = K = 2. The f-efficient holdings get farther away from a full diversification strategy
if heterogeneity in banks’ systemic significances decreases. The intuition behind the re-
sult remains unchanged, i.e., in a system where banks are systemically very close, a full
diversification strategy for each bank may lead to larger price pressures because all banks
rebalance their portfolios in a similar fashion to meet their leverage targets.

In Appendix 3.7, we analyze the f-efficient holdings in an economy with more than two
banks. We find that any f-efficient allocation prescribes the most systemically significant
bank to have higher holdings of the less risky asset and the least systemically significant
bank to have higher holdings of the more risky asset. We also show that for a system of
three banks, given a fixed f-efficient allocation, any other f-efficient allocation is obtained
by shifting the holdings within each bank based on the difference in systemic significances
of the other two banks.
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Figure 3.4: Isosurface plot of the Frobenius distance d(Qmin) from diversification for the f-efficient
holding matrix Qmin with the smallest distance to diversification. We vary the systemic
significance parameters v1,v2, and v3, and keep fixed shock characteristics, i.e., µ =

(0.1,0.125,0.15)> and σ2 = (0.1,0.15625,0.225)>. To ensure comparability with the
results of Section 3.4.1, we choose qk = bi = 0.08, i, k = 1,2,3, and normalize the
total supply of each asset to 1.

3.4.3 Systemic Significance, Market Scenarios, and Asset Holdings

In this section, we analyze how the distribution of banks’ holdings depends on banks’
systemic significances, heterogeneity in the distributions of initial shocks, and illiquidity
characteristics of the assets. We also validate the accuracy of the first order approximation
of market capitalization used throughout the chapter. Our results indicate that the mean
squared deviation of the actual market capitalization from its fundamental value is low if
the matrix of bank holdings coincides with the f-efficient holdings. This indicates that the
solution to the (approximate) optimization problem, i.e., where the first-order approxima-
tion of the systemicness matrix is used, yields a low value for the actual objective function
where the exact expression of the systemicness matrix is used.

In the analysis below, we consider three asset classes, each consisting of assets with
identical characteristics, for a total of ten assets. As a result, we demonstrate that the
methodology proposed in this chapter scales well to economies larger than those consid-
ered (analytically) in earlier sections.
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3.4.3.1 Market Setting

We consider a financial market consisting of N = 2 banks. We choose K = 10 assets,
normalize the total supply of each asset to 1, and set the holdings of banks in each asset
to 0.08.11 The two banks are assumed to have the same budget (b1 = b2 = 0.8) and the
vector of leverage targets is κ = (9,10)>.

Banks are assumed to follow a proportional liquidation strategy, i.e., αki = 1/10 for all
assets k = 1, . . . ,10 and both banks i = 1,2. The assets belong to three different groups:
Assets 1 and 2 belong to group 1, assets 3 through 8 to group 2, and assets 9 and 10 to
group 3. Within each of the three asset groups, the illiquidity characteristics of the assets
and the expectation and variance of asset price shocks are equal.

We consider three economic scenarios, each characterized by a certain value of the
shock variance and liquidity of the assets. We refer to the three scenarios as liquidity,
intermediate crisis, and high risk high illiquidity scenarios. Across all scenarios, we set
µ = (0.1,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.3)>.

The numerical values of the asset illiquidity characteristics should be interpreted as
normalized to the corresponding characteristics of a reference asset and are broadly con-
sistent with the estimates reported in Table 4 of Duarte and Eisenbach (2019).12 Con-
sistent with empirical evidence, the higher the illiquidity of the asset (i.e., the lower γ),
the larger the variance of the exogenous asset price shocks, capturing the fact that more
illiquid securities have a higher volatility than liquid ones.

(L) Liquidity Scenario:
Banks invest in liquid assets, i.e, assets with high price elasticities, or equivalently,
low illiquidity characteristics. The first asset class has the highest price elasticity
and the lowest shock variance and the third asset class has the lowest price elasticity
and the highest variance. The second asset class has an intermediate value for those
two quantities. Specifically, we choose

γL = (9,9,8,8,8,8,8,8,7,7)>, σL = (0.1,0.1,0.2,0.2,0.2,0.2,0.2,0.2,0.3,0.3)>.

(I) Intermediate Crisis Scenario:
In contrast to scenario (L), the third asset class is significantly more illiquid (i.e.,
lower price elasticity) and has higher shock variance. This situation is typical of

11All parameters in this section are consistent with Capponi and Larsson (2015).
12Their estimates are based on the Net Stable Funding Ratio of the Basel III regulatory framework. Their

illiquidity parameter is the reciprocal of ours, i.e., in their setting a larger value corresponds to a higher
illiquidity of the asset. They take US Treasuries as the reference asset, i.e., the price impact of U.S.
Treasuries is normalized to 1.
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the beginning of a crisis period, where one asset may experience a severe shock
and then becomes hard to sell quickly due to the lack of outside investors (the
nonbanking sector in our model) willing to purchase the asset.13 The parameters
corresponding to the other asset classes are not altered. This scenario is specified
by

γ I = (9,9,8,8,8,8,8,8,1,1)>, σI = (0.1,0.1,0.2,0.2,0.2,0.2,0.2,0.2,1,1)>.

(H) High Risk High Illiquidity Scenario:
Banks invest in assets with high illiquidity and volatility. This captures, for in-
stance, a situation where banks invest in securities such as non-agency based mort-
gage, municipal bonds, or commercial and industry loans. All asset classes are thus
characterized by a lower price elasticity and higher shock variance compared to the
previous two scenarios:

γH = (3,3,2,2,2,2,2,2,1,1)>, σH = (0.9,0.9,1.1,1.1,1.1,1.1,1.1,1.1,1.2,1.2)>.

Next, we compute the f-efficient holdings and banks’ systemic significances for each of
the above defined scenarios.

• In the liquidity scenario (L), the systemic significances of the banks equal vL
1 ≈

1.23 < 1.37 ≈ vL
2 . The second bank—tracking a higher leverage ratio—is systemi-

cally more significant than the first bank. f-efficient holdings are given by

Q∗,L ≈
(
−3.79 −3.79 0.87 0.87 0.87 0.87 0.87 0.87 1.37 1.37
3.87 3.87 −0.79 −0.79 −0.79 −0.79 −0.79 −0.79 −1.29 −1.29

)>
.

The systemically more significant bank 2 is endowed with a higher number of assets
of class 1 (high elasticity, low variance); the least significant bank 1 holds a larger
portion of the other assets (smaller elasticity, higher variance).

• In scenario (I), bank 2 is still systemically more significant than bank 1, i.e., v I
1 ≈

2.91 < 3.23 ≈ v I
2; in comparison to scenario (L), both banks’ systemic significances

increase due to the increased illiquidity and shock variances of assets from group 3.
The f-efficient holdings are given by:

Q∗,I ≈
(
−3.87 −3.87 1.07 1.07 1.07 1.07 1.07 1.07 0.87 0.87
3.95 3.95 −0.99 −0.99 −0.99 −0.99 −0.99 −0.99 −0.79 −0.79

)>
.

Again, the higher the systemic significance of the bank, the lower its holdings of
the safer asset relative to the riskier asset.

13For instance, the volume of agency mortgage backed securities, typically highly liquid assets, declined
substantially from 2008 to 2014, which is an indicator of worsening liquidity.
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• In scenario (H), bank 2 remains systemically more significant than bank 1, with
vH

1 ≈ 5.54 < 6.16 ≈ vH
2 , and the significance parameters are higher than in the two

other scenarios. The f-efficient holdings are:

Q∗,H ≈
(
−0.41 −0.41 0.10 0.10 0.10 0.10 0.10 0.10 0.31 0.31
0.49 0.49 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.23 −0.23

)>
.

In this scenario, there is little heterogeneity in the riskiness of the assets and high
heterogeneity in banks’ systemic significances. As a result, the f-efficient holdings
are more evenly distributed, i.e., closer to full diversification (see also the values of
the distances given in Table 3.1 below).

3.4.3.2 Diversification and f-Efficiency

In this section, we compute the exact market capitalization, i.e.,

MCe = Q>tot(P0 + (I − S)−1Z ),

both under f-efficient (Q∗,·) and fully diversified (Qdiversified) holding matrices. We sup-
pose that the vector of shocks Z follows a multivariate normal distribution with mean
vector µ, which is the same across all scenarios, and covariance matrix Diag(σ2), where
σ depends on the considered scenario. In each scenario, we draw 100,000 independent
samples of the shock vector Z .

We report the relevant statistics in Table 3.1. Figure 3.5 also provides a comparison of
the probability density functions of market inefficiency and the corresponding box plots
across all three scenarios. Consistent with intuition, the variance of market capitalization
is the smallest in the liquidity scenario and the highest in the high risk high illiquidity
scenario. We find that diversification results in a higher variance than f-efficiency across
all market scenarios. While this difference is not very significant in the liquidity scenario,
it becomes considerable in the crisis scenarios, especially if (as in the intermediate crisis
scenario) the assets are shocked heterogeneously.

Observe, from the first row of the table, that the distance between f-efficient and fully
diversified holding matrices is the lowest in the scenario (H). Nevertheless, the mean
squared deviation criterion and variance of the exact market capitalization is the highest
(in absolute terms) in such a scenario. Taken together, these two observations imply
that if banks invest in high risk high illiquid assets, it suffices to only slightly distort the
holdings from f-efficiency to induce large increases in the variance and mean squared
deviation of market capitalization from its fundamental value. This is because holdings
that are not f-efficient, such as fully diversified holdings, create a price pressure which
becomes increasingly larger as we move towards balance sheets with highly volatile and
illiquid assets.
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Figure 3.5: Probability density function estimates (a) and box plots (b) of market inefficiency
MCe − MC f for f-efficient (Q∗, ·) and fully diversified (Qdiversified) holdings, generated
from 100,000 samples of Z ∼ N10(µ,Diag((σ ·)2)), in the three considered scenarios:
(L) liquidity, (I) intermediate crisis, and (H) high risk high illiquidity.
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L I H I/L H/L

d(Q∗,·) 8.61 8.74 1.08 1.02 0.13
E(MCe) for Q∗,· 12.07 12.20 13.45 1.01 1.11
E(MCe) for Qdiversified 12.23 12.65 13.74 1.03 1.12
Var(MCe) for Q∗,· 0.44 2.23 37.20 5.07 84.55
Var(MCe) for Qdiversified 0.55 3.95 41.39 7.18 75.25
E[(MCe − MC f )2] for Q∗,· 0.02 0.10 9.66 5.00 483.00
E[(MCe − MC f )2] for Qdiversified 0.06 0.66 12.14 11.00 202.33

Table 3.1: Statistics from the Monte Carlo simulation used to estimate the exact market capitaliza-
tion. The Frobenius distance d(Q∗, ·) measures the difference between diversified and
f-efficient holdings. The last two columns present the numbers relative to the liquidity
scenario.

3.5 Conclusion

We developed a model to examine the ex-ante asset holdings which minimize market in-
efficiency in a systemic multi-asset economy. Price pressure arises in our model from
the exogenous trading actions of banks which manage their portfolios to target specific
leverage ratios. In the model, we quantify inefficiency in terms of the mean squared de-
viation of market capitalization from capitalization measured using fundamental values.
We find that inefficiencies are low if banks are not systemically significant, but become
substantial if the overall systemic significance is high and banks are not sufficiently het-
erogeneous in systemic significance. We develop a procedure which constructs f-efficient
holdings and show that these depend on two key sufficient statistics, namely the banks’
systemic significances and the first two moments of exogenous asset shocks. Our analysis
reveals that increasing heterogeneity in banks’ systemic significances moves f-efficient
holdings closer to full diversification, while heterogeneity in the distributions (expecta-
tion and variance) of exogenous asset value shocks moves f-efficient holdings away from
diversification. In balance sheet scenarios characterized by high risk and illiquidity, de-
viating from f-efficient holdings would result in high inefficiencies and large variance of
market capitalization.
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3.6 Appendix: Proofs

3.6.1 Proofs of Section 3.1

3.6.1.1 Proof of Proposition 3.1.1

This proof is obtained by specializing Proposition 1.1 in Capponi and Larsson (2015) to
a setting with only one period and assuming zero revenue shocks therein, i.e., ∆Ri = 0.
The fundamental cash-flow equation is given by:

Pk
1∆Qki = αki

∆Di, k = 1, . . . ,K. (3.18)

Writing the cash-flow equation (3.18) in vector form yields

Diag(P1)∆Qi = αi
∆Di .

Substituting for Di
t in the above equation the expressions for Li, we obtain

Diag(P1)∆Qi = αi
(
Li

11>Ai
1 − Li

01>Ai
0

)
= αi

(
Li

11>(Ai
1 − Ai

0) + (Li
1 − Li

0)1>Ai
0

)
. (3.19)

Rearranging the above expression leads to(
Diag(P1) − Liαi P>1

)
∆Qi = αi LiQi>

0 ∆P. (3.20)

The matrix multiplied by ∆Qi can be inverted using the Sherman-Morrison formula. First,
since 1>αi = 1, we have

1 − Li P>1 Diag(P1)−1αi = 1 − Li1>αi = 1 − Li , 0,

so invertibility is guaranteed. The inverse is given by

Diag(P1)−1 + κi Diag(P1)−1αi P>1 Diag(P1)−1,

which simplifies to Diag(P1)−1(I + κiαi1>). From (3.20), we therefore obtain

Diag(P1)∆Qi = (I + κiαi1>)
(
αi LiQi>

0 ∆P
)

= (1 + κi)αi
(
LiQi>

0 ∆P
)
,

where the second equality uses the identity (I + κiαi1>)αi = (1 + κi)αi, which follows
from 1>αi = 1. Noting that (1 + κi)Li = κi, we obtain

Diag(P1)∆Qi = κiαiQi>
0 ∆P,

and the stated expression (3.2) follows.
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3.6.1.2 Proof of Proposition 3.1.2

This proof is obtained by specializing Proposition 2.1 in Capponi and Larsson (2015) to
a setting with only one period and assuming zero revenue shocks therein, i.e., ∆Ri = 0.
First, we use the market-clearing condition (3.5) and then the expressions (3.2) and (3.3)
for the demand functions to get

0 = P1 ◦ ∆Qnb +

N∑
i=1

P1 ◦ ∆Qi

= Diag(γ ◦Qnb
0 ) (Z − ∆P) +

N∑
i=1

αiκiQi>
0 ∆P.

Multiplying from the left by Diag(γ ◦Qnb
0 )−1 and rearranging yields


I −

N∑
i=1

αi

γ ◦Qnb
0

κiQi>
0


∆P = Z. (3.21)

The left-hand side is thus equal to (I − S)∆P. We now simply multiply both sides of the
equality (3.21) from the left by (I − S)−1 to arrive at the stated price change (3.7).

3.6.2 Proofs of Section 3.3

3.6.2.1 Proof of Proposition 3.3.5

• We first prove the direction (i)⇒(ii): Let Q∗ ∈ argmin
Q∈D

(Qv)>G(Qv) be an f-

efficient holding matrix. Since the objective function does only depend on the vec-
tor Qv ∈ RK , the following statements are equivalent:

Q∗ ∈ argmin
Q∈D

(Qv)>G(Qv) ⇔ ỹ := Q∗v ∈ argmin
y∈D̃

y>Gy, (3.22)

where D̃ := {y ∈ RK | ∃ Q ∈ D s.t. y = Qv}. Since every vector of the form
y = Qv for one Q ∈ D satisfies

1>K y = 1>KQv = b>v,

it obviously holds that D̃ ⊆ Dy = {y ∈ RK | 1>K y = b>v} yielding min
y∈D̃

y>Gy ≥

min
y∈Dy

y>Gy. However, as shown by Proposition 3.3.8, if y∗ ∈ Dy solves the ag-

gregate problem, i.e., y∗ ∈ argmin
y∈Dy

y>Gy, then there exists a matrix Q̃ such that

y∗ = Q̃v, i.e., y∗ ∈ D̃. Hence,

ỹ>Q ỹ = min
y∈D̃

y>Gy = min
y∈Dy

y>Gy = (y∗)>Gy∗,
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i.e., ỹ = Q∗v solves the aggregate problem (3.14).

• Second, we prove the direction (ii)⇒ (i): Let y∗ = Q∗v ∈ argmin
y∈Dy

y>Gy solve the

aggregate problem. Since min
y∈D̃

y>Gy ≥ min
y∈Dy

y>Gy, with D̃ as defined in the

previous step, and since y∗ = Q∗v for some Q∗ ∈ D, we have that y∗ = Q∗v ∈

argmin
y∈D̃

y>Gy, which, finally, is equivalent to Q∗ being f-efficient, see (3.22).

3.6.2.2 Proof of Lemma 3.3.6

The KKT conditions for minimizing y>Gy subject to y ∈ Dy read as

*
,

G 1K

1>K 0
+
-︸     ︷︷     ︸

=:M

· *
,

y

λ
+
-

= *
,

0K

b>v
+
-
. (3.23)

The inverse of the KKT matrix M is by blockwise inversion (see, e.g., Proposition 2.8.7
in Bernstein (2005)) given by

M−1 = *
,

G−1 − G−11K (1>KG
−11K )−11>KG

−1 G−11K (1>KG
−11K )−1

(1>KG
−11K )−11>KG

−1 −(1>KG
−11K )−1

+
-

=: *
,

A B

C D
+
-
,

with A ∈ RK×K , B ∈ RK×1, C ∈ R1×K , and D ∈ R. Note that this inverse matrix exists
because, firstly, G is invertible because it is symmetric and positive definite, with inverse
given by the Sherman-Morrison formula

G−1 = Diag( 1
σ2 ) −

µ

σ2 ( µ

σ2 )>

1 + ( µ

σ2 )>µ
,

and, secondly,

1>KG
−11K = ( 1

σ2 )>1K −
(1>K

µ

σ2 )2

1 + ( µ

σ2 )>µ
, 0,

since with c := ( 1
σ2 )>1K > 0

( 1
σ2 )>1K −

(1>K
µ

σ2 )2

1 + ( µ

σ2 )>µ
= 0 ⇔ c(1 + ( µ

σ2 )>µ) − (1>K
µ

σ2 )2 = 0

⇔ c + c · ( µσ )>( µσ ) − ( µσ )> 1
σ ( 1

σ )> µ
σ = 0

⇔ ( µσ )>(I − 1
c ·

1
σ ( 1

σ )>︸           ︷︷           ︸
=:E

) µσ = −1,
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and this cannot be fulfilled for any µ
σ ∈ R

K since E ∈ RK×K is a positive semidefinite
matrix due to its only eigenvalues 0 and 1 (cf. Dattorro (2005), Appendix B.3).

Hence, the f-efficient solution to problem (3.14) is derived from multiplying both sides
of equation (3.23) by M−1 yielding

y∗ = A · 0K + B · (b>v) = b>v · G−11K (1>KG
−11K )−1 =

b>v
1>K z

z,

where z := G−11K .

3.6.2.3 Proof of Proposition 3.3.8

We define the matrix

Qp :=
(

1
v2−v1

[v2q−y∗−(
N∑
i=3

(v2−vi )bi )eK1 ], 1
v2−v1

[y∗−v1q−(
N∑
i=3

(vi−v1)bi )eK1 ], b3eK1 , ..., bN eK1

)
(3.24)

∈ RK×N ,

where eK
1 = (1,0, . . . ,0)> ∈ RK . Without loss of generality, we have assumed here that

v2 , v1 (cf. Assumption 3.3.3). This matrix satisfies Qp ∈ D as well as y∗ = Qpv, for
y∗ = b>v

1>K z z, the solution of the aggregate problem (3.14) derived in Lemma 3.3.6:

• y∗ = Qpv: It holds:

(Qpv)1 =
1

v2 − v1
[v1v2q1 − y∗1v1 − v1

N∑
i=3

(v2 − vi)bi + y∗1v2 − v1v2q1

− v2

N∑
i=3

(vi − v1)bi] +

N∑
i=3

bivi

=
1

v2 − v1
[(v2 − v1)y∗1 − (v2 − v1)

N∑
i=3

bivi] +

N∑
i=3

bivi = y∗1,

and for k = 2, . . . ,K :

(Qpv)k =
1

v2 − v1

(
v1v2qk − y∗kv1 + y∗kv2 − v1v2qk

)
= y∗k .

• Qp1N = q: We obtain

(Qp1K )1 =
1

v2 − v1
*
,
v2q1 − y∗1 −

N∑
i=3

(v2 − vi)bi + y∗1 − v1q1 −

N∑
i=3

(vi − v1)bi+
-

+

N∑
i=3

bi

=
1

v2 − v1
*
,
(v2 − v1)q1 + (v2 − v1)

N∑
i=3

bi+
-

+

N∑
i=3

bi = q1,
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and for k = 2, . . . ,K :

(Qp1N )k =
1

v2 − v1

(
v2qk − y∗k + y∗k − v1qk

)
= qk .

• 1>KQ
p = b>: Obviously, it is (1>KQ

p)i = bi, for i = 3, . . . ,N . For the first and second
entry, it holds that

(1>KQ
p)1 =

1
v2 − v1

*
,
v21>K q − 1>K y

∗ −

N∑
i=3

(v2 − vi)bi+
-

=
1

v2 − v1
*
,
v2

N∑
i=1

bi −

N∑
i=1

bivi −

N∑
i=3

v2bi +

N∑
i=3

bivi+
-

=
1

v2 − v1
(v2(b1 + b2) − (v1b1 + v2b2)) = b1,

where in the first step, we have used that
∑K

k=1 qk = T =
∑N

i=1 bi and that 1>K y
∗ =

b>v. Using the same arguments, we obtain

(1>KQ
p)2 =

1
v2 − v1

*
,
1>K y

∗ − v11>K q −
N∑

i=3

(vi − v1)bi+
-

=
1

v2 − v1
*
,

N∑
i=1

bi − v1

N∑
i=1

bivi −

N∑
i=3

bivi +

N∑
i=3

v1bi+
-

=
1

v2 − v1
(b1v1 + b2v2 − (v1b1 + v1b2)) = b2,

which completes the proof.

Remark 3.6.1. Due to our two-step solution method proven in Proposition 3.3.5, finding
an f-efficient holding matrix Q∗ ∈ RK×N is equivalent to solving the linear system

*............
,

1>K 0 · · · 0

0 1>K
. . .

...
...

. . .
. . . 0

0 · · · 0 1>K
IK IK · · · IK

v1IK v2IK · · · vN IK

+////////////
-︸                              ︷︷                              ︸

=:F∈R2K+N×KN

vec(Q∗) =
*..
,

b
q
y∗

+//
-
, (3.25)

where vec(Q∗) ∈ RK N denotes the vectorized version of the matrix Q∗, obtained by
stacking its columns on top of one another. The null space corresponding to the matrix
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F is spanned by the (K − 1)(N − 2) column vectors of the matrix (w.l.o.g. v1 , v2, cf.
Assumption 3.3.3)

O :=

*..............
,

v2−v3
v2−v1

(
−1>K−1
IK−1

)
v2−v4
v2−v1

(
−1>K−1
IK−1

)
· · ·

v2−vN
v2−v1

(
−1>K−1
IK−1

)
v3−v1
v2−v1

(
−1>K−1
IK−1

)
v4−v1
v2−v1

(
−1>K−1
IK−1

)
· · ·

vN−v1
v2−v1

(
−1>K−1
IK−1

)( 1>K−1
−IK−1

)
0K×K−1 · · · 0K×K−1

0K×K−1
( 1>K−1
−IK−1

) . . .
...

...
. . .

. . . 0K×K−1

0K×K−1 · · · 0K×K−1
( 1>K−1
−IK−1

)

+//////////////
-

∈ RK N×(K−1)(N−2) .

(3.26)
The fact that the linearly independent column vectors of O lie in the null space of F is
easily checked via direct calculation; the fact that the dimension of the null space is equal
to (K−1)(N−2) follows from a rank-nullity argument given in the proof of Theorem 3.3.9
b) below. Hence, we are able to fully characterize the set of f-efficient holding matrices
as



Q∗ ∈ RK×N | vec(Q∗) = vec(Qp) +

(K−1)(N−2)∑
j=1

λ jCj (O), λ1, . . . , λ (K−1)(N−2) ∈ R


,

with particular solution Qp as defined in (3.24) and where Cj (O) denotes the j-th column
vector of the null space matrix O, j = 1, . . . , (K − 1)(N − 2).

3.6.2.4 Proof of Theorem 3.3.9

a) The existence of an f-efficient holding matrix for every N,K ≥ 2 directly follows
from Propositions 3.3.8 and 3.3.5. Let y∗ = b>v

1>K z z, the solution of the aggregate

problem (3.14) derived in Lemma 3.3.6 with z = G−11K . The mean squared devia-
tion under an f-efficient holding matrix Q∗ is given by:

MSD(Q∗) = (Q∗v)>G(Q∗v) = (y∗)>Gy∗

=
(b>v)2

(1>K z)2
z>Gz =

(b>v)2

(1>K z)2
z>GG−11K

=
(b>v)2

(1>K z)2
(z>1K ) =

(b>v)2

1>K z
=

(b>v)2

1>KG
−11K

.

b) As outlined above in Remark 3.6.1, finding an f-efficient holding matrix Q∗ ∈ RK×N

is equivalent to solving the linear system (3.25). We have the following result: The
rank of the matrix F is equal to 2K + N − 2. This can be proven via standard
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Gaussian elimination. First, resorting the rows of F and adding the new first K
rows multiplied by −v1 to the second K rows yields

*............
,

IK IK · · · IK

v1IK v2IK · · · vN IK

1>K 0 · · · 0

0 1>K
. . .

...
...

. . .
. . . 0

0 · · · 0 1>K

+////////////
-

→

*............
,

IK IK · · · IK

0K×K (v2 − v1)IK · · · (vN − v1)IK

1>K 0 · · · 0

0 1>K
. . .

...
...

. . .
. . . 0

0 · · · 0 1>K

+////////////
-

.

Numbering the rows in this last matrix as r1, . . . ,r2K+N , we observe:

r2K+1 =

K∑
i=1

ri −

2K+N∑
i=2K+2

ri

and

r2K+2 =
1

v2 − v1
*
,

2K∑
i=K+1

ri −

2K+N∑
i=2K+3

(vi−2K − v1)ri+
-
,

where, as above, w.l.o.g. v2 , v1 (cf. Assumption 3.3.3). Hence, these two rows
can be eliminated from the matrix yielding the row-echelon form:

*..................
,

IK IK IK IK · · · IK

0K×K (v2 − v1)IK (v3 − v1)IK (v4 − v1)IK · · · (vN − v1)IK

0>K 0>K · · · 0>K
0>K 0>K · · · 0>K
0>K 0>K 1>K 0 · · · 0

0 · · · 0 1>K
. . .

...
...

. . .
...

. . .
. . . 0

0 · · · 0 · · · 0 1>K

+//////////////////
-

,

which shows that the matrix F possesses the rank 2K + N − 2. The rank-nullity
theorem now gives rise to the dimension of the null space (a basis is given by the
column vectors of the matrix O in Remark 3.6.1 above):

K N = rank(F) + null(F) ⇒ null(F) = K N − (2K + N − 2) = (N − 2)(K − 1),

and, hence, the dimension of the null space is zero, i.e., the solution Qp stated in
the proof of Proposition 3.3.8 is unique, if and only if either K = 1 or N = 2; i.e.,
if we additionally assume that K ≥ 2, then this is equivalent to N = 2. Finally, the
formula for QN=2 directly follows from the definition of Qp in (3.24).
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3.6.2.5 Proof of Theorem 3.3.10

Recall that Qdiversified = 1
T qb> = 1

1>K q qb>. Thus, it holds that

y∗ = Qdiversifiedv

⇔
b>v
1>K z
· z =

1
1>K q

q(b>v)

b>v,0
⇔

1
1>K z

z =
1

1>K q
q,

i.e., if and only if q and z = G−11K are linearly dependent.

3.6.2.6 Proof of Corollary 3.3.11

• For the proof of statements a) and c), we first observe that if q1 = . . . = qK , then

1
1>K z

z =
1

1>K q
q ⇔

1
1>K z

z =
1

q1 · K
q1 · 1K

⇔ z =
1
K
· 1K1>K z ⇔ K · z = (1K1>K )z,

i.e., that z is an eigenvector to the eigenvalue K of the all-one matrix 1K×K = 1K1>K .
This eigenvector is given as z = c · 1K for a constant c ∈ R. Hence, zk = z` for
all k, ` = 1, . . . ,K is equivalent to Qdiversified being f-efficient under the assumption
that q1 = . . . = qK .

To prove part a), we now set σ2
1 = . . . = σ2

K . According to the proof of Lemma
3.3.6, the vector z is in this situation given by

z = G−11K =
1
σ2

1

· 1K −

( 1
σ2

1
)2 · µ>1K

1 + 1
σ2

1 ·µ
>µ

· µ.

This means that the condition zk = z` for all k, ` = 1, . . . ,K is equivalent to

zk =
1
σ2

1

−

( 1
σ2

1
)2 ·

∑K
j=1 µ j

1 + 1
σ2

1
·
∑K

j=1 µ
2
j

· µk
!
=

1
σ2

1

−

( 1
σ2

1
)2 ·

∑K
j=1 µ j

1 + 1
σ2

1
·
∑K

j=1 µ
2
j

· µ` = z`

⇔

( 1
σ2

1
)2 ·

∑K
j=1 µ j

1 + 1
σ2

1
·
∑K

j=1 µ
2
j

· µk =

( 1
σ2

1
)2 ·

∑K
j=1 µ j

1 + 1
σ2

1
·
∑K

j=1 µ
2
j

· µ`

⇔ (
∑K

j=1
µ j ) · µk = (

∑K

j=1
µ j ) · µ`,
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for all k, ` = 1, . . . ,K , i.e., µk = µ` or
∑K

j=1 µ j = 0. Hence, if µ1 = . . . = µK−1 and
µK = µ1 + ε, then, finally, Qdiversified being f-efficient is equivalent to either ε = 0,
yielding µk = µ` for all k, ` = 1, . . . ,K , or ε = −K µ1, yielding

∑K
j=1 µ j = 0.

To prove part c), we set µ1 = . . . = µK , which (see the proof of Lemma 3.3.6) leads
to the vector z given as:

z = G−11K =
1
σ2 −

µ2
1 · (

1
σ2 )>1K

1 + µ2
1 · (

1
σ2 )>1K

·
1
σ2 .

Thus, the condition zk = z` for all k, ` = 1, . . . ,K reads as

zk =
*..
,
1 −

µ2
1 ·

∑K
j=1

1
σ2

j

1 + µ2
1 ·

∑K
j=1

1
σ2

j

+//
-

1
σ2

k

!
=

*..
,
1 −

µ2
1 ·

∑K
j=1

1
σ2

j

1 + µ2
1 ·

∑K
j=1

1
σ2

j

+//
-

1
σ2
`

= z`

⇔ σ2
k = σ2

`

for all k, ` = 1, . . . ,K . Hence, if σ1 = . . . = σK−1 and σK = σ1 + ε, this condition
is fulfilled if and only if ε = 0.

• For the remaining proof of part b), observe that if µ1 = . . . = µK and σ2
1 = . . . =

σ2
K , then

z = G−11K =
1
σ2

1

· 1K −

( µ1

σ2
1
)2 · K

1 +
µ2

1
σ2

1
K
· 1K ,

in particular: z1 = . . . = zK . Hence:

1
1>K z

z =
1

1>K q
q ⇔

1
z1 · K

z1 · 1K =
1

1>K q
q

⇔ 1K1>K q = K · q

which is equivalent to q being an eigenvector to the eigenvalue K of the all-one
matrix 1K×K = 1K1>K , i.e., q1 = . . . = qK . Hence, if q1 = . . . = qK−1 and qK =

q1 + ε, this condition is equivalent to ε = 0, which completes the proof.
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3.6.3 Proofs of Section 3.4

3.6.3.1 Proof of Lemma 3.4.1

First, we derive the explicit formulas for Q2×2
1,1 and d(Q2×2) in the special case N = K = 2,

q1 = q2 = b1 = b2 = x. Note that, here, the unique f-efficient holding matrix is given by

Q2×2 =
1

v2 − v1
*
,

v2q1 − y∗1 y∗1 − v1q1

v2q2 − y∗2 y∗2 − v1q2

+
-

=
x

(v2 − v1)(z1 + z2)
*
,

v2z2 − v1z1 v2z1 − v1z2

v2z1 − v1z2 v2z2 − v1z1

+
-
,

due to y∗ = x · v1+v2
z1+z2

· z. Since, Qdiversified = x
2 · 12×2, it holds that

Q2×2
1,1 − Qdiversified

1,1 = x ·
2v2z2 − 2v1z1 − (v2 − v1)(z1 + z2)

2(v2 − v1)(z1 + z2)

= x ·
v2z2 − v1z1 − v2z1 + v1z2

2(v2 − v1)(z1 + z2)

= x ·
(z2 − z1)(v1 + v2)

2(v2 − v1)(z1 + z2)
= Q2×2

2,2 − Qdiversified
2,2 ,

and

Q2×2
1,2 − Qdiversified

1,2 = x ·
2v2z1 − 2v1z2 − (v2 − v1)(z1 + z2)

2(v2 − v1)(z1 + z2)

= x ·
v2z1 − v1z2 + v1z1 − v2z2

2(v2 − v1)(z1 + z2)

= x ·
(z1 − z2)(v1 + v2)

2(v2 − v1)(z1 + z2)
= Q2×2

2,1 − Qdiversified
2,1 .

Hence,

d(Q2×2) = ‖Q2×2 − Qdiversified‖F =

√
4 · x2 ·

(z1 − z2)2(v1 + v2)2

4(v2 − v1)2(z1 + z2)2

= x ·

√
(z1 − z2)2(v1 + v2)2

(v2 − v1)2(z1 + z2)2 . (3.27)

Moreover, a direct calculation of z = G−11K in the 2-by-2-case shows that

Q2×2
1,1 = x ·

v2(µ2
1 + σ2

1 − µ1µ2) − v1(µ2
2 + σ2

2 − µ1µ2)

(v2 − v1)(µ2
1 + µ2

2 − 2µ1µ2 + σ2
1 + σ2

2)
, (3.28)

and that

d(Q2×2) = x ·

√√
(µ2

1 − µ
2
2 + σ2

1 − σ
2
2)2(v1 + v2)2

(v2 − v1)2(µ2
1 + µ2

2 − 2µ1µ2 + σ2
1 + σ2

2)2
. (3.29)
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a) Under the conditions q1 = q2 = x and µ1 = µ2, it holds that d(Q2×2) = 0 as a
function of σ1, if and only if σ2

1 = σ2
2 (cf. Corollary 3.3.11) and it is strictly positive

everywhere else. Hence, we can equivalently analyze the monotonicity behavior of
d(Q2×2)2. According to (3.29), its derivative with respect to σ1 is given by

∂

∂σ1
d(Q2×2)2 =

8σ1σ
2
2 (σ2

1 − σ
2
2)(v1 + v2)2x2

(σ2
1 + σ2

2)3(v1 − v2)2




< 0, if σ2
1 < σ2

2,

= 0, if σ2
1 = σ2

2,

> 0, if σ2
1 > σ2

2,

for σ1 > 0 under the given assumptions, which proves the statement.

b) Now assume x > 0 and v2 > v1 > 0. The derivative of (3.28) with respect to σ1 is
given by

∂Q2×2
1,1

∂σ1
= x ·

2σ1(µ2
2 + σ2

2 − µ1µ2)(v1 + v2)

(v2 − v1)(µ2
1 + µ2

2 − 2µ1µ2 + σ2
1 + σ2

2)2

µ1=µ2
= x ·

2σ1σ
2
2 (v1 + v2)

(σ2
1 + σ2

2)2(v2 − v1)
> 0,

for σ1 > 0 under the given assumptions.

3.6.3.2 Proof of Lemma 3.4.2

a) As in the proof of Lemma 3.4.1, d(Q2×2) as a function of µ2 is non-negative and,
under the given assumptions, strictly positive except for the case µ2 = µ1 (cf. Corol-
lary 3.3.11). Hence, we can again equivalently analyze the monotonicity behavior
of the squared distance d(Q2×2)2. Its derivative with respect to µ2 is given by

∂

∂µ2
d(Q2×2)2

= x2 ·
4(µ2

1 − µ
2
2 + σ2

1 − σ
2
2)(−2µ2σ

2
1 + µ1(µ2

1 + µ2
2 − 2µ1µ2 + σ2

1 − σ
2
2))(v1 + v2)2

(µ2
1 − 2µ1µ2 + µ2

2 + σ2
1 + σ2

2)3(v2 − v1)2

σ2
1=σ2

2, µ1=0
= x2 ·

8µ3
2σ

2
1 (v1 + v2)2

(µ2
2 + 2σ2

1)3(v2 − v1)2




< 0, if µ2 < 0,

= 0, if µ2 = 0,

> 0, if µ2 > 0,

which proves the lemma.
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b) The derivative of (3.28) with respect to µ2 is given by

∂

∂µ2
Q2×2

1,1 = x ·
(−2µ2σ

2
1 + µ1(µ2

1 + µ2
2 − 2µ1µ2 + σ2

1 − σ
2
2))(v1 + v2)

(µ2
1 + µ2

2 − 2µ1µ2 + σ2
1 + σ2

2)2(v2 − v1)

σ2
1=σ2

2 ,µ1=0
= x ·

−2µ2σ
2
1 (v1 + v2)

(µ2
2 + 2σ2

1)2(v2 − v1)




> 0, if µ2 < 0,

= 0, if µ2 = 0,

< 0, if µ2 > 0,

under the assumptions v2 > v1 > 0, x > 0, σ2
1 = σ2

2, and µ1 = 0.

3.6.3.3 Proof of Lemma 3.4.3

The derivative of (3.27) with respect to v2 is given as

∂

∂v2
d(Q2×2) = x ·

2v1

(v1 + v2)(v1 − v2)
·

√
(v1 + v2)2(z1 − z2)2

(v2 − v1)2(z1 + z2)2 .

Under the given assumptions x,v1 > 0, |z1 | , |z2 |, and v2 , v1, this term is strictly
positive for v2 > 0, if v2 < v1 and strictly negative if v2 > v1. This is the statement of the
lemma.

3.7 Appendix: Non-Uniqueness of Asset Holdings

We provide an example to show how the interplay between systemic significance and asset
riskiness influences the structure of f-efficient holdings. We also discuss the intuition
behind the non-uniqueness of holdings when we move from an economy with N = 2
banks to one with N > 2 banks. Consider an economy with N = 3 banks and K =

3 assets, where we normalize the total supply of assets within the banking sector and
budgets of banks to q1 = q2 = q3 = b1 = b2 = b3 = x with x := 0.08. The total supply
of each asset is normalized to 1. Asset 1 constitutes the least and asset 3 the most risky
asset: µ = (0,0,0)> and σ2 = (0.15,0.2,0.3)>. The three banks are different in their
systemic significance parameters v = (0.15,0.1,0.05)>, i.e., bank 1 is the most and bank
3 the least significant to the system. According to Theorem 3.3.9 b), f-efficient holdings
in this financial system are not unique. Every f-efficient holding matrix is of the form

Q∗1 + λ1
*..
,

1 −2 1
−1 2 −1
0 0 0

+//
-

+ λ2
*..
,

1 −2 1
0 0 0
−1 2 −1

+//
-
, λ1, λ2 ∈ R, (3.30)
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where

Q∗1 = x ·
*...
,

2
3

1
3 0

1
3

1
3

1
3

0 1
3

2
3

+///
-

is a particular solution: the f-efficient holding matrix with the smallest Frobenius distance
to fully diversified holdings Qdiversified = x · 1

3 · 13×3. Hence, Q∗1 represents a lower bound
on how far holdings need to move away from the classical diversification benchmark in
order to become f-efficient. Setting λ1 = x · 1/3 and λ2 = −x · 1/6 in equation (3.30), we
obtain a second particular solution:

Q∗2 = x ·
*...
,

5
6 0 1

6

0 1 0
1
6 0 5

6

+///
-

,

which represents those f-efficient holdings with the smallest distance to a fully diverse
holding matrix Qdiverse = x · I3. Note, first, that this type of diverse holdings are only
defined in the case N = K . Second, observe that holdings with the smallest distance to
diversity do not maximize the distance to diversification.14

The example provides the following insights:

• In both Q∗1 and Q∗2, the most risky asset 3 is held in the largest proportion by the
least systemically significant bank 3. Conversely, the least risky asset 1 is held in
the largest proportion by the most significant bank 1.

This can be generalized as follows: For every f-efficient holding matrix (see (3.30)),
the holdings of the most significant bank 1 in the least risky asset 1 (x ·2/3+λ1+λ2)
are larger than the holdings of the least significant bank 3 in this asset (λ1 + λ2).
Conversely, for every f-efficient matrix, the holdings of the least significant bank 3
in the most risky asset 3 (x · 2/3− λ2) are larger than bank 1’s holdings in this asset
(−λ2).

• Note that the null space in Equation (3.30) is equivalently written as (cf. Remark
3.6.1 in Appendix 3.6):

λ1

(
−(v2−v3) v1−v3 −(v1−v2)
v2−v3 −(v1−v3) v1−v2

0 0 0

)
+ λ2

(
−(v2−v3) v1−v3 −(v1−v2)

0 0 0
v2−v3 −(v1−v3) v1−v2

)
for λ1, λ2 ∈ R. Hence, any transfer between two assets in each bank’s holdings that
is done somewhat proportionally to the differences between the systemic signifi-
cances (of the other two banks) does not alter the mean squared deviation. This is

14Since λ1, λ2 in formula (3.30) are unbounded, the distance to diversification within the set of f-efficient
holdings is unbounded.
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the reason for the uniqueness criterion we found: If there are only two banks in the
system, there simply are no “other two banks”and thus there are no transfers which
are neutral with respect to the mean squared deviation.

3.8 Appendix: f-Efficient Liquidation Strategies

3.8.1 General Derivation

We want to minimize the mean squared deviation (3.11) as a function of

α =
(
α1 | · · · | αN

)
∈ RK×N , for αi ∈ RK with 1>Kα

i = 1 and αi ≥ 0K , i = 1, . . . ,N.

Thus, each bank i is allowed to choose its own personal liquidation strategy αi and we do
not allow for short-selling. In the following lemma, we rewrite the minimization problem
as a function of

vec(α) := (α1>, . . . ,αN>)> ∈ RK N ,

i.e., vec(α) denotes the vectorization of the matrix α.

Lemma 3.8.1. Minimizing the mean squared deviation as a function of the liquidation
strategy matrix α with α ≥ 0 is equivalent to the following problem:

min
vec(α)∈RKN

1
2 vec(α)>(C ⊗ Qtot

γ◦Qnb
0

( Qtot
γ◦Qnb

0
)>)vec(α) (G)

s.t.
*...
,

1>K 0
. . .

0 1>K

+///
-

vec(α) = 1N , vec(α) ≥ 0K N ,

where C = (Ci j )i,j=1,...,N ∈ R
N×N with

Ci j := 2(QDiag(κ)ei)>(µµ> + Diag(σ2))(QDiag(κ)e j ),

ei ∈ RN denotes the i’th basis vector (i.e., ei
j = 1 for j = i and zero, otherwise), and ⊗

denotes the Kronecker product15.

15For two matrices A ∈ RM×N ,B ∈ RP×R , the Kronecker product is defined by multiplying every entry of
the matrix A by the entire matrix B, i.e.,

A ⊗ B :=
*...
,

A11B · · · A1NB
...

. . .
...

AM1B · · · AMNB

+///
-

∈ RMP×NR .



3.8 Appendix: f-Efficient Liquidation Strategies 91

Proof. It holds that QDiag(κ)α> Qtot
γ◦Qnb

0
= QDiag(κ) · (

N∑
i=1

(αi> Qtot
γ◦Qnb

0
)ei). Inserting this

expression into formula (3.11) yields

MSD(α1, . . . ,αN ) =

*
,
(

N∑
i=1

(αi> Qtot
γ◦Qnb

0
))QDiag(κ)ei+

-

>

(µµ> + Diag(σ2)) *.
,
(

N∑
j=1

(α j> Qtot
γ◦Qnb

0
))QDiag(κ)e j+/

-

=

N∑
i=1

N∑
j=1

(
(αi> Qtot

γ◦Qnb
0

)QDiag(κ)ei
)>

(µµ> + Diag(σ2))
(
(α j> Qtot

γ◦Qnb
0

)QDiag(κ)e j
)

=

N∑
i=1

N∑
j=1

αi> Qtot
γ◦Qnb

0
( Qtot
γ◦Qnb

0
)>α j (QDiag(κ)ei)>(µµ> + Diag(σ2))(QDiag(κ)e j )

=
1
2

N∑
i=1

N∑
j=1

αi>(Ci j ·
Qtot
γ◦Qnb

0
( Qtot
γ◦Qnb

0
)>)α j .

This proves the formula for the objective function. The linear constraint follows from
1>Kα

i = 1 for all i = 1, . . . ,N . �

The following proposition now provides a locally f-efficient liquidation strategy. Its
interpretation is given in Remark 3.8.3.

Proposition 3.8.2. Let m := maxk∈{1,...,K }
γkQk,nb

0
Qk

tot
denote the maximum entry in the vector

γ◦Qnb
0

Qtot
and denote by

km = {k ∈ {1, . . . ,K } |
γkQk,nb

0
Qk

tot
= m}

the corresponding index set with cardinality #km. For every fixed Q ∈ RK×N , a local
minimizer of the mean squared deviation as a function of the liquidation strategy matrix
is given by the matrix α∗ which is defined by its columns:

αik∗ :=



1
#km

, if k ∈ km,

0, otherwise,
(k = 1, . . . ,K, i = 1, . . . ,N ).

Proof. It is easily checked that the triplet (vec(α∗), λ∗, s∗), defined as follows, solves the
KKT conditions belonging to the optimization problem (G): vec(α∗) = (α1∗>, . . . ,αN ∗>)>

as defined in Proposition 3.8.2, λ∗ = (λ∗1, . . . , λ
∗
N ) ∈ RN , and s∗ = (s1∗, . . . , sN ∗) ∈ RK N ,

where

λ∗i =

∑N
j=1 Ci j

m2 , si∗ =

∑N
j=1 Ci j

m ( Qtot
γ◦Qnb

0
− 1

m 1K ), for all i = 1, . . . ,N.
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Next, we need to check f-efficiency. Let gik (α) := −αik and hi (α) :=
∑K

k=1 α
ik − 1

describe the non-negativity and linear conditions of the optimization problem (G), i.e., the
conditions translate into gik (α) ≤ 0 and hi (α) = 0 for all i = 1, . . . ,N and k = 1, . . . ,K .
Let d = (d>1 , . . . ,d

>
N ) ∈ RK N , where di ∈ R

K for all i = 1, . . . ,N and define

F (α) := {d , 0 | ∇gik (α)>d



= 0, k < km

≤ 0, k ∈ km ,
and ∇hi (α)>d = 0, ∀i ∈ {1, . . . ,N }, ∀k ∈ {1, . . . ,K }}.

Applying the second order sufficiency conditions (cf. Theorem 5.2 in Freund (2016)),
the KKT point (vec(α∗), λ∗, s∗) constitutes a local minimum if for all d ∈ F (α∗) it holds
that d>(C ⊗ ( Qtot

γ◦Qnb
0

)( Qtot
γ◦Qnb

0
)>)d > 0. We have

F (α) = {d , 0 | dik




= 0, k < km

≥ 0, k ∈ km ,
and

K∑
k=1

dik = 0, ∀i ∈ {1, . . . ,N }} = ∅

for all α and, hence, the second order sufficiency condition is always fulfilled. Thus,
(vec(α∗), λ∗, s∗) constitutes a local minimum. �

Remark 3.8.3. • Note that we may characterize liquidity of asset k by its product
of elasticity and supply in the nonbanking sector weighted by total supply, i.e., by
γk · Q

k,nb
0 /Qk

tot. Proposition 3.8.2 thus shows that the f-efficient liquidation strategy
of banks is given by selling solely the most liquid asset. We will refer to this f-
efficient strategy as the most-liquid-strategy.

• Note that the most-liquid-strategy depends on (the row sums of) the holding matrix
Q since it holds that Qk,nb

0 = 1 −
∑N

i=1 Qki for all assets k = 1, . . . ,K .

• In the special case that we ex ante assume that all banks follow the same liquidation
strategy, the most-liquid-strategy even constitutes a global minimizer of the mean
squared deviation. This example is analyzed in Appendix 3.8.2.

3.8.2 Liquidation Strategy Example

In this case study, we ex ante assume that all banks act homogeneously in that they liq-
uidate their portfolios in the exact same way. This assumption leads to the following
structure of the liquidation strategy matrix:

α =
(
α̃ | · · · | α̃

)
,

for a vector α̃ ∈ RK , with 1>α̃ = 1, specifying the banks’ liquidation of each asset. For
the mean squared deviation, this leads to the equation

MSD(α̃,Q) = (α̃> Qtot
γ◦Qnb

0
)2 · (Qκ)>(µµ> + Diag(σ2))(Qκ).
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For a fixed given holding matrix Q, we define an f-efficient bank-independent liquidation
strategy α̃ as a minimizer of MSD(·,Q) over all α̃ ∈ RK

≥0 with 1>α̃ = 1. We have the
following result.

Proposition 3.8.4. For every fixed Q ∈ RK×N , the most-liquid-strategy constitutes a glob-
ally f-efficient bank-independent liquidation strategy.

Proof. Minimizing MSD(α̃,Q) for a fixed Q over all α̃ ∈ RK
≥0 with 1>α̃ = 1 is equivalent

to

min
α̃∈RK

1
2 α̃
> Qtot
γ◦Qnb

0
( Qtot
γ◦Qnb

0
)>α̃

s.t. 1>α̃ = 1, α̃ ≥ 0. (BI)

The KKT conditions for this optimization problem read

1>α̃ = 1, Qtot
γ◦Qnb

0
( Qtot
γ◦Qnb

0
)>α̃ − λ1 − s = 0, α̃ ≥ 0, s ≥ 0, α̃k sk = 0, (k = 1, . . . ,K ).

Let m, km, and #km be defined as in Proposition 3.8.2. Direct calculation shows that a
solution to the KKT conditions is given by (α̃∗, λ∗, s∗) defined through

α̃∗k :=



1
#km

, if k ∈ km,

0, otherwise.
, (k = 1, . . . ,K ), λ∗ := 1

m2 , s∗ := 1
m ( Qtot

γ◦Qnb
0
− 1

m 1).

(BI) possesses a convex domain, linear constraints, and a convex objective function, be-
cause Qtot

γ◦Qnb
0

( Qtot
γ◦Qnb

0
)> is positive semidefinite. Hence, α̃∗ constitutes a global minimizer of

(BI). �

3.9 Appendix: Majorization and Diversity vs. Diversification

In this section, we firstly provide an alternative direct proof for Corollary 3.3.11 using the
concept of matrix majorization. Secondly, this concept enables us to illustrate the relation
between f-efficiency and diversity vs. diversification for the case of homogeneous asset
shocks and budget constraints.

We start with recapitulating a few basic definitions and results from vector and matrix
majorization theory.

For x ∈ RN , let x↓ denote the vector obtained by rearranging the components of x in
decreasing order. Given two vectors x, y ∈ RN , we say that x (vector-)majorizes y, in
symbols x �ϑ y, if

k∑
j=1

x↓j ≥
k∑

j=1

y↓j , k = 1, . . . ,N − 1 and
N∑

j=1

x j =

N∑
j=1

y j .
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There are many different characterizations of vector majorization in the literature. We
need the following (see, e.g., Martínez Pería et al. (2005) and Bhatia (2013)).

Theorem 3.9.1. For x, y ∈ RN , the following statements are equivalent:

(i) x �ϑ y;

(ii) There exists a doubly stochastic matrix D ∈ RN×N such that y = Dx;

(iii) For every convex symmetric function f : RN → R, we have f (x) ≥ f (y).

A matrix A ∈ RN×M is defined to (matrix-)majorize a matrix B ∈ RN×M , in symbols
A � B, if there exists a doubly stochastic matrix D ∈ RN×N such that DA = B. An im-
portant relation between matrix and vector majorization is given in the following corollary
which is a direct consequence of Theorem 3.9.1 (ii).

Corollary 3.9.2. Let A,B ∈ RN×M . If A � B, then for all vectors v ∈ RM it holds that
Av �ϑ Bv.

As the last ingredient for our alternative proof of Corollary 3.3.11, we need the follow-
ing lemma.

Lemma 3.9.3. If q1 = . . . = qK , then for every Q ∈ D, it holds that Q � Qdiversified.

Proof. Let Q ∈ D and set A := 1
K 1K×K ∈ R

K×K . Then it holds that

AQ = 1
K

*...
,

1>KQ
...

1>KQ

+///
-

= 1
K

*...
,

b>
...

b>

+///
-

= Qdiversified,

in the case that q1 = . . . = qK . Since A is obviously doubly stochastic, it follows that
Q � Qdiversified. �

This shows that diversification constitutes a minimal element with respect to the matrix
majorization preorder within the set of allocations that satisfy our budget and homoge-
neous supply constraints. Now we are able to give the alternative proof for the following
particular statement of Corollary 3.3.11.

Proposition 3.9.4. If q1 = . . . = qK , µ1 = . . . = µK , and σ2
1 = . . . = σ2

K , i.e., all assets
are homogeneous in their supplies and shock distributions, then Qdiversified is f-efficient.

Proof. We define the function f MSD : RN → R through f MSD (x) := x>(µµ>+Diag(σ2))x
for x ∈ RN . It has the following two properties: First, it is convex since µµ>+Diag(σ2) is
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positive definite. Second, in the case of homogeneous asset shocks, i.e., if µ1 = . . . = µK

and σ2
1 = . . . = σ2

K , f MSD is also symmetric. Thus, we can write the mean squared devi-
ation as a convex, symmetric function of Qv with v ∈ RN being the systemic significance
vector:

MSD(Q) = (QDiag(κ)α>( Qtot
γ◦(Qtot−q) ))>(µµ> + Diag(σ2))QDiag(κ)α>( Qtot

γ◦(Qtot−q) )

= f MSD (Qv).

Successively using the majorization properties Corollary 3.9.2 and Theorem 3.9.1 (iii), it
follows that

Q � Q′ ⇒ (∀x ∈ RN : Qx �ϑ Q′x) ⇒ Qv �ϑ Q′v

⇒ f MSD (Qv) ≥ f MSD (Q′v) ⇒ MSD(Q) ≥ MSD(Q′).

This shows that the mean squared deviation preserves the matrix majorization preorder.
Hence, its minimal element Qdiversified (cf. Lemma 3.9.3) minimizes the mean squared
deviation over all holding matrices satisfying our budget and homogeneous supply con-
straints. �

Lastly, we study the relation between matrix majorization and the two dimensions of di-
versity vs. diversification and analyze their impact on f-efficiency. The concept of matrix
majorization enables a comparison between holding matrices along these two dimensions.
While, according to Lemma 3.9.3, diversification represents a minimal element within the
considered set of allocations with respect to matrix majorization, we will now show that
diversity constitutes a maximal element.

We define a situation of full diversity for the special case b1 = . . . = bN = q1 = . . . =

qK =: x (yielding K = N) via a matrix Qdiverse := x · P, where P ∈ {0,1}K×K denotes
an arbitrary K × K permutation matrix. Hence, the matrix Qdiverse describes a situation
in which each bank possesses holdings in exactly one asset with no overlapping asset
portfolios: all banks are fully diverse, but not at all diversified across assets. We have the
following result.

Lemma 3.9.5. If q1 = . . . = qK = b1 = . . . = bN =: x, then for every non-negative
Q ∈ D, it holds that Qdiverse � Q.

Proof. Let Q ∈ D be non-negative and set A := 1
x QP−1. Then it holds that

AQdiverse = 1
x · QP−1 · x · P = Q.

Since A is doubly stochastic due to Q ∈ D, it follows that Qdiverse � Q. �



96 3 Market Efficient Portfolios in a Systemic Economy

For homogeneous asset shocks and budget constraints, exploiting the monotonicity of
the mean squared deviation with respect to matrix majorization (shown in the proof of
Proposition 3.9.4 above), full diversification thus minimizes and full diversity maximizes
the mean squared deviation over all non-negative holding matrices in D. This reveals a
monotonicity result: The more evenly distributed (or the less concentrated) the holdings
in such systems, the higher the f-efficiency.



4 Pricing of Cyber Insurance Contracts in a Network Model

The original version of this chapter was previously published in ASTIN Bulletin, 48(3):
1175–1218, 2018, see Fahrenwaldt, Weber, and Weske (2018). Reprinted with permission
(© ASTIN Bulletin 2018).

Cyber risk has evolved as a major threat to businesses. For instance, Lloyd’s of London
estimates that the total extent of cyber attacks to businesses worldwide comprises losses
of USD 400 billion a year (Gandel (2015)). In addition, the size of exposure to cyber risks
might significantly grow in our interconnected world. Although companies seem aware of
these threats, recent studies find that relatively few firms have yet built a formal cyber risk
management system (Swiss Re/IBM (2016)). Their management of cyber risks consists
mostly of ad-hoc self-protection mechanisms such as firewalls and anti-virus software, but
very few perform regular cyber risk assessments and possess risk management programs
that integrate cyber risk on an institutional level.

Cyber damage may occur accidentally, but might also be purposely caused. As de-
scribed in Swiss Re/IBM (2016), costs “are no longer confined to coping with lost, stolen
or corrupted data, but increasingly include potential damage to a firm’s property and rep-
utation, and also the cost associated with business interruption or severe disruption to
critical infrastructure”. Even if future risk management strategies were able to actively
improve protection against the occurrence or impact of cyber events, some residual cyber
risks would remain that require insurance solutions.

From an actuarial point of view, cyber risk is challenging in three ways. First, data is not
available in the required amount or in the desired granularity to apply standard statistical
methods. Second, technology and cyber threats are evolving fast; the cyber environment
is highly non-stationary. Third, infectious cyber threats pose a large accumulation risk
to an insurance company. The typical insurance independence assumption does not hold
and, moreover, there is no geographical distinction between dependent groups as there
is, for example, for natural catastrophes. This requires new mathematical models that
capture the dependence structure of cyber networks in an appropriate way (see also Swiss
Re Institute (2017)).

This is the aim of the present chapter. Causes and channels for cyber losses are diverse.

97
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While an insider attack might cause substantial damage to a particular firm, it might not
affect other firms. However, if the originally attacked firm is part of a larger network
in which the operations of components depend on each other, consecutive and coupled
losses might occur. Another related example are worms, viruses and Trojans that spread
across data networks and facilitate attacks throughout the network. Our chapter focuses
on cyber threats in networks, i.e., infectious cyber threats.

From an insurance perspective, our main contributions are the following:

(i) To the best of our knowledge, we develop the first mathematical model of insured
losses generated by infectious cyber threats. Dependence is modeled as an undi-
rected network where each node could represent a firm, a system of computers or a
single device; each edge constitutes a possible transmission channel in a network.

(ii) We provide a new methodology to calculate expected aggregate losses of a (re-)
insurance company. Our method is applicable to a large variety of contract designs
including both linear and non-linear functions of the generated losses. The appli-
cation is illustrated in numerical examples. Thus, our approach can be used for
pricing decisions.

(iii) In numerical case studies, we analyze the role of the network topology. We find
that the insured network structure has a significant impact on the generated losses.
This illustrates that the topology of the network is a key ingredient for the pricing
of cyber insurance contracts and for cyber risk management in general.

Our model consists of two parts: a stochastic process that captures cyber infections, and
a mechanism that randomly generates the actual claims at the infected nodes. To model
the claims, we introduce a marked point process. This is in spirit of the collective risk
model of insurance (see, e.g., Burnecki et al. (2011)). In contrast to the standard setting,
the claims in our model depend on the spread of the cyber threat. The cyber infections are
modeled by a susceptible-infected-susceptible (SIS) network process (see, e.g., Section
V. in Pastor-Satorras et al. (2015)). For a network of size N , this approach results in a
continuous-time Markov chain with a very large state space of size 2N . In order to cope
with the resulting computational challenges, we develop a tractable mean-field approxi-
mation for the Markov process. Approximations of its moments are derived as solutions
to systems of ordinary differential equations (ODEs) (see, e.g., Van Mieghem et al. (2009)
and Van Mieghem (2011)). Combining these solutions with our claim model finally yields
approximations of the expected insured losses. For this purpose, we develop a polyno-
mial approximation approach to evaluate general, possibly non-linear, claim functions.
In the context of SIS-processes we provide the following contributions to the theory of
mean-field approximations:



99

(i) We suggest a general and rigorous framework for mean-field approximations of the
moments of the spread process of arbitrary order n ≥ 1. We show that there are two
key ingredients defining the approximation: a mean-field function, and a splitting
algorithm.

(ii) We analyze two mean-field functions in detail that lead to different schemes: the
well-known independent approximation (also called NIMFA approximation, see
Van Mieghem et al. (2009)) and a new approximation type: the Hilbert approxima-
tion.

(iii) For the first order independent approximation, we derive a time-dependent accuracy
result.

(iv) For both approximation types, NIMFA and Hilbert, we provide splitting algorithms
and briefly address the question of splitting.

Literature

This chapter connects three different research areas: mathematical modeling of cyber
insurance, epidemics on networks, and marked point processes.

Cyber Insurance. The literature on mathematical cyber insurance modeling focuses
mainly on simple game-theoretic models. These consider, e.g., the following questions:
Does a cyber insurance market exist in equilibrium (Böhme (2005))? Does cyber insur-
ance affect the incentives to self-protection (Bolot and Lelarge (2008)), and how does it
influence social welfare (Schwartz and Sastry (2014))? A recent review of such game-
theoretic approaches can be found in the survey article Marotta et al. (2015). In contrast
to these papers, we model cyber insurance with the aim of simulating and evaluating
losses and pricing insurance contracts. To date, cyber loss models are mostly based on
deterministic scenarios (see Swiss Re Institute (2017)). In contrast, we derive a stochastic
model and develop suitable approximation techniques to explicitly calculate the losses.

Epidemic Models. We use the network-based susceptible-infected-susceptible (SIS)
model, also known as the contact process, to model the spread of the considered cyber
threat. This continuous time Markov chain has been extensively analyzed. A key topic in
the analysis is the long-term behavior of the system as a function of the model parameter
τ—the ratio of the infection to the curing rate. For networks of infinite size, both survival
and extinction of the considered threat can occur. For example, in the network Zk there
exists a critical value τc such that for τ ≤ τc, the infection dies out, while for τ > τc,
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the infection survives (cf. Liggett (1985) for the case k = 1, and Bezuidenhout and
Grimmett (1990) and Liggett (1999), Part I, Section 2, for k ≥ 1). For networks of finite
size, however, the infection will almost surely die out in finite time. This is due to the
presence of the absorbing healthy state in the Markov chain. Still, there is a different kind
of threshold behavior of the system: There exists a critical value for τ that determines
the behavior of the expected extinction time as a function of the network size N . Below
this critical value, the expected extinction time increases logarithmically for increasing
N ; above, it increases exponentially fast (see, e.g., Durrett and Liu (1988) for an analysis
of the chain graph {1, . . . ,N } and Mountford et al. (2016) for bounds on the expected
survival time for the homogeneous tree of bounded degree). For a recent survey paper,
including bounds in general graphs, we refer to Nowzari et al. (2016) (Theorems 4 and
5).

In our insurance application, we are mainly interested in the moments of the Marko-
vian spread process. These can be used to approximate expected losses and to compute
insurance premiums. Since the exact calculation of these moments requires the solution
of a system of 2N − 1 ordinary differential equations, we use a lower order mean-field
approximation in the sense of Van Mieghem et al. (2009). In contrast to the degree-based
mean-field approach (Pastor-Satorras and Vespignani (2001), Boguñá and Pastor-Satorras
(2002)) which builds on average degrees, this individual-based approach captures the
complete structure of the network. This enables us to analyze the influence of the network
topology on the spread of the infection and on insured losses.

Van Mieghem et al. (2009) derive a first order independent mean-field approximation
called NIMFA. We add an analysis of its accuracy. In contrast to earlier papers (such as
Van Mieghem and van de Bovenkamp (2015)), we provide a time-dependent accuracy
criterion that is able to qualitatively capture the behavior of the approximation error over
time, if the parameter τ is sufficiently small. For larger values of τ, however, we observe
that first order approximations may lead to substantial errors. In this case, we propose not
to use a first, but a higher order approximation.

The fact that the mean-field approximation approach can be generalized to higher or-
ders has already been noted previously; we refer to Cator and Van Mieghem (2012) for
a second order independent approximation with naive single split, to Mata and Ferreira
(2013) for a second order pair-approximation, and to (Pastor-Satorras et al., 2015, p.19)
for a recent review. The present chapter provides the first explicit derivation of a gen-
eral n-th order mean-field approximation, i.e., an approximation of the moments of the
spread process up to order n. We show that our n-th order mean-field approximation is
defined by two main ingredients: a mean-field function, and a splitting algorithm. Our
framework comprises the previous contributions Van Mieghem et al. (2009) and Cator
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and Van Mieghem (2012) as special cases. It is also more general than these papers and
enables us to introduce and analyze a new Hilbert approximation and splitting algorithms.

Marked Point Processes. To model the claims, we use a marked point process. A general
introduction to this type of processes as well as the main theoretical results can be found in
Jacod (1975), Brémaud (1981), and Last and Brandt (1995). Marked point processes have
been applied in many different areas such as credit risk modeling, see, e.g., Bielecki and
Rutkowski (2004), survival analysis, see, e.g., (Jacobsen, 2006, Chapter 8), and insurance
loss modeling, see, e.g., Burnecki et al. (2011). In this chapter, we build on the latter
approach; however, our loss process is additionally coupled with the underlying spread
process of the cyber infection. This captures the idea that only infected nodes may suffer
losses. A similar approach is used in Giesecke and Weber (2004) and Giesecke and Weber
(2006) in the context of liquidity and credit risk.

Outline

The chapter is organized as follows. Section 4.1 presents our exact loss model. Section
4.1.1 introduces the SIS Markov chain as a model of the infection process. Section 4.1.2
describes the marked point process that generates the claims at infected sites. A formula
for the expected aggregate losses of a reinsurer is derived. Section 4.2 explains different
approximations. Section 4.2.1 presents a polynomial approximation approach to evaluate
non-linear claim functions. Section 4.2.2 introduces mean-field approximations of the
moments of the spread process. We first analyze first order approximations and the cor-
responding ODE systems. Second, we define the general n-th order approximation and
its two key ingredients: the mean-field function, and the splitting algorithm. Section 4.3
illustrates in numerical case studies how the suggested approach may be applied to the
pricing of different insurance contracts. This allows to study the influence of the underly-
ing network topology. Section 4.4 concludes. All proofs can be found in an appendix.

4.1 Exact Loss Model

We consider a cyber threat that spreads via two consecutive channels. First, a vulnerability
is created by an infection in a given network of agents. More specifically, each agent (a
corporation, a system of computers, or a single device) is represented by a node in the
network; each edge constitutes a possible transmission channel of the cyber infection.
An edge could be a direct link between individual agents, or a link to a central server that
stores data or supplies users with software updates. Second, infected agents are vulnerable
to randomly occurring attacks, triggering losses of random size. For example, an infected
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computer may be attacked by collecting and abusing private information such as credit
card or banking information, or by disturbing operations on the computer via ransomware.
If agents are insured against cyber damage, insurance claims depend on two different
types of stochastic processes: first, the infectious spread process of the vulnerability, and,
second, the claim frequency and severity processes.

4.1.1 Spread Process

The cyber network consists of N agents, labeled 1, . . . ,N . To begin with, we focus in
the current chapter on a simple undirected graph. The suggested model could easily
be extended to directed and weighted graph structures. Such extensions could provide
more realistic models of cyber networks with asymmetric infection channels of different
strengths, but their analysis would be more involved, and we thus leave a detailed analysis
of complex networks to future research. The undirected network is represented by a
symmetric adjacency matrix A ∈ {0,1}N×N , with aii = 0 for all i, where ai j = 1 indicates
a connection between nodes i and j and ai j = 0 signifies that i and j are not directly
connected.

To describe the dynamics of the first channel, the infectious spread of vulnerability to
cyber events, we use the susceptible-infected-susceptible (SIS) model, as, for example,
explained in Section V. of Pastor-Satorras et al. (2015)). At any point in time, each node i
can be in one of two states: infected or susceptible. The state of node i at time t is denoted
by Xi (t), where Xi (t) = 1 indicates that node i is infected at time t and Xi (t) = 0 indicates
that node i is susceptible to an infection. We assume that each node can be infected by
its infected neighbors, but is cured independently of all other nodes in the system. We
assume that each node is endowed with an independent exponential clock and changes
its state when the exponential clock rings. Letting β > 0 and δ > 0, the rates of these
transitions are given as follows (i = 1,2, . . . ,N):

Xi : 0→ 1 with rate β
∑N

j=1
ai j X j (t) (4.1)

Xi : 1→ 0 with rate δ.

To be precise, we will from now on work on a probability space (Ω,F ,P) with filtration
F = (Ft )t≥0 that satisfies the usual conditions, i.e., the filtration is right-continuous and F0

contains all P-null sets, see, e.g., Protter (2004). The process X is a Markov-process with
state space E = {0,1}N with càdlàg paths and X0 = x ∈ E. We assume that X is a Feller
process with generator G : C(E) → R defined by

G f (x) =

N∑
i=1

*.
,
β(1 − xi)

N∑
j=1

ai j x j + xiδ
+/
-

( f (xi) − f (x)), x ∈ E, f ∈ C(E)
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where xi
j = x j for i , j and xi

i = 1 − xi. The family C(E) consists of all functions on E.
For details we refer to Liggett (1985).

The continuous-time Markov process X is of pure jump-type with exponential waiting
times between jumps. The dimension of the state space E is large, i.e., E has cardinality
2N . In Section 4.2.2, we derive a tractable mean-field approximation in terms of a system
of ordinary differential equations that can be applied to the valuation of cyber insurance.

4.1.2 Claims Processes

In our model of cyber losses and insurance, we assume that the process X does not directly
cause any damage. Instead, at each point in time, infected agents are vulnerable to cyber
attacks, while agents who are not infected are not. For example, infected agents might
constitute a botnet that enables a denial-of-service or ransomware attack.

In order to model cyber losses, we assume that the attacks are counted by a process
M := (M (t))t≥0 with values in {0,1,2, . . . }. The corresponding jump times are denoted
by (Tn)n∈N. The size of possible losses at each site during an attack is modeled by another
N-dimensional process L := (L(t))t≥0, where L(t) = (L1(t), . . . ,LN (t))>. We assume
that both M and L are independent from the Markovian spread process X .

To be precise, M is a non-explosive counting process adapted to the filtration F. We
suppose that M has a stochastic intensity (λ(t))t≥0, i.e., λ is some non-negative F-pre-
dictable process with M (t∧Tn)−

∫ t∧Tn

0 λ(s)ds is a martingale for all n ∈ N, see Brémaud
(1981), T9/p. 28 & T13/p. 31. The loss process L is assumed to be predictable and
non-negative.

We consider a (re-)insurance contract covering cyber losses and compute the expected
aggregate losses over a fixed time window [0,T] with T > 0. We suppose that for any
time t the insurance contract is characterized by a function f (·; ·) : R+ ×R

N
+ → R+ where

the first argument refers to time and the second argument to the loss vector generated by
a cyber attack. We suppose that f is jointly measurable.

We denote the Hadamard product of vectors (i.e., the multiplication of the components)
by ◦. At time t, the insurance contract covers f (t; L(t)◦X (t)), if a loss event occurs at time
t. Neglecting interest rates or considering discounted quantities, the expected aggregate
losses of the contract over the time window [0,T] are thus given by:

E

[∫ T

0
f (t; L(t) ◦ X (t))dM (t)

]
= E

[∫ T

0
f (t; L(t) ◦ X (t−))dM (t)

]

= E

[∫ T

0
f (t; L(t) ◦ X (t−))λ(t)dt

]
= E

[∫ T

0
f (t; L(t) ◦ X (t))λ(t)dt

]
. (4.2)

The first equality is due to the fact that X and M are independent and never jump at the
same time with probability 1. The second equality follows from the predictability of the
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integrand according to D7/p. 27 in Brémaud (1981). The third equality holds, since the
paths of X possess at most countably many jumps on [0,T] and constitute a Lebesgue null
set for each path.

The simplest contract f is a proportional insurance, i.e., f (t; z) =
∑N

i=1 αi zi. In this
case,

E

[∫ T

0
f (t; L(t) ◦ X (t))dM (t)

]
=

∫ T

0

N∑
i=1

αi · E[Xi (t)] · E[Li (t)λ(t)] dt, (4.3)

where the factorization follows from the independence of X and (M, λ,L).
For a linear claim function, the computation of the expected losses of the insurance

contract does not require full knowledge of the dynamics of the spread process X , but only
of its expectation, i.e., the first moment. If f is non-linear, but continuous, a polynomial
approximation can be used in order to evaluate equation (4.2). This requires knowledge
of the evolution of all moments of X up to the degree that is desired for the evaluation.
This will be explained in Section 4.2.1.

Due to Kolmogorov’s equations, using the fact that the components of X are idem-
potent and commutative, the moments of X are described by a finite system of ordinary
differential equations of order N consisting of

∑N
i=1

(
N
i

)
= 2N − 1 equations. For large N ,

this coupled system of equations of first order becomes intractable1. If the order of the
polynomial approximation is less N , say n, only moments of X up to order n are needed.
However, the ordinary differential equations for these moments depend on higher order
moments, i.e., the desired system of equations is not closed. We address this problem in
Section 4.2.2 by constructing a mean-field approximation of the dynamics of the desired
moments which significantly reduces the dimension of the system of ordinary differential
equations.

4.2 Approximations

4.2.1 Polynomial Approximation of Non-Linear Claim Functions

In this section, we discuss a polynomial approximation of the claim function f that facili-
tates the computation of expected insurance losses (4.2) in the non-linear case. In order to
simplify the mathematical analysis, we assume in this chapter that f does not depend on t.
We do, however, stress that our analysis can be extended to the time-dependent case at the
expense of constructing approximations that are sufficiently regular in time. This requires
a more complicated notation. The basic idea of the polynomial approximation is that any

1On the computing cluster that we used, we were able to numerically solve the coupled system of ordinary
differential equations for networks with N ≤ 13 agents.
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continuous function f can be uniformly approximated by polynomials on any compact
set according to the Stone-Weierstraß theorem. We make the following assumptions:

Assumption 4.2.1.

1. The function f : RN
+ → R+ is decomposable, i.e., one can write

f (x1, . . . , xN ) = g(Λ(x1, . . . , xN )),

whereΛ : RN
+ → R+ is a linear and increasing aggregation function and the function

g : R+ → R+ is continuous and increasing.

2. The function g is bounded on [0, ‖Λ(L)‖∞) where ‖ · ‖∞ denotes the L∞-norm.

Example 4.2.2.

1. A first example is a catastrophe excess of loss per risk (Cat XL) contract that covers
cyber attacks with priority a ≥ 0 and limit b − a > 0. In this case, insurance losses
are described by

f Cat-XL(x1, . . . , xN ) = gCat-XL(ΛΣ (x1, . . . , xN ))

with ΛΣ (x1, . . . , xN ) =
∑N

i=1 xi, and gCat-XL(y) = (y − a)+ − (y − b)+. This shows
that f Cat-XL satisfies Assumption 4.2.1.

2. Another example is an excess of loss per risk contract (XL) that covers all individual
cyber losses. This is described by

f XL(x1, . . . , xN ) :=
N∑

i=1

(
(xi − ai)+ − (xi − bi)+) ,

where ai ≥ 0 is the priority of risk i and bi − ai > 0 its corresponding cover. This
function is neither linear nor does it satisfy Assumption 4.2.1. However, with a
small trick it fits into both frameworks. To this end, observe that

f XL(L(t) ◦ X (t)) =

N∑
i=1

(
(Li (t)Xi (t) − ai)+ − (Li (t)Xi (t) − bi)+) .

Since Xi (t) ∈ {0,1}, this function can be rewritten in the following form:

f XL(L(t) ◦ X (t)) =

N∑
i=1

L̂i (t)Xi (t) =: f̂ XL(L̂(t) ◦ X (t)),
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where L̂i (t) = (Li (t) − ai)+ − (Li (t) − bi)+ for i = 1, . . . ,N . Then

f̂ XL(x1, . . . , xN ) =

N∑
i=1

xi .

For the modified loss size process L̂, the function f̂ XL describes a proportional
reinsurance. Assumption 4.2.1 is satisfied with Λ = f̂ XL and g(λ) = λ for λ ≥ 0.

Remark 4.2.3. The application of the Stone-Weierstraß theorem does not rely on the ex-
istence of a decomposition of f as required in Assumption 4.2.1. The decomposition
guarantees that we may work with polynomial approximations in one dimension. In this
case, simple algorithms for the construction of the unique best approximation are avail-
able. In contrast, due to the theorem of Mairhuber-Curtis, finite-dimensional subspaces
of the space of continuous functions on a multi-dimensional compact set are not Haar
spaces, implying that best approximations are not always unique.

If Assumption 4.2.1 is satisfied, a polynomial approximation can be constructed as
follows:

Approximation 4.2.4.

1. Choose a bound ε > 0 and the desired degree of the polynomial approximation
d ∈ N.

2. Determine a constant u ∈ R+ such that the probability that an aggregated loss (under
a total infection) exceeds u is bounded from above by ε , i.e.,

P(Λ(L) > u) ≤ ε .

3. Find the best uniform approximation pd (x) :=
∑d
`=0 a`x` (a0,a1, . . . ,ad ∈ R) of the

function g on the compact interval [0,u] in the space of polynomials up to degree
d. We denote the resulting approximation error by

max
x∈[0,u]

|g(x) − pd (x) | = ‖g − pd ‖∞,[0,u] =: ed (g).

4. The d-th degree polynomial approximation of f (L ◦ X ) is given by

f̄d (L ◦ X ) :=



pd (Λ(L ◦ X )), if Λ(L) ≤ u,

0, if Λ(L) > u.
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Remark 4.2.5. Due to Assumption 4.2.1, there exists a real number m s.t.

| f (L ◦ X ) | = |g(Λ(L ◦ X )) | ≤ |g(Λ(L)) | ≤ m

for all possible realizations of the random variable L. The L1-norm of the approximation
error for f̄d (L ◦ X ) is bounded from above by ed (g) + m · ε . This can easily be verified.
Letting Z = L ◦ X , we obtain that

‖ f (Z ) − f̄d (Z )‖L1 = ‖[ f (Z ) − pd (Λ(Z ))] · 1[0,u](Λ(L)) + f (Z ) · 1(u,∞) (Λ(L))‖L1

≤ E[|g(Λ(Z )) − pd (Λ(Z )) | · 1[0,u](Λ(L))] + E[| f (Z ) | · 1(u,∞) (Λ(L))]
(◦)
≤ ‖g − pd ‖∞,[0,u] · P(Λ(L) ≤ u) + m · P(Λ(L) > u)

≤ ed (g) + m · ε,

observing in step (◦) that 0 ≤ Λ(Z ) ≤ Λ(L).

Finally, consider an insurance contract f = g(Λ) with Λ(x1, . . . , xN ) =
∑N

i=1 bi xi, b1,

b2, . . . ,bN ≥ 0, and polynomial approximation pd (x) :=
∑d
`=0 a`x`. In this case,

E

[∫ T

0
f̄d (L(t) ◦ X (t))dM (t)

]
=

∫ T

0
E[ f̄d (L(t) ◦ X (t)) · λ(t)] dt.

Set G := σ{L(t), λ(t) : t ≤ T }, and observe that the process X is independent of G. Thus,

E[ f̄d (L(t) ◦ X (t)) · λ(t) |G] = λ(t) · E[ f̄d (L(t) ◦ X (t)) |G]. (4.4)

We evaluate the second factor. For simplicity, we suppress the dependence on t in the
notation.

E[ f̄d (L ◦ X ) | G] = E[ pd (Λ(L ◦ X )) · 1[0,u](Λ(L)) | G]

=

d∑
`=0

a` · E[(Λ(L ◦ X ))` | G] · 1[0,u](Λ(L)) =

d∑
`=0

a` · E[(
∑N

i=1
biLiXi )` | G] · 1[0,u](Λ(L))

= 1[0,u](Λ(L)) ·

a0 + a1

N∑
i1=1

bi1 Li1E[Xi1] + a2

N∑
i1=1

N∑
i2=1

bi1 bi2 Li1 Li2E[Xi1 Xi2]

+ . . . + ad

N∑
i1=1

N∑
i2=1

· · ·

N∑
id=1

bi1 bi2 · · · bid · Li1 Li2 · · · Lid · E[Xi1 Xi2 · · · Xid ]

.

Here, we used the fact that the process L is G-measurable, while X is independent of
G. In the next step, we can now use the tower property on the conditional expectations in
equation (4.4), i.e., E[E(·|G)] = E(·), to obtain the final result. Thus, in summary, for the
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purpose of approximating the expected insurance losses we need to calculate

∫ T

0
E

*.
,
1[0,u](Λ(L)) · λ(t) ·


a0 + a1

N∑
i1=1

bi1 Li1E[Xi1] + a2

N∑
i1=1

N∑
i2=1

bi1 bi2 Li1 Li2E[Xi1 Xi2]

+ . . . + ad

N∑
i1=1

N∑
i2=1

· · ·

N∑
id=1

bi1 bi2 · · · bid · Li1 Li2 · · · Lid · E[Xi1 Xi2 · · · Xid ]


+/
-

dt

(4.5)

The formula shows that full knowledge of the probabilistic evolution of the process X is
not required. Instead, an analysis of the dynamics of its moments up to order d suffices
to compute the sought quantity. As explained earlier, the corresponding system of ordi-
nary differential equations is obtained from Kolmogorov’s equations, but involves 2N − 1
equations. A closed system for the required moments with a smaller number of equations
can be obtained by a mean-field approximation. This method will be explained in the next
section.

Remark 4.2.6.

1. If the network size N is not too large, the polynomial approximation enables a flex-
ible and efficient comparison of different contracts in a given network. The mixed
moments of the spread process need to be computed only once. Afterwards, poly-
nomial approximations of different contracts can be evaluated. Since the number of
mixed moments up to order d grows like N d when the number of nodes N increases,
polynomial approximations are not efficient anymore for very large networks.

2. In this chapter, approximations of the joint moments of the spread process are com-
puted from an ODE system. The methodology is explained in the next section.
Alternatively, joint moments could be computed from Monte Carlo simulations of
the spread process. A comparison of the advantages and disadvantages of these
competing approaches is beyond the scope of the current chapter and constitutes an
interesting topic for future research.

4.2.2 Mean-Field Approximation of Moments

To evaluate formula (4.5), we need to compute the moments E[Xi1 (t)], E[Xi1 (t)Xi2 (t)],
. . . , E[Xi1 (t)Xi2 (t) · · · Xin (t)], i1, . . . , in ∈ {1, . . . ,N }, for the desired n ≤ N . We construct
an approximation of these moments and call the parameter n its order. For this purpose,
we denote by z(n)

i1i2...ik
the n-th order approximation of the moment E[Xi1 Xi2 · · · Xik ] for

k ≤ n. Observe that both z(n)
i1i2...ik

and E[Xi1 Xi2 · · · Xik ] are functions of t. In order to
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simplify the notation, we will sometimes drop the variable t in our notation. Since the
variables Xi, i = 1,2, . . . ,n, are commutative and idempotent, we may assume that the
indices i1, . . . , ik are pairwise different and ordered, i.e., i1 < i2 < . . . < ik . Alternatively,
the n-th order approximation of all moments of X up to order n can simply be enumerated
by index sets I ⊆ {1,2, . . . ,N } with cardinality |I | ≤ n. This will be the convention that
we choose. As a final result of our construction, we obtain the n-th order approximation
of all moments of X up to order n, i.e.,(

z(n)
I

)
I⊆{1,2,...,N }, |I |≤n

We begin with a detailed description of the first order approximation, explaining two
strategies for its construction. This approach is later generalized to n-th order approxima-
tions for n > 1.

4.2.2.1 First Order

We derive the first order mean-field approximation in detail and analyze its accuracy.

Derivation of the Approximations. The transition rates (4.1) describe the infinitesimal
dynamics of Xi (t):

E [Xi (t + ∆t) − Xi (t) |Ft] = ((1 − Xi (t)) β
N∑

j=1

ai j X j (t) − δXi (t))∆t + o(∆t) (4.6)

A susceptible node is infected by its neighbors at rate β; an infected node is cured at
rate δ, independently of the state of the others. Intuitively, dividing by ∆t, taking the
expectation on both sides and letting ∆t → 0, we obtain the following exact expression
for the derivative of the probability E[Xi (t)] = P(Xi (t) = 1):

dE[Xi (t)]
dt

= −δE[Xi (t)] + β

N∑
j=1

ai jE[X j (t)] − β
N∑

j=1

ai jE[Xi (t)X j (t)], (4.7)

for i = 1, . . . ,N . More precisely, these equations are a consequence of Kolmogorov’s
forward equation.

The occurrence of the mixed terms E[Xi (t)X j (t)] for i , j signifies that the dynamics
of the first order moments depend on higher order moments. The system of ordinary dif-
ferential equations (4.7) is not closed. An exact solution requires in addition the dynamics
of the second order moments, third order moments, etc. Instead of increasing the number
of equations, the aim of the first order mean-field approximation is to keep the number
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of equations fixed, but to pay the price of obtaining an approximate in lieu of an exact
solution.

We choose a suitable function F : [0,1]→ [0,1] and split the mixed terms as

E[Xi (t)X j (t)] ≈ F (E[Xi (t)]) · F (E[X j (t)]).

This leads to the following approximation:

dE[Xi (t)]
dt

≈ −δE[Xi (t)] + β

N∑
j=1

ai jE[X j (t)] − β
N∑

j=1

ai j F (E[Xi (t)]) · F (E[X j (t)]).

(4.8)

We denote by z(1)
i (t) the corresponding approximation of E[Xi (t)] and arrive at the fol-

lowing system of ODEs

dz(1)
i (t)
dt

= −δz(1)
i (t) + β

N∑
j=1

ai j z
(1)
i (t) − β

N∑
j=1

ai j F (z(1)
i (t)) · F (z(1)

j (t)) (i = 1, . . . ,N ).

(4.9)
This is the first order mean-field approximation corresponding to the mean-field function
F.

Next, we consider two examples of mean-field functions and the resulting first order
approximations z(1)

i (t) in more detail.

1. If we choose a mean-field function F1(x) = x, we obtain the first order indepen-
dent approximation, also known as the “N-intertwined mean-field approximation
(NIMFA)”. This approximation is discussed in detail by Van Mieghem et al. (2009).
The approximation factorizes the second order moments as if components were in-
dependent:

E[Xi (t)X j (t)] ≈ F1(E[Xi (t)]) · F1(E[X j (t)]) = E[Xi (t)]E[X j (t)].

Since it holds that E[Xi (t)X j (t)] = E[Xi (t)]E[X j (t)] + Cov(Xi (t),X j (t)) with co-
variance Cov(Xi (t),X j (t)) ≥ 0, as shown in Cator and Van Mieghem (2014), equa-
tion (4.8) leads to an upper bound:

dE[Xi (t)]
dt

≤ −δE[Xi (t)] + β

N∑
j=1

ai jE[X j (t)] − β
N∑

j=1

ai jE[Xi (t)]E[X j (t)].

The upper bound mean-field approximation vi (t) := z(1)
i (t) is characterized by the

ordinary differential equations

dvi (t)
dt

= −δvi (t) + β

N∑
j=1

ai jv j (t) − β
N∑

j=1

ai jvi (t)v j (t), (i = 1, . . . ,N ). (4.10)
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Setting V := (v1,v2, . . . ,vN )>, we may rewrite the system in matrix notation:

d
dt

V = (βA − δI)V − βDiag(V )AV, (4.11)

where Diag(V ) denotes the diagonal matrix with entries v1,v2, . . . ,vN and I ∈ RN×N

denotes the identity matrix.

2. A mean-field function F2(x) :=
√

x leads to a new type of mean-field approx-
imation. We call this the first order Hilbert approximation that is motivated by
the following observations. The space of square-integrable random variables L2,
equipped with the scalar product 〈R,S〉 := E[R · S] for R,S ∈ L2, forms a Hilbert
space. The induced norm is denoted by ‖R‖ :=

√
〈R,R〉 =

√
E[R2]. The scalar

product in Hilbert spaces defines the angle φ between vectors:

〈R,S〉 = ‖R‖ · ‖S‖ · cos φ.

The idea is now to use ‖R‖ · ‖S‖ as an approximation for 〈R,S〉. The term ‖R‖ · ‖S‖
is never smaller than 〈R,S〉. The approximation is good, if the angle of R and S is
close to 0◦. Applying the approximation to equations (4.7), we obtain

dE[Xi (t)]
dt

≥ −δE[Xi (t)] + β

N∑
k=1

aikE[Xk (t)] − β
N∑
k=1

aik

√
E[Xi (t)]

√
E[Xk (t)],

(4.12)

i = 1,2, . . . ,N. Setting wi (t) := z(1)
i (t), this leads to the following mean-field

approximation:

dwi (t)
dt

= −δwi (t) + β

N∑
k=1

aikwk (t) − β
N∑

k=1

aik
√
wi (t)

√
wk (t),

i = 1,2, . . . ,N . Setting W = (w1, . . . ,wN )> and
√

W = (
√
w1, . . . ,

√
wN )>, we

may rewrite the system in matrix notation:

dW
dt

= (βA − δI)W − βDiag(
√

W )A
√

W . (4.13)

Properties of ODE Systems. The following theorem summarizes key properties of the
mean-field approximations. Its proof can be found in Appendix 4.5. Let 0 = (0,0, . . . ,0)>

∈ RN and 1 = (1,1, . . . ,1)> ∈ RN denote the all-zero and the all-one vector, respectively.
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Theorem 4.2.7.

(i) Existence. For any choice of the parameters δ and β, there exist global solutions of
the ODE systems (4.11) and (4.13) with arbitrary non-negative initial conditions.

(ii) Uniqueness. The ODE system (4.11) possesses a unique solution in C([0,∞);RN ).

(iii) Sandwich Property. Let W (t) be a solution of (4.13) and V (t) the solution to (4.11).
For every initial condition V (0) = W (0) = X (0) = v0 ∈ [0,1]N , it holds that

0 ≤ W (t) ≤ E[X (t)] ≤ V (t) ≤ 1,

for all t ≥ 0, where the inequalities are interpreted componentwise.

(iv) Stability. Let µ̂ be the spectral radius of A and set τ(1)
c := 1/µ̂, a constant that

depends on the underlying network. Define τ = β/δ. If τ < τ(1)
c , then the zero

solutions V ≡ 0 and W ≡ 0 are exponentially stable solutions of (4.11) and (4.13),
i.e., there exist constants α,ε,C > 0 such that for any solution z of (4.11) and
(4.13), respectively, and all t ≥ 0

|z(t) | ≤ Ce−αt |z(0) |,

if |z(0) | ≤ ε .

We illustrate the two suggested approximation methodologies in the context of a small
cyber network.

Example 4.2.8. We consider a system of N = 7 agents that are connected in a cyber
network as described in Figure 4.1.

The network is regular, i.e., each node is connected to exactly D other nodes. We
choose D = 4, β = 0.5, and δ = 2.01. Then τ = β/δ = 0.2488 < 1/D = τ(1)

c , thus
V ≡ 0 and W ≡ 0 are exponentially stable according to Theorem 4.2.7 (iv). We assume
that initially only node 1 is infected, i.e., V (0) = W (0) = (1,0,0,0,0,0,0)>. Figure 4.2
shows the aggregate infection probabilities for all nodes (A), i.e.,

∑N
j=1 E[X j (t)], and re-

spectively for all initially healthy nodes (B), here:
∑N

j=2 E[X j (t)], for the original Markov
process together with the corresponding approximations. As explained in Theorem 4.2.7
(iii), these provide lower and upper bounds. For both approximations, the error is quite
substantial. As we will see in the following sections, this can be improved by higher order
approximations.
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A :=

*..............
,

0 1 0 0 1 1 1
1 0 1 1 0 0 1
0 1 0 1 1 1 0
0 1 1 0 1 0 1
1 0 1 1 0 1 0
1 0 1 0 1 0 1
1 1 0 1 0 1 0

+//////////////
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Figure 4.1: A regular network with N = 7 nodes and degree D = 4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
g
g
re

g
at

e 
in

fe
ct

io
n
 p

ro
b
ab

il
it

y

First order independent MFA

First order Hilbert MFA

Exact Markov Chain

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time t

0

0.1

0.2

0.3

0.4

0.5

0.6
A

g
g
re

g
at

e 
in

fe
ct

io
n
 p

ro
b
ab

il
it

y
 o

f 
in

it
ia

ll
y
 h

ea
lt

h
y
 n

o
d
es

First order independent MFA

First order Hilbert MFA

Exact Markov Chain

(b)

Figure 4.2: Comparison of the aggregate infection probability of all nodes (A) and of initially
healthy nodes (B) for the network described in Figure 4.1.

Accuracy Criterion. We derive a time-dependent estimate of the accuracy of the first
order independent mean-field approximation. We focus on the correlation matrix as a
rough measure for the difference between the exact and approximate dynamics of the
E[Xi (t)].

The first step is to rewrite (4.7) as

d
dt
E[Xi (t)] = −δE[Xi (t)] + β(1 − E[Xi (t)])

N∑
k=1

akiE[Xk (t)] − βRi (t)

with error term

Ri (t) :=
N∑

k=1

akiCov(Xi (t),Xk (t)).
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In Van Mieghem and van de Bovenkamp (2015), the authors consider Ri as a measure for
the accuracy of the approximation. They investigate numerical examples and analytical
criteria to assess the smallness of Ri in different situations. It is clear that in the inde-
pendent case, yielding Ri (t) ≡ 0 for all i, the exact dynamics and the approximation are
identical. This is the reason for our choice of the term independent approximation. Our
result phrases the accuracy of the approximation as a pointwise inequality in the time
variable t.

Theorem 4.2.9. Let yi (t) := E[Xi (t)] − vi (t) and denote by µ̂ the largest eigenvalue of
the adjacency matrix A. Then for any t ≥ 0 we have

| |y(t) | |2 ≤ e(−2δ+4β µ̂+β)t β

∫ t

0
| |R(s) | |2ds,

where y(t) = (y1(t), . . . , yN (t)) and R(t) = (R1(t), . . . ,RN (t)).

The proof of Theorem 4.2.9 is given in Appendix 4.5. To apply this result, we approx-
imate the norm of the residual term R(t) by

‖R(t)‖2 =

N∑
i=1

*
,

N∑
k=1

akiCov(Xi (t),Xk (t))+
-

2

≤
1
16

N∑
i=1

*
,

N∑
k=1

aki+
-

2

≤
N
16

N∑
i=1

N∑
k=1

aik =
N`
8
,

using Cauchy’s inequality and denoting by ` the total number of links within the net-
work. Hence, we find the following upper bound for the mean-field approximation error,
expressed solely through known characteristics of the given network:

‖y(t)‖2 ≤
βN`

8
· te(−2δ+4β µ̂+β)t . (4.14)

In the case that −2δ + 4β µ̂ + β < 0, i.e., for small τ = β/δ < 1
2µ̂+1/2 , the approximation

error becomes small quite quickly. This corresponds to a high curing rate δ in comparison
to the infection rate β. Observe that the stated exponential decay is a useful result for t
sufficiently large. Since N` can be very large, equation (4.14) does not provide substantial
information regarding the approximation error for small t.

Example 4.2.10. We consider the network in Figure 4.1 with fixed infection rate β = 0.5,
but different curing rate δ. The initial state is V (0) = (1,0,0,0,0,0,0)>, i.e., only node
1 is infected at time zero. Figure 4.3 (a) depicts the exact approximation error ‖y(t)‖2.
The upper bound from equation (4.14) is shown in Figure 4.3 (b). Although quantitatively
strongly different, both figures (a) and (b) exhibit the exponential decay that we proved
for the upper bound.
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(a) Exact approximation error ‖y(t)‖2
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(b) Upper error bound from (4.14)

Figure 4.3: Exact approximation error and upper bound for different values of the curing rate δ
and fixed β = 1/2 in the regular network A (given in Figure 4.1) with initial state
V (0) = (1,0,0,0,0,0,0)>.

The observation that the approximation error decreases for an increasing curing rate2 δ
is in line with the heuristic arguments of Van Mieghem et al. (2009) who describe a good
performance of the first order mean-field approximation for small τ. For intermediate
values of τ, however, these authors expect significantly larger first order approximation
errors. In addition, if −2δ + 4β µ̂ + β ≥ 0, the upper bounds from Theorem 4.3 and
equation (4.14) are not useful anymore, since they grow exponentially in time t. These
facts motivate the higher order approximations that we consider later.

Remark 4.2.11. From the point of view of an insurance company, cyber risk is manage-
able for sufficiently small τ =

β
δ . The exact condition −2δ+ 4β µ̂+ β < 0 ⇔ τ < 1

2µ̂+1/2
depends on µ̂, i.e., on a characteristic of the underlying network. In this situation, the
infection quickly dies out, and the first order mean-field approximation provides an upper
bound with known bound for the approximation error. It might thus be used for pricing
insurance contracts. For small t, however, the error bound is large and in many cases not
very precise, although the approximation might be quite reasonable.

4.2.2.2 n-th Order

In this section, we construct a general n-th order mean-field approximation that has the
following two benefits:

• The approximation error of the first order mean-field approximations may be quite
2Similar results of decreasing error are found for decreasing infection rate β and spectral radius µ̂.
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large for certain parameter choices. The n-th order approximation provides im-
proved approximations for all moments of order k ≤ n. In particular, it yields
improved estimates of single infection probabilities z(n)

i for i = 1, . . . ,N .

• On the basis of the n-th order mean-field approximation, expected insurance losses
of non-linear claims can be computed as described in Section 4.2.1.

Construction. Fix the order n ≤ N . By I ⊆ {1,2, . . . ,N } we denote a set of indices.
We define the product XI := Πi∈I Xi. Since the components of X are commutative and
idempotent, we may neglect the order of the indices or powers of its components.

The dynamics of all moments are described by coupled ordinary differential equations
due to Kolmogorov’s forward equations. This system of equations is replaced by a smaller
system of equations that involves only approximations of moments up to order n:

(i) Construct an approximation for the dynamics of the n-th order moments
E[Xi1 · · · Xin ] in terms of moments up to order n.

(ii) Use the exact relations of the dynamics of E[Xi1 · · · Xik ] for 1 ≤ k ≤ n − 1 and the
approximation of the n-th order moments to estimate the lower order moments.

The details are as follows:
Step (i): Approximative dynamics of E[XI] for |I | = n. Kolmogorov’s forward equation

implies that

d
dt
E[Xi1 Xi2 · · · Xin ]

=E



n∑
l=1

Xi1 · · · Xil−1
*.
,
−δXil + β(1 − Xil )

N∑
jl=1

ail jl X jl
+/
-

Xil+1 · · · Xin



= − nδE
[
Xi1 · · · Xin

]
+ βE



n∑
l=1

N∑
jl=1

ail jl Xi1 · · · Xil−1 X jl Xil+1 · · · Xin



− βE



n∑
l=1

N∑
jl=1

ail jl Xi1 · · · Xin · X jl


.

Rewriting this we have the exact expression

d
dt
E[XI] = −nδE[XI] + β

∑
i∈I

N∑
j=1

ai jE[XI\{i}∪{ j}] − β
∑
i∈I

N∑
j=1

ai jE[XI∪{ j}]

The expression E[XI\{i}∪{ j}] contains at most n factors of X : If j < I \ {i}, it contains n
factors, and if j ∈ I \ {i}, it contains n − 1 factors. Thus, the first sum can be expressed in
terms of moments of order less than or equal to n.
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Next, consider the term E[XI∪{ j}]. If j ∈ I, then E[XI∪{ j}] = E[XI]. However, if
j < I, the expression contains n + 1 different indices. This means that the dynamics of
the moments up to order n is not described by a closed system of ordinary differential
equations. To deal with this difficulty, we extend the idea of the first order mean-field
approximation and choose the following two objects:

1. a mean-field function F : [0,1]→ [0,1] and

2. a partition scheme (I1, I2) such that for j , I we have I∪{ j} = I1(I, j)∪I2(I, j) with
I1(I, j), I2(I, j) , ∅. Since I is fixed for each equation, we suppress the dependence
on I in our notation.

Specific choices of these two key ingredients are addressed in the next section. When they
are chosen properly, we approximate the rate of change for the n-th order moments by

d
dt
E[XI] ≈ − nδE[XI] + β

∑
i∈I

N∑
j=1

ai jE
[
XI\{i}∪{ j}

]
− β

∑
i∈I

N∑
j=1,j∈I

ai jE[XI]

− β
∑
i∈I

N∑
j=1,j<I

ai j · F
(
E[XI1( j)]

)
· F

(
E[XI2( j)]

)
. (4.15)

This translates to the ODE

ż(n)
I = − nδz(n)

I + β
∑
i∈I

N∑
j=1

ai j z
(n)
I\{i}∪{ j} − z(n)

I β
∑
i∈I

N∑
j=1,j∈I

ai j

− β
∑
i∈I

N∑
j=1,j<I

ai j F
(
z(n)

I1( j)

)
· F

(
z(n)

I2( j)

)
describing the approximative dynamics of the n-th order moments.

Step (ii): Exact dynamics of E[XI] for |I | = k < n. For moments of order k < n, we
write according to Kolmogorov’s forward equation

d
dt
E[XI] = −kδE[XI] + β

∑
i∈I

N∑
j=1

ai jE
[
XI\{i}∪{ j}

]
− β

∑
i∈I

N∑
j=1

ai jE
[
XI∪{ j}

]
,

and observe that all moments in this exact equation are of order less than or equal to n.

Plugging in the approximations of order n, we obtain the ODE system of the n-th order



118 4 Pricing of Cyber Insurance Contracts in a Network Model

mean-field approximation:

|I | = n : ż(n)
I = −

*.
,
nδ + β

∑
i∈I

N∑
j=1,j∈I

ai j
+/
-

z(n)
I + β

∑
i∈I

N∑
j=1

ai j z
(n)
I\{i}∪{ j}

− β
∑
i∈I

N∑
j=1,j<I

ai j F
(
z(n)

I1( j)

)
· F

(
z(n)

I2( j)

)
|I | = k < n : ż(n)

I = − kδz(n)
I + β

∑
i∈I

N∑
j=1

ai j z
(n)
I\{i}∪{ j} − β

∑
i∈I

N∑
j=1

ai j z
(n)
I∪{ j},




. (4.16)

The initial condition is the initial configuration of the Markovian system.

Definition 4.2.12. For a mean-field function F and a partition scheme, we define the n-th
order mean-field approximation as a solution to the ODE system (4.16), i.e.,(

z(n)
I

)
I⊆{1,2,...,N }, |I |≤n

Remark 4.2.13. The structure of the ODEs in the n-th order case is analogous to the first
order case. The matrix form of the ODE system (4.16) as well as the generalization of the
existence and uniqueness results of Theorem 4.2.7 to the n-th order case is discussed in
Appendix 4.7.

Approximation Types and Splitting. In this section, we introduce two specific types of
higher order mean-field approximations and address the problem of optimally splitting
the set I ∪ { j} for |I | = n and j < I consisting of n + 1 different indices into the two non-
empty, disjoint subsets I1( j) and I2( j). In contrast to the first order case, this requires a
specific choice that may influence the quality of the resulting mean-field approximation.
As before, we consider the two mean-field functions F1(x) = x and F2(x) =

√
x.

1. The choice of the mean-field function F1(x) = x leads to the n-th order independent
approximation. The approximation works as follows: For j < I

E[XI∪{ j}] = E[XI1( j)] · E[XI2( j)] + Cov(XI1( j),XI2( j)) ≈ E[XI1( j)] · E[XI2( j)].

No error corresponds to a split of XI∪{ j} into XI1( j) and XI2( j) such that the co-
variance Cov(XI1( j),XI2( j)) is zero. The factors should thus be as uncorrelated as
possible.

2. Choosing F2(x) =
√

x leads to the n-th order Hilbert approximation.
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In this case, we set

E[XI∪{ j}] =

√
E[XI1( j)] ·

√
E[XI2( j)] · cos φ ≈

√
E[XI1( j)] ·

√
E[XI2( j)],

for j < I. The angle φ is defined via the scalar product 〈R,S〉 := E[RS] for
R,S ∈ L2 in the usual Hilbert space. The split is good whenever the angle φ be-
tween XI1( j) and XI2( j) is close to 0◦. This corresponds to highly dependent factors.

A naive single split partitions the set I ∪ { j} into the subsets I1( j) = I and I2( j) = { j}.
Note that the sets are enumerated and, thus, the naive single split is uniquely determined.
This approach may not always be ideal, if small or strong dependence of the factors
is desired in order to keep the error of the approximation small. Hence, we sketch an
alternative approach that is based on a measurement of the nodes’ distances in the graph.

The graph structure is described by the adjacency matrix A ∈ RN×N , i.e., there exists a
link between i, j ∈ {1,2, . . . ,N }, if ai j = a ji = 1. If two agents are not directly connected,
they might be connected indirectly. We define πi j as the length of the shortest path in the
graph that connects two agents i , j, i.e.,

πi j := min{l ∈ N : aik1 = ak1k2 = ak2k3 = · · · = akl−1 j = 1}.

We set Π = (πi j )i,j=1,2,...,N with πii = 0 for all i = 1,2, . . . ,N . The splitting algorithm is
described by the following pseudocode.

Algorithm 4.2.14.

INPUT An index set I with |I | = n and j < I is given.

OUTPUT The output is a partition I1( j), I2( j) of I ∪ { j} constructed as follows:

Step 1 Consider a set of partitions J1( j), J2( j) of I ∪ { j}.

Step 2 Choose some α ∈ (0,1) and calculate for each partition the following
distance measure:

mα (J1( j), J2( j)) :=
∑

i∈J1( j)

∑
i′∈J2( j)

απii ′ . (4.17)

Step 3 We consider four alternative choices.

a) Minimal single split:
We choose the partition I1( j), I2( j) with |I2( j) | = 1 that minimizes mα.

b) Maximal single split:
We choose the partition I1( j), I2( j) with |I2( j) | = 1 that maximizes mα.
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c) Minimal equal split:
We choose the partition I1( j), I2( j) with |I1( j) | = |I2( j) |, if n + 1 is even,
or |I1( j) | = |I2( j) | + 1, if n + 1 is odd, that minimizes mα.

d) Maximal equal split:
We choose the partition I1( j), I2( j) with |I1( j) | = |I2( j) |, if n + 1 is even,
or |I1( j) | = |I2( j) | + 1, if n + 1 is odd, that maximizes mα.

Observe that large values of our distance measure mα correspond to small graph dis-
tances. In line with our heuristic arguments above, we thus apply choices a) and c) to the
independent approximation and choices b) and d) to the Hilbert approximation.

Example 4.2.15. To illustrate higher order mean-field approximations, we consider two
different networks: the network with adjacency matrix A defined in Figure 4.1 with fixed
infection rate β = 1/2 and curing rate δ = 2.01, and the network with adjacency matrix
B defined in Figure 4.4 with β = δ = 1/2. For both networks, nodes 1, 3, and 7 are

B :=

*..............
,

0 1 0 0 1 0 0
1 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
1 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0

+//////////////
-

1

2

3

4

5

6

7

Figure 4.4: A network with N = 7 nodes and spectral radius µ̂ ≈ 2.3429.

initially infected. Figure 4.5 displays the evolution of the aggregate infection probabil-
ity of initially healthy nodes, i.e.,

∑
j∈{2,4,5,6} z(n)

j , for the original Markov chain together
with mean-field approximations of order n = 2,3,4 in both networks under the different
splitting choices. We observe that the higher the order of the mean-field approximation,
the better is the approximation. In examples (a), (b), and (c), a fourth order mean-field
approximation already provides a reasonably good fit to the exact infection probabili-
ties. However, increasing the order of the approximation also substantially increases its
computational cost. In comparison to the naive single split, the optimized single split of
Algorithm 4.2.14 leads to moderate improvements in all four cases. A split into subsets
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Figure 4.5: Aggregate infection probability of initially healthy nodes. Solid lines represent naive
single split approximations; dashed lines correspond to the results of Algorithm 4.2.14
(α = 0.5) under a single split; dotted lines represent the results of Algorithm 4.2.14
(α = 0.5) under an equal split.

of equal size, however, impairs the approximation quality3 in the cases (a), (b), and (d).
In contrast to that, in part (c), the fourth order equal split performs slightly better than
the optimized single split. A possible reason for this is the special distance structure for
subsets of size three in the network B. This indicates that the structure of the network
topology is key to finding a splitting algorithm. Future research should investigate this
issue further, analyze how Algorithm 4.2.14 might be improved, e.g., by choosing a bet-
ter distance measure instead of mα, and how computational cost and precision can be
optimally balanced.

3Obviously, the optimized single and equal split coincide for the second order approximations, since sets
of cardinality three are split in this case.
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4.3 Case Studies

4.3.1 Model Setting

In this section, we compute the expected insurance losses for different insurance contracts
in numerical case studies. We consider three network topologies, illustrated in Figure 4.6.
All networks consist of N = 50 agents or nodes which are all connected to D = 7 other

(a) Homogeneous (b) Clustered (c) Star-shaped

Figure 4.6: Stylized regular network scenarios. Quantities that are kept constant are the number of
nodes N = 50 and the degree of each node D = 7. In particular, this yields a constant
total number of edges N D/2 = 175 and a constant spectral radius µ̂ = D = 7.

nodes. This means that the degree of each node is 7. The number of edges in each of
the networks equals N D/2 = 175, and the spectral radius of the three corresponding
adjacency matrices is µ̂ = D = 7.

(a) Homogeneous network: The first network that we consider consists of agents of
the same type that are homogeneously connected to each other. The corresponding
adjacency matrix of this and the other two considered networks can be found in
Appendix 4.8. In the homogeneous cyber networks, there is no hierarchy of nodes
in terms of data flow and related cyber threats.

(b) Clustered network: The key feature of the clustered network is that agents form
groups that are closely connected. In contrast, agents within a cluster are less con-
nected to agents from other clusters. This structure might be a more realistic model
of cyber networks than a homogeneous network: Consider, e.g., different firms
or divisions that are internally densely connected, but less densely connected with
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other firms or divisions. Qualitatively, the model captures different levels of secu-
rity for internal and external connections.

(c) Star-shaped network: Unlike the clustered network, the star-shaped cyber network
possesses a clear hierarchy between central nodes that provide a hub for the data
flow, and a number of periphery clusters that are internally homogeneously con-
nected, but apart from the connections via the hub isolated from agents in other
clusters.

The cyber networks are the channel for the spread of the cyber infection that makes
agents vulnerable to cyber attacks. Cyber attacks affect all vulnerable agents at times that
are modeled by a point process. The incurred losses are random. We will provide the
parameters of the numerical case studies below.

In this setting, we compute the expected losses for three types of contracts: proportional
insurance, excess of loss per risk insurance (XL), and catastrophe excess of loss insurance
(Cat-XL). The functions that map physical losses to insured losses were described in equa-
tion (4.3) and Example 4.2.2. Exact expected contract losses can be computed according
to (4.2). We will apply the mean-field approximation to estimate this quantity.

In our numerical case studies, we use the following parameters. The parameters of the
infection dynamics (4.1) are β = 0.5 and δ = β · µ̂ + 0.01 = 3.51. Initially, 10 nodes,
i.e., 20% of all nodes, are infected. The location of the initially infected nodes is shown
in Figure 4.7. These were sampled from an initial infection that is uniformly distributed
across the network. Cyber attacks that cause losses at infected, i.e., vulnerable nodes

(a) Homogeneous (b) Clustered (c) Star

Figure 4.7: Infection scenario: The red nodes (3,5,13,15,23,25,33,35,43,45) are initially infected.

occur at the jumps of a homogeneous Poisson process with rate λ = 3. A cyber event
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causes a loss at each vulnerable node that is exponentially distributed with mean µ = 2,
i.e., with parameter 1/2. For the insurance contracts, we choose a policy period T = 3.

For the numerical simulation we exploit the mean-field approximation to analyze the
spread process. In order to generate the losses due to cyber attacks, we use a simple
Monte Carlo approach. We simulate 100.000 sample paths of the homogeneous Poisson
process and corresponding random losses in the time interval [0,T]. For each simulation
we compute the integrand of equation (4.5). Averaging over these results yields our Monte
Carlo estimator of the expected aggregate losses of the reinsurance company; its standard
error is stated in brackets.

4.3.2 Model Results

We comment on the results of the simulation.

4.3.2.1 Infection Probabilities and Mean-Field Approximations

We first analyze the spread process of the cyber infection for the three different network
structures. At this stage, we do not consider any cyber losses. We consider the indepen-
dent approximation with naive single split. The aggregate infection probability of initially
healthy nodes is a measure of the strength of the infection, i.e.,

APh
(n) (t) :=

∑
i∈H

z(n)
i (t),

where H denotes the set of initially healthy nodes and n is the order of the mean-field
approximation.

Figure 4.8 displays the approximation results for n = 1,2,3,4: First, for all networks,
the fourth order mean-field approximation and the third order approximation are reason-
ably close to each other. This indicates that a mean-field approximation of order four
provides a relatively good proxy for the exact probability of infection. Second, we find
that the infection probability in the homogeneous network tends to be the highest (for
t > 0.5) while the star exhibits the lowest infection probability. This result will be of key
importance for the expected losses of a reinsurance company.

4.3.2.2 Expected Aggregate Losses of the Insurance Company

We now study cyber losses.

Proportional Reinsurance. For simplicity, we consider full insurance; other percentages
lead to similar results. The resulting expected aggregate losses (standard errors in paren-
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Figure 4.8: Mean-field approximations of order n = 1,2,3,4 for the aggregate infection probability
of initially healthy nodes in the homogeneous (a), clustered (b), and star network (c).
Part (d) compares the fourth order mean-field approximations for the different network
structures.
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theses) are shown in Table 4.1. These indicate that the homogeneous network constitutes
the highest risk, while the star network exhibits the lowest average losses.

Table 4.1: Proportional insurance

Losses: Total coverage Homogeneous Clustered Star

First order MFA 96.4671 (0.1039) 97.6170 (0.1105) 96.5425 (0.1095)
Second order MFA 51.4911 (0.0836) 39.7776 (0.0797) 39.4127 (0.0782)
Third order MFA 77.8349 (0.0943) 70.6588 (0.0901) 68.0767 (0.0883)
Fourth order MFA 68.0676 (0.0890) 61.3693 (0.0855) 59.9005 (0.0843)

XL. In this case, we assume that the limit per loss is equal to 2. We consider only the
lowest tier with priority 0. Using the notation introduced in Example 4.2.2, the random
insurance losses are

∑N
i=1 L̂i (t)Xi (t) with L̂i (t) = Li (t)+ − (Li (t) − 2)+ = min{Li (t),2}.

Apart from the modified losses L̂i instead of Li, we are again in the situation of a pro-
portional contract. As expected, the numerical results in Table 4.2 show that the homo-
geneous network produces the highest expected losses, while the losses are lowest in the
star network.

Table 4.2: Excess of loss per risk (XL)

Losses: XL Homogeneous Clustered Star

First order MFA 60.9795 (0.0684) 61.7036 (0.0692) 61.0247 (0.0686)
Second order MFA 32.5475 (0.0522) 25.1401 (0.0497) 24.9105 (0.0488)
Third order MFA 49.2010 (0.0589) 44.6618 (0.0563) 43.0300 (0.0552)
Fourth order MFA 43.0265 (0.0556) 38.7894 (0.0534) 37.8615 (0.0526)

Cat-XL. Finally, we consider an excess of loss per event contract. We consider coverage
of the lowest tier, i.e., a priority 0, and choose a cover of 60. Of course, the numerical
results in Table 4.3 exhibit again the same ordering of the networks in terms of risk. But,
more importantly, the numerical analysis shows very clearly that the first order mean-field
approximation is not able to capture this type of contract. Due to its non-linearity, this
is not surprising, but the extreme size of the error could not be expected a priori. This



4.3 Case Studies 127

demonstrates that higher order mean-field approximations are necessary for the computa-
tion of the expected insurance losses and are thus also needed for pricing contracts within
our model setting.

To be more specific, the contract function of the Cat-XL is given by

f Cat-XL(L(t) ◦ X (t)) = gCat-XL(ΛΣ (L(t) ◦ X (t))),

where ΛΣ (x1, . . . , xN ) :=
∑N

i=1 xi, and gCat-XL(y) := (y)+ − (y − 60)+ = min(y,60).
We follow Algorithm 4.2.4 and approximate the non-linear claim function gCat-XL on a
compact interval by a polynomial of chosen degree d.

• Compact approximation interval. We choose ε = 0.05 and determine a constant
u ∈ R+ such that

P(ΛΣ (L) > u) ≤ ε . (4.18)

We use the compact interval [0,u] for the polynomial approximation. Setting St :=
ΛΣ (L(t)) =

∑N
i=1 Li (t), we define ut := F−1

St
(1 − ε ). Since St is independent of t

and Gamma-distributed with parameters N = 50 and µ = 2, we obtain u = ut ≈

124.3412.

• Polynomial approximation. For degrees d ∈ {1,2,3,4} we determine the best uni-
form approximation of gCat-XL on [0,u]. Figure 4.9 depicts the resulting polynomial
approximations for d ∈ {1,2,3,4}. The error ed (gCat-XL) = ‖gCat-XL − pd ‖∞,[0,u] of
the approximations on the interval is d1(gCat-XL) = 15.5189, d2(gCat-XL) = 4.0187,
d3(gCat-XL) = 3.8741, and d4(gCat-XL) = 2.1740.

According to Section 4.2.1, the total L1-error is bounded from above by

Ed := ed (gCat-XL) + 60 · ε

which yields E1 ≈ 18.5189, E2 ≈ 7.0187, E3 ≈ 6.8741, and E4 ≈ 5.1740. We combine
the polynomial approximations of gCat-XL with the fourth order independent mean-field
approximation with naive single split. The fourth order approximation is more accurate
for lower order moments, but the linear polynomial approximation is of such a low quality
that the resulting error is very large. In particular, a first order mean-field approximation
is not able to deliver appropriate results for the Cat-XL. The expected losses are given in
Table 4.3. We reduced the number of Monte Carlo samples to 10.000 for d = 1,2,3 and
to 1000 for d = 4 due to the higher computational complexity.

The fact that the first order approximation performs very badly can be seen by com-
paring the result to full insurance in Table 4.1. Clearly, full insurance should provide an
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Figure 4.9: Best uniform polynomial approximations of gCat-XL for different polynomial degrees
in the compact interval [0,124.3412].

Table 4.3: Excess of loss per event (Cat-XL)

Losses: Cat-XL Homogeneous Clustered Star

d = 1 169.6693 (0.5733) 166.6429 (0.5638) 165.9828 (0.5616)
d = 2 64.5432 (0.3047) 56.5714 (0.2942) 54.9458 (0.2906)
d = 3 52.4555 (0.2867) 44.0598 (0.2796) 42.3615 (0.2764)
d = 4 59.2664 (0.8249) 52.8354 (0.7905) 51.0151 (0.7765)

upper bound on the Cat-XL. The polynomial approximation of degree 1 of the Cat-XL is,
however, far larger.

Let us finally mention that we considered insurance of all agents in the network and an
initial distribution of the infection that was uniformly sampled across the network. This
implied a clear ranking of the three network structures in terms of the risk. The spread of
the infection will be different, if specific nodes – e.g., the core nodes of the star network
– are the origin of the infection. Our model is capable of identifying critical nodes from
which the infection spreads. The effect can explicitly be quantified. Another interesting
analysis concerns the elimination of links and its impact on aggregate losses. Thereby
connections can be identified (and potentially modified) that are critical for the spread of
the infection.
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Remark 4.3.1. The implementation of the suggested methodology is based on several ap-
proximations that lead to approximation errors. First, the claim function is approximated
by polynomials. Second, not the exact ODE system is solved, but only a mean-field ap-
proximation. Third, further sources of approximation errors are the numerical ODE solver
and the Monte Carlo simulation of the processes M and L. This needs to be taken into
account when cyber insurance contracts are evaluated.

4.4 Conclusion

We developed a model of cyber losses that are triggered by two underlying risk processes.
First, a cyber infection spreads in a network, modeled by an interacting Markov process.
Second, infected, i.e., vulnerable agents incur losses due to cyber attacks that occur ac-
cording to a point process. Due to the large dimension of the system, the computation of
expected aggregate insurance losses and pricing of cyber contracts is extremely challeng-
ing. We constructed a polynomial approximation for claim functions and higher order
mean-field approximations that make these problems tractable. We demonstrated that for
non-linear claim functions, higher order polynomial approximations and mean-field ap-
proximations are indispensable. We also showed that, if the initial infection is uniformly
distributed and all agents in the network are insured, homogeneous networks are the most
risky and star networks the least. Our techniques can also be applied to identify criti-
cal initial infections and critical links in networks that augment expected losses. A key
role is played by the network topology. While this chapter focuses on fixed undirected
graphs, future research could investigate more realistic structures such as directed or ran-
dom graphs.

4.5 Appendix: Proofs

Proof of Theorem 4.2.7

We define the two functions

G1(x) := (βA − δI)x − βDiag(x) Ax, and

G2(x) := (βA − δI)x − βDiag(
√

x)A
√

x,

for x ∈ RN .

(i) Existence. For G1, the Picard-Lindelöf theorem (Theorem 4.6.1) used in the proof
of (ii) also yields existence of a solution to (4.11).



130 4 Pricing of Cyber Insurance Contracts in a Network Model

For G2, i.e., for the ODE describing the first order Hilbert approximation, we use
Theorem 4.6.2 to prove existence of a solution. Define a non-linear map Ḡ2 : RN →

RN by Ḡ2 = (βA− δI)x − βDiag
√
|x |A
√
|x | where the absolute value and square

root are taken componentwise. Now consider the ODE system Ẋ (t) = Ḡ2(X (t)).
This enlarges the domain of definition of Ḡ2 compared to the original function in
(4.13), G2, but does not do any harm for initial conditions in RN

≥0.

We now estimate the norm of Ḡ2. The matrix A = (ai j )1≤i,j≤N has zeros on the
main diagonal so we find

Diag
√
|x |A

√
|x | = *.

,

∑
j,1

a1 j

√
|x1x j |, . . . ,

∑
j,N

aN j

√
|xN x j |

+/
-

>

.

With |xi | ≤ | |x | |∞ and noting that ai j ∈ {0,1} we have∑
j,i

ai j

√
|xi x j | ≤

∑
j,i

| |x | |∞ = (N − 1) | |x | |∞.

Moreover, | |Ax | |∞ ≤ ||A| | · | |x | |∞ for the operator norm of A with respect to the
l∞-norm. Thus overall,

| |Ḡ2(x) | |∞ ≤ (β | |A| | + δ + N − 1) | |x | |∞.

Now let x0 ∈ R
N and choose r > 0. The previous inequality translates to

| |Ḡ2(x) | |∞ ≤ C( | |x0 | |∞ + r).

on Br (x0) = {x ∈ RN : | |x − x0 | | < r } with C = β | |A| | + δ + N − 1. Then consider
the reciprocal fraction M/r with M = supx∈Br (x0) | |Ḡ2(x) | |:

M
r
≤

C(| |x0 | |∞ + r)
r

.

Thus
r
M
≥

1
C

r
| |x0 | |∞ + r

.

Theorem 4.6.2 now shows that existence of a solution to (4.13) holds for any T
satisfying the inequality T < r/M .

The global existence of a solution now follows from an iteration argument where
in the j-th step we have initial condition x ( j)

0 and radius r ( j). Start with any given
initial condition x (1)

0 = W (0) and set r (1) = | |x (1)
0 | |∞. Then by Theorem 4.6.2 there

is a solution to (4.13), W , on the time interval (0, 1
2C ]. Repeat this process with the

new initial condition x (2)
0 = W ( 1

2C ) and with r (2) = | |x (2)
0 | |∞. This will again have a

solution on an interval of length at least 1
2C . Iterating this process and concatenating

the solutions yields a solution on [0,T] for arbitrary T .
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(ii) Uniqueness. Let BR(0) be the open ball of radius R in RN endowed with the Eu-
clidean norm. We prove uniqueness using the Picard-Lindelöf theorem (Theorem
4.6.1). Thus, we need to show that there exists a Lipschitz constant L > 0 such that

| |G1(x1) − G1(x2) | |2 ≤ L | |x1 − x2 | |2 (4.19)

for all x1, x2 ∈ BR(0). Then, Theorem 4.6.1 states that the ODE has a unique solu-
tion on some small time interval [0, t0]. Since the Lipschitz constant L does not de-
pend on time, the solution exists on the time interval [0,∞). The solution is smooth
by Proposition 6.2 of Taylor (2011) so in particular belongs to C([0,∞),RN ).

To prove the Lipschitz condition (4.19), first recall that the operator norm | |A| |op

of a matrix A acting RN → RN endowed with the Euclidean norm is given by the
spectral radius µ̂ of A. Thus, it follows that the operator norm of Diag(x) is bounded
by | |x | |2. The claim now follows from a direct calculation. Let x1, x2 ∈ BR(0). Then

| |G1(x1) − G1(x2) | |2
=| |(βA − δI)x1 − βDiag(x1)Ax1 − (βA − δI)x2 + βDiag(x2) Ax2 | |2

=| |(δI − βA)(x1 − x2) + β
(
Diag(x1 − x2)Ax1 + βDiag(x2) A(x1 − x2)

)
| |2

≤δ | |x1 − x2 | |2 + β | |A| |op | |x1 − x2 | |2 + β | |Diag(x1 − x2) | |op | |A| |op | |x1 | |2

+ β | |Diag(x2) | |op | |A| |op | |x1 − x2 | |2

=(δ + β µ̂(1 + 2R) | |x1 − x2 | |2,

where we used the facts that | |Diag(x1 − x2) | |op ≤ ||x1 − x2 | |2 and | |xi | |2 < R for
i = 1,2.

(iii) Sandwich Property.

a) First, we prove W (t) ≥ 0 for all t ≥ 0. By definition, all components of W (0)
are non-negative. Now, by inspection of (4.13), we can immediately deduce
that whenever a component, say wi, at some time t′ is zero, then its derivative
ẇi (t′) is non-negative. Thus, the trajectory of wi (t) will be non-negative for
some time by the fundamental theorem of calculus. By the continuity of the
solution, it follows that W (t) ≥ 0 for all t ≥ 0.

b) Second, we prove the lower inequality for the exact dynamics, i.e., W (t) ≤
E[X (t)] for all t ≥ 0. The proof of the upper inequality E[X (t)] ≤ V (t) is
analogous. To begin with, we know that W (0) = E[X (0)] = V (0) ∈ [0,1]N

by definition and that dW (t)/dt ≤ dE[X (t)]/dt (see equation (4.12)). Let
H (t) := E[X (t)] − W (t), i.e., hi (t) = E[Xi (t)] − wi (t) for all i = 1, . . . ,N .
Then, dH (t)/dt ≥ 0 for t ≥ 0 and H (0) = 0. Now consider the interval
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[0, t] ⊂ R for t > 0. From the mean-value theorem for vector-valued functions
(cf. Matkowski (2012)), it follows that there exist constants m1, . . . ,mN ∈

[0, t] such that:

H (t) − H (0) = (t − 0) · (
dh1

dt
(m1), . . . ,

dhN

dt
(mN ))> ≥ 0.

Thus, we have that H (t) ≥ 0 for all t ≥ 0, which proves W (t) ≤ E[X (t)] for
all t ≥ 0.

c) Third, we show that V (t) ≤ 1 for all t ≥ 0. By definition, all components of
V (0) are not larger than 1. Now, by inspection of (4.11), we can immediately
deduce that whenever a component at some time t′ is 1, e.g., vi (t′) = 1, the
reaction term vanishes so that v̇i (t′) = −δ < 0. Thus, the function is pushed
away from 1 towards 0. By the continuity of the solution, it follows that
V (t) ≤ 1 for all t ≥ 0.

(iv) Stability. We apply Theorem 4.6.3 to the function G1. First, V ∗ ≡ 0 is an obvious
fix-point of G1. Second, the Jacobi matrix of G1 at any point V ∈ RN is given by

JG1 (V ) = βA − δI − β
(
Diag(V )A + Diag(AV )

)
.

In particular, at the fix-point V ∗ ≡ 0, the Jacobi matrix reduces to

JG1 (0) = βA − δI = −δ(I − τA),

with τ = β/δ. JG1 (0) is real and symmetric and, thus, possesses only real eigenval-
ues. Let λ1, . . . , λN denote the eigenvalues of A. Then, the eigenvalues of JG1 (0)
are given by −δ(1− τλi) for i = 1, . . . ,N . Hence, all eigenvalues of JG1 (0) are neg-
ative if and only if τ < 1/max1≤i≤N λi = 1/µ̂ =: τ(1)

c . Thus, in this case, it follows
from Theorem 4.6.3 that the fix-point V ∗ ≡ 0 is exponentially stable. Finally, since
W (t) ≤ V (t) (part (iii)), it follows that the zero solution is also exponentially stable
for (4.13).

Proof of Theorem 4.2.9

The difference yi (t) = E[Xi (t)] − vi (t) satisfies the ODE

d
dt

yi (t) = − δyi (t) + β(1 − yi (t))
N∑

k=1

akiyk (t)

− βRi (t) − βyi (t)
N∑

k=1

akivk (t) − βvi (t)
N∑

k=1

akiyk (t)
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with initial condition yi (0) = 0. We want to apply Gronwall’s inequality to the l2-norm
1
2 | |y(t) | |22 . As a first step we note that

d
dt

1
2 yi (t)2 =yi (t) ·

d
dt

yi (t)

= − δyi (t)2 + βyi (t)(1 − yi (t))
N∑

k=1

akiyk (t)

− βyi (t)Ri (t) − βyi (t)2
N∑

k=1

akivk (t) − βyi (t)vi (t)
N∑

k=1

akiyk (t).

Summing over all i we obtain

d
dt

1
2 | |y(t) | |2 = − δ | |y(t) | |2 + β

N∑
i=1

yi (t)(1 − yi (t))
N∑

k=1

akiyk (t)

− β〈y(t),R(t)〉 − β
N∑

i=1

yi (t)2
N∑

k=1

akivk (t) − β
N∑

i=1

yi (t)vi (t)
N∑

k=1

akiyk (t)

where 〈·, ·〉 denotes the standard inner product on RN .
We now estimate the terms on the right hand side. Recall that E[Xi (t)] and vi (t) only
take values in the interval [0,1] so that also |yi (t) | ≤ 1. Denote by |y(t) | the vector
(|y1(t) |, . . . , |yN (t) |).

• We find that
������
β

N∑
i=1

yi (t)(1 − yi (t))
N∑

k=1

akiyk (t)
������
≤ β

N∑
i=1

|yi (t) |
N∑

k=1

aki |yk (t) |

≤ β〈|y(t) |, A|y(t) |〉

≤ β | |A| |op | |y(t) | |2

• Clearly, −β
∑N

i=1 yi (t)2 ∑N
k=1 akivk (t) ≤ 0.

• It holds that: −β〈y(t),R(t)〉 ≤ | β〈y(t),R(t)〉| ≤ β | |y(t) | | | |R(t) | | ≤ β
2 | |y(t) | |2 +

β
2 | |R(t) | |2

• As for the first term, we find

������
β

N∑
i=1

yi (t)vi (t)
N∑

k=1

akiyk (t)
������
≤ β

N∑
i=1

|yi (t) |
N∑

k=1

aki |yk (t) |

≤ β〈|y(t) |, A|y(t) |〉

≤ β | |A| |op | |y(t) | |2
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As before, | |A| |op denotes the operator norm of the matrix A; it is given by the largest
eigenvalue µ̂ of A.
Collecting these estimates we arrive at

d
dt

1
2 | |y(t) | |2 ≤

(
−δ + 2β | |A| |op +

β
2

)
| |y(t) | |2 +

β
2 | |R(t) | |2

or
d
dt
| |y(t) | |2 ≤

(
−2δ + 4β | |A| |op + β

)
| |y(t) | |2 + β | |R(t) | |2

We now apply Gronwall’s inequality in its differential form for which the sign of the term
in brackets is immaterial. This yields

| |y(t) | |2 ≤ e(−2δ+4β | |A| |op+β)t β

∫ t

0
| |R(s) | |2ds,

as claimed.

4.6 Appendix: Basic ODE Theory

For convenience of the reader, this section contains the basic results from ODE theory
used in the proofs of Appendix 4.5. To begin with, we need the following two main
results on existence and uniqueness (cf. (Taylor, 2011, Theorem 2.1) and (Hille, 1968,
Theorem 2.4.1)).

Theorem 4.6.1 (Picard-Lindelöf-Uniqueness). Consider the general ODE system

dy
dt

= F (t, y), y(t0) = y0 (4.20)

with F : Dom(F) ⊂ RN+1 → RN defined in a neighborhood of (t0, y0). Let y0 ∈ O be an
open subset of Rn and I ⊂ R an interval containing t0. Suppose F is continuous on I × O
and satisfies the Lipschitz condition:

‖F (t, y1) − F (t, y2)‖ ≤ L‖y1 − y2‖,

for t ∈ I, y j ∈ O. Then equation (4.20) has a unique solution on some t-interval contain-
ing t0.

Theorem 4.6.2 (Peano-Existence). Suppose F (y) is defined and continuous in Br (y0)
where Br (y0) = {y ∈ Rn : | |y − y0 | | < r } and suppose that | |F (y) | | ≤ M on Br (y0).
Then the autonomous differential equation dy

dt = F (y) with initial condition y0 has at
least one solution y defined on the time interval (−T,T ) where T < r/M.
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In addition to the key questions of existence and uniqueness, one is also interested in
equilibria, i.e., fix-points y∗ with F (t, y∗) = 0, and their stability, i.e., the behavior of
solutions near them. For the autonomous differential system

dy
dt

= F (y), y(0) = y0,

a fix-point y∗ is called exponentially stable, if there exist constants α,ε,C > 0 such that
for all t ≥ 0

|y(t) − y∗ | ≤ Ce−αt |y(0)−y∗ |,

for any |y(0)− y∗ | ≤ ε ((Teschl, 2012, Chapter 6.5)). Exponential stability is the strongest
type of equilibrium stability and can be proven using the following basic result ((Teschl,
2012, Theorem 6.10)):

Theorem 4.6.3 (Exponential stability via linearization). Suppose F ∈ C1 has a fix-point
y∗ and suppose that all eigenvalues of the Jacobian matrix at y∗ have negative real part.
Then y∗ is exponentially stable.

4.7 Appendix: Matrix Form of the n-th Order Mean-Field
Approximation

Let M :=
∑n

k=1

(
N
k

)
and denote the n-th order mean-field approximation by

z(n) := (z(n)
1 , z(n)

2 , . . . , z(n)
N , z(n)

12 , . . . , z
(n)
1N , . . . , z

(n)
1···n, . . . )

> ∈ RM ,

i.e., by the vector of solutions to the ODE system (4.16) in lexicographical order. Written
in matrix form, (4.16) reads

ż(n) = (βA(n) − δDiag(c))z(n)︸                        ︷︷                        ︸
Linear term

−βQ(z(n); F,Split)︸             ︷︷             ︸
Quadratic term

. (4.21)

As in the first order case, the matrix equation is given as the difference of a linear and a
quadratic term. Note that the linear term is independent of the mean-field function F and
the chosen split, whereas the quadratic term crucially relies on these parameters. We now
describe both terms in detail.
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Linear term The matrix A(n) ∈ RM×M is a tridiagonal block matrix:

A(n) :=



D1,1 U1,2 0
L2,1 D2,2 U2,3

L3,2 D3,3 U3,4

. . .
. . .

. . .

Ln−1,n−2 Dn−1,n−1 Un−1,n

0 Ln,n−1 Dn,n



with diagonal blocks

Dk,k ∈ R(Nk )×(Nk ) with entries:

Dk,k
I,I = A(n)

I,I = −
∑
i∈I

∑
j∈I

ai j ,

Dk,k
I,I\{i}∪{ j}(i∈I,j<I) = A(n)

I,I\{i}∪{ j}(i∈I,j<I) = ai j ,

for |I | = k, and k = 1, . . . ,n,

upper diagonal blocks

U k,k+1 ∈ R(Nk )×( N
k+1) with entries:

U k,k+1
I,I∪{ j}( j<I) = A(n)

I,I∪{ j}( j<I) = −
∑
i∈I

ai j ,

for |I | = k, k = 1, . . . ,n − 1,

and lower diagonal blocks

Lk,k−1 ∈ R(Nk )×( N
k−1) with entries:

Lk,k−1
I,I\{i}(i∈I) = A(n)

I,I\{i}(i∈I) =
∑
j∈I

ai j ,

for |I | = k, k = 2, . . . ,n.

The matrix Diag(c) ∈ RM×M is a diagonal matrix with vector c ∈ RM on the diagonal.
The vector indicates the cardinality of the underlying index set, i.e., cI = k if and only if
|I | = k.

Quadratic term The quadratic term Q(z(n); F,Split) depends on the mean-field function
F and on the chosen split I ∪ { j} = I1( j) ∪ I2( j) (for all subsets I ⊆ {1, . . . ,N } of size
|I | = n and all indices j ∈ {1, . . . ,N } with j < I). We denote the split in matrix form by
N pairs of matrices

(I1(1), I2(1)) , . . . , (I1(N ), I2(N )) ,
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where I` ( j) ∈ {0,1}M×M (` = 1,2) is defined by its entries

(I` ( j))I,J :=



1, if |I | = n, j < I, J = I` ( j),

0, otherwise,

i.e., the row of the matrices I1( j) and I2( j) that corresponds to the set I encodes the subset
split of I ∪ { j}, i.e., I1( j) and I2( j), respectively. Using this notation for the split, we can
write the quadratic term in matrix form as

Q(z(n); F, (I1( j), I2( j)) j=1,...,N ) =

N∑
j=1

Diag
(
I1( j) · F (z(n))

)
· C (n) ( j) · I2( j) · F (z(n)),

where,

F (z(n)) := (F (z(n)
1 ),F (z(n)

2 ), . . . ,F (z(n)
N ),F (z(n)

12 ), . . . ,F (z(n)
1N ), . . . ,F (z(n)

1···n), . . . )> ∈ RM ,

and for j = 1, . . . ,N , the diagonal matrix C (n) ( j) ∈ RM×M is defined by its entries

(C (n) ( j))I,I :=



∑
i∈I ai j , if |I | = n, j < I

0, otherwise.

Remark 4.7.1. Plugging the derived expression for Q(z(n); F,Split) into equation (4.21),
we immediately see that the matrix equations for the n-th and first order mean-field ap-
proximations (cf. equations (4.11) and (4.13)) possess an analogous structure. Hence,
the existence of a solution to the n-th order mean-field approximation (for the mean-field
functions F (x) = x and F (x) =

√
x) as well as its uniqueness (for F (x) = x) follow

analogously to the proof of Theorem 4.2.7 (i) and (ii), respectively.

Example 4.7.2. As a concrete example, we consider the quadratic term for the naive single
split. Recall that this split is defined by I1( j) = I and I2( j) = j for all possible subsets I
of size n and indices j < I. In this case, the matrices Isingle

1 ( j) become diagonal matrices,
i.e.,

(Isingle
1 ( j))I,I =




1, if |I | = n, j < I,

0, otherwise,

and the matrices Isingle
2 ( j) have non-zero entries only in the lower left corner, i.e.,

(Isingle
2 ( j))I,j =




1, if |I | = n, j < I,

0, otherwise.
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This leads to the following quadratic term:

Q(z(n); F,Single Split) =

N∑
j=1

Diag
(
I
single
1 ( j) · F (z(n))

)
· C (n) ( j) · Isingle

2 ( j) · F (z(n))

=

N∑
j=1

Diag
(
F (z(n))

)
· I

single
1 ( j) · C (n) ( j) · Isingle

2 ( j) · F (z(n))

= Diag
(
F (z(n))

)
·

*.
,

N∑
j=1

I
single
1 ( j) · C (n) ( j) · Isingle

2 ( j)+/
-
· F (z(n))

= Diag
(
F (z(n))

)
· B(n) · F (z(n)),

where the first step follows since Isingle
1 ( j) is diagonal and the matrix B(n) ∈ RM×M is

defined by its entries in the lower left corner

(B(n))I,j =




∑
i∈I ai j , if |I | = n, j < I

0, otherwise.

Note that in this special case, the quadratic term possesses the exact same structure as in
the first order case.
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4.8 Appendix: Adjacency Matrices

We explicitly give the adjacency matrices for the three example networks depicted in
Figure 4.6. The corresponding MATLAB-files are available upon request.

AHomogeneous =

*..........................................................................................
,

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0

+//////////////////////////////////////////////////////////////////////////////////////////
-
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AClustered =

*..........................................................................................
,

0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0

+//////////////////////////////////////////////////////////////////////////////////////////
-

AStar =

*..........................................................................................
,

0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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