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I

Abstract

This thesis contains five essays on estimating the long-memory parameter and test-
ing for structural change under long-range dependent errors. After an introduction
in the first Chapter, Chapter 2 suggests a modification of the popular local Whittle
long memory estimator in the presence of deterministic low frequency seasonality.
The basic idea is motivated by the observation that deterministic seasonality intro-
duces bounded peaks in the spectral density of the time series only at the seasonal
frequencies and their harmonics.

Chapter 3 introduces an estimator for time-varying long memory in locally sta-
tionary processes that is based on a Whittle-like constrast function. The estimator
uses the wavelet transform, which seems natural as wavelets are localized in both
time and frequency. Other estimators known in the literature are regression-based so
that our new estimator is expected to have lower variance at the price of conceptual
complexity.

In Chapter 4 we consider the problem of estimating and testing for multiple
strucutral breaks under long memory in multivariate systems. The model allows for
a considerable diversity of situations. Structural breaks here refer to breaks in the
regression coefficients or the contemporaneous correlation matrix of the errors. We
introduce a test for the number of breaks and integrate this test in a procedure that
allows us to test for the unknown number of breaks in a given multivariate time
series.

Chapter 5 suggests a testing procedure for structural breaks that can distinguish
three situations: no break, a break in the mean and a break in persistence. First,
we argue that a simple CUSUM based test statistic is able to detect both of the
considered forms of structural breaks and rejects the null hypothesis of no break.
Second, we suggest to split the sample at an estimated break point and proceed to
test which of the forms of a break is present in the time series at hand.

Finally, in Chapter 6 we test electricity load series for a break in mean. To this
end we introduce a new test statistic that is robust to long memory and determin-
istic seasonality. We study the theoretical properties of the test statistic under the
null and a specific alternative. Comparing our estimator to known estimators we
moreover find higher power against a break at the beginning or at the end of the
sample.

Keywords: Long Memory, Seasonality, Whittle estimation, Wavelet analysis, Change-
point, break dates, break in persistence
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Chapter 1

Introduction

This thesis deals with long-memory time series. Long memory is a property of
second-order stationary time series that concerns the dependence structure of a time
series. Loosely speaking, a time series is long-range dependent if the dependence
between two points in time decays rather slowly as the distance between the points
in time increases.

Long memory has been studied in-depth and many applications of long memory
have been found. To just name a few applications in economics we mention inflation
rates (Kumar and Okimoto, 2007), interest rates (W.-J. Tsay, 2000), or trading
volumes (Fleming and Kirby, 2011). Interestingly, not the stock market returns
themselves show characteristics of long memory (Ding et al., 1993), but the second
moment of this random quantity. The long-memory nature of volatility (Bollerslev
and Mikkelsen, 1996) or realized volatility (Deo et al., 2006) are well established.
Moreover, we use electricity load time series in this thesis as an application for our
methods, for which long-memory properties have been found by Lacir Jorge Soares
and Leonardo Rocha Souza (2006) or Sadaei et al. (2017), among others.

In this thesis we consider broadly two problem areas: the estimation of the
long memory parameter and the testing for structural breaks in the presence of
long memory. Mathematically, several definitions of long memory exist that are not
equivalent. In this thesis we will make use of different definitions of long memory.
Thus, it seems appropriate to point out the relationship of these definitions here.
Details can be found in Chapter 2 of Pipiras and Taqqu (2017).

The most specific definition of long memory arises if we specify a time series xt
to have a linear representation, i.e. xt = µ +

∑∞
k=0 ψk εt−k for some white noise

process εt with weights satisfying ψk ∼ c1k
2d−1, 0 < d < 1/2 as k → ∞ for some

constant c1 > 0. The ARFIMA(p, d, q) model is an example that complies with this
definition and we will see an application of this model in Chapter 5.

The second definition used in this thesis is based on the behavior of the spectral
density fx of xt. If the spectral density obeys fx(λ) ∼ c2λ

−2d, 0 < d < 1/2 as
λ → 0+ for some constant c2 > 0 we call xt long-range dependent. This definition
of long-range dependence is implied by our first definition, but it is more general.
It will be used in Chapters 2, 3, and 4 (in a multivariate version). This definition is
prevalent in the literature on estimation because many estimating procedures work
in the spectral domain due to numerical issues of likelihood-based estimation in the
time domain.1

1This definition is, however, not equivalent to defining long memory by a power-like decaying
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A third definition of long memory refers to the behavior of the variance of partial
sums Sn =

∑n
k=1 xk. A time series is long-range dependent if Var(Sn) ∼ c3n

2d+1,
0 < d < 1/2 as n→∞ for some constant c3 > 0. It is the most general definition of
long memory and implied by the other definitions. The practical importance of this
definition can be seen by the fact that under additional assumptions like linearity or
Gaussianity the partial sum process Sn converges to fractional Brownian motion for
all finite dimensional distributions (see Propositions 2.8.7 and 2.8.8 of Pipiras and
Taqqu (2017)). This will lead us to the assumption we make about the long-memory
time series in Chapter 6.

Chapters 2 and 3 deal with the estimation of the long-memory parameter d.
Parametric procedures are typically at a disadvantage when compared to semipara-
metric approaches because they require a full specification of the model albeit their
potentially greater efficiency if correctly specified. Therefore, we focus on semipara-
metric estimators. Probably the most well-known semi-parametric estimators are
the GPH estimator of Geweke and Porter-Hudak (1983) and the local Whittle es-
timator of Robinson (1995a). While the former may be conceptually simpler, the
latter benefits from its lower variance.

In Chapter 2 we study the effects of deterministic seasonality on the estimation of
the long-memory parameter d. Seasonality perturbs the estimation if the seasonal-
ity has long periods relative to the observation frequency. Deterministic seasonality
affects the periodogram in a similar way as structural breaks or non-periodic trends.
Thus, they may be regarded as a type of spurious long memory. Although deter-
ministic seasonality influences the periodogram only at the seasonal frequencies and
their harmonics, it causes a sizeable bias of the local Whittle estimator. We docu-
ment this bias and suggest a solution by omitting affected periodogram ordinates.
A similar approach has been suggested by Ooms and Hassler (1997) for the GPH
estimator. In our contribution we compare both estimators in a Monte Carlo study.
The potential of our proposed estimator is shown in an application to electricity
load series. Electricity load series are revisited in Chapter 6.

In Chapter 3 we study the estimation of time-varying long memory for locally
stationary processes. Locally stationary processes can roughly be described as pro-
cesses “which locally at each time point are close to a stationary process but whose
characteristics (covariances, parameters, etc.) are gradually changing in an unspe-
cific way as time evolves” (Dahlhaus, 2012). Using estimators based on the wavelet
transform that is localized both in the spectral and in the time domain simultane-
ously is a natural choice when constructing estimators for the long-memory parame-
ter function d(t), t = 1, . . . , T . Our contribution is motivated by the paper of Roueff
and Von Sachs (2011), who introduce a wavelet based estimator similar to the GPH
estimator in the sense that their estimator is regression based. On the contrary,
the estimator introduced here is based on the optimization of a Whittle likelihood.
We compare both estimators in a Monte Carlo study and show an application to
realized volatility of national stock indices.

Chapters 4, 5, and 6 deal with testing for structural change under long-range de-
pendent errors. Structural change can be seen as a complement to time-varying mod-
els. Where the latter assumes that the data generating system changes smoothly, a
structural break model takes the standpoint that the system changes rapidly at one
instant in time. In this thesis we consider breaks in the long-memory parameter,

autocovariance function: γ(n) ∼ c̃2n2d−1 (n→∞) for some constant c̃2, see Gubner (2005).
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i.e. breaks in persistence as well as breaks in the mean and in the variance. As we
consider the null hypothesis of no break in all articles, the main theoretical device
will be the functional central limit theorem for long-memory time series to derive the
limiting distributions. The limiting distribution thus depends on the long-memory
parameter d as a nuisance parameter. Hence, we pay special attention to simulation
studies that examine how well the limiting distribution is approximated in finite
samples.

In Chapter 4 we study a multivariate regression model allowing for multiple
breaks in the mean and in the variance. Earlier contributions that allowed for long
memory only considered univariate models with breaks in the mean (see inter alia
L. Wang (2008); Shao (2011); Iacone et al. (2014); Betken (2016)). Our approach is
motivated by Qu and Perron (2007), who analyze a similar model but did not take
long-memory errors into account. We suggest to estimate regression coefficients, the
contemporaneous covariance matrix of the errors, and the break points by quasi-
maximum likelihood. In a first step the theoretical properties of the estimators
are studied. We show that the estimators are consistent and give their limiting
distributions. In a second step we propose a test statistic and a procedure that
allows us to identify the a priori unknown number of break points in a given time
series.

Chapter 5 deals with a setup in which we wish to distinguish the null hypothesis
of no structural break against two alternatives: a break in the mean and a break in
persistence. We devise to use a simple CUSUM test statistic. If a structural break
is indeed present, we then show how to distinguish which of the aforementioned
forms of a structural break is in place for a time series at hand. The approach is
inspired by Aue et al. (2009). We derive the limiting distribution and study the finite
sample properties of the test in a Monte Carlo study. An application to inflation
rates illustrates the practical utility of this idea.

In Chapter 6 we reconsider the case of electricity load data, for which we want
to test the null hypothesis of no change in mean. As indicated above, several testing
procedures have been proposed in the literature before. Yet, we suggest a new
hypothesis test for detecting a break in mean under long-range dependent errors.
Two reasons provide support for this decision. First, we find that existing tests have
rather low power against breaks that happen in the beginning or end of the sample.
Second, we are able to show that our test statistic is theoretically not affected by
deterministic seasonality, which is crucial when using the test with electricity load
data. Our idea is motivated by a test of Wu (2004). The test statistic is based on
isotonic and antitonic regression. We derive the limiting distribution under the null
hypothesis allowing for deterministic seasonality and show consistency of the test
against a certain alternative. The test is then applied to electricity load time series.
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Chapter 2

Seasonality Robust Local Whittle
Estimation
Co-authored with Christian Leschinski and Philipp Sibbertsen.
Applied Economics Letters

Online available at: https://doi.org/10.1080/13504851.2019.1691710
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Chapter 3

Local Whittle Wavelet Estimation
for Locally Stationary Processes
Co-authored with Philipp Sibbertsen.

3.1 Introduction

Long memory has been recognized as a feature of many practically relevant time
series, see e.g. the recent monograph of Pipiras and Taqqu (2017). However, in many
applications the long memory parameter d has been found to be changing over time.
A few examples of data that seems to have time-varying long memory includes
classical examples like the Nile river minima (Beran (2009)), individual stock and
index returns (Ray and R. S. Tsay (2002), Z. Lu and Guegan (2011)), video data
traffic (Beran et al. (1995)), and electricity prices (Haldrup and Nielsen (2006)).

In order to analyze the long memory parameter of such time series one may stick
with the well-known semiparametric estimators in the frequency domain. In partic-
ular, there is the Geweke-Porter-Hudak (GPH) estimator that has been introduced
by Geweke and Porter-Hudak (1983) and analyzed by Robinson (1995b). The GPH
estimator is regression-based and uses the log-linear relationship of the long mem-
ory parameter and the periodogram ordinates. On the other hand one can use the
likelihood-based approach in the frequency domain called local Whittle (Fourier)
estimation (LWF). This estimator was proposed by Künsch (1987) and analyzed by
Robinson (1995a). However, as the Fourier approach is not well localized in time and
always “utilizes” information of the whole sample these methods seem questionable
for time-varying long memory.

In contrast, wavelet-based methods seem to be better suited for the case of time-
varying long memory as has been pointed out by Whitcher and Jensen (2000) or
Roueff and Von Sachs (2011). The localization of wavelets not only in frequency,
but also in the time domain makes them a natural candidate for an estimator in
the context of time-varying long memory. Similar to the GPH estimator in the
frequency domain there exists the local regression wavelets estimator that has been
analyzed by Moulines et al. (2007b) and Moulines et al. (2007a). Additionally, the
counterpart of the LWF estimator is the local Whittle wavelet estimator which was
introduced by Moulines et al. (2008). An overview and a concise comparison of
the different methods in the frequency and wavelet domain can be found in Faÿ
et al. (2009).
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In this paper we focus on the semi-parametric estimation of the long memory
parameter of locally stationary processes. Roueff and Von Sachs (2011) introduced
a locally stationary long memory model and provided an semi-parametric estimator
that is regression-based. In this model the spectral density obeys for all observations
t, 1 ≤ t ≤ T , the relation

f(λ) ∼ λ−2d(t) C(t), C(t) > 0, as λ→ 0+,

where ”∼” means that the fraction of both sides tends to 1 asymptotically. Roueff
and Von Sachs (2011) give several examples of how usual time series models may
be written with time-varying long memory. Here, we will use the same suggested
model and develop a local Whittle wavelet estimator for this process.

Locally stationary processes have been introduced by Dahlhaus (1997) and Dahl-
haus (2000). A special property when estimating parameters in the model is the
kind of asymptotics that is referred to as infill asymptotics (Dahlhaus (2012)). This
term describes the fact that one imagines the increasing sample to become more
densely sampled. That is, the time domain is rescaled to the unit interval and for
any time point u ∈ [0, 1] one wishes to estimate d(u) by d(t/T ) if u ≈ t/T where
T describes the number of observations. Increasing the number of observations can
be seen to improve this approximation u ≈ t/T for any time point u. We are able
to prove consistency and asymptotic normality of our estimator in this framework.

The paper is structured as follows. The purpose of Section 3.2 is three-part. At
first we introduce the model and define locally stationary long memory. Then we
present the assumptions on the wavelets in 3.2.1 and define the so-called tangent
process in 3.2.2, which provides us with the relation between our estimator and the
local long memory parameter. In Section 3.3 we introduce the estimator and state
its asymptotic properties, i.e. consistency and asymptotic normality. With a Monte
Carlo study we explore its small sample properties in the subsequent Section 3.4.
We give a practical example and examine the time-varying long memory property of
several financial assets in Section 3.5. Section 3.6 concludes. Proofs are postponed
to the Appendix.

3.2 The Model and Assumptions

We define locally stationary long memory processes via its spectral representation.
For p ∈ N0 and an array of L2([−π, π]) functions A0

t,T (λ) with real-valued Fourier
coefficients we define

∆pXt,T =

∫ π

−π
A0
t,T (λ) exp(iλt)dZ(λ), t = 1, . . . , T, (3.1)

where dZ(λ) is the spectral representation of a centered weak white noise with unit
variance, i.e.

εt =

∫ π

−π
exp(iλt)dZ(λ), t ∈ Z. (3.2)

Thus, the mueasure Z(λ) is Hermitian and complex valued with stationary orthog-
onal increments on [−π, π]. We assume that there exists a function A(u, λ) in
L2([0, 1]× [−π, π]) and two constants c > 0 and D < 1/2 such that

|A0
t,T (λ)− A(t/T, λ)| ≤ c T−1 |λ|−D, 1 ≤ t ≤ T, −π ≤ λ ≤ π, (3.3)
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and

|A(u, λ)− A(v, λ)| ≤ c |v − u| |λ|−D, 0 ≤ u, v ≤ 1, −π ≤ λ ≤ π. (3.4)

This definition has been suggested by Roueff and Von Sachs (2011) and it allows a
singularity at the zero frequency bounded by |λ|−D. In addition we assume that the
spectral representation of the process Xt,T has a density f that is called time-varying
generalized spectral density by Roueff and Von Sachs (2011):

f(u, λ) = |1− exp(−iλ)|−2p|A(u, λ)|2. (3.5)

Definition 1. The process {Xt,T : t = 1, . . . , T, T ≥ 1} has a local memory param-
eter d0(u) ∈ (−∞, p+1/2) at time u ∈ [0, 1] if it satisfies Equations (3.1), (3.3) and
(3.4). In addition its time-varying generalized spectral density satisfies the following
conditions

f(u, λ) = |1− exp |−2d(u)f ∗(u, λ), λ ∈ [−π, π],

where f ∗(u, 0) > 0 and

|f ∗(u, λ)− f ∗(u, 0)| ≤ C f ∗(u, 0) |λ|β, λ ∈ [−π, π], (3.6)

where C > 0 and β ∈ (0, 2].

Using terminology introduced by Moulines et al. (2008) we may say that Z ∈
H (β, C, π) where H (β, C, π) is the class of finite nonnegative symmetric measures
on [−π, π] that have a density f ∗ that complies with Equation (3.6).

The following assumption is from Roueff and Von Sachs (2011).

Assumption 1. The array {Xt,T} of real-valued random variables has local memory
parameter d0(u) ∈ (−∞, p + 1/2) at time u ∈ [0, 1]. Moreover, {εt} in Equation
(3.2) is a weak white noise such that E[ε0] = 0, Var(ε0) = 1, E[ε4

t ] <∞ for all t ∈ Z
and the fourth-order cumulants of its spectral representation dZ(λ) satisfy

Cum(dZ(λk), 1 ≤ k ≤ 4) = κ̂4(λ)dµ(λ), λ = (λk)1≤k≤4 ∈ [−π, π]4,

where κ̂4(λ) = κ̂4(λ1, λ2, λ3) is a bounded function on [−π, π]3 and µ is the measure
on [−π, π]4 such that for any 2π-periodic functions Ak, 1 ≤ l ≤ 4,∫

[−π,π]4

4∏
k=1

Ak(λk)dµ(λ) =

∫
[−π,π]3

A4(−λ1 − λ2 − λ3)
3∏

k=1

Ak(λk)dλ.

3.2.1 Discrete Wavelet Transform (DWT)

We largely follow the descriptions of Moulines et al. (2007b) about the discrete
wavelet transform (DWT) of {Xt,T , 1 ≤ t ≤ T} for a given scale function φ and
wavelet ψ. The requirements for resp. assumptions about these functions are listed
below. Also, one may check Percival and Walden (2006) for more information on
the topic.

The wavelet coefficients Wj,k;T for j ≥ 0 and 1 ≤ t ≤ T are defined by

Wj,k;T =
T∑
t=1

hj,2jk−tXt,T , k = 0, . . . , Tj − 1, (3.7)
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where hj,t, t ∈ Z denotes the wavelet filter at scale j and Tj is the number of available
wavelet coefficients at scale j. The filter coefficients are related to φ and ψ by

hj,t = 2−j/2
∫ ∞
−∞

φ(u+ t)ψ(2−ju)du.

Note that we adopt from the engineering literature the convention that large j
correspond to coarser scales. The number Tj of available wavelet coefficients at
scale j obeys for some constant c independent of the scale j

T2−j − c ≤ Tj ≤ T2−j. (3.8)

The filter coefficients hj,· and the number Tj have support {t : hj,2jk−t 6= 0} included
in {1, . . . , T} for k = 0, . . . , Tj − 1. In order to state the assumptions on φ and ψ
we introduce the filter transfer function of the wavelet filter hj,t

Hj(λ) =
∑
t∈Z

hj,t exp(−itλ).

The following set of assumption is common in the literature (Moulines et al. (2007b),
Moulines et al. (2008) or Roueff and Von Sachs (2011)).

Assumption 2. We assume that the scale function φ and wavelet function ψ meet
the following requirements for M ∈ N and α ∈ R.

(a) φ and ψ are compactly supported, integrable,
∫∞
−∞ φ(t)dt = 1 and

∫∞
−∞ ψ

2(t)dt =
1.

(b) There exists α > 1 such that supξ∈R|ψ̂(ξ)|(1 + |ξ|)α < ∞, where ψ̂(ξ) =∫∞
−∞ ψ(t) exp(−itξ)dt denotes the Fourier transform of ψ.

(c) The function ψ has M vanishing moments,
∫∞
−∞ t

mψ(t)dt = 0 for all m =
0, . . . ,M − 1.

(d) The function
∑

k∈Z k
mφ(·−k) is a polynomial of degree m for all m = 0, . . . ,M−

1.

(e) For all u ∈ [0, 1] the values M,α, β are such that M ≥ p ∨ d0(u) und d0(u) >
(1 + β)/2− α.

For a more detailed interpretation of Assumption 2 we refer to the literature.
However, they are mainly needed to guarantee that the emerging wavelet coefficients
are stationary. Under (c)-(d) the filter hj,t can be described as the convolution of
the difference filter ∆M and a finite impulse response filter h̃j,t. When M ≥ p we
can rewrite Equation (3.7) as

Wj,k;T =
T∑
t=1

h̃j,2jk−t(∆
pX)t,T , k = 0, . . . , Tj − 1,

where hj,· = h̃j,· ∗∆p.
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3.2.2 The Tangent Process and its Relation to the Long
Memory Parameter

We now review the concept of the local wavelet spectrum σ2(u) = {σ2
j (u), j ≥ 0}

where for j ≥ 0 the quantity σ2
j (u) is the variance of the wavelet coefficients at

scale j of the so-called tangent stationary process ∆pXt(u). Under the assumption
M ≥ p this quantity σ2(u) is well-defined because the wavelet coefficients are weakly
stationary. In particular, from (3.5) we have

σ2
j (u) =

∫ π

−π
|Hj(λ)|2f(u, λ)dλ.

For u ∈ [0, 1] we can define a tangent stationary process for the p-th increment
which is weakly stationary

∆pXt(u) =

∫ π

−π
A(u, λ) exp(itλ)dZ(λ).

Thus, we can define the wavelet coefficients of the tangent process

Wj,k(u) =
T∑
t=1

h̃j,2jk−t(∆
pX)t(u)

=

∫ π

−π
H̃j(λ)A(u, λ) exp(iλ2jk)dZ(λ).

The preceding quantities are connected by the relation σ2
j (u) = E[W 2

j,k(u)]. Note
that these wavelet coefficients are those of a process with generalized spectral density
f(u, ·). Fixing u ∈ [0, 1] we thus can use the results of Moulines et al. (2007b) on
the spectral properties of wavelet coefficients Wj,k(u).

We now introduce the notion of the so-called tangent scalogram σ̃2
j,T whose

asymptotic properties are the main ingredient for our estimator to be defined be-
low. In order to do so, we average the wavelet coefficients of the tangent process
by using a kernel γj,T (k) that is concentrated around the index k ≈ uTj. As usual
for kernel weights the weights are assumed to be non-negative and sum to one, i.e.∑Tj−1

k=0 γj,T (k) = 1. The tangent scalogram is

σ̃2
j,T (u) =

Tj−1∑
k=0

γj,T (k)W 2
j,k(u).

However, this tool is not an estimator as it cannot be computed from the observations
X1,T , . . . , XT,T . Instead we calculate the local scalogram defined as

σ̂2
j,T (u) =

Tj−1∑
k=0

γj,T (k)W 2
j,k;T .

Being able to approximate the local scalogram σ̂2
j,T (u) asymptotically by the tan-

gent scalogram σ̃2
j,T (u) requires additional assumptions on the weights γj,T as intro-

duced by Roueff and Von Sachs (2011). For this reason the authors use a quantity
Γq(u; j, T ) for describing the localization property of the weights defined as

Γq(u; j, T ) =

Tj−1∑
k=0

|γj,T (k)| |k − Tu2−j|q.
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Furthermore they denote the Fourier transform of the weights as

Φj,T (λ; i, v) =
∑

l∈Tj(i,v)

γj−i,T (2il + v) exp(ilλ),

where 0 ≤ i ≤ j, v ∈ {0, . . . , 2i − 1} and Tj(i, v) describes the number of available
wavelet coefficients at scale j − i, i.e.

Tj(i, v) = {l : 0 ≤ l ≤ 2−i(Tj−i − v)}.

Lastly, the largest weight is called

δj,T = sup
k=0,...,Tj−1

γj,T (k).

With these definitions we can state the set of assumptions on the weights.

Assumption 3. The index j must depend on T in such a way that the weights
(γj,T (k))k satisfy the following asymptotic properties as T →∞.

(a) δj,T → 0 and for any fixed integer i, δj+i,T ∼ 2iδj,T .

(b) For all i, i′ ≥ 0, v ∈ {0, . . . , 2i − 1} and v′ ∈ {0, . . . , 2i′ − 1} there exists a
constant V (i, v; i′, v′) such that

δ−1
j,T

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′)dλ→ V (i, v; i′, v′).

(c) For all η > 0, i ≥ 0 and v ∈ {0, . . . , 2i′ − 1} we have

δ
−1/2
j,T sup

η≤|λ|≤π
|Φj,T (λ; i, v)| → 0.

(d) For q = 0, 1, 2 we have
Γq(u; j, T ) = O(δ−qj,T ).

Roueff and Von Sachs (2011) give examples of weights that meet these require-
ments and in our Monte Carlo simulation in Section 3.4 we will use these suggested
weights.

The authors prove the following relation between the local scalogram σ̂2
j,T and the

true local memory parameter. It is the key in order to understand the asymptotic
properties of our estimator.

For the statement we define the function K as

K(d) =

∫ π

−π
|ξ|−2d |ψ̂(ξ)|2 dξ. (3.9)

Theorem 3.1 (Roueff and Von Sachs (2011) (Theorem 1)). Let u ∈ [0, 1] and
consider a model satisfying Assumptions 1 and 2. Then we have, as j →∞,

σ2
j (u) = f ∗(u, 0)K(d0(u))22jd0(u){1 +O(2−βj)}. (3.10)

Suppose moreover that Assumption 3 holds and that

2{3+2(p−d0(u))}LT−2δ−2
L,T → 0.
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Then we have for j = L+ i with i = 0, . . . , l,

E
[(

2−2Ld0(u)σ̂2
j,T (u)− f ∗(u, 0)K(d0(u))2id0(u)

)2
]

=

O
(
δL,T + 2(3+2(p−d0(u)))LT−2δ−2

L,T + 2−2βL
)
.

(3.11)

The first part connects the true local memory parameter d0(u) and the local
wavelet spectrum σ2

j (u). The second part gives a bound on the mean squared error
between the local scalogram σ̂2

j,T (u) and the asymptotic form of the local wavelet
spectrum. These Equations equip us with the right tool as they render the variance
of the local scalogram normalized by the local wavelet spectrum tractable. This
quantity denoted as

Var
(
σ̂2
j,T (u) / σ2

j (u)
)
, j = L+ i, i = 0, . . . , l,

is considered in Moulines et al. (2008) in their Condition 1. This condition must be
fulfilled by any process for their estimator to be applicable.

3.3 Local Whittle Wavelet Estimator

Following the reasoning of Moulines et al. (2008) we define our estimator as the
minimum of a pseudo negative log-likelihood:

d̂` = d̂`(u) = arg min
d∈R

L̂`(d(u)),

where for a set ` of wavelet coefficients to be specified later

L̂` = L̂`(d(u)) = log
∑

(j,k)∈`

22d(u)(〈`〉−j) γj,T (k)W 2
j,k;T .

Here, |`| denotes the number of elements of the set ` and 〈`〉 is the average scale

〈`〉 =
1

|`|
∑

(j,k)∈`

j.

In this paper we only consider the case that the set of wavelet coefficients ` involves
a fixed number of scales. The case of an asymptotically increasing number of scales
that has been studied by Moulines et al. (2008) cannot be dealt with by the frame-
work of Roueff and Von Sachs (2011). We introduce some notation to state this idea
formally. Define for an integer T and two bounds of scales j0 ≤ j1 the set

`T (j0, j1) = {(j, k) : j0 ≤ j ≤ j1, 0 ≤ k ≤ Tj},

where Tj is the number of available wavelet coefficients at scale j described by (3.8).
We call the sequence of the lower scale index {LT}, the number of involved scale
indices l and the sequence of the maximal scale indices {JT} for all T . So, we must
have

0 ≤ LT < LT + l ≤ JT , JT = max{j : Tj ≥ 1}.
Therefore, the scale indices that are included in the pseudo-likelihood function is
indicated by the set `T (LT , LT + l) and the estimator is d̂`T (LT ,LT +l)(u).

Now we can state the consistency of the estimator.
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Theorem 3.2. Let Assumptions 1 − 3 hold and assume that the sequences {LT}
describes the lower index of scales and suppose that as T →∞

2{3+2(p−d0(u))}LTT−2δ−2
L,T + L2

T (T2−LT )−1/4 + L−1
T → 0.

Then for any u ∈ [0, 1] the estimator d̂`T (LT ,LT +l) is consistent with

d̂`T (LT ,LT +l)(u) = d0(u) +OP

((
T2−LT

)−1/2
+ 2−βLT

)
.

We derive a central limit theorem for the estimator d̂`T (LT ,LT +l) of d0(u) for
u ∈ [0, 1] when further assuming that Xt,T is Gaussian. In order to state the
asymptotic variance in the following theorem we need some further notation. For
0 ≤ p ≤ i ≤ l we define

Σi,p(u) = 2i+1

2p−1∑
v=0

V (0, 0; p, v)

∫ π

−π
|D∞,p,v(λ; d0(u))|2dλ,

where D∞,p,v(λ; d0(u)) is defined in Moulines et al. (2008) (equation (11)). We
denote for integers l ≥ 1,

ηl =
l∑

j=0

j
2−j

2− 2−l
and κl =

l∑
j=0

(j − ηl)2 2−j

2− 2−l
. (3.12)

Finally for u ∈ [0, 1],

V (d0(u), l) =
1

((2− 2−l)κl log(2) K(d0(u)))2 ×{
l∑

i=0

(i− κL)2 Σi,0(u) + 2
l∑

i=1

i∑
p=1

Σi,p(u) 22d0(u)p (i− ηl)(i+ u− ηl)

}
(3.13)

where K(d) is defined in (3.9).

Theorem 3.3. Let Assumptions 1 − 3 hold, where the innovations in Equation
(3.2) follow a normal distribution εt ∼ N(0, s2), and assume that the sequence {LT}
describes the lower index of scales. Additionally, let {LT} be a sequence such that

2{3+2(p−d0(u))}LTT−2δ−3
LT ,T

+ 2−2βLT δ−1
L,T + L2

T (T2−LT )−1/4 + L−1
T → 0. (3.14)

Then as T →∞ for any u ∈ [0, 1],

T2−LT δ
−1/2
LT ,T

(d̂`T (LT ,LT +l) − d0(u))
L−→ N (0, V (d0(u), l))) .

Notice the similarity of the the first and second term of the condition (3.14) in
the central limit theorem with the condition (50) of Theorem 3 of Roueff and Von
Sachs (2011). Additionally, one may note that the remaining terms are unchanged
compared to the condition of Theorem 3.2. Moulines et al. (2008) need to change
their condition (31) in order to control for the bias, which we do effectively by our
second term in (3.14).
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3.4 Monte Carlo Simulation

We investigate the small sample properties of our local Whittle wavelet estimator
(which we denote by LWW in the following) and compare its performance in this
Section with the local wavelet regression estimator of Roueff and Von Sachs (2011)
(denoted by LRW in the following). For the local Whittle wavelet estimator and
the estimator of Roueff and Von Sachs (2011) we use weights γj,T that have been
suggested by these authors. Specifically, for a given bandwidth bT we define the
weights by

γj,T (k) = ρ−1
j,T1[−1/2,1/2]

(
uTj − k
bTTj

)
, k = 1, . . . , T,

where ρj,T is normalizing the weights in order for them to sum to one. We set bT =
0.25 in accordance with the aforementioned source. Additionally, we assume that
as T →∞ we have bT → 0 and TjbT →∞. Then the weights satisfy Assumption 3.

In order to get Wavelet coefficients that fulfill Assumption 2 we use the Daubechies
and Coiflet wavelets (cf. Faÿ et al. (2009)). These wavelets can produce M vanish-
ing moments. In the following we refer to Daubechies wavelets with, say, M = 6
vanishing moments as D6 and to Coiflet wavelets with M = 6 as C6. In our ex-
periments we found small values of M to perform best so we do not report higher
values of vanishing moments M .

Our Monte Carlo simulation is performed by repeating estimation 10, 000 times.
We set the length of the simulated time series to T = 210 = 1024. As we estimate
d(u) for u ∈ [0.2; 0.8] we report here the integrated squared bias and the integrated
variance of the estimators. Therefore, we have

Bias(d̂) =

[0.8T ]∑
t=[0.2T ]

(
E(d̂(t/T ))− d0(t/T )

)2

,

Var(d̂) =

[0.8T ]∑
t=[0.2T ]

E

((
d̂(t/T )− E(d̂(t/T ))

)2
)
.

Obviously, the expectation in the preceding equations is estimated by the mean of
the Monte Carlo sample.

We use four different functions for d0(u) in order to analyze the applicability of
the estimator in various situations. The different functions can be seen in Figure
3.1. The functions are defined as follows

(i) cosine: d1
0(u) = 0.6 + (1− cos(u π/2))/3,

(ii) linear: d2
0(u) = 0.6 + 0.3u,

(iii) cubic: d3
0(u) = 0.6 + 0.3u3,

(iv) logistic: d4
0(u) = 0.6 + 0.3

1

1 + exp(−8 (u− 0.5))
.

The values of the long memory parameter are in the non-stationary region d > 0.5
as these values are often found in applications, e.g. the long memory of volatility
(Wenger, Leschinski, and Sibbertsen (2018b)). This choice is further motivated by
the fact that it has often been pointed out that wavelet methods seem to be perfect
suited for nonstationary long memory (Whitcher and Jensen (2000)).
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Figure 3.1: Functions di0(u), i ∈ {1, 2, 3, 4} that are used in the Monte Carlo simu-
lations.

In the experiments we use an tv-ARFIMA(p, d(u), 0) model which has been in-
troduced by Roueff and Von Sachs (2011). In order to study the effects of short-run
components we choose p = 0 and p = 1 with an AR-coefficient φ1 = 0.5.

The results of the Monte Carlo simulation can be found in the Tables 3.1 and
3.2. Overall, we see that the performance of our estimator measured by the MSE is
superior to the estimator of Roueff and Von Sachs (2011). Unsurprisingly, using the
higher scales 4 − 6 provide best estimates, thus we just report their performance.
Also the estimates are worse if the simulated process has an AR-coefficient.

LWW LRW

di Wavelet L U Bias(d̂) Var(d̂) MSE Bias(d̂) Var(d̂) MSE

d1 D6 4 5 7.2 43.8 51.0 9.1 56.0 65.1
4 6 7.3 43.8 51.0 9.1 56.1 65.2

C6 4 5 7.6 42.6 50.3 9.7 52.7 62.4
4 6 7.6 42.5 50.2 9.7 52.6 62.3

d2 D6 4 5 9.1 43.8 52.9 12.2 57.8 69.9
4 6 9.1 43.8 52.9 12.2 57.7 69.9

C6 4 5 7.2 40.6 47.8 9.0 51.9 60.9
4 6 7.2 40.6 47.8 9.0 51.8 60.8

d3 D6 4 5 6.9 43.2 50.1 9.1 53.6 62.7
4 6 6.9 43.2 50.1 9.1 53.5 62.6

C6 4 5 7.8 47.8 55.7 10.5 60.1 70.5
4 6 7.8 47.9 55.7 10.5 60.1 70.5

d4 D6 4 5 4.6 44.1 48.7 4.2 56.2 60.4
4 6 4.6 44.1 48.7 4.2 56.3 60.5

C6 4 5 5.1 44.5 49.5 4.8 60.7 65.5
4 6 5.1 44.5 49.6 4.8 60.8 65.6

Table 3.1: Bias, Variance and MSE of LWW and LRW of Roueff and Von
Sachs (2011) estimators for the tv-ARFIMA using Daubechies wavelets and without
short-run dynamics, i.e. φ = 0.

In Table 3.1 we consider no AR-coefficient for the data generating process and
find that the LWW estimator performs better in terms of squared Bias and Variance
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for d1, d2 and d3. However, its Bias is slightly worse for the long memory parameter
d4 although its Variance is much lower. All in all it is not clear which wavelet -
Daubechies or Coiflet - perform better as it seems to depend on the form of the long
memory parameter.

LWW LRW

di Wavelet L U Bias(d̂) Var(d̂) MSE Bias(d̂) Var(d̂) MSE

d1 D6 4 5 56.8 43.8 100.6 53.1 54.4 107.6
4 6 56.8 43.8 100.6 53.2 54.4 107.6

C6 4 5 52.7 44.4 97.1 50.1 57.0 107.1
4 6 52.9 44.4 97.3 50.3 57.0 107.3

d2 D6 4 5 54.0 46.0 100.0 50.7 59.5 110.2
4 6 54.0 46.1 100.1 50.8 59.6 110.3

C6 4 5 46.1 43.3 89.3 43.0 54.0 97.0
4 6 46.2 43.2 89.3 43.1 53.9 97.0

d3 D6 4 5 53.6 43.2 96.8 50.4 58.7 109.0
4 6 53.7 43.1 96.9 50.5 58.6 109.1

C6 4 5 48.5 42.9 91.4 46.4 55.6 102.1
4 6 48.5 42.9 91.5 46.5 55.7 102.1

d4 D6 4 5 82.3 45.0 127.2 75.9 57.3 133.2
4 6 82.4 44.9 127.3 76.0 57.2 133.2

C6 4 5 77.1 43.2 120.3 71.4 57.0 128.4
4 6 77.2 43.2 120.4 71.6 57.0 128.5

Table 3.2: Bias, Variance and MSE of LWW and LRW of Roueff and Von
Sachs (2011) estimators for the tv-ARFIMA with short-run dynamics, i.e. φ = 0.5.

In Table 3.2 we introduce short-run dynamics in the form of an AR-coefficient
φ = 0.5. Still, the LWW estimator is better in terms of the MSE. Nevertheless,
closer inspection show that its squared Bias is larger and its Variance is lower than
the LRW estimator. We find that the Coiflet wavelets perform much better in this
case for both estimators.

3.5 Time-varying Long Memory of Realized Volatil-

ity

In this section we estimate the time-varying long memory parameter of several major
national stock indices like the S&P 500 index for the United States of America. This
analysis is related to and inspired by the findings of Jensen and Whitcher (2014)
who study the long memory of exchange rates. They take their starting point
in the stylized fact about financial markets that their volatility has long memory
(Ding et al. (1993); Baillie (1996); Andersen et al. (2001)). However, long memory
may arise from structural breaks, day-of-the-week seasonality or macroeconmic ef-
fects like market crashes and policy changes (Banerjee and Urga (2005); Martens
et al. (2009)). Therefore one may argue that the environment in which long memory
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Figure 3.2: Estimated time-varying long memory parameter of realized volatility of
several national stock indices over the years 1999− 2016.

is generated is not stationary, but changing. This in turn may influence the long
memory parameter.

Jensen and Whitcher (2014) reason along these lines and thus analyze the Deutsche
Mark/Dollar foreign exchange rates. They find time-varying long memory and can
even relate the form of the estimated function d̂(u) to historical dates. Specifically,
they explain the estimated curve with events like the Russian crisis in 1993 or the
scheduled announcement of macroeconomic data of the US.

We use daily data on major stock indices and estimate the long memory param-
eter d̂(u) of the realized volatility by the wavelet local Whittle estimator for the
years 1999 to 2016. The results can be found in Figure 3.2. We use Coiflet wavelets
with M = 6 vanishing moments and use the scales 10 to 14 which corresponds to
the 5 largest scales. Other choices of the scales yield similar results.

Overall, we find values of the long memory parameter that are slightly in the
non-stationary region d > 0.5 most of the time. At some points in time the volatility
appears even to be antipersistent for a short period. One may have expected to see
effects of the financial crisis 2008 on the long memory parameter. Unfortunately,
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we are not able to undoubtedly identify these effects on the long memory parameter
for every country. Indeed, some countries seem to experience relatively stable long
memory parameters for the realized volatility of their stock indices. Interestingly,
the long memory parameter of the Scandinavian countries Finland and Sweden
show very similar patterns. This may point to some form of cointegration of the
long memory parameter.

3.6 Conclusion

In this paper we introduce a new Whittle-type estimator for time-varying long
memory of locally stationary processes. The estimator utilizes wavelets that are
well-suited due to their time-frequency resolution and can deal with long memory
in the non-stationary region of d > 1/2. We prove its consistency and derive its
limiting distribution. A small Monte Carlo study shows that the wavelet Whittle
estimator has a better MSE than the wavelet regression estimator of Roueff and
Von Sachs (2011) in many cases. Lastly, we have shown how to apply the estimator
to analyze time-varying features of realized volatility time series of common stock
indices.

3.7 Appendix

As we prove pointwise convergence to d0(u) for any u ∈ [0, 1] let u be fixed in this
whole Section. Moreover, in the following we require Assumptions 1-3 to hold.

Write the contrast process as

L̃`(d) = L`(d) + E`(d) + log(|`|σ222d0(u)〈`〉), (3.15)

where L`(d) is defined by Equation (47) of Moulines et al. (2008) and

E`(d) = log

1 +
∑

(j,k)∈`

22(d0(u)−d)∑
` 22(d0(u)−d)

(
γj,T (k)W 2

j,k;T

σ222d0(u)j
− 1

) (3.16)

with σ2 = f ∗(u, 0)K(d0(u)) and K specified in (3.9). We know about the behavior
of L` from Proposition 6 of Moulines et al. (2008). For the study of E` we will
modify their Proposition 7. Introduce some notation for this task. For ρ > 0 and
q ≥ 0 the set of real-valued sequences {µj}j≥0 is defined as

B(ρ, q) = {{µj}j≥0 : |µj| ≤ ρ(1 + jq) for all j ≥ 0} .

Additionally we define for any u ∈ [0, 1], any T ≥ 1, any sequence {µj}j≥0 and for
scales 0 ≤ j0 ≤ j0 + l ≤ JT ,

S̃u,T,j0,l(µ) =

j0+l∑
j=j0

µj−j0

Tj−1∑
k=0

[
γj,T (k)W 2

j,k;T

σ2(u)22d0(u)j
− 1

]
.
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Lemma 3.1. For any u ∈ [0, 1] and any q ≥ 0, there exists C > 0 such that for all
ρ ≥ 0, T ≥ 1 and j0 = 1, . . . , JT − l,(

E sup
µ∈B(ρ,q)

sup
j0=1,...,JT−l

|S̃u,T,j0,l(µ)|2
)1/2

≤ CρT2−j0
[
(T2−j0)−1/2 + 2−βj0

]
,

if we assume that
2{3+2(p−d0(u))}j0T−2δ−2

j0,T
→ 0.

Proof. This result mainly follows using the same arguments as Moulines et al. (2008)
in the proof of their Proposition 7 combined with an application of their so-called
Condition 1. Technically we must approximate σ̂j,T (u) by σ̃2

j,T (u) and bound the
approximation error. We set ρ = 1 without loss of generality and write

S̃u,T,j0,l(µ) =

j0+l∑
j=j0

σ2
j (u)

σ222d0(u)j
µj−j0

[
σ̂2
j,T (u)

σ2
j (u)

− Tj
]

+

j0+l∑
j=j0

Tjµj−j0

[
σ2
j (u)

σ222d0(u)j
−1

]
=S̃

(1)
u,T,j0,l

(µ) + S̃
(2)
u,T,j0,l

(µ).

The last term can be treated as in Proposition 7 of Moulines et al. (2008) to
obtain a bound on its absolute value. We have

sup
j≥1

2βj
∣∣∣∣ σ2

j (u)

σ222d0(u)j
− 1

∣∣∣∣ = sup
j≥1

2βj
∣∣O(2−βj)

∣∣ <∞
by using (3.10). Using Tj ≤ T2−j this gives

sup
µ∈B(ρ,q)

sup
j0=1,...,JT−l

|S̃(2)
u,T,j0,l

(µ)| ≤

CT

j0+l∑
j=j0

(1 + (j − j0)q)2−j(1+β) = O(T2−(1+β)j0). (3.17)

When focusing on the expectation of the first term we use the Minkowski in-
equality so it suffices to analyze the inner term. One finds

E

[∣∣∣∣ σ̂2
j,T (u)

σ2
j (u)

− Tj
∣∣∣∣2
]

= Var

(
σ̂2
j,T (u)

σ2
j (u)

)
+ E

[
σ̂2
j,T (u)

σ2
j (u)

− Tj
]
.

To bound the variance we use the result from Theorem 1 of Roueff and Von Sachs (2011).
But, instead of directly using this result we show that another result from Moulines
et al. (2008) holds and prove that their so-called Condition 1 holds. This allows us
to pursue the path of the proof without too many changes. Using Equation (3.11)

sup
T≥1

sup
j=1,...,JT

(1 + Tj2
−2jβ)−1T−1

j Var

(
σ̂2
j,T (u)

σ2
j (u)

)
≤

sup
T≥1

sup
j=1,...,JT

(1 + Tj2
−2jβ)−1T−1

j E

[(
σ̂2
j,T (u)

σ2
j (u)

− σ2

)2
]
<∞.



CHAPTER 3. LOCAL WHITTLE WAVELET ESTIMATION 19

Overall, this gives (
E sup

µ∈B(ρ,q)

sup
j0=1,...,JT−l

|S̃(1)
u,T,j0,l

(µ)|2
)1/2

≤

CT

j0+l∑
j=j0

(1 + (j − j0)q)
[
(T2−j)−1/2 + T2−(1+β)j

]
=

O((T2−j0)−1/2 + T2−(1+β)j0).

Combining (3.17) and (3.7) gives the result.

The following Corollary summarizes the behavior of E` and is obtained by ap-
plying Lemma 3.1. The proof is virtually the same as the proof of Corollary 8 of
Moulines et al. (2008) and is thus omitted.

Corollary 1. Let {LT} be a sequence such that 2{3+2(p−d0(u))}j0T−2δ−2
j0,T

+ L−1
T +

(T2−LT )−1 → 0 as T → ∞ and let E`(d) be defined as in (3.16). Under Condition
1 we have as T →∞ for any l ≥ 0:

sup
d∈R
|E`T (LT ,LT +l)(d)| = Op

(
(T2−LT )−1/2 + 2−βLT

)
.

3.7.1 Consistency

In a first step the consistency of the estimator is proved with a suboptimal rate.
This result is later used to prove the optimal rate. Consider the decomposition of
the contrast in Equation (3.15) again. One has

0 ≥ L̃`(d̂`)− L̃`(d̂0) = L`(d̂`) + E`(d̂`)− E`(d̂0).

The proof of the following Proposition follows from Proposition 6 of Moulines et
al. (2008) which shows that the function L̃(d) behaves as (d − d0(u))2 up to a
multiplicative positive constant and from our Lemma 3.1 resp. Corollary 1.

Lemma 3.2. Let {LT} be a sequence such that L−1
T + (T2−LT )−1 → 0 as T → ∞.

Under Condition 1 we have as T →∞ and for any l ≥ 0,

|d̂`T (LT ,LT +l) − d0(u)| = Op

(
(T2−LT )−1/4 + 2−βLT /2

)
.

Proof. The result follows directly using the same arguments as in Step 1 of the proof
of Proposition 9 of Moulines et al. (2008).

Proof of Theorem 3.2. The proof is mainly identical to the proof of Theorem 3 of
Moulines et al. (2008) after noticing Lemma 3.1.

However, as we will make use of certain equations in the proof of the central
limit theorem below we state them here. As the derivative of the objective function
L` at the estimate d̂` is zero we find that the following function Ŝ`(d0(u)) is zero,
too:

Ŝ`(d0(u)) =
∑

(j,k)∈`

(j − 〈`〉) 2−2jd0(u)γj,T (k)W 2
j,k;T . (3.18)
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A Taylor expansion of Ŝ` around d = d̂` yields for some d̃T between d0(u) and d̂`
that

Ŝ`(d0(u)) = 2 log(2)
(
d̂` − d0(u)

) ∑
(j,k)∈`

(j − 〈`〉) j 2−2jd̃T γj,T (k)W 2
j,k;T .

Following the lines of the proof of Moulines et al. (2008) one has to bound Ŝ`(d0(u))
from above and verify that the sum has a strictly positive limit after normalization.
In particular, one can find the bound

∑
(j,k)∈`

(j − 〈`〉) j
γj,T (k)W 2

j,k;T

22d̃T j
=

(T2−LT )
{
f ∗(u, 0)K(d0(u))

(
2− 2−l

)
κl + op(1)

}
, (3.19)

where κl is defined in (3.12). Since κl > 0 for any integer l ≥ 1 this gives the
required positive lower bound.

3.7.2 Central Limit Theorem

Proof of Theorem 3.3. Using (3.18) and (3.19) we can write

(T2−LT )1(d̂` − d0(u)) =
ŜT (d0(u))

2 log(2)f ∗(u, 0)K(d0(u))(2− 2−l)κl
(1 + op(1)).

In order to simplify notation we define d0 = d0(u) and write

Ŝ`(d0) = Ŝ`(d0)− S̃`(d0) + E[S̃`(d0)] + S̃`(d0)− E[S̃`(d0)],

where S̃`(d0) is defined as Ŝ`(d0), but with W 2
j,k;T replaced by W 2

j,k(u).
Analyzing the equation termwise and since

∑
(j,k)∈`n(j−〈`n〉) = 0 and E[W 2

j,k(u)] =

σ2
j (u) we can see that

E[S̃`(d0)] =
∑

(j,k)∈`T

(j − 〈`T 〉)2−2d0jσ2
j (u)

=f ∗(u, 0)K(d0)
∑

(j,k)∈`T

(j − 〈`T 〉)O(2−βj)

=O(2−βLT ) = o(1),

where we have used (3.10) in the second line.
Turning to the term Ŝ`(d0)− S̃`(d0) we write

Ŝ`(d0)− S̃`(d0) =
∑

(j,k)∈`T

(j − 〈`T 〉)2−2jd0
[
W 2
j,k;T −W 2

j,k(u)
]

=

LT +l∑
j=LT

(j − 〈`T 〉)
σ̂2
j,T (u)− σ̃2

j,T (u)

22jd0
.

Noticing Proposition 1 of Roueff and Von Sachs (2011) we can use Markov’s, Lya-
punov’s and Minkowski’s inequaltiy to find that

Ŝ`(d0)− S̃`(d0) = Op(2
(3/2+p−d0)LTT−1δ−1

L,T ) = op(1).
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Hence, we may apply Lemma 12 of Moulines et al. (2008) in order to obtain the
limiting distribution of the numerator if we verify its prerequisites. To do so we
notice that our problem can be written as

S̃`(d0) = ξTTAT ξT , where ξT =
[
|j − 〈`T 〉|1/2 2−d0j γj,T (k)Wj,k(u)

]
(j,k)∈`T

and AT is the diagonal matrix with entries δ
−1/2
L,T sign(j−〈`n〉) for all (j, k)× (j, k) ∈

`T . Furthermore, we denote by ΓT the covariance matrix of ξT . Thence, to apply
the Lemma 12 it suffices to show that firstly

ρ(AT )ρ(ΓT )→ 0, as T →∞,

where ρ(A) is the spectral radius of the square matrix A, and that secondly δ−1
L,T

Var(S̃`(d0)) has a finite limit.

Obviously, ρ(AT ) = δ
−1/2
L,T so we turn to the covariance matrix and find

ρ(ΓT ) ≤
LT +l∑
j=LT

|j − 〈`T 〉| 2−2d0j max
0≤i≤l

δ2
L+i,T 2π sup

λ∈(−π,π)

|Dj,0(λ; ν)|.

Now, from Theorem 1 of Moulines et al. (2007b) the supremum is of order O(22d0LT ).
Using Lemma 3.3 we can deduce that

ρ(AT )ρ(ΓT ) = O(δ
3/2
L,T ) = o(1),

from Assumption 3.
It remains to calculate the limiting variance. Using Theorem 2 of Roueff and

Von Sachs (2011) we can introduce the following quantity that converges under the
stated assumptions

cT (j, p) = 2−4d0jδ
−1/2
L,T Cov(σ̃2

j , σ̃
2
j−p) → (f ∗(u, 0))2 Σj,p(u).

We obtain

δ−1
L,T Var(ŜT (d0)) =

l∑
i=0

(i+ LT − 〈`L〉)2 cT (L+ i, 0)+

2
l∑

i=0

i∑
p=1

(i+ LT − 〈`L〉) (i− p+ LT − 〈`L〉) 22d0p cT (L+ i, u)

By Lemma 13 of Moulines et al. (2008) 〈`L〉−LT → ηl so that the limiting variance
(3.13) follows. The claim then follows from applying Lemma 12 of Moulines et
al. (2008).

Lemma 3.3. For large enough T we have

sup
j=1,...,JT

〈`T (j, j + l)〉 < LT + 1

Proof. This follows directly from Lemma 13 of Moulines et al. (2008) because
T2−LT →∞.
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Chapter 4

Testing for Multiple Structural
Breaks in Multivariate Long
Memory Time Series
Co-authored with Kai Wenger and Philipp Sibbertsen.

4.1 Introduction

The problem of testing for structural changes and estimating break points that occur
at unknown dates has long been discussed in the econometric literature. Most of
the literature has focused on issues about estimating and testing of single structural
breaks in a univariate time series regression framework with weak correlations. A
review of this literature can be found for instance in Perron (2006).

Bai and Perron (1998) extended this literature by suggesting estimators and tests
for multiple break points that occur at unknown dates in a univariate time series
regression. Bai (1997b) considered estimation of a single break in a multivariate
regression set-up and Bai, Lumsdaine, et al. (1998) provide tests and estimators
for common breaks in a multivariate system of short-memory time series. Qu and
Perron (2007) provide a versatile framework for estimating and testing multiple and
not necessarily common breaks that occur at unknown dates in a multivariate short-
memory time series regression framework. They allow for breaks in the mean as well
as in the covariance of the system. The estimators and tests of Qu and Perron (2007)
are based on a likelihood ratio approach.

Testing and estimating structural breaks in long-memory time series is prob-
lematic as both phenomena are observationally equivalent in finite samples and long
memory can cause false rejections of tests for structural changes. An overview about
the literature regarding this problem gives for instance Sibbertsen (2004). Never-
theless, recently some approaches are published to test for a single structural break
in a univariate long-memory time series model. Among those are L. Wang (2008),
Shao (2011), Dehling et al. (2013), Iacone et al. (2014), Betken (2016), and Wenger
and Leschinski (in press). A recent overview is provided in Wenger, Leschinski, and
Sibbertsen (2019). Estimation of multiple breaks in a univariate set-up allowing also
for long-range dependence has been considered in Lavielle and Moulines (2000) by
applying information criteria.

This paper contributes to the literature by considering estimators and tests for



CHAPTER 4. MULTIPLE BREAKS IN MULTIVARIATE TIME SERIES 23

multiple structural breaks that occur at unknown dates in a multivariate long-
memory time series regression framework. To the best of our knowledge this is
the first paper providing tests for multiple breaks under long memory and the first
paper considering breaks in a multivariate system of long-memory time series. We
extend the general framework of Qu and Perron (2007) in two directions. First, we
use a likelihood ratio based approach for estimating breaks in the mean and the
covariance of the system. We obtain consistency and the limiting distribution of
these estimates under long memory. Second, we provide tests on multiple structural
changes generalizing the testing ideas of Bai and Perron (1998). The tests of Bai
and Perron (1998) are based on segmentation of the time series and repeated testing
for breaks within these segments. The limiting distribution strongly depends on
the assumption of at most weak correlations as it is derived as the product of the
limiting distributions for each segment. This does not hold true under long-range
dependence as the segments are strongly correlated and the limiting distribution of
the test proves wrong in this situation. We circumvent this problem by suggesting
to repeatedly test for breaks on the residuals after applying our consistent break
point estimator and eliminate the largest break in each step. It turns out that all of
our procedures only depend on the maximal memory parameter of the multivariate
system of long-memory time series. Interestingly, the limiting distribution of our
test is different for the case where all memory parameter are equal compared to the
case where at least two of them are not equal.

In order to prove our results we derive a multivariate generalized Hájek-Rényi-
type inequality under long-range dependence. The validity of this approach in finite
samples is shown in a Monte Carlo study, while the applicability in practice is
demonstrated in an empirical example where we examine a system of inflation series.

The rest of the paper is organized as follows. In Section 4.2 we provide the model
and our assumptions. Section 4.3 contains the estimators for the break points and
Section 4.4 provides the testing procedure. Section 4.5 contains of the Monte Carlo
study and Section 4.6 illustrates the empirical example before Section 4.7 concludes.
All proofs are gathered in the appendix.

4.2 Model

In this paper we consider issues regarding the detection of structural changes in a
multivariate regression model allowing for long-memory errors. An n dimensional
system of time series ut is said to exhibit multivariate long-range dependence or long
memory with D = (d1, . . . , dn)

′
and −1/2 < di < 1/2 for i = 1, . . . , n if its spectral

density behaves local to the origin as

f(λ) ∼ Λ(D)GΛ(D)∗,

where Λ(D) = diag(Λ1(d1), . . . ,Λn(dn)) and Λk(dk) = λ−dkei(π−λ)dk/2 for k = 1, . . . , n.
G is a real, positive definite, finite and symmetric matrix and the asterix A∗ de-
notes the complex conjugate of the matrix A. Further, the imaginary number is
denoted by i and dk is the memory parameter of series k. Furthermore, define
d = max{d1, . . . , dn}. The assumption on G is standard in defining multivariate
long memory and excludes fractional cointegration as it stands. However, for our
estimators and tests proposed later it is of no relevance whether or not the series are
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fractionally cointegrated. We therefore stick to the standard assumption keeping in
mind that relaxing the assumptions on G would not effect our procedures.

For the regression model consider a system of n time series each of length T .
We denote by m the total number of structural changes in the system. The break
dates in the system are denoted by the m vector T = (T1, . . . , Tm) and for the ease
of calculation we use T0 = 1 and Tm+1 = T . We use the convention that a subscript
j indexes a regime (j = 1, . . . ,m+ 1), a subscript t indexes a temporal observation
(t = 1, . . . , T ) and a subscript i indexes the equation (i = 1, . . . , n). The number of
regressors is named q and zt is the set which includes the regressors at a point in
time t from all equations zt = (z1t, . . . , zqt)

′. Consider the model

yt = (I ⊗ z′t)Sβj + ut, (4.1)

where ut is the error process to be specified more precisely below with mean 0 and
covariance matrix Σj for Tj−1 + 1 ≤ t ≤ Tj (j = 1, . . . ,m + 1). The matrix S is
a selection matrix with entries 0 and 1. It is of dimension nq × p with full column
rank. In regime j the parameters to be estimated are given by the p vector βj and
the matrix Σj. Restrictions on the parameters should be allowed by our model so
we introduce r restrictions given by

g(β, vec(Σ)) = 0,

where β = (β′1, . . . , β
′
m+1), Σ = (Σ1, . . . ,Σm+1) and g(·) is an r-dimensional vector.

This setting is even capable of expressing cross-equations restrictions across regimes.
We rewrite Equation (4.1) in order to lighten the notation by introducing the

p× n matrix xt that is defined by x′t = (I ⊗ z′t)S. This gives

yt = x′tβj + ut (4.2)

for Tj−1 + 1 ≤ t ≤ Tj (j = 1, . . . ,m + 1). Furthermore, we rewrite Equation
(4.2) using matrix notation. To this end let Y = (y′1, . . . , y

′
T )′ be the nT vector of

dependent variables, U = (u′1, . . . , u
′
T )′ the error vector and let the nT × p matrix

of regressors be X = (x1, . . . , xT )′. Now form the block partition X̄ of the matrix
X: For a given partition of the sample using the breaks (T1, . . . , Tm) we define X̄
as the nT × p(m+ 1) matrix X̄ = diag(X1, . . . , Xm+1), where Xj(j = 1, . . . ,m+ 1)
is the n(Tj − Tj−1) × p subset of X that corresponds to observations in regime j.
Similarly we define the subvector Uj of U . Using these symbols we can express the
regression system (4.2) as Y = X̄β + U . In the following the true values of the
parameters are denoted with a 0 superscript, e.g. the data generating process is
given by Y = X̄0β0 +U . Here, the term X̄0 is the diagonal partition of X using the
partition of true break dates (T 0

1 , . . . , T
0
m).

We impose the following set of assumptions. Note that the assumptions are
similar to those of Qu and Perron (2007) with the difference that we allow the
errors ut to be long-range dependent. However, we assume that the memory is only
introduced through the errors ut and thus that the regressors xt are mostly short-
range dependent such that the process xtut is of the same order of integration as
ut. This is a simplyfying assumption which is not necessary. Technically it would
be possible to allow also for long-memory regressors with an order of integration
smaller or equal than one as long as they are independent of the errors. However,
this would complicate the proof of our property five below and furthermore lead
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to identification problems in practice as the order of integration of the observation
would be determined by the maximum of the integration order of the regressors and
errors. As the proof of our property five in the case of integrated regressors rely
on a correct differencing of the regressors our procedure may become infeasible in
practice.

Assumption 1. For each j = 1, . . . ,m+1 and lj ≤ T 0
j −T 0

j−1, l
−1
j

∑T 0
j−1+lj

t=T 0
j−1+1

xtx
′
t

a.s.−−→
Q0
j as lj →∞, with Q0

j being a nonrandom positive definite matrix not necessarily
the same for all j.

Assumption 2. There exists an l0 > 0 such that for all l > l0, the minimum

eigenvalues of l−1
∑T 0

j +l

j=T 0
j +1

xtx
′
t and of l−1

∑T 0
j

t=T 0
j −l

xtx
′
t are bounded away from zero

(j = 1, . . . ,m).

Assumption 3. The matrix
∑l

t=k xtx
′
t is invertible for l−k ≥ k0 for some 0 < k0 <

∞.

Assumption 4. It holds that

ut = A(L)εt =
∞∑
j=0

Ajεt−j,

where the innovations εt = (εt,1, . . . , εt,n) are n-dimensional martingale differences
with respect to the σ-field Ft generated by εs, s ≤ t. Hence E(εt|Ft−1) = 0 and it
is assumed that E(εtε

′
t|Ft−1) = In a.s. Additionally for some δ > 0 we assume the

moment condition suptE|εt,k|2+δ < ∞ for k = 1, . . . , n. For the coefficients Aj we
assume that asymptotically

Aj ∼ diag

(
jd1−1

Γ(d1)
, . . . ,

jdn−1

Γ(dn)

)
Π, as j →∞,

where Π is an n× n matrix independent of D = (d1, . . . , dn).

Assumption 5. Assumption 4 holds with ut replaced by xtut or utu
′
t − Σ0

j for
T 0
j−1 < t ≤ T 0

j (j = 1, . . . ,m+ 1).

Assumption 6. The magnitudes of the shifts satisfy β0
T,j+1 − β0

T,j = νT δj and
Σ0
j+1,T − Σ0

j,T = νTΦj, where (δj,Φj) 6= 0 and independent of T . Moreover, νT is
either a positive number independent of T or a sequence of positive numbers that
satisfy νT → 0 and T 1/2−dνT/(log T )2 →∞.

Assumption 7. We have (β0,Σ0) ∈ Θ̄ with Θ̄ = {(β,Σ) : ‖β‖ ≤ c1, λmin(Σ) ≥
c2, λmax(Σ) ≤ c3} for some c1 <∞, 0 < c2 ≤ c3 <∞ and λmin and λmax denote the
smallest resp. largest eigenvalue.

Assumption 8. We have 0 < λ0
1 < · · · < λ0

m < 1 with T 0
i = [Tλ0

i ].

Our assumptions include the standard FIVARMA model as well as long-memory
panel models and regression models with exogenous regressors and long-memory
errors. However, unit root regressors are ruled out by Assumption 1 although in
general regressors may be trending. Moreover, the regressors can have different
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distributions in different regimes. This is necessary because a change in a dynamic
model leads to changes in the moments of the regressors. Assumption 2 rules out
the case of local collinearity which makes the breaks identifiable. Assumption 3 is a
standard invertibility assumption. Assumption 4 to 5 state that we consider a long-
memory regression framework and that the order of integration is solely determined
by the errors ut. We additionally assume bounded moments of order 2 + δ for
some δ > 0 for ut, xtut and utu

′
t to obtain strongly consistent estimates of the

parameters and a well-behaved likelihood. Assumption 6 ensures that the breaks
are asymptotically non-negligible. Using a fixed νT captures large breaks whereas
a shrinking νT gives small and intermediate breaks in finite samples. The latter
ensures an asymptotic theory for the break dates estimators which does not depend
on the actual distribution of the regressors and errors. It should be noted that
we assume the break size to depend on the memory of the errors. The higher the
persistence of the errors is the larger the break need to be in order to be detected.
Assumption 7 makes sure that the errors have a non-degenerate covariance matrix
and a finite conditional mean and Assumption 8 ensures distinct breaks. It should
be mentioned that no other assumptions on the breaks are needed. This includes
that the breaks do not need to be contemporaneously in each series. So we allow
each series to have breaks at different times or not to break at all.

Later when we introduce our testing procedure in order to derive the limiting
distribution of the test under the null hypothesis of no structural change, we impose
the following additional assumptions.

Assumption 9. We have T−1
∑[Ts]

t=1 xtx
′
t

p−→ sQ, uniformly in s ∈ [0, 1], for Q being
some positive definite matrix.

Assumption 10. The errors {ut} form an array of long-range dependent pro-
cesses as defined in Assumption 4 and, additionally, E(utu

′
t) = Σ0 for all t and

T−1/2−D∑[Ts]
t=1 xtut ⇒ Φ1/2WD(s), where Φ = plimT→∞ T

−1X ′(In⊗Σ0)X and WD(s)
is a vector of independent fractional Brownian motions of type I. Also, with ηt ≡
(ηt1, . . . , ηtn)′ = (Σ0)−1/2ut, we have T−1/2−D∑[Ts]

t=1(ηtη
′
t − In)⇒ ξD(s), where ξD(s)

is an n×n matrix of fractional Brownian motion processes with Ω = Var(vec(ξD(1))).
Also assume that E[ηtkηtlηth] = 0 for all k, l, h and for every t.

Assumption 9 rules out trending regressors and requires that the second mo-
ment matrix of the regressors converges in probability to the same limiting matrix
throughout the sample. This entails we do not allow for a change in the distribution
of the regressors without a change in the coefficients of the regressors. In addition,
Assumption 10 requires the error process to be stable throughout the sample so that
a functional central limit theorem applies to the product of regressors and errors.
For a detailed discussion of fractional Brownian motions of type I and type II cf.
Marinucci and Robinson (1999)

4.3 Estimation of the Break Dates and Model Pa-

rameters

We estimate the break dates and the number of breaks by restricted Quasi-Maximum
Likelihood conditional on a given partition of the sample T = (T1, . . . , Tm). Our
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tests for the number of breaks is then based on the likelihood ratio statistic. As-
suming Gaussian serially uncorrelated errors the quasi-likelihood function is given
by

LT (T , β,Σ) =
m+1∏
j=1

Tj∏
t=Tj−1+1

f(yt|xt; βj,Σj),

where

f(yt|xt; βj,Σj) =
1

(2π)n/2|Σj|1/2
exp

(
−1

2
[yt − x

′

tβj]
′
Σ−1
j [yt − x

′

tβj]

)
.

The quasi-likelihood ratio statistic is given by

LRT (T , β,Σ) =

∏m+1
j=1

∏Tj
t=Tj−1+1 f(yt|xt; βj,Σj)∏m+1

j=1

∏T 0
j

t=T 0
j−1+1

f(yt|xt; β0
j ,Σ

0
j)
.

We aim now to estimate the values of (T1, . . . , Tm, β,Σ) under the restriction
g(β, vec(Σ)) = 0. This is done by maximizing the objective function

RLRT (T , β,Σ) = LRT (T , β,Σ) + λ
′
g(β, vec(Σ)). (4.3)

We need one further assumption about the minimal regime length.

Assumption 11. The maximization of the objective function (4.3) is taken over all
partitions T = (T1, . . . , Tm) = (Tλ1, . . . , Tλm) for some ε > 0 in the set

Λε = {(λ1, . . . , λm) : |λj+1 − λj| ≥ ε, λ1 ≥ ε, λm ≤ 1− ε}.

This assumption is standard in the structural breaks literature and says that
some percentage of the data needs to be skipped at the beginning and the end
of the observation period before the maximization of the likelihood and thus that
potential breaks cannot happen in a possible small environment of the first and the
last observation. Other than in Qu and Perron (2007) this assumption is essential for
our procedure to work as property 2 in the appendix and therefore the consistency
of the breakpoint estimators proves wrong otherwise. Qu and Perron (2007) prove
this property and consistency of the estimator when maximizing over the whole
sample by means of the standard law of iterated logarithm. As this does no longer
hold under long memory and needs to be replaced by a law of iterated logarithm for
fractional Brownian motions the arguments used to prove property 2 do no longer
hold and the property does not apply. However, these arguments are needed for the
endpoints only and therefore assuming assumption 11 circumvents this problem.

We can now establish the rate of convergence of these estimators under long-
range dependencies.

Lemma 4.1. Under Assumptions 1 to 8 and 11 we have for j = 1, . . . ,m, T 1−2dν2
T (T̂j−

T 0
j ) = OP (1) and for j = 1, . . . ,m+1, T 1/2−d(β̂j−β0

j ) = OP (1) and T 1/2−d(Σ̂j−Σ0
j) =

OP (1).

The proof of this and all following results can be found in the appendix. These
results are similar as those in Bai (1997b), Bai and Perron (1998), Bai (2000), and
Qu and Perron (2007), but account for the long-range dependencies in the error
terms. Also in our case the rate for the break dates is fast enough not to effect the
estimation of the model parameter asymptotically. Therefore, we have the following
result that we state without proof.
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Lemma 4.2. Under the Assumptions of Lemma 4.1, the limiting distribution of
T 1/2−d(β̂ − β0) is the same as that for known break dates.

These results are necessary to our tests on the number of potential break points
later. However, it allows us also to derive results regarding the limiting distribution
of the restricted likelihood under long memory. We can now split the restricted
likelihood in one part only containing the break dates and the true parameter values
so that restrictions to these values do not affect the estimation of the break dates.
The other part involves the true values of the break dates and model parameters and
the restrictions such that the limiting distribution of the model parameters is affected
by these restrictions but not by the estimation of the break dates. With these
comments in mind it is obvious that Theorem 1 of Qu and Perron (2007) still holds
under our set of assumptions, where the aforementioned split of the maximization
problem in a term concerning the estimate of the break dates and a term that does
not involve the break date estimates is made mathematically precise.

Moreover we would be able to show that Theorem 2 of Qu and Perron (2007) still
holds under long-range dependence. This result concerns the limiting distribution of
the break dates. The drawback of this result is that the the limiting distribution of
the break dates depends on the true error distribution. This is a standard problem in
the structural breaks literature and is usually accounted for by assuming shrinking
breaks with an increasing sample size. However, to do so trending regressors need
to be ruled out.

Assumption 12. Let ∆T 0
j = T 0

j −T 0
j−1. For j = 1, . . . ,m, as ∆T 0

j →∞, uniformly

in s ∈ [0, 1], (∆T 0
j )−1

∑T 0
j−1+[s∆T 0

j ]

t=T 0
j−1+1

xtx
′
t
P−→ sQ0

j with Q0
j being a nonrandom positive

definite matrix not necessarily the same for all j.

With this assumption we obtain the following limiting distribution for the break
dates.

Theorem 4.1. Let ηt = (ηt1, . . . , ηtn) = (Σ0
j)
−1/2ut for t ∈ [T 0

j−1 +1, T 0
j ] and assume

that E[ηtkηtlηth] = 0 for all k, l, h and for every t. Under Assumptions 1 to 8 and
11 and 12 with νt → 0 such that T 1/2−dνT/(log T )2 → ∞ as T → ∞ and with ⇒
denoting weak convergence under the Skorohod topology, we have, for j = 1, . . . ,m

∆2
1,j

Γ2
1,j

T 1−2dν2
T (T̂j − T 0

j )⇒

{
− |u|

2
+Wj,d(u), for u ≤ 0

− |u|
2

∆2,j

∆1,j
+

Γ2,j

Γ1,j
Wj,d(u), for u > 0,
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where

∆1,j =
1

2
tr(A2

1,j + δ
′
Q1,jδj),

∆2,j =
1

2
tr(A2

2,j + δ
′
Q2,jδj),

A1,j =(Σ0
j)

1/2(Σ0
j+1)−1Φj(Σ

0
j)
−1/2

A2,j =(Σ0
j+1)1/2(Σ0

j)
−1Φj(Σ

0
j+1)−1/2

Γ1,j =

(
1

4
vec(A1,j)

′
Ω0

1,j vec(A1,j + δ
′

jΠ1,jδj

)1/2

Γ2,j =

(
1

4
vec(A2,j)

′
Ω0

2,j vec(A2,j + δ
′

jΠ2,jδj

)1/2

Q1,j = plimT→∞(T 0
j − T 0

j−1)−1

T 0
j∑

t=T 0
j−1+1

xt(Σ
0
j+1)−1x

′

t

Q2,j = plimT→∞(T 0
j+1 − T 0

j )−1

T 0
j+1∑

t=T 0
j +1

xt(Σ
0
j)
−1x

′

t,

and

Π1,j = lim
T→∞

Var

(T 0
j − T 0

j−1)−1/2

 T 0
j∑

t=T 0
j−1+1

xt(Σ
0
j+1)−1(Σ0

j)
1/2ηt

 ,

Π2,j = lim
T→∞

Var

(T 0
j+1 − T 0

j )−1/2

 T 0
j+1∑

t=T 0
j +1

xt(Σ
0
j)
−1(Σ0

j+1)1/2ηt

 ,

with Wj,d(s) a fractional Wiener process defined on the real line and

Ω0
1,j = lim

T→∞
Var

vec

(T 0
j − T 0

j−1)−1/2

T 0
j∑

t=T 0
j−1+1

(ηtη
′

t − In)

 ,

Ω0
2,j = lim

T→∞
Var

vec

(T 0
j+1 − T 0

j )−1/2

T 0
j+1∑

t=T 0
j +1

(ηtη
′

t − In)

 .

4.4 Testing for Multiple Breaks in Multivariate

Time Series

In this section we first introduce two likelihood ratio based tests for multiple breaks
in a multivariate system of long-memory time series. The first procedure tests the
null of no break against the alternative of a prespecified number of breaks whereas
the second tests against the alternative of an unknown number of breaks given
an upper bound. Iterative application of the second procedure is one of the main
ingredients of our proposed procedure to identify multiple breaks in a long-memory
framework.
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Our tests allow only a subset of the coefficients of the regressors β or of the
covariance matrix of the errors Σj to change per regime j, where 1 ≤ j ≤ m. We
acknowledge this dependence on the specification in our test statistic by introducing
the numbers pb, nbd and nbo. Considering the system specification

yt = x′atβa + x′btβbj + ut for Tj−1 + 1 ≤ t < Tj (j = 1, . . . ,m+ 1),

pb describes the total number of coefficients allowed to change across regimes, i.e.
βbj is a pb dimensional vector. Moreover for the covariance matrix of the errors

Σj = E(utu
′
t) Tj−1 + 1 ≤ t < Tj (j = 1, . . . ,m+ 1),

we allow nbd diagonal entries of Σj and nbo entries in the upper triangle of Σj to
change across regimes. To simplify notation we also need the full row rank matrix
H of dimension (nbd+2nbo)×n2. This is chosen such that H vec(Σ) is the nbd+2nbo
dimensional vector of the entries allowed to change. Thus, it contains both upper
and lower triangle covariance entries.

First, we introduce a likelihood ratio test of no break versus the alternative
hypothesis of precisely m breaks under long memory, i.e.

H0 : K = 0 vs H1 : K = m.

We denote the log-likelihood value by log L̂T (T1, . . . , Tm). Then the test is the
maximal value of the likelihood ratio over all admissible partitions in the set Λε

defined by Assumption 11, that is,

1

T 2d
sup LRT (m, pb, nbd, nbo, ε) =

1

T 2d
sup

(λ1,...,λm)∈Λε

2
[
log L̂T (T1, . . . , Tm)− log L̃T

]
=

2

T 2d
[log L̂T (T̂1, . . . , T̂m)− log L̃T ],

where the log-likelihood log L̃T is obtained by estimating β and Σ under the null
hypothesis of no break. The list of estimated break points (T̂1, . . . , T̂m) contains the
QMLE obtained by considering only those partitions in Λε. As we assume a minimal
length ε for each segment this parameter will affect the limiting distribution of the
test.

Theorem 4.2. Under Assumptions 1-11 with the supLRT (m, pb, nbd, nbo, ε) test
constructed for an alternative hypothesis H1 in the class of models described in this
Section,

1

T 2d
supLRT (m, pb, nbd, nbo, ε)⇒ sup

(λ1,...,λm)∈Λε

m∑
j=1

LRj(λ, d, pb, n
∗
b)

with

LRj(λ, d, pb, n
∗
b) =
‖λjW ∗

d,pb
(λj+1)− λj+1W

∗
d,pb

(λj)‖2

(λj+1 − λj)λjλj+1

+
1

2

(
λjW

∗
d,n∗b

(λj+1)− λj+1W
∗
d,n∗b

(λj)
)′
HΩH ′

×
(
λjW

∗
d,n∗b

(λj+1)− λj+1W
∗
d,n∗b

(λj)
)/

((λj+1 − λj)λjλj+1),
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where λ = (λ1, ..., λm) and λm+1 = 1. The vectors W ∗
d,pb

(·) and W ∗
d,n∗b

(·) are of

dimension pb resp. n∗b = (nbd + 2nbo) writing d = (d1, ..., dq) with q ∈ {pb, n∗b} and
n∗b = rank(H). They are defined as

W ∗
D,n(·) =

(
W ∗
dj

(·)
)
j=1,...,n

, W ∗
dj

(·) =

{
Wdj(·) if dj = max1≤i≤n di,

0 else,

where Wd is univariate fractional Brownian motion of type I with memory parameter
d.

Note that the limiting distribution depends on the number of series having the
maximal memory parameter. Only the series in the test statistic with the maximal
memory parameter in the vector of memory parameters D = (d1, . . . , dn) contribute
asymptotically to the limiting distribution.

The second test statistic tests the null hypothesis of no break against the alter-
native of m breaks, 1 ≤ m ≤M for some upper bound M , i.e.

H′0 : K = 0 vs H′1 : 1 ≤ K ≤M.

Bai and Perron (1998) suggest to use a so-called double maximum test. The test
statistic is given by

UDmaxLRT (m, pb, nbd, nbo, ε) = max
1≤m≤M

sup LRT (m, pb, nbd, nbo, ε). (4.4)

The asymptotic distribution for this test statistic can be obtained in the setting of
Theorem 4.2. We have

UDmaxLRT (m, pb, nbd, nbo, ε) ⇒ max
1≤m≤M

sup
(λ1,...,λm)∈Λε

m∑
j=1

LRj(λ, d, pb, n
∗
b).

Critical values for different values of d and m are given in Tables 4.2 to 4.4 in
the appendix.
For our iterative procedure below it is also essential to mention that the UDmax
test enjoys pitman efficiency. This follows directly by noting that the tests are
likelihood ratio type tests and applying the usual Taylor expansion argument to
derive consistency of likelihood ratio tests also delivers the result in our set-up.
Now we are in the position to introduce an iterative method that can be used to
determine the unknown number of breaks in a multivariate system of long-memory
time series. It is inspired by applying the UDmaxLRT test in (4.4) repeatedly.
Therefore, the method requires fixing an upper bound on the number of breaks
M in advance. It is a residual based iterative procedure, so that we shorten it as
REBIT. It proceeds as follows:

(1) Set m = 0.
(2) Estimate m breaks in the original system of time series yt and save the resid-

uals.
(3) Conduct the UDmaxLRT test with H0 : l = 0 vs. H1 : 1 ≤ l ≤M −m on the

residuals.
(4a) If the test rejects and m < (M − 1): set m = m+ 1 and reiterate from (2).
(4b) If the test cannot reject: the detected number of breaks is m. Furthermore,

if m = M − 1: the number of breaks is greater or equal than the previously
chosen upper bound M .
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The method ends if the applied test cannot reject (or the user chosen upper
bound is reached). Therefore, in a situation with an unknown number of breaks the
iterative method suggests m breaks where m is the number returned by the method.

It should be mentioned that the supLRT is not applicable in the suggested
procedure since a true break number k such that k 6= 0 and k 6= m is neither
covered by the null nor by the alternative hypothesis.

Note that the estimation of the break dates in step (2) is always performed on
the original time series. That is the residuals are always estimated from a global op-
timization. Hence, the estimated break dates from different iterations do not depend
on each other. Therefore, our procedure avoids the usually problematic situation
of using residuals of residuals. From Lemma 4.1 we thus obtain consistency of our
break point estimates in each step. The break point estimates in underspecified
models are consistent as has been shown by Bai (1997a) and Bai and Perron (1998)
for breaks in the mean. By similar methods one could therefore show that our
procedure estimates some true break points if the number of true break points is
underspecified.

Note that we do not estimate any break in step (2) if m = 0 (first iteration), so
”saving the residuals” refers to using the original time series in the following steps.

Whereas the estimation in step (2) is done on the original system of time series,
the testing in step (3) is conducted on the residuals.

This iterative procedure avoids splitting up the sample as suggested in for exam-
ple Bai (1997b) which is not possible under long memory and allows us to use the
limiting results in Theorem 4.1 and 4.2 which are derived under long-range depen-
dencies. The following Theorem states that our procedure has a hit rate of (1−α)%
where α is the level of the break point test in Theorem 4.2.

Theorem 4.3. Let α be the significance level of the break point test in Theorem
4.2. Under Assumptions 1-11 the REBIT procedure has a hit rate of (1− α)%.

The hit rate can be made converging to one by choosing the critical value of
the break point test to be sample size dependent α/T . However, this is not further
considered here as the sample size is given fixed in practice.

4.5 Simulation results

We conduct a Monte Carlo simulation study to examine the finite sample properties
of our proposed REBIT procedure. We consider a bivariate model of fractionally
integrated white noise processes

X1t = ∆d1u1t

X2t = ∆d2u2t

with long-memory parameters chosen as D = (d1, d2) = [(0.4, 0), (0.2, 0), (0.2, 0.4)].
To estimateD, we apply the multivariate local Whittle estimator by Shimotsu (2007)
using a bandwidth of bT 2/3c. The nominal significance level is α = 5%, we choose
ε = 0.05, and M = 1, 000 replications.
The asymptotic critical values we use are simulated for different combinations of
D = (d1,d2) by approximating the stochastic integrals by partial sums and can be
found in Table 4.2 to 4.4 in the appendix. They are based on 10,000 Monte Carlo
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replications with 1, 000 increments per path of the fractional Brownian motion. We
obtain the corresponding critical value for an estimated value that is between two
simulated d-values by linear interpolation between these two values.
We choose m = 0, 1, 2, 3 breaks which are uniformly allocated to the two series
such that the distance between the breaks across both series is the same. Whether
the breaks are positive or negative is randomly chosen. We make the break size
dependent on the memory parameter as follows

β = κT d−1/2,

where β is the break size, d = max(d1, d2), and κ is a finite constant. In Figure
4.1 we report the hit ratio, i.e. how often our procedure detects the true number of
breaks, dependent on κ with T = 1, 000. The case of m = 0 is implicitly given for
κ = 0.
First, we observe that in all cases we obtain a hit ratio smaller than 5% (our nom-
inal significance level) when κ = 0, i.e. we have no breaks in the series. For all
combinations of D = (d1, d2) we observe that the hit ration increases as the break
size increases. Additionally, we see in all graphs that the more breaks we have the
larger their size needs to be to obtain a higher hit ratio.
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Figure 4.1: Hit ratio of our REBIT procedure for different values of d1 and d2 where
the true number of breaks is m. The parameter κ on the x-axis is related to the
break size, which increases as κ increases. The value on the y-axis provides the hit
ratio of our test, i.e. whether the true number of breaks is detected. T = 1, 000, the
memory parameter is estimated by multivariate local Whittle estimation, the series
are uncorrelated.

4.6 Empirical Application

Inflation is one of the key variables in macroeconomics since it is assumed to deter-
mine unemployment and national output. Over the past years numerous empirical
studies found that inflation rates possess significant autocorrelations at large lags
and a pole at the periodogram at Fourier frequencies local to zero (Hassler and
Wolters (1995) or Kumar and Okimoto (2007) among others).
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Figure 4.2: Monthly inflation rates of France and Germany from 1970 to 2019. The
dotted red vertical lines refer to the mean shifts our procedure detected. The bold
red horizontal lines refer to the estimated means in each partition.

This can be seen as an indication that inflation rates follow a pure long-memory
process, but similar time series features can also be generated by short-memory
processes that are contaminated with breaks, which is referred to as spurious long
memory (see for example Diebold and Inoue (2001), Granger and Hyung (2004),
Mikosch and Stărică (2004)).

Standard estimation procedures of the long-memory parameter are biased up-
wards in the presence of breaks. The other way around standard testing procedures
for shifts detect too many breaks in a long-memory time series. The literature is
therefore unclear about the nature of the underlying process of inflation time series.
On the one hand Hassler and Wolters (1995) and Baum et al. (1999) argue, for ex-
ample, that an ARFIMA model can describe inflation rates well. Bos et al. (1999)
and Morana (2002) on the other hand find evidence of structural breaks in interna-
tional inflation rates and Gadea et al. (2004) shows that the memory of the series
is reduced when structural changes are allowed. Many recent contributions favor a
mixture of long-memory models and structural breaks (Kumar and Okimoto (2007),
among others).

However, whether the series follow a pure long-memory process, a short-memory
process with breaks or a mixture of long memory and breaks is of major importance
for policy makers: if inflation rates are persistent, monetary policy actions need
more time to unfold their effect, which is more expensive.

Our testing procedure allows to detect the true number of breaks for multivariate
time series that are allowed to possess long memory. Therefore, it can be used to
examine the properties of the underlying process of inflation rates. We use monthly
CPI data (Pt) from January 1970 until May 2019 of Germany and France available
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from the OECD1 to calculate inflation rates (πt) as

πt = 100(logPt − logPt−1).

As a result we have 592 observations that are further seasonally adjusted. Figure
4.2 illustrates the bivariate time series along with the detected break points and
partitions. Table 4.1 provides further results of our testing procedure and regarding
the persistence of the raw and the demeaned inflation series.

The left hand side of Panel A of Table 4.1 shows results regarding the persistence
of the inflation series. In line with earlier empirical results (see, for example, Hassler
and Wolters (1995) or Bos et al. (1999)) the multivariate local Whittle estimator
(GSE) by Shimotsu (2007) estimates high values of d for the raw data such that
both series seem to be highly persistent. However, there is evidence that the long-
memory time series are contaminated by breaks, which lead to an upward bias of
the memory parameter estimates of the GSE (Mikosch and Stărică (2004)). First,
the multivariate test against spurious long memory (MLWS) by Sibbertsen, Leschin-
ski, et al. (2018) rejects the null hypothesis of pure long-memory processes at a 1%
significance level. Second, applying the (univariate) trimmed log-periodogram esti-
mator (tGPH) by McCloskey and Perron (2013) on both inflation series, we observe
that the memory decreases. Therefore, we apply our procedure that can consistently
detect and estimate multiple shifts in the bivariate system of inflation series.

The results can be seen in Panel B of Table 4.1.

1http://data.oecd.org/price/inflation-cpi.htm
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Panel A: persistence

raw series demeaned series
dGSE MLWS dtGPH dGSE MLWS

France 0.567
2.518***

0.231 0.234
1.227*

Germany 0.375 0.230 0.250
Panel B: breaks

# breaks breakdates
REBIT 2 05/73, 11/84

Table 4.1: Panel A presents results regarding the persistence of the system. On
the left hand side of the table the memory of the raw inflation series is estimated
applying on the one hand the multivariate local Whittle estimator (GSE) by Shi-
motsu (2007) with a bandwidth of m = bT 2/3c and on the other hand the trimmed
log-periodogram estimator (tGPH) by McCloskey and Perron (2013), which is ro-
bust against shifts, with m = bT 0.8c and the constant that determines the trimming
of ε = 0.05. Furthermore, the test statistic of the multivariate test against spu-
rious long memory (MLWS) by Sibbertsen, Leschinski, et al. (2018) is given with
m = bT 2/3c and trimming parameter ε = 0.02. Here, *** denotes significance at
1%, ** significance at 5% and * significance at 10%.
On the right hand side of the table the GSE estimates of the memory as well as the
result of the MLWS test are given for the demeaned time series. The demeaning
was executed with regard to the break dates detected by our REBIT procedure.
Panel B presents the number of breaks and corresponding break dates detected by
our REBIT procedure.

We observe that the first structural break our procedure detects was in May
1973, which is a few month before the first oil crisis. We further see that the mean
in the second partition of the inflation series of France increases heavily while the
mean in the series of Germany decreases. The second structural break is detected in
November 1984 which could be connected to the 1980s oil glut. We observe that the
mean of both inflation series strongly decrease in the third partition of the series.

The other two procedures we consider are the SEQ(l + 1|l) test of Qu and Per-
ron (2007) and the F(l + 1|l) test of Bai and Perron (1998). The F(l + 1|l) test
detects 12 breaks in the inflation series, the SEQ(l + 1|l) test more than 19. Some
of the detected break dates are similar to the ones found by the REBIT test, but
the other two tests find more breaks especially at the end of the sample. This can
be reasoned by the fact that both procedures are not robust under long memory.
The robust tGPH estimator by McCloskey and Perron (2013) indicates that there
is still memory left apart from the upward bias in standard long-memory estimation
methods induced by breaks.

To further investigate whether the REBIT procedure detects the relevant breaks,
we examine the demeaned inflation series (demeaning is executed with the two
breaks our procedure detected). The results of the GSE estimator and MLWS
test can be seen on the right hand side of Panel A of Table 4.1. The estimated
memory by the GSE strongly decreases to a value around 0.24 which is similar
to the tGPH estimate of the raw series. Furthermore, evidence of spurious long
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memory also lessens since the MLWS test is just significant at the 10% significance
level. Therefore, we conclude that our procedure detects all relevant breaks of the
bivariate inflation system.

4.7 Conclusions

This paper contains to the best of our knowledge the first procedure for testing for
multiple breaks in a long-memory time series framework. We embed our procedure
into a multivariate system of long-memory time series allowing for breaks in the
mean as well as in the covariance matrix. The breaks are allowed to appear contem-
poraneously or at different times. Our assumptions on the breaks are fairly general
basically just assuming that the size of the breaks depends of the memory of the
underlying time series.

The procedure consists of iteratively testing for m structural breaks with m
increasing in each step. It therefore avoids splitting the sample in segments as in
Bai (1998) and others which is not possible under long memory. Our test and break
point estimator in each step is likelihood-ratio based. The consistency and limiting
distribution of both procedures are derived. Interestingly, the limiting distribution
of the test depends on the one hand only on the maximum of all memory parameters
but on the other hand on the number of series having this maximum memory.

A Monte Carlo study demonstrates the finite sample properties of our procedure
and an application to inflation rates its usefulness in practice.

4.8 Appendix

This section contains the proofs of Lemma 4.1 and Theorem 4.1 and 4.2. In order
to prove these results we need a generalized Hájek-Rényi inequality, a strong law
of large numbers (SLLN) and a functional central limit theorem (FCLT) that hold
under our stated assumptions and in particular under long memory. We collect
them in separate Lemmas in Section 4.8.1. Afterwards we state in Section 4.8.2
10 properties of the quasi-likelihood that have been considered in Bai, Lumsdaine,
et al. (1998), Bai (2000) and Qu and Perron (2007). The proofs can be found in
Section 4.8.7. We prove consistency of the break point estimators in Section 4.8.3,
i.e. Lemma 4.1. In Section 4.8.5 we proof the limiting distribution of our test
statistic, i.e. Theorem 4.2.

4.8.1 Generalised Hájek-Rényi Inequality, SLLN, FCLT

Lemma 4.3 (Generalised Hájek-Rényi Inequality). Let (ξi)i≥1 be a sequence of
mean zero Rd-valued random vectors. Define Fk as an increasing σ-field generated by
(ξi)i≥k. Suppose (ξi)i≥1 satisfies Assumption 4 with xiui replaced by ξi. Then there

exists an L < ∞ such that, for every δ > 0 and m > 0, P (supk≥m k
−1‖
∑k

t=1 ξt‖ >
δ) ≤ (L/δ2m2d−1), where d = dmax is the largest memory parameter of the elements
of the vector ξ.

Proof. In the following we write for the partial sums Mi:j =
∑j

t=i ξt. We start by
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noting

P

(
max
k≥m

1

k
‖M1:k‖ > δ

)
≤

∞∑
p=0

P

(
max

2p≤k≤2p+1m

1

k
‖M1:k‖ > δ

)
. (4.5)

To simplify notation we write Si:j = maxk=i,...,j 1/k ‖M1:k‖. We need the following
auxilliary result:

P

(
max

1≤k≤n
1/k‖M1:k‖ > δ

)
≤ 4

A(d)C(ε)

δ2
n2d

n∑
t=1

(
1

t

)2

. (4.6)

Suppose (4.6) holds. Then we can write

P ( max
2pm≤k≤2p+1m

1

k
‖M1:k‖ > δ) ≤P (

1

2pm
‖M1:m‖ >

δ

2
)

+ P ( max
2pm+1≤k≤2p+1m

1

k
‖M2pm+1:2p+1m‖ >

δ

2
)

≤ 4
A(d)C(ε)

δ2
(2pm)2d−2 + 4

A(d)C(ε)

δ2
(2pm)2d

2p+1∑
t=2pm+1

(
1

t

)2

≤ 8
A(d)C(ε)

δ2
(2pm)2d−1.

Using equation (4.5) we have

P

(
max
k≥m

1

k
‖M1:k‖ > δ

)
≤ 8

A(d)C(ε)

δ2

∞∑
p=0

(2pm)2d−1 ≤ L

δ2
m2d−1,

where L <∞ is a constant.
We prove equation (4.6) by the Markov inequality. Specifically, we set out to

prove

E
(
S2

1:n

)
≤ C(ε)A(d)n2d

n∑
t=1

1

t2
. (4.7)

If equation (4.7) holds, our auxiliary result (4.6) is proven by the Markov inequality.
The claim in (4.7) is proved by induction on n. For n = 1 the inequality is obvious
for A(d) = 1 because of the following inequality: Kechagias and Pipiras (2015)
proved that for the partial sums Mi:j there exists C(ε) <∞ such that, for all i, j,

E
(
‖Mi:j‖2) ≤ C(ε) |j − i+ 1|2d+1. (4.8)

For the induction step we set m = dn
2
e+ 1. Then, we note that

max
k=1,...,n

1

k
‖M1:k‖ ≤

1

m
M1:m+

((
max

k=1,...,m−1

1

k
‖M1:k‖

)2

+

(
max

k=m+1,...,n

1

k
‖M1:k‖

)2
)1/2

.
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Applying the Minkowski inequality to the above inequality yields

E
(
S2

1:n

)1/2 ≤ 1

m
(E(‖M1:m‖2)1/2 +

(
E(S2

1:m−1) + E(S2
m+1:n)

)1/2

≤ 1

m

(
C(ε)m2d+1

)1/2
+

(
A(d)C(ε)

(
(m− 1)2d

m−1∑
t=1

1

t2
+ (n−m)2d

n∑
t=m+1

1

t2

))1/2

≤

(
C(ε)m2d

n∑
t=1

1

t2

)1/2

+

(
A(d)C(ε)

(n
2

)2d
(
m−1∑
t=1

1

t2
+

n∑
t=m+1

1

t2

))1/2

≤

(
C(ε)n2d

n∑
t=1

1

t2

)1/2 (
1 +

(
A(d)

22d

)1/2
)
,

where we used equation (4.8) and the induction hypothesis in the second line and
the fact that 1 ≤

∑m
t=1 1/t2 in the third line. Now we choose A(d) such that

1 +
A(d)1/2

2d
≤ A(d)1/2 ⇔ A(d) ≥

(
1− 1

2d

)−2

≥ 1.

The induction step is proven and thus this concludes the proof of inequality (4.7).

To state the following Lemma we repeat the notion of multivariate fractional
Brownian motion (cf. Marinucci and Robinson (2000), Davidson and de Jong (2000),
Chung (2002)). We denote by WD(t) = (Wd1(t), . . . ,Wdn(t))′ an n-dimensional
fractional Brownian motion with n different memory parameters D = (d1, . . . , dn)′.
Each Wdi(t) is a one-dimensional fractional Brownian motion defined by

Wdi(t) =
1

Γ(di + 1)

(∫ t

0

(t− s)didW (i)
0 (s) +

∫ 0

−∞

(
(t− s)di − (−s)di

)
dW

(i)
0 (s)

)
,

where W
(i)
0 (t) is the ith element of an n-dimensional Brownian motion with the

covariance matrix Ω.

Lemma 4.4 (FCLT, SLLN). Let (ξi)i≥1 be a sequence of mean zero Rd-valued
random vectors that satisfy Assumption 4. Then

(a) (FCLT)

diag(T−1/2−d1 , . . . , T−1/2−dn)

[Tr]∑
t=1

ξt ⇒ ΩWD(r),

where WD(r) is an n vector of independent fractional Wiener processes and
⇒ denotes weak convergence under the Skorohod topology;

(b) (SLLN)

k−1

k∑
i=1

ξi
a.s.−−→ 0 as k →∞;

Proof. a) Under our Assumptions Theorem 1 of Chung (2002) holds and gives
this result.

b) Under our Assumptions Corollary 3 of Wu (2007) applies and gives this result.
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4.8.2 10 Properties of the Quasi-Likelihood Ratio

This section contains 10 properties of the quasi-likelihood ratio and parameter esti-
mates. We need them in subsequent proofs. In this subsection we write

L(1, k; β,Σ) =

k∏
t=1

f(yt|xt, ..., β,Σ)

k∏
t=1

f(yt|xt, ..., β0,Σ0)

,

where β0 and Σ0 describe the true values of the coefficients. In the following we
denote by β̂(k) and Σ̂(k) estimates obtained from maximizing L(1, k; β,Σ). Then the
following properties hold:

Property 1. For each δ ∈ (0, 1]

sup
Tδ≤k≤T

L(1, k; β̂(k), Σ̂(k)) = Op(1),

sup
Tδ≤k≤T

(‖β̂(k) − β0‖+ ‖Σ̂(k) − Σ0‖) = Op(T
d−1/2).

The following property is modified compared to property 2 of Qu and Per-
ron (2007). Instead of considering the supremum of the likelihoood over 1 ≤ k ≤ T
we consider here the supremum over δT ≤ k ≤ T for some δ ∈ (0, 1).

Property 2. For some δ ∈ (0, 1), each ε > 0, there exists a B > 0 such that

Pr

(
sup

δT≤k≤T
T−BL(1, k; β̂(k), Σ̂(k)) > 1

)
< ε

for all large T .

Property 3. Let ST = {(β,Σ): ‖β−β0‖ ≥ T−1/2+d log T or ‖Σ−Σ0‖ ≥ T−1/2+d log T}.
For any δ ∈ (0, 1), D > 0 and ε > 0 the following statement holds when T is large:

Pr

(
sup
k≥δT

sup
(β,Σ)∈ST

TDL(1, k; β,Σ) > 1

)
< ε. (4.9)

Property 4. Not needed.

The following property is different from Qu and Perron (2007) in that we do not
assume that the limit of (hTd

2
T )/T exists. Instead as pointed out by Bai (2000) we

assume the sufficient condition that lim infT→∞(hTd
2
T )/T ≥ h > 0.

Property 5. Let hT and dT be positive sequences such that hT is nondecreas-
ing, dT → ∞ and lim infT→∞(hTd

2
T )/T ≥ h > 0. Define Θ3 = {(β,Σ): ‖β‖ ≤

p1, λmin(Σ) ≥ p2, λmax(Σ) ≤ p3}, where p1, p2 and p3 are arbitrary constants that sat-
isfy p1 <∞, 0 < p2 ≤ p3 <∞. Define ST = {(β,Σ): ‖β−β0‖ ≥ T−1/2+d log T or ‖Σ−
Σ0‖ ≥ T−1/2+d log T}. Then, for any ε > 0, there exists an A > 0, such that

Pr

(
sup
k≥AhT

sup
(β,Σ)∈ST∩Θ̄3

L(1, k; β,Σ) > ε

)
< ε

when T is large.
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Property 6. With νT satisfying Assumption 6, for each β and Σ such that ‖β −
β0‖ ≤MvT and ‖Σ− Σ0‖ ≤MvT , with M <∞, we have

sup
1≤k≤T 1/2−dv−1

T

sup
λ,Ξ

L(1, k; β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k; β,Σ)
= op(1).

Property 7. Under the conditions of Property 6, we have

sup
1≤k≤Mv−2

T

sup
λ,Ξ

log
L(1, k; β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k; β,Σ)
= op(1).

Property 8. We have

sup
Tδ≤k≤T

sup
β∗,Σ∗,λ,Ξ

log
L(1, k; β0 + T−1/2+dβ∗ + T−1+2dλ,Σ0 + T−1/2+dΣ∗ + T−1+2dΞ)

L(1, k; β0 + T−1/2+dβ∗,Σ0 + T−1/2+dΣ∗)
= op(1),

where the supremum with respect to β∗,Σ∗, λ,Ξ is taken over an arbitrary compact
set.

Property 9. Let T1 = [aT ] for some a ∈ (0, 1] and let T2 = [T 1/2−dv−1
T ], where vT

satisfies Assumption 6. Consider

yt =x′tβ
0
1 + Σ0

1ηt, (t = 1, . . . , T1),

yt =x′tβ
0
2 + Σ0

2ηt, (t = T1 + 1, . . . , T1 + T2),

where ‖β0
1 − β0

2‖ ≤MvT and ‖Σ0
1 − Σ0

2‖ ≤MvT for some M <∞. Let k = T1 + T2

be the size of the pooled sample and let (β̂n, Σ̂n) be the associated estimates. Then
β̂n − β0

1 = Op(T
d−1/2) and Σ̂n − Σ0

1 = Op(T
d−1/2).

Property 10. Not needed.

4.8.3 Proof of Lemma 4.1

Proof. We show the consistency in two steps: First we prove an auxiliary result
on the convergence rate of the break point estimates. Second we use results from
Bai (2000) to justify the statement.

Let N := [T
1
2
−dν−1

T ]. Let Aj = {(k1, ..., km) ∈ Λε : |ki − k0
j | > N, i = 1, . . . ,m},

where Λε is given in Assumption 11. Because LRT (k̂1, ..., k̂m) ≥ LRT (k0
1, ..., k

0
m) ≥

LRT (k0
1, ..., k

0
m, β

0,Σ0) = 1, to show (k̂1, ..., k̂m) /∈ Aj, it suffices in a first step to
show

P ( sup
(k1,...,km)∈Aj

LRT (k1, . . . , km) > ε) < ε. (4.10)

We extend the definition of LRT to every subset {l1, . . . , lr} of {1, 2, ..., T − 1} such
that LRT (l1, . . . , lr) = LRT (l(1), . . . , l(r)) where 0 < l(1) < · · · < l(r) are the ordered
versions of l(1), . . . , l(r). For every (k1, . . . , km) ∈ Aj,

LRT (k1, . . . , km) ≤ LRT (k1, . . . , km, k
0
1, . . . , k

0
j−1, k

0
j −N, k0

j +N, k0
j+1, . . . , k

0
m).
(4.11)
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Denote the likelihood ratio of the segment [k, l] by

D(k, l, β,Σ) =

l∏
t=k+1

f(yt|xt; β,Σ)

l∏
t=k+1

f(yt|xt; β0,Σ0)

and its optimal value
D(k, l) = sup

β,Σ
D(k, l, β,Σ).

The likelihood ratio of the entire sample can be written as

LRT (k1, . . . , km) = D(0, k1) ·D(k1, k2) · · · · ·D(km, T ). (4.12)

The right hand side of (4.11) can be written as the product of at most (2m+2) terms
expressible as D(l, k) as in (4.12). There are at most (2m+2) terms because ki may
coincide with k0

l for some i and l. One of these (2m+2) terms isD(k0
j−N, k0

j+N) and
all the rest can be written asD(l, k) with [l, k] ⊂ [k0

1+1; k0
i+1] for some i. By Property

1 and 2, logD(l, k) = Op(log T ) uniformly in l, k such that k0
i + 1 ≤ l < k ≤ k0

i+1

with |l − k| > Tν. That is, D(k, l) = Op(T
B) for some B > 0. Thus,

LRT (k1, . . . , km) ≤ Op(T
(2m+1)B)D(k0

j −N, k0
j +N). (4.13)

We now show that D(k0
j − N, k0

j + N) is small. Introduce the reparameterization.

LR∗T (k, l, β,Σ) = D(k, l, β0 + (l− k)−1/2β,Σ0 + (l− k)−1/2Σ) assuming that (β0,Σ0)
is the true parameter of the segment [k, l]. We note that

D(k0
j −N, k0

j +N) = sup
β,Σ

[D(k0
j −N, k0

j ; β,Σ) ·D(k0
j , k

0
j +N ; β,Σ)]

= sup
β,Σ

[LR∗T (k0
j −N, k0

j ;N
1/2(β − β0

j ), N
1/2(Σ− Σ0

j)) (4.14)

× (LR∗T (k0
j , k

0
j +N ;N1/2(β − β0

j+1), N1/2(Σ− Σ0
j+1))].

This follows from the definition of LR∗T and the fact that (β0
j ,Σ

0
j) is the true pa-

rameter for the segment [k0
j −N, k0

j ] and (β0
j+1,Σ

0
j+1) is the true parameter for the

segment [k0
j + 1, k0

j +N ]. From max{‖x− z‖, ‖y − z‖} ≥ ‖x− y‖/2 for all (x, y, z),
we have for all β and Σ

max{N1/2‖β − β0
j ‖, N1/2‖β − β0

j+1‖} ≥N1/2‖β0
j − β0

j+1‖/2
max{N1/2‖Σ− Σ0

j‖, N1/2‖Σ− Σ0
j+1‖} ≥N1/2‖Σ0

j − Σ0
j+1‖/2.

By Assumption 6, we either have N1/2‖β0
j−β0

j+1‖/2 ≥ logN or N1/2‖Σ0
j−Σ0

j+1‖/2 ≥
logN . This follows from if ‖β0

j − β0
j+1‖ ≥ νTC for some C > 0, then

N1/2‖β0
j − β0

j+1‖/2 = (T 1/2ν−1
T )1/2νTC = C(T 1/2νT )

1
2 ≥ log T ≥ logN.

Now suppose that N1/2‖β0
j −β0

j+1‖/2 ≥ logN . Then we have either (i) N1/2‖β−
β0
j ‖ ≥ logN or (ii) N1/2‖β − β0

j+1‖ ≥ logN . For case (i) we can apply Property 3
to the first term inside the brackets of (4.14) to obtain

LR∗T (k0
j −N, k0

j ;N
1/2(β − β0

j ), N
1/2(Σ− Σ0

j)) = Op(N
−A)
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for every A > 0. Moreover, by Property 2 the second term inside the bracket of
(4.14) is bounded by Op(log T ). Similarly, for case (ii), we can apply Property 3 to
show that the second term of (4.14) is Op(N

−A) and the first term is bounded by
Op(log T ). So for each case, we have

D(k0
j −N, k0

j +N) = log T Op(N
−A)

for an arbitrary A < 0. It is further N−A ≤ T−A/2 since N ≥ T 1/2 for all large
T . Thus from (4.13), LRT (k1, . . . , km) ≤ Op(T

(2m+1)B− 1
2
A) log T

p−→ 0 for a large A.
This proves (4.10).

Now by Proposition 2 of Bai (2000) we can deduce that k̂j − k0
j = Op(ν

2
T ) for

j = 1, . . . ,m using the preliminary convergence order given by Equation (4.10).
The convergence rate for the estimated regression coefficients βj and covariances Σj

follows as in Bai (1997b) and Bai and Perron (1998) due to the fast convergence of
the estimated break points.

4.8.4 Proof of Theorem 4.1

Proof. Without loss of generality, consider the j-th break date and start with the
case where the candidate estimate is before the true break date. We obtain an ex-
pansion for lr1

j ([s/ν
2
r ]) as defined in Theorem 1. Note that s is implicitly defined by

s = ν2
T (Ti − T 0

i ) = rν2
T . We deal with each term separately.

For the first term, we have as in Qu and Perron (2007)

1

2

T 0
j∑

t=T 0
j +[s/ν2T ]

uTt

(
(Σ0

j)
−1−(Σ0

j+1)−1
)
ut

=
1

2
tr
(

(Σ0
j)

1
2 (Σ0

j+1)−1Φj(Σ
0
j)
− 1

2νT

T 0
j∑

t=T 0
j +[s/ν2T ]

(ηt η
T
t − I)

− r

2
νT tr

(
(Σ0

j+1)−1Φj

)
.

For the second term we have

−r
2

(log |Σ0
j | − log |Σ0

j+1|) =
r

2
νT tr

(
Φj(Σ

0
j+1)−1

)
+
r

4
ν2
T tr

(
[Φj(Σ

0
j+1)−1]2

)
.

The sum of the first two terms is

1

2

T 0
j∑

T 0
j +[s/ν2T ]

uTt

(
(Σ0

j)
−1 − (Σ0

j+1)−1
)
ut −

r

2
(log|Σ0

j | − log|Σ0
j+1|)

=
1

2
tr
(

(Σ0
j)

1
2 (Σ0

j+1)−1Φj(Σ
0
j)
− 1

2νT

T 0
j∑

T 0
j +[s/ν2T ]

(ηt η
T
t − I)

)
+
r

4
ν2
T tr

(
[Φj(Σ

0
j+1)−1]2

)
= I + II.
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Now

T 1−2d(I + II)
d→1

2
tr
(

(Σ0
j)

1
2 (Σ0

j+1)−1Φj(Σ
0
j)
− 1

2 ξ1,d,j(s)
)

+
s

4
tr
(

[(Σ0
j+1)−1Φj]

2
)

=
1

2
tr(A1,jξ1,d,j(s)) +

s

4
tr(A2

1,j),

where ξ1,d,j is a nonstandard Brownian motion process with var
[
vec(ξ1,d,j(s))

]
=

Ω0
1,j. For the third term we have

−1

2

T 0
j∑

t=T 0
j +[s/ν2T ]

(β0
j − β0

j+1)Txt(Σ
0
j+1)−1xTt (β0

j − β0
j+1)

P→ 1

2
s δTj Q1,j δj.

Note that xt belongs to regime j, but it is scaled by the covariance matrix of
regime j + 1 because the estimate of the break occurs before the true break date.
For the fourth term,

−T 1−2d

T 0
j∑

t=T 0
j +[s/ν2T ]

(β0
j − β0

j+1)Txt(Σ
0
j+1)−1ut

d→ δTj (Π1,j)
1
2 ζ1,d,j(s)

with

Π1,j = lim
T→∞V ar

{
(T 0

j − T 0
j−1)−

1
2

[ T 0
j∑

t=T 0
j +[s/ν2T ]

xt(Σ
0
j+1)−1(Σ0

j)
1
2ηt

]}
.

Combining these results, we have, for s < 0

T 1−2dlr1
j

(
[
s

ν2
T

]
)

d→− |s|
2

[1

2
tr(A2

1,j) + δTj Q1,j δj

]
+

1

2
vec(A1,j)

T vec(ξ1,d,j(s)) + δTj (π1,j)
1
2 ζ1,d,j(s).

Now, vec(A1,j)
T vec(ξ1,d,j(s))

d
=
(
vec(A1,j)

TΩ0
1,jvec(A1,j)

) 1
2
V1,d,j(s), where V1,d,j(s)

is a standard fractional Brownian motion.
Similarly, δTj (Π1,j)

1
2 ζ1,d,j(s)

d
= (δTj Π1,j δj)

1
2U1,d,j(s) and U1,d,j(s) is a standard

fractional Brownian motion. Under the stated conditions, V1,d,j(s) and U1,d,j(s) are
independent. Then,(

vec(A1,j)
TΩ0

1,jvec(A1,j)/4
) 1

2
V1,d,j(s) +

(
δTj (π1,j)δj

) 1
2
U1,d,j(s)

d
=
(
vec(A1,j)

TΩ0
1,jvec(A1,j)/4 + δTj (π1,j)δj

) 1
2
W1,j,d(s)

≡T1,j W1,j,d(s),
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where Wd(s) is a unit fractional Brownian motion.
Hence with ∆1,j = tr(A2

1,j)/2 + δTj Q1,j δj, we have

T 1−2dlr1
j

(
[
s

ν2
T

]
)

d→ −|s|
2

∆1,j + T1,j W1,j,d(s)

The proof for s > 0 is similar:

T 1−2dlr1
j

(
[
s

ν2
T

]
)

d→ −|s|
2

∆2,j + T2,j W2,j,d(s)

with ∆2,j = tr(A2
2,j)/2 + δTj Q2,j δj and

T2,j =
[
vec(A2,j)

TΩ0
2,jvec(A2,j)/4 + δTj (π2,j)δj

] 1
2
.

By definition it is lr1
j (0) = 0. Given that s = ν2

T (Tj − T 0
j ), the argmax yields the

scaled estimate ν2
T (T̂j−T 0

j ). The result follows because we can take the argmax over
the compact set CM and with Lemma 1, this is equivalent to taking the argmax in
an unrestricted set because with probability arbitrarily close to 1, the estimates will
be contained in CM

Hence,

T 1−2dν2
T (T̂j − T 0

j )
d−→ argmax

s

{
− |s|

2
∆1,j + T1,j Wj,d(s), s ≤ 0,

− |s|
2

∆2,j + T2,j Wj,d(s), s > 0,

where Wj,d(s) = W1,j,d(s) for s ≤ 0 and Wj,d(s) = W2,j,d(s) for s > 0. Multiplying
by ∆1,j/T

2
1,j and applying a change of variable with u = (∆2

1,j/T
2
1,j)s, we obtain

Theorem 4.1.

4.8.5 Proof of Theorem 4.2

Proof of Theorem 4.2. We introduce some notation first. Let

Σ̃1,j =
1

Tj

Tj∑
t=1

(yt − x′atβ̃a − x′btβ̃b1,j)(yt − x′atβ̃a − x′btβ̃b1,j)

be the estimated covariance matrix using the full sample estimate of βa obtained
under the null hypothesis of no change and using the estimate of βb based on data
up to the last date of regime j, defined as

β̃b1,j = (

Tj∑
t=1

xbtΣ̃
−1
1,jx

′
bt)
−1

Tj∑
t=1

xtΣ̃
−1
1,j(yt − x′atβ̃a).

Additionally,

Σ̂j =
1

Tj − Tj−1

Tj∑
t=Tj−1+1

(yt − x′atβ̂a − x′btβ̂bj)(yt − x′atβ̂a − x′btβ̂bj)′
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is the estimate of the covariance matrix of the errors under the alternative hypothesis
using the full sample estimate of βa and using the estimate of βb based on data from
regime j only, that is,

β̂b,j = (

Tj∑
t=Tj−1+1

xbtΣ̂
−1
j x′bt)

−1

Tj∑
t=Tj−1+1

xtΣ̂
−1
j (yt − x′atβ̂a).

Consider the log-likelihood of a given partition of the sample

LRT (T1, . . . , Tm) =
2

T 2d
log L̂T (T1, . . . , Tm)− 2

T 2d
log L̃T =

T

T 2d
log |Σ̃| − T

T 2d
log |Σ̂|

=
1

T 2d

m∑
j=1

(Tj+1 log |Σ̃1,j+1| − Tj log |Σ̃1,j| − (Tj+1 − Tj) log |Σ̂j+1|)

=:
1

T 2d

m∑
j=1

F j
T .

Using a second-order Taylor series expansion of each term gives

log |Σ̃1,j+1| = log |Σ0|+ tr((Σ0)−1(Σ̃1,j+1 − Σ0))

− 1

2
tr((Σ0)−1(Σ̃1,j+1 − Σ0)(Σ0)−1(Σ̃1,j+1 − Σ0))

+ op(T
−1),

log |Σ̃1,j| = log |Σ0|+ tr((Σ0)−1(Σ̃1,j − Σ0))

− 1

2
tr((Σ0)−1(Σ̃1,j − Σ0)(Σ0)−1(Σ̃1,j − Σ0)) + op(T

−1),

log |Σ̂j+1| = log |Σ0|+ tr((Σ0)−1(Σ̂j+1 − Σ0))

− 1

2
tr((Σ0)−1(Σ̂j+1 − Σ0)(Σ0)−1(Σ̂j+1 − Σ0)) + op(T

−1).

Applying this to the terms F j
T ,

F j
T :=F j

1,T + F j
2,T

= tr(Tj+1(Σ0)−1(Σ̃1,j+1 − Σ0)− Tj(Σ0)
−1(Σ̃1,j − Σ0)) (4.15)

− (Tj+1 − Tj)(Σ0)−1(Σ̂j+1 − Σ0))

− 1

2
tr(Tj+1[(Σ0)−1(Σ̃1,j+1 − Σ0)]2 (4.16)

− Tj[(Σ0)−1(Σ̃1,j − Σ0)]2 − (Tj+1 − Tj)[(Σ0)
−1(Σ̂j+1 − Σ0)]2).

First we consider F j
1,T and write the regression in matrix form. Under the null

hypothesis, we have
Y = Xaβa +Xbβb + U

with E(UU ′) = IT ⊗ Σ0. If only data up to the last date of regime j are included,
we have

Y1,j = Xa1,jβa +Xb1,jβb1,j + U1,j.
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We now define Y d
1,j = (IT ⊗ Σ̃

−1/2
1,j )Y1,j, W1,j = (IT ⊗ Σ̃

−1/2
1,j )Xa1,j, Z1,j = (IT ⊗

Σ̃
−1/2
1,j )Xb1,j and Ud

1,j = (IT ⊗ Σ̃
−1/2
1,j )U1,j. Then, omitting the subscript when the full

sample is used, we have

β̃a = [W ′MZW ]−1W ′MZY
d, (4.17)

β̃b1,j = (Z ′1,jZ1,j)
−1Z ′1,j(Y

d
1,j −W1,jβ̃a),

where MZ = I − Z(Z ′Z)−1Z ′. The regression equation using only regime (j + 1) is

Yj+1 = Xa,j+1βa +Xb,j+1βb,j+1 + Uj+1.

Define Ȳ d
j+1 = (IT⊗Σ̂

−1/2
j+1 )Yj+1, W̄j+1 = (IT⊗Σ̂

−1/2
j+1 )Xa,j+1, Z̄j+1 = (IT⊗Σ̂

−1/2
j+1 )Xb,j+1,

Ūd
j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Uj+1, Z̄ = diag(Z̄1, . . . , Z̄m+1). Then, omitting the subscript

when the full sample is used, we have

β̂a = [W̄ ′MZ̄W̄ ]−1W̄ ′MZ̄ Ȳ
d,

β̂b,j+1 = (Z̄ ′j+1Z̄j+1)−1Z̄ ′j+1(Ȳ d
j+1 − W̄j+1β̂a). (4.18)

Note that the choice of the estimate of the covariance matrix in Equations (4.17) to
(4.18) will have no effect provided a consistent one is used. As Qu and Perron (2007)
(supplement, p. 25−26) we can show for the first component of F j

1,T (or with obvious
changes for the second component) that

Tj+1 tr((Σ0)−1Σ̃j+1)

= A′TW
′
1,j+1MZ1,j+1

W1,j+1AT − Ud′

1,j+1PZ1,j+1
Ud

1,j+1

− 2(MZ1,j+1
W1,j+1AT )′Ud

1,j+1 + U ′1,j+1(IT ⊗ (Σ0)−1)U1,j+1 + op(1),

where AT = [W ′MZW ]−1W ′MZU
d. For the third component of F j

1,T it can be shown
that

(Tj+1 − Tj) tr((Σ0)−1Σ̂j+1)

=Ā′T W̄
′
j+1MZ̄j+1

W̄j+1ĀT − Ūd′

j+1PZ̄j+1
Ūd
j+1

− 2(MZ̄j+1
W̄j+1ĀT )′Ūd

j+1 + U ′j+1(IT ⊗ (Σ0)−1)Uj+1 + op(1),

where ĀT = [W̄ ′MZ̄W̄ ]−1W̄ ′MZ̄Ū
d. Following the same arguments as in Bai and

Perron (1998, p.75), we have plimT→∞ T
1/2ĀT = plimT→∞ T

1/2AT Hence, all terms
that involve ĀT and AT eventually cancel and

F j
1,T = Ud′

1,jPZ1,j
Ud

1,j + Ud′

j+1PZ̄j+1
Ud
j+1 − Ud′

1,j+1PZ1,j+1
Ud

1,j+1 + op(1).

Now, T−dZ ′1,jU
d
1,j ⇒ Q

1/2
b W ∗

D,pb
(λi) and T−1

∑Tj
t=1 xbt(Σ

0)−1x′bt →p λiQb whereW ∗
D,pb

(λi)
is a pb vector of zeros and independent fractional Wiener processes defined on [0, 1]
as given in Theorem 4.2 and where Qb is the appropriate submatrix of Q that cor-
responds to the elements of xbt. Hence,

T−2d Ud′

1,j+1PZ1,j+1
Ud

1,j+1 ⇒ [W ∗
D,pb

(λj+1)′W ∗
D,pb

(λj+1)]/λj+1.

Using similar arguments

T−2d Ud′

1,jPZ1,j
Ud

1,j ⇒ [W ∗
D,pb

(λj)
′W ∗

D,pb
(λj)]/λj
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and

T−2d Ud′

j+1PZ̄j+1
Ud
j+1

⇒ (W ∗
D,pb

(λj+1)−W ∗
D,pb

(λj))
′(W ∗

D,pb
(λj+1)−W ∗

D,pb
(λj))/(λj+1 − λj).

These results imply that the first component in (4.15) has the limit

F j
1,T ⇒

(λjW
∗
D,pb

(λj+1)− λj+1W
∗
D,pb

(λj))
′(λjW

∗
D,pb

(λj+1)− λj+1W
∗
D,pb

(λj))

(λj+1 − λj)λjλj+1

. (4.19)
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Consider now the limit of
∑m

j=1 F
j
2,T when changes in Σ0 are allowed. We have

F j
2,T =− 1

2

m∑
j=1

tr(Tj+1((Σ0)−1Σ̃1,j+1 − I)2)

− Tj((Σ0)−1Σ̃1,j − I)2 − (Tj+1 − Tj)((Σ0)−1Σ̂j+1 − I)2.

Let ((Σ0)−1Σ̃1,j+1 − I)F (”F” for full sample) be the matrix whose entries are those
of ((Σ0)−1Σ̃1,j+1−I) for the corresponding entries of Σ0 that are not allowed to vary
across regimes; the remaining entries are filled with zeros. Then

[
((Σ0)−1Σ̃1,j+1 − I)F

]
i,k

=
σik

T

T∑
t=1

(yit − x′itβ̃)′(ykt − x′ktβ̃)− Ii,k,

where σik is the (i, k) element of (Σ0)−1 and Ii,k is the (i, k) element of I. Also
let ((Σ0)−1Σ̃1,j+1 − I)S (”S” for relevant segments) be the matrix whose entries are
those of ((Σ0)−1Σ̃1,j+1 − I) for the corresponding entries of Σ0 that are allowed to
vary across regimes, the remaining entries being filled with zeros. Then

[
((Σ0)−1Σ̃1,j+1 − I)S

]
i,k

=
σik

Tj+1

Tj+1∑
t=1

(yit − x′itβ̃)′(ykt − x′ktβ̃)− Ii,k.

Note that the entries for ((Σ0)−1Σ̃1,j+1 − I)F are the same for all segments. Define

similarly ((Σ0)−1Σ̃1,j−I)F , ((Σ0)−1Σ̃1,j−I)S, ((Σ0)−1Σ̂j+1−I)F and ((Σ0)−1Σ̂j+1−
I)S. Then

((Σ0)−1Σ̃1,j+1 − I) = ((Σ0)−1Σ̃1,j+1 − I)F + ((Σ0)−1Σ̃1,j+1 − I)S,

((Σ0)−1Σ̃1,j − I) = ((Σ0)−1Σ̃1,j − I)F + ((Σ0)−1Σ̃1,j − I)S,

((Σ0)−1Σ̂j+1 − I) = ((Σ0)−1Σ̂j+1 − I)F + ((Σ0)−1Σ̂j+1 − I)S,

and, in view of (4.16),

m∑
j=1

F j
2,T =− 1

2
tr(

m∑
j=1

[Tj+1((Σ0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S

− Tj((Σ0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S

− (Tj+1 − Tj)((Σ0)−1Σ̂S
j+1 − I)S((Σ0)−1Σ̂S

j+1 − I)S])

+ op(1)
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Now, because β̃ − β0 = Op(T
−1/2+d), we have

Tj+1

T 2d
((Σ0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S

=
T

Tj+1

T−1/2−d
Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−d
Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj+1)Sξdn(λj+1)S

λj+1

Tj
T 2d

((Σ0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S

=
T

Tj

T−1/2−d
Tj∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−d
Tj∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj)
Sξdn(λj)

S

λj

and

(Tj+1 − Tj)
T 2d

(Σ0)−1Σ̂S
j+1 − I)S((Σ0)−1Σ̂S

j+1 − I)S

=
T

Tj+1 − Tj

T−1/2−d
Tj+1∑

t=Tj+1

[(Σ0)−1utu
′
t − I]

S

×

T−1/2−d
Tj+1∑

t=Tj+1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj

where ξ∗D(·) is an n× n matrix whose elements are

[ξ∗D(·)]i,j =

{
[ξD(·)]i,j, if di = dj = max1≤k≤n dk,

0, else,

and where ξD is (nonstandard) fractional Brownian motions defined on [0, 1] such
that Var(vec(ξD(1))) = Ω (which follows from Theorem 4.8.2 of Giraitis et al. (2012)
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p.109). Hence,

m∑
j=1

F j
2,T ⇒−

1

2
tr

(
ξ∗D,n(λj+1)Sξ∗D,n(λj+1)S

λj+1

−
ξ∗D,n(λj)

Sξ∗D,n(λj)
S

λj

+
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj

)
=− 1

2

[
vec(ξ∗D,n(λj+1)S)′ vec(ξ∗D,n(λj+1)S)

λj+1

−
vec(ξ∗D,n(λj)

S)′ vec(ξ∗D,n(λj)
S)

λj

×
(

vec(ξ∗D,n(λj+1)S)− vec(ξ∗D,n(λj)
S)
)′

×
(vec(ξ∗D,n(λj+1)S)− vec(ξ∗D,n(λj)

S)

(λi+1 − λi)

]
using the fact that tr(AA) = vec(A)′ vec(A) for a symmetric matrix A. Now let H
be the matrix that selects the elements of vec(Σ0) that are allowed to change. Then

vec(ξ∗D,n(λj+1)S)′ vec(ξ∗D,n(λj+1)S) = vec(ξ∗D,n(λj+1))′H ′H vec(ξ∗D,n(λj+1))

d
= W ∗

D,n∗b
(λj+1)′HΩH ′W ∗

D,n∗b
(λj+1),

where W ∗
D,n∗b

is an n∗b vector of processes as defined in Theorem 4.2. Hence, we have

m∑
j=1

F j
2,T ⇒−

1

2

[
W ∗
D,n∗b

(λj+1)′H ′ΩHW ∗
D,n∗b

(λj+1)

λj+1

−
W ∗
D,n∗b

(λj)
′H ′ΩHW ∗

D,n∗b
(λj)

λj

(4.20)

−
(W ∗

D,n∗b
(λj+1)−W ∗

D,n∗b
(λj))

′H ′ΩH(W ∗
D,n∗b

(λj+1)−W ∗
D,n∗b

(λj)

λj+1 − λj

]
=(λjW

∗
D,n∗b

(λj+1)− λj+1W
∗
D,n∗b

(λj))
′H ′ΩH

× (λjW
∗
D,n∗b

(λj+1)− λj+1W
∗
D,n∗b

(λj))/(λjλj+1(λj+1 − λj)).

By combining equations (4.19) and (4.20) we have shown the limiting distribution
of our test.

4.8.6 Proof of Theorem 4.3

Proof. From Theorem 4.1 we have the consistency of our break point estimates at
each iteration. If we have m0 break points in the data the break point test of
Theorem 4.2 rejects in each iteration m < m0 with a probability tending to one for
T → ∞ due to the Pitman efficiency of the test. In iteration m0 the test has a
type-I error of α and thus the hit rate of our procedure is (1− α)%.

4.8.7 Proof of 10 Properties

This section contains proofs for properties of the quasi-likelihood ratio and param-
eter estimates.
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Property 1. For each δ ∈ (0, 1]

sup
Tδ≤k≤T

L(1, k; β̂(k), Σ̂(k)) = Op(1),

sup
Tδ≤k≤T

(‖β̂(k) − β0‖+ ‖Σ̂(k) − Σ0‖) = Op(T
d−1/2).

Proof. The strong consistency of (β̂(k), Σ̂(k)) follows using the arguments of Qu and
Perron (2007). Then we can write

β̂(k) − β0 =

 k∑
t=)1

xtΣ̂
−1
(k)x

′
t

−1
k∑
t=1

xtΣ̂
−1
(k)ut

and apply the generalized Hájek-Rényi inequality on
∑k

t=1 xt(Σ0)−1ut. Together

with the strong consistency of Σ̂(k) this gives supTδ≤k≤T‖β̂(k) − β0‖ = Op(T
−1/2+d).

Furthermore, we have

Σ̂(k) − Σ0 =
1

k

k∑
t=1

(ut − x′t(β̂(k) − β0))(ut − x′t(β̂(k) − β0))1 − Σ0.

Applying again the generalized Hájek-Rényi inequality gives supTδ≤k≤T‖Σ̂(k)−Σ0‖ =

Op(T
−1/2+d). As a direct consequence this yields supTδ≤k≤T L(1, k; β̂(k), Σ̂(k)) =

Op(1).

The following property is modified compared to property 2 of Qu and Per-
ron (2007). Instead of considering the supremum of the likelihoood over 1 ≤ k ≤ T
we consider here the supremum over δT ≤ k ≤ T for some δ ∈ (0, 1).

Property 2. For some δ ∈ (0, 1), each ε > 0, there exists a B > 0 such that

Pr

(
sup

δT≤k≤T
T−BL(1, k; β̂(k), Σ̂(k)) > 1

)
< ε

for all large T .

Proof. This is a direct consequence of property 1.

Property 3. Let ST = {(β,Σ): ‖β−β0‖ ≥ T−1/2+d log T or ‖Σ−Σ0‖ ≥ T−1/2+d log T}.
For any δ ∈ (0, 1), D > 0 and ε > 0 the following statement holds when T is large:

Pr

(
sup
k≥δT

sup
(β,Σ)∈ST

TDL(1, k; β,Σ) > 1

)
< ε.

Proof. We proceed in two steps: First we consider the behaviour of the likelihood
function over a compact set and show that the claim is true. Second we argue why
this is still true once we remove the requirement of a compact parameter subset.
Define

Θ2 = {(β,Σ): ‖β‖ ≤ d1, λmin(Σ) ≥ d2, λmax(Σ) ≤ d3},

where λmin and λmax denote the smallest and largest eigenvalues of Σ and the finite
constants d1, d2 and d3 are chosen in such a way that (β0,Σ0) is an inner point of
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Θ2. As explained we first show (4.9) with the second supremum taken over ST ∩Θ2

which is compact. We decompose the segmential log likelihood as logL(1, k; β,Σ) =
L1,T + L2,T , where

L1,T = −k
2

log|I + ΨT | −
k

2

[
1

k

k∑
t=1

η′t(I + ΨT )−1ηt −
1

k

k∑
t=1

η′tηt

]
and

L2,T = β∗
′

k∑
t=1

xtΣ
−1ut −

k

2
β∗
′

(
1

k

k∑
t=1

xtΣ
−1x′t

)
β∗,

where β∗ = β − β0,Σ
∗ = Σ − Σ0, ηt = (Σ0)−1ut and ΨT = (Σ0)−1/2Σ∗(Σ0)−1/2. We

note that only L2,T depends on β∗. We split the parameter space ST = S1,T ∪ S2,T

with
S1,T = {(β,Σ): ‖Σ− Σ0‖ ≥ T−1/2+d log T, β arbitrary}

and

S2,T = {(β,Σ): ‖β − β0‖ ≥ T−1/2+d log T and ‖Σ− Σ0‖ ≤ T−1/2+d log T}.

It has to be shown that

Pr

(
sup
k≥Tδ

sup
(β,Σ)∈S1,T∩Θ2

TDL(1, k; β,Σ) > 1

)
< ε (S.3)

and

Pr

(
sup
k≥Tδ

sup
(β,Σ)∈S2,T∩Θ2

TDL(1, k; β,Σ) > 1

)
< ε. (S.4)

We start to show (S.3). On S1,T , L2,T is a quadratic function of β∗ and has maximum
value

sup
S1,T

L2,T =
k

2

(
1

k

k∑
t=1

xtΣ
−1ut

)′(
1

k

k∑
t=1

xtΣ
−1x′t

)−1(
1

k

k∑
t=1

xtΣ
−1ut

)
.

Applying Property 1 gives

sup
k≥Tδ

sup
Θ2

∥∥∥∥∥∥
(

1

k

k∑
t=1

xtΣ
−1x′t

)−1
∥∥∥∥∥∥ = Op(1).

Additionally we see

sup
k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

xtΣ
−1ut

∥∥∥∥∥ = sup
k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

S ′(In ⊗ zt)Σ−1ut

∥∥∥∥∥
= sup

k≥Tδ

∥∥∥∥∥S ′(Σ−1 ⊗ In)
1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥
≤ sup

k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥∥∥S ′(Σ−1 ⊗ In)
∥∥ .
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From the FCLT of Lemma 4.4 we have for fixed r > 0

lim
T→∞

Pr

(
sup
k≥Tδ

∥∥∥∥∥1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥ > rT d−1/2 log1/2 T

)
= 0,

while ‖S ′(Σ−1 ⊗ In)‖ =
∑n

i=1(1 + λi)
−1Op(1), where λi (i = 1, ..., n) are the eigen-

values of (Σ0)−1/2Σ∗(Σ0)−1/2. Hence,

sup
k≥Tδ

sup
S1,T∩Θ2

L2,T ≤
k

2

(
n∑
i=1

1

1 + λi

)2

(r2T 2d−1 log T ),

which implies

sup
k≥Tδ

sup
S1,T∩Θ̄2

L2,T ≤
k

2

n∑
i=1

1

1 + λi
r2b2

T ,

where bT = T d−1/2 log T with the inequality holding with probability arbitrarily close
to 1 for large T . For L1,T we start by considering the term in brackets. Introduce
an orthogonal matrix U that diagonalizes (I + ΨT )−1. Then we have

1

k

k∑
t=1

η′t((I + ΨT )−1 − I)ηt = tr

(
diag

{
1

1 + λi
− 1

}(
1

k
U

k∑
t=1

ηtη
′
tU
′

))
.

Because ‖U‖ = 1 it suffices to investigate∥∥∥∥∥1

k
U

k∑
t=1

ηtη
′
tU
′ − I

∥∥∥∥∥ ≤ 1

k

∥∥∥∥∥
k∑
t=1

(ηtη
′
t − I)

∥∥∥∥∥ .
Then for any a > 0 by the FCLT of Lemma 4.4

lim
T→∞

Pr

(
sup
k≥Tδ

1

k

k∑
t=1

‖(ηtη′t − I)‖ > abT

)
= 0.

Then arguing as Bai, Lumsdaine, et al. (1998) we may show that

sup
k≥Tδ

sup
S1,T∩Θ2

L1,T ≤ −
k

2

[
n∑
i=1

(
log(1 + λi) +

(
1

1 + λi
− 1

)
(1 + sign(λi)abT )

)]

with probability arbitrarily close to 1 for large T , where a is a fixed positive number
which can be made arbitrarily small. Combining the preceding two inequalities we
can show that

Pr

(
sup
k≥Tδ

sup
(β,Σ)∈S1,T∩Θ2

L1,T + L2,T > −D log T

)
< ε.

It is now straightforward to see that using the similar arguments as Bai, Lumsdaine,
et al. (1998) one can show that equation (S.4) holds. Therefore the claim is shown on
the compact parameter space Θ2. But as in Qu and Perron (2007) we can conclude
that the result is valid also on an unrestricted parameter space. Therefore the proof
is complete.
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Property 4. Not needed.

The following property is different from Qu and Perron (2007) in that we do not
assume that the limit of (hTd

2
T )/T exists. Instead as pointed out by Bai (2000) we

assume the sufficient condition that lim infT→∞(hTd
2
T )/T ≥ h > 0.

Property 5. Let hT and dT be positive sequences such that hT is nondecreas-
ing, dT → ∞ and lim infT→∞(hTd

2
T )/T ≥ h > 0. Define Θ3 = {(β,Σ): ‖β‖ ≤

p1, λmin(Σ) ≥ p2, λmax(Σ) ≤ p3}, where p1, p2 and p3 are arbitrary constants that sat-
isfy p1 <∞, 0 < p2 ≤ p3 <∞. Define ST = {(β,Σ): ‖β−β0‖ ≥ T−1/2+d log T or ‖Σ−
Σ0‖ ≥ T−1/2+d log T}. Then, for any ε > 0, there exists an A > 0, such that

Pr

(
sup
k≥AhT

sup
(β,Σ)∈ST∩Θ̄3

L(1, k; β,Σ) > ε

)
< ε

when T is large.

Proof. As in Property 3 we only need to look at the behaviour of L2T over S1,T ∩ Θ̄3.
The rest of the proof is as in Bai, Lumsdaine, et al. (1998). We need to show

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

L(1, k; β,Σ) > ε) < ε

or
P ( sup

k≥AhT
sup

(β,Σ)∈S1,T∩Θ̄3

L1T +L2T > ε) < ε.

Define bT := T−1/2dT . Now all the arguments in the proof of Property 3 still hold.
Thus, we have

sup
S1,T

L2T =
k

2
(
1

k

k∑
t=1

xtΣ
−1ut)

′(
1

k

k∑
t=1

xtΣ
−1x′t)

−1(
1

k

k∑
t=1

xtΣ
−1ut),

where

(
k∑
t=1

xtΣ
−1x′t)

−1 = (
k∑
t=1

S ′(I ⊗ zt)Σ−1(I ⊗ z′t)S)−1 = (S ′(Σ−1 ⊗
k∑
t=1

ztz
′
t)S)−1.

From l−1
∑l

t=1 ztz
′
t
a.s.−−→ Qz, for a given ε > 0 we can always find a k1 > 0 such that

P (sup
k≥k1
‖1

k

k∑
t=1

ztz
′
t −Qz‖ > ε) < ε.

Define Q4 := k−1
∑k

t=1 ztz
′
t −Qz. Then

(S ′(Σ−1 ⊗ 1

k

k∑
t=1

zt z
′
t)S)−1 − (S ′(Σ−1 ⊗Qz)S)−1

= (S ′(Σ−1 ⊗Qz)S + S ′(Σ−1 ⊗Q4)S)−1 − (S ′(Σ−1 ⊗Qz)S)−1

= − A−1B(A+B)−1,
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where A = S ′(Σ−1 ⊗ Qz)S and B = S ′(Σ−1 ⊗ Q4)S. Because Σ−1 has uniformly

bounded eigenvalues and k−1
∑k

t=1 ztz
′
t is positive definite for large k, A−1 and B−1

have bounded eigenvalues. Because B is uniformly small, −A−1B(A + B)−1 is
uniformly small for large k. This is

(S ′(Σ−1 ⊗ k−1

k∑
t=1

ztz
′
t)S)−1 − (S ′(Σ−1 ⊗Qz)S)−1 a.s.

= o(1) as k →∞.

Now there exists an M > 0 such that sup(β,Σ)∈S1,T∩Θ̄3
|(S ′(Σ−1⊗Qz)S)−1| < M , and

we have, for any ε > 0, that there exists an A > 0 such that

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

‖(1

k

k∑
t=1

xtΣ
−1x′t)

−1‖ > 2M) < ε.

Now,

sup
k≥AhT

‖1

k

k∑
t=1

xtΣ
−1ut‖ = sup

k≥AhT
‖1

k

k∑
t=1

S ′(In ⊗ zt)Σ−1ut‖

≤ sup
k≥AhT

‖1

k

k∑
t=1

(In ⊗ zt)ut‖‖S ′(Σ−1 ⊗ In)‖. (4.21)

From Lemma 4.3 we have

P ( sup
k≥AhT

‖1

k

k∑
t=1

(In ⊗ zt)ut‖ > abT ) ≤ C1

AhTa2bT
<

2C1

Aa2h

for some C1 > 0, where the bound can be made arbitrarily small by choosing a large
A. For the second component,

‖S ′(Σ−1 ⊗ In)‖ ≤ nC2

n∑
i=1

1

1 + λi
(4.22)

for some 0 < C2 < ∞, which depends on the matrix S. Now, combining (4.21)-
(4.22), we have, for any ε > 0 that there exists an Ā > 0, such that with probability
no less than 1− ε,

sup
k≥ĀhT

sup
(β,Σ)∈S1,T∩Θ̄3

|L2T | <ka2b2
Tn

2C2
2M(

n∑
i=1

1

1 + λi
)2 ≤ k

2

n∑
i=1

Ga2b2
T

1 + λi
=
k

2

n∑
i=1

γ2b2
T

1 + λi

with G = 2n3C2
2M/p2. Because a2 can be made arbitrarily small by choosing a large

A, so can y2. Hence Property 5 follows.

The next properties are the same as Lemmas 6− 10 of Bai (2000). Because the
proofs are similar, they are omitted.

Property 6. With νT satisfying Assumption 6, for each β and Σ such that ‖β −
β0‖ ≤MvT and ‖Σ− Σ0‖ ≤MvT , with M <∞, we have

sup
1≤k≤T 1/2−dv−1

T

sup
λ,Ξ

L(1, k; β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k; β,Σ)
= op(1).
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Property 7. Under the conditions of Property 6, we have

sup
1≤k≤Mv−2

T

sup
λ,Ξ

log
L(1, k; β + T−1/2+dλ,Σ + T−1/2+dΞ)

L(1, k; β,Σ)
= op(1).

Property 8. We have

sup
Tδ≤k≤T

sup
β∗,Σ∗,λ,Ξ

log
L(1, k; β0 + T−1/2+dβ∗ + T−1+2dλ,Σ0 + T−1/2+dΣ∗ + T−1+2dΞ)

L(1, k; β0 + T−1/2+dβ∗,Σ0 + T−1/2+dΣ∗)
= op(1),

where the supremum with respect to β∗,Σ∗, λ,Ξ is taken over an arbitrary compact
set.

Property 9. Let T1 = [aT ] for some a ∈ (0, 1] and let T2 = [T 1/2−dv−1
T ], where vT

satisfies Assumption 6. Consider

yt =x′tβ
0
1 + Σ0

1ηt, (t = 1, . . . , T1),

yt =x′tβ
0
2 + Σ0

2ηt, (t = T1 + 1, . . . , T1 + T2),

where ‖β0
1 − β0

2‖ ≤MvT and ‖Σ0
1 − Σ0

2‖ ≤MvT for some M <∞. Let k = T1 + T2

be the size of the pooled sample and let (β̂n, Σ̂n) be the associated estimates. Then
β̂n − β0

1 = Op(T
d−1/2) and Σ̂n − Σ0

1 = Op(T
d−1/2).

Property 10. Not needed.

4.8.8 Critical values of the UDmaxLRT test

90%
m/d -0.49 -0.48 -0.46 -0.44 -0.42 -0.4 -0.38 -0.36 -0.34 -0.32 -0.3 -0.28 -0.26
1 8.410 17.846 26.491 34.309 39.193 35.994 39.441 37.912 37.097 36.898 30.827 30.891 28.523
2 24.276 44.007 72.370 93.699 101.748 105.425 118.393 95.369 96.470 89.007 76.508 81.029 71.999
3 34.579 61.969 104.355 130.856 145.328 146.919 145.735 131.450 135.958 124.616 104.839 108.244 96.204
4 40.347 75.998 120.862 150.517 170.464 171.259 169.404 153.776 157.105 143.193 126.115 124.425 110.262
5 46.367 79.971 133.176 164.134 191.383 189.105 182.596 171.821 175.159 157.489 143.972 137.865 120.730

-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
1 27.775 23.931 51.253 21.261 16.834 18.119 15.610 13.599 12.198 10.345 10.935 10.199 7.848
2 64.060 57.967 67.182 48.206 40.386 35.945 34.010 29.195 26.547 23.113 21.761 19.792 15.505
3 85.440 78.278 76.534 61.710 53.235 52.144 44.940 38.279 33.728 30.242 27.125 25.244 21.152
4 98.523 88.057 92.015 71.680 62.012 58.889 50.653 42.137 38.695 34.269 31.291 28.241 23.645
5 110.394 97.934 92.015 78.337 67.372 62.605 56.043 47.731 41.459 37.547 33.179 31.488 25.394

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1 7.846 6.954 6.557 5.856 5.233 4.911 4.094 4.095 3.576 3.205 2.787 2.518 2.362
2 14.977 12.956 11.182 9.573 9.155 8.411 6.695 6.517 5.412 5.108 4.225 3.781 3.359
3 19.608 16.915 14.468 12.606 11.838 10.411 8.073 7.720 6.824 6.213 5.161 4.598 4.022
4 21.508 18.819 16.197 14.229 13.254 11.335 8.819 8.696 7.567 6.789 5.572 4.961 4.334
5 22.755 20.164 17.649 15.519 13.629 12.200 9.652 9.381 7.968 6.996 5.940 5.264 4.543

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.49
1 2.050 1.698 1.556 1.430 1.071 0.894 0.769 0.612 0.433 0.245 0.118 0.059
2 3.045 2.447 2.240 2.008 1.469 1.238 1.026 0.780 0.557 0.326 0.201 0.074
3 3.465 2.851 2.496 2.218 1.657 1.383 1.170 0.911 0.622 0.360 0.218 0.086
4 3.853 3.100 2.727 2.429 1.866 1.510 1.277 0.982 0.659 0.390 0.225 0.092
5 4.089 3.269 2.809 2.576 1.896 1.598 1.350 1.019 0.679 0.393 0.234 0.096

Table 4.2: Asymptotic critical values for the UDmaxLRT test, using ε = 0.05.
These are obtained from 10,000 Monte Carlo replications with 1, 000 increments.
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95%
m/d -0.49 -0.48 -0.46 -0.44 -0.42 -0.4 -0.38 -0.36 -0.34 -0.32 -0.3 -0.28 -0.26
1 10.126 20.489 31.669 39.739 46.815 43.505 44.244 41.594 43.839 44.949 38.438 35.138 33.807
2 27.227 48.129 79.026 99.144 111.514 113.695 125.206 107.440 109.675 102.952 87.820 85.306 78.340
3 36.716 66.400 110.651 138.349 160.067 156.946 160.882 147.343 151.418 139.355 117.222 119.344 104.340
4 43.673 78.056 131.583 162.124 182.726 183.895 186.022 172.254 171.460 157.489 137.487 139.132 120.228
5 47.814 84.137 145.187 174.638 212.650 202.412 202.834 188.747 186.820 172.324 163.417 151.156 130.191

-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
1 32.781 27.874 51.253 23.557 22.012 19.800 17.962 16.039 14.821 12.274 13.550 12.221 9.251
2 71.130 64.897 67.182 51.598 46.696 41.533 39.718 31.871 29.452 26.338 24.790 21.774 17.878
3 92.669 84.269 76.534 67.133 60.688 54.381 49.486 41.422 36.861 33.659 30.639 27.085 22.343
4 108.611 97.592 92.015 77.021 67.439 62.084 54.301 47.102 42.486 38.406 33.979 30.485 24.647
5 118.056 104.760 92.015 84.535 71.714 66.745 60.788 54.403 45.939 40.872 36.741 34.249 26.749

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1 8.711 8.717 7.536 6.765 6.162 6.046 4.873 4.658 4.065 3.843 3.466 3.451 2.858
2 17.725 15.480 13.012 11.595 10.331 9.496 7.880 7.220 6.562 5.863 4.996 4.666 3.884
3 21.508 19.152 16.213 13.972 12.852 11.413 9.127 8.485 7.695 6.671 5.880 5.783 4.421
4 23.171 20.711 17.974 15.002 14.723 12.469 10.143 9.385 8.320 7.302 6.427 5.989 4.944
5 25.497 22.891 19.263 16.671 14.806 13.379 10.782 10.043 8.841 8.001 7.129 6.097 5.196

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.49
1 2.432 2.088 1.946 1.645 1.548 1.144 0.938 0.868 0.571 0.343 0.198 0.071
2 3.380 2.927 2.520 2.311 1.917 1.453 1.161 0.995 0.685 0.390 0.259 0.088
3 3.990 3.336 2.860 2.731 2.083 1.698 1.344 1.136 0.782 0.434 0.323 0.096
4 4.457 3.701 3.159 2.885 2.179 1.762 1.447 1.175 0.812 0.454 0.338 0.101
5 4.605 3.847 3.330 2.914 2.239 1.844 1.497 1.208 0.829 0.469 0.344 0.104

Table 4.3: Asymptotic critical values for the UDmaxLRT test, using ε = 0.05.
These are obtained from 10,000 Monte Carlo replications with 1, 000 increments.



CHAPTER 4. MULTIPLE BREAKS IN MULTIVARIATE TIME SERIES 60

99%
m/d -0.49 -0.48 -0.46 -0.44 -0.42 -0.4 -0.38 -0.36 -0.34 -0.32 -0.3 -0.28 -0.26
1 13.242 27.302 41.304 51.161 60.097 58.974 56.234 54.063 61.337 62.121 66.550 48.803 45.649
2 31.624 55.570 101.378 114.483 137.152 149.019 133.183 132.250 127.398 150.242 103.128 98.281 100.489
3 44.328 73.390 135.962 161.676 193.512 218.208 187.724 182.320 173.746 215.210 127.916 156.701 128.524
4 48.597 82.612 149.202 184.739 214.974 254.592 209.437 215.628 194.856 233.235 163.417 159.445 140.256
5 56.680 94.172 161.373 204.324 240.566 254.592 227.372 233.447 216.968 261.370 185.785 189.944 151.578

-0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0
1 41.889 38.796 51.253 28.561 28.390 26.587 23.533 20.137 19.944 18.043 16.801 15.665 13.096
2 85.590 76.726 67.182 58.089 55.900 53.785 44.964 37.432 34.804 31.151 28.722 26.991 21.998
3 108.814 117.656 86.158 81.578 74.409 61.891 55.258 46.322 42.761 40.785 34.559 31.962 27.031
4 130.189 117.656 93.050 92.660 84.612 73.290 66.677 55.068 51.097 44.669 40.851 38.593 31.099
5 144.329 133.404 103.493 97.502 92.949 77.167 75.029 63.593 55.843 52.113 44.947 44.315 33.184

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
1 12.715 12.620 10.390 8.238 8.038 8.043 6.287 6.585 5.762 5.210 4.668 4.846 3.750
2 20.337 18.698 15.991 13.043 11.535 10.982 9.198 8.892 7.711 7.418 6.078 5.937 4.783
3 26.003 23.042 20.218 15.911 14.540 13.318 10.874 10.415 9.294 8.218 7.079 6.719 5.654
4 29.820 26.954 23.581 18.106 19.267 15.089 12.023 11.551 9.829 8.951 7.758 7.592 6.059
5 31.235 30.150 23.869 19.116 20.125 15.521 12.795 12.379 10.410 9.495 8.092 7.900 6.341

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.49
1 3.395 3.052 2.556 1.984 2.068 1.895 1.313 1.260 0.763 0.470 0.305 0.104
2 4.300 3.740 3.639 2.851 2.337 2.387 1.551 1.479 0.841 0.535 0.359 0.125
3 4.895 4.482 4.059 3.089 2.671 2.606 1.636 1.609 0.938 0.578 0.391 0.141
4 5.402 4.720 4.269 3.357 2.737 2.634 1.754 1.625 0.962 0.645 0.394 0.151
5 5.619 4.875 4.359 3.471 2.860 2.680 1.786 1.632 0.982 0.662 0.397 0.156

Table 4.4: Asymptotic critical values for the UDmaxLRT test, using ε = 0.05.
These are obtained from 10,000 Monte Carlo replications with 1, 000 increments.
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Chapter 5

Distinguishing between Breaks in
the Mean and Breaks in
Persistence under Long Memory
Co-authored with Mwasi Mboya and Philipp Sibbertsen.

5.1 Introduction

Change point detection and estimation is a classical topic in econometrics and statis-
tics (see the monograph of Csorgo and Horváth, 1997). Here we focus on changes in
the mean and changes in the persistence in the long-memory context. Long memory
as a feature of time series has been recognized in many fields of study. Examples of
time series that exhibit long memory include volatilies (Y. K. Lu and Perron, 2010),
inflation rates (Hsu, 2005) or trading volumes (Fleming and Kirby, 2011).

Changes in the mean under long-range dependence have been studied exten-
sively. Iacone et al. (2014) use a sub-Wald type test, while Betken (2016) employs a
Wilcoxon two-sample test statistic. However, many contributions focus on CUSUM-
based test statistics (L. Wang, 2008; Shao, 2011; Wenger, Leschinski, and Sibbert-
sen, 2018a). Our paper builds on these findings but further expands on the idea
that one may confuse breaks in the mean and breaks in persistence.

Leybourne et al. (2007) advise a CUSUM of squares test to detect a break in
persistence of a time series in the I(0)/I(1) framework. This test is extended by
Sibbertsen and Kruse (2009) to fractional integration I(d), i.e. they are able to
detect if the order of integration breaks from stationarity (0 ≤ d < 1/2) to non-
stationarity (1/2 < d < 3/2) or vice versa. However, as pointed out by Sibbertsen
and Willert (2012) this test is not robust in the presence of breaks in the mean.
This finding motivates the present paper.

In this paper we introduce a novel procedure to discriminate between no break,
a break in the mean or a break in persistence. The procedure consists of two steps:
In a first step we determine whether or not a structural break affects the process at
all by a statistical test. Afterwards in a second step we test if the break is a break
in the mean or a break in persistence.

Our methodology follows Berkes et al. (2006) who study a procedure to distin-
guish a process with a break in the mean (but without long memory) under the null
hypothesis from a process with true long memory. The idea is to split up the sample
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at the estimated break point under the null in two segments. The authors then in-
vestigate the behaviour of CUSUM-based test statistics formed from both segments.
Aue et al. (2009) extend the procedure of Berkes et al. (2006) to distinguish breaks
in the mean from random walks. Our contribution introduces long memory in this
setting.

The paper is structured as follows: In Section 5.2 we introduce a test of the
null of stationarity I(d) (0 ≤ d < 1/2) against a break in the mean or a break in
persistence. Afterwards in Section 5.3 we show how to distinguish between the two
types of structural break. The finite sample properties are studied by a Monte Carlo
simulation in Section 5.4. An application to inflation rates is given in Section 5.5.
Section 5.6 concludes.

5.2 Detecting breaks in the mean or in the per-

sistence

We want to study the process Xt given by

Xt = µt + Yt, t = 1, . . . , T,

where µt describes the mean of the observed time series and Yt is the innovation
process possibly having long memory. In this paper we only consider long memory
generated according to the ARFIMA(p, d, q) model as proposed by Granger and
Joyeux (1980):

Φ(B) (1−B)d Yt = Ψ(B) εt, as t = 1, . . . , T,

where εt is i.i.d. white noise with mean 0, variance σ2
ε and E|εt|2+δ < ∞ for some

δ > 0. The AR- and MA-polynomials Φ(B) and Ψ(B) are assumed to have all roots
outside the unit circle. For notational convenience we write Yt ∼ ARFIMA(p, d, q).
We consider different scenarios for both the mean process and the innovation process.

Remark 1. We note that if Yt ∼ ARFIMA(p, d, q) the process satisfies the func-
tional central limit theorem (FCLT), i.e. for d ∈ [0, 1/2) and with some σ > 0 it
holds

1

T 1/2+d

[Tt]∑
k=1

Yk
D
=⇒ σWd(t) (t ∈ [0, 1], T →∞),

where [·] denotes the integer part and Wd(t), t ∈ [0, 1] denotes standard fractional

Brownian motion and
D
=⇒ stands for weak convergence in the Skorohod topology.

The first scenario I characterizes the situation where we observe no break in the
mean and no break in persistence.

Scenario I. Under the null hypothesis of stability of the parameters the mean
process µt is constant and the innovation process Yt is stationary, i.e.

H0 : µt = µ for all t = 1, . . . , T,

Yt ∼ ARFIMA(p, d, q)

for some d ∈ [0, 1/2).
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The alternative scenarios II and III have in common that they involve a change-
point at an unknown point in time k∗. As is typical in the literature on change-
point analysis we assume that, loosely speaking, the observations before and after
the change point tend both to infinity with increasing sample size, i.e.

k∗ = [θT ] for some θ ∈ (0, 1).

We now introduce the scenarios formally.

Scenario II. Under the first alternative we have a mean shift from µ to µ + ∆ at
k∗, while the innovation process Yt is unchanged, i.e.

H(1)
A : µt =

{
µ, t = 1, . . . , k∗

µ+ ∆, t = k∗ + 1, . . . , T,

Yt ∼ ARFIMA(p, d, q)

for some d ∈ [0, 1/2) and ∆ 6= 0.

Scenario III. Under the second alternative we observe a constant mean µt while
the long memory parameter d of Yt changes from stationarity to non-stationarity
(H(2.1)

A ) or vice versa (H(2.2)
A ), i.e. there exist d1 ∈ [0, 1/2) and d2 ∈ (1/2, 3/2) such

that

H(2.1)
A : µt = µ for all t = 1, . . . , T,

Yt ∼ ARFIMA(p, d1, q), t = 1, . . . , k∗,

Yt ∼ ARFIMA(p, d2, q), t = k∗ + 1, . . . , T,

H(2.2)
A : µt = µ for all t = 1, . . . , T,

Yt ∼ ARFIMA(p, d2, q), t = 1, . . . , k∗

Yt ∼ ARFIMA(p, d1, q), t = k∗ + 1, . . . , T.

Our test statistic is the CUSUM statistic given by

RT =
1

T 1/2+d̂σ̂(d̂)
max

1≤k≤T

∣∣∣∣∣
k∑
i=1

(Xi − X̄T )

∣∣∣∣∣ ,
where X̄T denotes the mean of the whole series Xt and σ̂(d̂) is an estimate of the
long-run variance of Xt as in remark 1. We will employ the local Whittle estimator
of Robinson (1995a) that satisfies d̂ − d0 = op(m

−1) where m = T b the bandwidth

parameter with b ∈ (0, 1). Furthermore for σ̂(d̂) we use the MAC estimator of
Robinson (2005). First, we consider the asymptotics of our test statistic under the
null hypothesis.

Theorem 5.1 (Theorem 2.1, L. Wang (2008)). Under scenario I we have

RT
D
=⇒ sup

0≤τ≤1
|W̃d(τ)|, as T →∞,

where W̃d(τ) = Wd(τ)− τWd(1) is a fractional Brownian bridge.
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Now, we consider the asymptotics of our test statistic under the first alternative
H(1)
A . The following is known

Theorem 5.2 (Theorem 2.2, L. Wang (2008)). Under scenario II we have

RT
p−→∞ as T →∞.

For the case of alternatives H(2.1)
A resp. H(2.2)

A we provide the following theorem
about the test statistic

Theorem 5.3. Under scenario III if 2d2 − (2 + b)d̂ > 0 we have

RT
p−→∞ as T →∞.

The proof of the theorem can be found in the appendix. The Theorems 5.1 to
5.3 suggest a testing procedure of the null hypothesis H0 against the alternative
hypotheses HA.

5.3 Break in mean or break in persistence?

After having detected a break in mean or in persistence in the previous section we
now want to distinguish these two forms of a break. Therefore we use an estimator
for the break point k∗ in case of scenario II. We use

k̂ = arg min
1≤k≤T

k∑
i=1

(Xi − X̄1,k)
2 +

T∑
i=k+1

(Xi − X̄k+1,T )2,

where X̄i,j denotes the mean value of the observations Xi, . . . , Xj. By Theorem 3

of Lavielle and Moulines (2000) it holds in the case of scenario II that k̂
p−→ k∗ as

T → ∞. We therefore suggest to split the sample based on this estimator k̂ into
X1, . . . , Xk̂ and Xk̂+1, . . . , XT . Then we take the CUSUM statistics before and after
the estimated break as our basic test statistics:

RT,1 =
1

k̂1/2+d̂1σ̂1(d̂1)
max

1≤k≤k̂

∣∣∣∣∣∣
k∑
i=1

Xi −
k

k̂

k̂∑
i=1

Xi

∣∣∣∣∣∣ ,
RT,2 =

1

(T − k̂)1/2+d̂2σ̂2(d̂2)
max

k̂+1≤k≤T

∣∣∣∣∣∣
k∑

i=k̂+1

Xi −
k − k̂
T − k̂

T∑
i=k̂+1

Xi

∣∣∣∣∣∣ ,
where the long memory parameters estimates d̂1, d̂2 and the long-run variance es-
timates σ̂1(d̂1), σ̂2(d̂2) are obtained on the respective subsamples X1, . . . , Xk̂ and
Xk̂+1, . . . , XT . The new test statistic is obtained by determining the maximum of
RT,1 and RT,2, i.e.

R∗ = max{RT,1, RT,2}.

Then we have the following
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Theorem 5.4. Suppose that under scenario II

d̂1
p−→ d, d̂2

p−→ d, σ̂1(d̂1)
p−→ σ, and σ̂2(d̂2)

p−→ σ. (5.1)

Then the test statistic R∗ has the following limit distribution

R∗
D
=⇒ max{ sup

0≤t≤θ

σ

θ1/2+d

∣∣∣∣Wd(t)−
t

θ
Wd(θ)

∣∣∣∣ ,
sup
θ≤t≤1

σ

(1− θ)1/2+d

∣∣∣∣Wd(t)−Wd(θ)−
t− θ
1− θ

(Wd(1)−Wd(θ))

∣∣∣∣},
as T →∞.

Proof. By the strong approximation principle (Corollary 1.1 of Q. Wang et al. (2003))
we know

sup
0≤t≤1

∣∣∣∣∣
T∑
i=1

Yi − σWd(Tt)

∣∣∣∣∣ = op(T
1/2+d), as T →∞. (5.2)

First, we want to prove that

max
1≤k≤T

∣∣∣∣∣∣
[Tt]∑
i=1

(Xi − X̄k̂)1{[Tt] ≤ k̂}−

σ

(
Wd(Tt)−

t

θ
Wd(Tθ)

)
1{t ≤ θ}

∣∣∣∣∣∣ = op(T
1/2+d). (5.3)

Notice that by Theorem 3 of Lavielle and Moulines (2000) we have

max
1≤k≤k̂

∣∣∣∣∣
k∑
i=1

(Xi − X̄k̂) −
k∑
i=1

(Yi − Ȳk̂)

∣∣∣∣∣ ≤ 2|k̂ − k∗| |∆| = op(T
1/2+d),

as T →∞ where Ȳk̂ = 1/k̂
∑k̂

i=1 Yi. Using (5.2) we further have as T →∞

max
1≤k≤k̂

∣∣∣∣∣
k∑
i=1

(Yi − Ȳk̂)− σ

(
Wd(k)− k̂

T
Wd(k̂)

)∣∣∣∣∣ = op(T
1/2+d).

By the almost sure continuity of fractional Brownian motion (Nualart, 2006) we
deduce ∣∣∣∣Tk̂ Wd(k̂)− 1

θ
Wd(θT )

∣∣∣∣ = op(T
1/2+d), (T →∞).

Now, we write

max
1≤k≤T

∣∣∣∣(Wd(k)− k

k̂
Wd(k̂)

)
1{k ≤ k̂} −

(
Wd(k)− k

Tθ
Wd(Tθ)

)
1{k ≤ Tθ}

∣∣∣∣
≤ max

1≤k≤T

∣∣∣∣[kk̂ − k

Tθ

]
Wd(k̂)

∣∣∣∣+ max
1≤k≤T

∣∣∣∣ kTθ (Wd(k̂)−Wd(Tθ))

∣∣∣∣
+ max

min(k̂,T θ)≤k≤max(k̂,T θ)

∣∣∣∣Wd(k)− k

Tθ
Wd(Tθ)

∣∣∣∣
=:A1 + A2 + A3.
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For the first term because |Wd(k̂)| ≤ |sup0≤t≤1|Wd(t)| = Op(T
1/2+d) we have as

k̂/T
p−→ θ that A1 = op(T

1/2+d). For the second term we have by self-similarity

T−1/2−d sup
|h|≤ε
|Wd(Tθ)−Wd(T (θ + h))| D= sup

|h|≤ε
|Wd(θ)−Wd(θ + h)| → 0, a.s.,

as ε → 0. Thus A2 = op(T
1/2+d). For the third term we use the rescaling property

to arrive at

T−1/2−d sup
T (θ−ε)≤t≤T (θ+ε)

|Wd(t)−
t

Tθ
Wd(Tθ)|

D
= θ1/2+d sup

1−ε /θ≤s≤1+ε /θ

|Wd(s)− sWd(1)| → 0 a.s.,

as ε → 0 because of the almost sure continuity of Wd at 1. This gives A3 =
op(T

1/2+d). Hence we have proved Equation (5.3). Arguing similarly one can show
that

max
1≤k≤T

∣∣∣∣∣∣
[Tt]∑
i=1

(Xi − X̄k̂)1{[Tt] > k̂}−

σ

(
Wd(Tt)−Wd(Tθ)−

t− θ
1− θ

(Wd(T )−Wd(Tθ))

)
1{t > θ}

∣∣∣∣∣∣
= op(T

1/2+d). (5.4)

Using again the self-similarity of fractional Brownian motion Equations (5.3) and
(5.4) imply the joint weak convergence of the test statistics

(RT,1, RT,2)
D
=⇒σ

(
sup

0≤t≤θ

σ

θ1/2+d

∣∣∣∣Wd(t)−
t

θ
Wd(θ)

∣∣∣∣ ,
sup
θ≤t≤1

σ

(1− θ)1/2+d

∣∣∣∣Wd(t)−Wd(θ)−
t− θ
1− θ

(Wd(1)−Wd(θ))

∣∣∣∣ ) .
By the continuous mapping theorem we finally prove the theorem.

Remark 2. Establishing Equation (5.1) for the local Whittle and the MAC estima-
tor is out of the scope for this paper as elaborate arguments concerning randomly
stopped sums of random variables are needed. However, in Section 5.4 we find
promising results using these estimators in a Monte Carlo experiment.

The test statistic is asymptotically consistent against the alternative of a break
in persistence as the next result shows.

Theorem 5.5. Under scenario III if 2d2− (2 + b) max{d̂1, d̂2} > 0 the test statistic
diverges:

R∗
p−→∞ as T →∞.

The proof of the theorem can be found in the appendix. We see that Theorems
5.4 and 5.5 suggest a test of a break in mean against a break in persistence.
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5.4 A Simulation Study

We study the finite sample size and power properties of the test by a Monte Carlo
simulation study. Therefore we simulate fractionally integrated standard normal
random variables and choose d ∈ {0, 0.2, 0.4} and sample size T = 1000. The
nominal significance level is α = 5 % and we report rejection frequencies obtained
from 10, 000 replications.

At first we analyze how well the test of Section 5.2 is able to detect if a break in
mean or in persistence exists. In Table 5.1 we show the size and the power against
scenario II of the test. We consider a break in the mean of one standard deviation
in the middle of the sample. Similar results have been obtained for example by
Wenger, Leschinski, and Sibbertsen (2018a), therefore we do not investigate other
sample sizes.

Size Power (scenario II)
b 0.6 0.7 0.8 0.6 0.7 0.8

d = 0.0 0.0151 0.0221 0.0277 0.9956 1 1
d = 0.2 0.0209 0.0248 0.0347 0.7913 0.9644 0.9938
d = 0.4 0.0105 0.0156 0.0270 0.6368 0.6176 0.6982

Table 5.1: Size and power results of the test of Section 5.2 where power results are
obtained if scenario II is true. We set T = 1, 000 and use bandwidth m = [T b].

In Table 5.2 we show the power of the test against scenario III. We consider a
break in persistence from d1 to d2 in the middle of the sample. As the power is quite
high we do not investigate other sample sizes. Power results for breaks in persistence
from non-stationarity to stationarity are not shown here, but yield similar results.

b 0.6 0.7 0.8
d1/d2 0.6 0.8 1 0.6 0.8 1 0.6 0.8 1

0 0.4473 0.6844 0.8549 0.4639 0.7522 0.9233 0.4503 0.7903 0.9549
0.2 0.394 0.6674 0.8484 0.4057 0.7338 0.9161 0.3965 0.7798 0.9578
0.4 0.3164 0.63 0.8451 0.3414 0.7213 0.9118 0.3457 0.7788 0.9545

Table 5.2: Power results of the test of Section 5.2 if the DGP is obtained under
scenario III. We set T = 1, 000 and use bandwidth m = [T b].

Subsequently, we analyze how the test of Section 5.3 performs to distinguish
breaks in mean from breaks in persistence. As before we consider one break in
the middle of the sample specified as above. It should be noted that the limiting
distribution in Theorem 5.4 depends on two parameters the break point θ and the
memory parameter d both which must be estimated in practice. For the break point
θ we suggest to use the break point estimate θ̂ = k̂/T . For the memory parameter
we simply take the mean of the two estimated parameters d̂1, d̂2, i.e. d̂ = (d̂1 + d̂2)/2
as this is a consistent estimate of d under the null hypothesis. In Table 5.3 we see
that the test is conservative as it does not reach its nominal level.
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b 0.6 0.7 0.8
T 1,000 10,000 1,000 10,000 1,000 10,000

d = 0.0 0.0138 0.0197 0.0118 0.0288 0.0161 0.0370
d = 0.2 0.0332 0.0569 0.0361 0.0332 0.0316 0.0398
d = 0.4 0.1700 0.0607 0.1117 0.0321 0.0638 0.0294

Table 5.3: Size results of the test of Section 5.3. We set T = 1, 000 and use band-
width m = [T b].

Lastly, we report in Table 5.4 the power results of the test of Section 5.4. Clearly,
the test only has reasonable power if the difference of d1 to d2 is large enough.
Hence for a break in persistence from d1 = 0.4 to d2 = 0.6 for a smaller sample size
T = 1, 000 the test has almost no power.

b 0.6 0.7 0.8
T d1/d2 0.6 0.8 1 0.6 0.8 1 0.6 0.8 1

1, 000 0.0 0.1665 0.2873 0.5784 0.2234 0.3527 0.7108 0.3458 0.4245 0.7592
10, 000 0.1788 0.6216 0.9203 0.2289 0.7285 0.9732 0.3941 0.7674 0.9794
1, 000 0.2 0.1065 0.2503 0.5682 0.1114 0.316 0.7022 0.1686 0.358 0.768

10, 000 0.1278 0.5945 0.908 0.1604 0.7115 0.9711 0.2387 0.7472 0.9824
1, 000 0.4 0.0453 0.2194 0.563 0.0512 0.3245 0.7282 0.0539 0.4008 0.82

10, 000 0.0878 0.587 0.922 0.1101 0.7228 0.9761 0.1253 0.8141 0.9919

Table 5.4: Power results of the test of Section 5.3 if the DGP is obtained under
scenario III. We use bandwidth m = [T b].

5.5 An Application to Inflation Rates

In this section we reconsider the case of inflation rates. This study is inspired by
Kumar and Okimoto (2007) who investigated inflation rates in the US and found
that they can be successfully explained by fractional integration. Moreover, they find
decreasing persistence when estimating the long memory parameter in different time
spans. In a similar vein, Caporin and Gupta (2017) use a model with a long memory
coefficient that may vary for different time periods. Contrarily, Gadea et al. (2004) or
Hsu (2005) argue that structural breaks should be taken into account when modelling
inflation rates. We contribute to this strand of literature by analyzing the behavior
of inflation rates for European countries.

We obtain our data from the OECD1 and use the monthly CPI for 10 countries
for a time span from 1967 to 2017. We deseasonalize the data first and transform
the data to inflation rates πt by taking differences of the log of the data, i.e. πt =
log(CPIt)− log(CPIt−1), which is common in the literature.

1Dataset from https://data.oecd.org/price/inflation-cpi.htm.
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Figure 5.1: Inflation Rates for Netherlands and France (not deseasonalized) where
our procedure suggest a break in mean and a break in persistence respectively. In
red we show the means of the subsamples X1, . . . , Xk̂ and Xk̂+1, . . . , XT .

Country AUT BEL FIN FRA DEU ESP ITA LUX NLD PRT

P-value I 0.0001 0.0121 0.0048 0.0022 0.0305 0 0.0255 0 0.0001 0.0001
P-value II 0.331 0.4074 0.0204 0 0.1431 0.0001 0.0092 0.4324 0.7443 0.0162

Table 5.5: P-values for the test statistic RT (P-value I) and for the test statistic R∗

(P-value II) for different countries. We use bandwidth b = 0.7, i.e. m = [T 0.7].

In Table 5.5 we show the p-values for both steps of the procedure for the studied
countries. All countries have either a break in mean or break in persistence if we
use a significance level α = 5%. Therefore we calculate the p-values for the second
step of the procedure. For the significance level α = 5% there are 5 countries whose
inflation rate cannot be described by a break in mean. In Figure 5.1 we try to
make the results of our procedure plausible by showing examples, where we suggest
a break in mean (5.1a) and a break in persistence (5.1b).

5.6 Conclusion

In this paper we introduce a new method to decide whether a time series is affected
by a break in the mean or by a break in persistence. The procedure consists of two
tests: We derive their theoretical limiting distributions under the null and show that
they are consistent against the alternative. Furthermore we show in a simulation
study how the test performs in small samples and apply the procedure to inflation
rates.
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5.7 Appendix

Proof of Theorem 5.3. We begin by proving the result under hypothesis H(2.1)
A and

write

1

T 1/2+d̂
max

1≤k≤T

∣∣∣∣∣
k∑
i=1

Xi −
k

T

T∑
i=1

Xi

∣∣∣∣∣
≥ 1

T 1/2+d̂

∣∣∣∣∣
k∗∑
i=1

Xi −
k∗

T

T∑
i=1

Xi

∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣∣(1− θ)T 1/2+d̂

k∗∑
i=1

Yi

∣∣∣∣∣−
∣∣∣∣∣ θ

T 1/2+d̂

T∑
i=k∗+1

Yi

∣∣∣∣∣
∣∣∣∣∣ . (5.5)

The Yi are stationary for i = 1, . . . , k∗ underH(2.1)
A , hence the first term is Op(T

d1−d̂).

On the other hand the second term is of order Op(T
d2−d̂). Furthermore we note that

d̂ is estimated under H0 so that d̂ < 1/2. So, we conclude that the second term in
Equation (5.5) dominates the first term. The MAC estimator σ̂(d̂) is given by (cf.
Abadir, Distaso, and Giraitis (2009))

σ̂2(d̂) =
p(d)

m

m∑
j=1

λ2d
j IT (λj), IT (λj) = (2πT )−1

∣∣∣∣∣
T∑
t=1

eitλjXt

∣∣∣∣∣
2

,

where λj = 2πj/T and p(d) is uniformly bounded for d ∈ [0, 1/2]. Thus σ̂(d̂) is seen

to be of order Op(m
d̂ T d2−d̂) = Op(T

(1+b)d̂−d2) as m = T b. Combining this with (5.5)
we find

1

T 1/2+d̂σ̂(d̂)
max

1≤k≤T

∣∣∣∣∣
k∑
i=1

Xi −
k

T

T∑
i=1

Xi

∣∣∣∣∣ = Op(T
2d2−(2+b)d̂),

which diverges under the premises of the Theorem. It is seen that under H(2.2)
A the

proof is similar.

Proof of Theorem 5.5. The proof is similar to the proof of Theorem 5.3 as we just
need to show that the maximum of the CUSUM statistics RT,1 and RT,2 diverges,
which is shown by carefully considering all cases.
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Chapter 6

Testing for a break in mean in
electricity load data
Co-authored with Theoplasti Kolaiti.

6.1 Introduction

Historically, electricity markets have developed from monopolistic providers to dereg-
ulated and competitive markets (cf. Weron (2007)). Therefore it is of great im-
portance for system operators to schedule power generators in order to harmonize
production and demand. Typically, scheduling algorithms use forecasts of electricity
loads based on time series models.

Many papers study forecasting of short-term (Taylor (2003); Taylor et al. (2006)),
mid-term (Mirasgedis et al. (2006)), and long-term (Hyndman and Fan (2009))
electricity demand. However, most of the papers on forecasting do not take into
account the possibility of breaks in the mean in the time series data. The paper of
Lacir J. Soares and Medeiros (2008) is a notable exception where the authors seem
to identify the structural break by the “eyeball technique”. Another example is the
paper of Leonardo R. Souza and Lacir J. Soares (2007) who identify a break in the
Brazilian electricity demand after a nationwide rationing scheme was implemented.

Yet, for electricity prices structural breaks are well-documented for many coun-
tries: the EU (Kirat and Ahamada (2011)), Australia (Apergis and Lau (2015)), or
China (Liu et al. (2013)). In this paper we argue that breaks in electricity demand
may also be present. Detecting them by a statistical test is useful to avoid model
misspecification and misleading forecasts. We introduce a novel hypothesis test to
detect breaks in mean as well as an application to electricity load data.

Electricity loads display intriguing features that have been extensively researched
in time series analysis so far. First of all, electricity loads exhibit strong seasonal
variation. The climate conditions change throughout the year so that temperature
or daylight hours cause varying demand by consumers. On the other hand, the
supply side may shift following a yearly pattern, e.g. when considering hydro units
or photovoltaic cells.

Moreover, electricity load is characterized by long memory. That is the autocor-
relations of the process decay hyperbolically, instead of exponentially as in ARMA
models. Lacir Jorge Soares and Leonardo Rocha Souza (2006) introduce a model
that is based on generalized long memory processes using GARMA models. Sim-



CHAPTER 6. TESTING BREAK IN MEAN IN ELECTRICITY LOAD 72

ilarly, Sadaei et al. (2017) employ a SARFIMA model to capture the long-range
dependence of the process using fractional integration.

The preceding discussion motivates to include seasonality and long memory in
our model. We assume that, electricity load data, follow a model of the form

Yt = ψt + θt + Zt, t = 1, . . . , n, (6.1)

where ψt is the long-time trend, θt is the seasonal component and Zk is a long
memory error process to be specified below in greater detail. We also assume that
the long-time trend is given by ψt = f(t/n); for f being a piecewise continuous
function with finitely many segments. Testing for a break in mean then corresponds
to the hypotheses

H0 : f = constant against HA : f is not constant.

This article is motivated by the setup of Wu (2004) whose test is inspired by iso-
tonic regression. The simulation study indicates that our test’s perfomance is more
powerful than the alternative ones for a break in mean and particularly when the
break date is at the beginning or end of the sample.

The paper is structured as follows: In Section 6.2 we introduce the test for a
break in the mean under long memory. In Section 6.3 we show that it is not affected
by seasonality theoretically. The finite sample properties of the test are investigated
in a Monte Carlo study in Section 6.4. Then in Section 6.5 we apply the test to
electricity load data and discuss the results. Finally, in Section 6.6 we conclude.

6.2 Testing for a break in mean under long-range

dependence

To motivate our procedure we first consider the special model Xt = ψt + Zt, that
has no seasonal component, θt. For the error process we assume that for some σ > 0
and d ∈ [0, 1/2) a functional central limit theorem (FCLT) holds:

1

σn1/2+d

[nt]∑
i=1

Zi ⇒ Wd(t), 0 ≤ t ≤ 1, (6.2)

where [·] denotes the integer part and Wd is fractional Brownian motion. Note
that this assumption is satisfied by the ARFIMA model if the innovation sequence
of the ARFIMA has bounded moments of order 2 (Abadir, Distaso, Giraitis, and
Koul, 2014). Following Wu (2004) we suggest testing for ψt = f(k/n) = constant
by considering

Λd(n, r) =
1

n2dσ̂2

n∑
k=1

(ψ
k,r
− X̄n)2 +

1

n2dσ̂2

n∑
k=1

(ψk,r − X̄n)2 (6.3)

=: Λd(n, r) + Λd(n, r),

where X̄n is the sample mean of Xt and σ̂ is an estimate of the square root of the
long-run variance σ of the process and

ψ
k,r

= max
i≤k

min
j≥k

Xi,r + · · ·+Xj,r

j − i+ 1
, ψk,r = min

i≤k
max
j≥k

Xi,−r + · · ·+Xj,−r

j − i+ 1
,



CHAPTER 6. TESTING BREAK IN MEAN IN ELECTRICITY LOAD 73

where X1,r = X1 + r n1/2+d, Xi,r = Xi for 2 ≤ i ≤ n− 1 and Xn,r = Xn − r n1/2+d.
The quantities denoted as ψ

k,r
and ψk,r are the isotonic resp. antitonic regression

functions of the sample X1,r, . . . , Xn,r resp. X1,−r, . . . , Xn,−r (cf. (Robertson et
al., 1988:p. 24)). In the following we demonstrate the reasoning for the isotonic
regression function ψ

k,r
. However, a similar interpretation can be given for the

antitonic regression function ψk,r.
If the Xi were iid N(0, σ2) random variables, then the isotonic regression function

ψ
k,r

can be seen to be a maximum likelihood estimate. Consider the set of isotonic

functions ψ = (ψ1, . . . , ψn), i.e. ψ1 ≤ ψ2 ≤ · · · ≤ ψn. Then the isotonic regression
function is the value that maximizes the penalized log-likelihood function L(ψ) =
−(2σ2)−1

∑n
i=1(Xi−ψi)2− r n1/2+d(ψn−ψ1)/σ2 with respect to the restriction that

ψ is isotonic, where C is a constant. The penalization by a value r > 0 is introduced
in order to avoid estimating the first ψ1 and ψn with bias, the so-called “spiking
problem”.

On a sidenote we remark that Λ0(n, r) has been considered before by Wu et
al. (2001) as a test statistic to detect a break in the mean. In their setup the null
hypothesis “ψt = constant” is contrasted with the specific alternative ψt < ψt+1 for
some t. Their test is based on isotonic regression.

In preparation for our results below we denote for a function H on [0, 1] by H
its greatest convex minorant and by H = −H its least concave majorant. Moreover
we use h and h for the left-hand derivatives of H and H respectively.

The asymptotic distribution of the test statistic in equation (6.3) will be given
below. To prepare this result we consider the local alternative

f(t) = µ+ σφ(t)/n1/2−d, (6.4)

where φ is a right-continuous function on [0, 1] for which
∫ 1

0
φ(t)dt = 0. Further

we denote by Wd standard fractional Brownian motion with memory parameter
d ∈ [0, 1/2). For c > 0 let Bφ

d,c(t) = Wd(t) − tWd(1) +
∫ t

0
φ(s)ds + c1(0,1)(t), b

φ
d,c(t)

and b
φ

d,−c(t) be the left-hand derivatives of Bφ
d,c(t) and B

φ

d,−c(t) respectively.

Theorem 6.1. Assume that (6.4) holds and let σ̂2
n be a consistent estimator σ2.

Then by the FCLT (6.2) for c = r/σ

Λd(n, r) ⇒
∫ 1

0

[bφd,c(t)]
2 + [b

φ

d,−c(t)]
2dt.

The proof of this and the other theoretical results are given in the appendix.
Theorem 6.1 provides us with the asymptotic distribution under the null hypothesis
setting φ ≡ 0. Critical values λc,d(α) depend on the long memory parameter d which
has to be estimated in practice and a user-chosen parameter c. We present critical
values for c = 0.15 in Table 6.1. Note that in practice the value r must be set to
cσ̂n.

d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
λc,d(α) 9.7587 7.0551 5.0859 3.7797 2.7147 1.9368 1.2896 0.82 0.3902 0.0995

Table 6.1: Critical values λc,d(α) of the test statistic Λ(n, r) for α = 0.95 and
c = 0.15.
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To study the power of our test we consider the specific alternative for some δn > 0

f(t) =
δn

n1/2+d
φ

(
t

n

)
, t = 1, . . . , n, (6.5)

where φ is a nonzero function, nondecreasing and with
∫ 1

0
φ(t)dt = 0. Then by

Theorem 6.1 the asymptotic power of our test based on test statistic (6.3) can be
computed. Below we show that the power converges to 1 if δn →∞.

Proposition 6.1. Assume the setting of Theorem 6.1 with (6.5) instead of (6.4).
Then

P

(∫ 1

0

[bφd,c(t)]
2 + [b

φ

d,−c(t)]
2dt > λc,d(α)

)
= 1, (δn →∞).

6.3 The effect of seasonality on the test statistic

We now expand the time series model from the previous section by a seasonal com-
ponent θt, i.e. Yt = ψt + θt + Zt, and study the implications for the test statistic
Λ(n, r). For the seasonal component we assume that θt =

∑I
i=1 Ai cos(kωi + αi)

where 0 < ωi < 2π are frequencies and Ai > 0 are amplitudes. In this section we
establish, casually speaking, that on the one hand the long-term trend ψt has no
effect on identifying the spectral frequencies ωi of the seasonal component and on
the other hand that the seasonal component θt does not influence the test statistic.

As before let Xt = ψt + Zt be the time series without seasonal component and
St = θt+Zt be the time series without long-time trend. Furthermore, let the discrete
Fourier transform of Xt denoted by wn,X(ω) =

∑n
k=1Xke

ikω and the periodogram
In,X(ω) = |wn,X(ω)|2 for ω ∈ (0, 2π). Then the difference in periodogram ordinates
of Xt and St is asymptotically negligible:

Proposition 6.2. If f is of bounded variation then for ω ∈ (0, 2π) it holds that
In,X − In,S = op(1).

The proposition allows us to identify the seasonal components frequencies ωi
by looking at the periodogram of Xt since the periodogram In,S(ω) of St has a
magnitude of order n if ω is one of the seasonal frequencies ωi. We demonstrate this
in Section 6.5 when analyzing electricity load data.

Now let, similar to Xt, Y1,r = Y1 + r n1/2+d, Yi,r = Yi for 2 ≤ i ≤ n − 1 and
Yn,r = Yn − r n1/2+d and define

νk,r = max
i≤k

min
j≥k

Yi,r + · · ·+ Yj,r
j − i+ 1

, νk,r = min
i≤k

max
j≥k

Yi,−r + · · ·+ Yj,−r
j − i+ 1

.

Then the test statistic Λd(n, r) based on Xt and Yt are asymptotically equivalent.

Proposition 6.3. It holds that
n∑
k=1

(ψ
k,r
− νk,r)2 +

n∑
k=1

(ψk,r − νk,r)2 = op(1).

We note that the estimation of d and σ are not affected by the introduction
of the seasonality θt asymptotically. Therefore Proposition 6.3 immediately implies
that the results from the previous section hold under model (6.1) with a seasonal
component θt. Thus the asymptotic distribution for our model is given by Theorem
6.1.
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6.4 A Monte Carlo Study

In order to compare the small sample properties of the test we conduct a Monte
Carlo experiment. We study the properties of our test by considering in accordance
with Equation (6.1) the process

yt − ψt − θt = (1− L)−d εt, t = 1, . . . , T, (6.6)

where ψt describes the mean, θt the seasonal component and εt is standard normal
white noise. For the long memory parameter d we choose d ∈ {0; 0.2; 0.4} and for
the sample size T ∈ {500; 1, 000; 2, 000}. Below we use a nominal significance level
α = 5% and we report the rejection frequencies for M = 10, 000 replications.

Moreover, for estimating the long-memory parameter we use the local Whittle
estimator of Robinson (1995a) and we use his MAC estimator (Robinson (2005)) for
the long-run variance σ2 of the process yt. This estimator depends on the choice of a
bandwidth parameter b ∈ (0, 1). Both estimators use the first m = [nb] periodogram
ordinates.

In Table 6.2 we study the size of the test. First we set θt ≡ 0 in the left half of
the table. This results in the situation of Section 6.2. The test seems to hold its size
better for larger samples sizes. Overall the test seems conservative as its rejection
frequency is below its nominal significance level α = 5% in most cases. Furthermore
the rejection frequencies seem to be closer to 5% for the larger bandwidth b = 0.8.

θt ≡ 0 θt = cos(2π100t)
d n/b 0.7 0.75 0.8 0.7 0.75 0.8

0 500 0.0542 0.0577 0.0425 0.0501 0.0474 0.0452
1000 0.0552 0.056 0.044 0.0484 0.046 0.049
2000 0.0549 0.0537 0.0501 0.0486 0.0509 0.0494

0.2 500 0.0175 0.0161 0.0179 0.0192 0.0233 0.0224
1000 0.0212 0.0182 0.0243 0.0266 0.0282 0.0298
2000 0.0246 0.0262 0.0305 0.0274 0.0331 0.0332

0.4 500 0.0397 0.0384 0.033 0.0333 0.0322 0.0298
1000 0.0483 0.0499 0.0392 0.0378 0.0343 0.0347
2000 0.062 0.0532 0.0496 0.0453 0.0391 0.0393

Table 6.2: Size results of the change-point test suggested in Section 6.2 using the
DGP (6.6). On the left we use no seasonal component, on the right we specify a
low-frequency seasonality.

In the right half of table 6.2 we use a low-frequency seasonality in Equation (6.6).
We set θt = cos(2π n/100 t/n) = cos(2π100 t). Note that the spectral density of θt
has a peak at frequency 2π n/100. Therefore θt has an effect on the periodogram
of Xt at a frequency that grows with rate n. However, as the estimators for d
and σ use only the first m = [nb] periodogram ordinates the seasonality θt has no
influence asymptotically on the estimation. By Proposition 6.3 the test should not
be influenced by the seasonality. In the table we see that this is indeed the case.
The rejection frequency is reduced in most parameter configurations.
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b 0.7 0.75 0.8
d n/τ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

0 500 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1
2000 1 1 1 1 1 1 1 1 1

0.2 500 0.8291 0.9084 0.8197 0.848 0.9141 0.8524 0.8845 0.9376 0.8753
1000 0.9718 0.9905 0.9718 0.982 0.9924 0.9795 0.9859 0.9952 0.9836
2000 0.9994 1 0.9993 0.9996 0.9999 0.9992 0.9999 1 0.9997

0.4 500 0.3051 0.3062 0.2986 0.4384 0.4539 0.4285 0.5866 0.6197 0.5719
1000 0.4729 0.4735 0.4563 0.6231 0.6544 0.6201 0.755 0.8098 0.7435
2000 0.6643 0.6782 0.6495 0.805 0.8479 0.7975 0.8505 0.9097 0.8577

W: 0.4 2000 0.4385 0.7045 0.4378 0.5122 0.7637 0.5109 0.6403 0.84 0.6262

B: 0.4 2000 0.2989 0.627 0.3045 0.3114 0.6392 0.3062 0.3106 0.6443 0.3153

Table 6.3: Power results of the test suggested in Section 6.2 using the DGP (6.6).
In the last two rows we show the power of the test of L. Wang (2008) (W) and
Betken (2016) (B). Throughout we use θt ≡ 0.

In Table 6.3 we study the power of our test under the alternative

ψt = 1[τ,1](t/n)σ

for τ ∈ {0.3, 0.5, 0.7} the break point. We find that the test has reasonable power
even for large d although the power is diminishing with increasing d. Moreover
we compare our test with the power of other testing procedures that have been
suggested in the literature before: a CUSUM-type test of L. Wang (2008) and a
Wilcoxon-type test of Betken (2016). It is interesting to see that our test performs
similar if the break point is in the middle of the sample, but better if the break is
at the beginning or end of the sample.

6.5 Breaks in mean in electricity load data

Our dataset of electricity load data1 is publicly available and contains hourly elec-
tricity load data from 24 European countries. The observation length ranges from
9 to 12 years and spans the years 2006 to 2017. Looking at the periodogram of the
series we can clearly identify a seasonality at the yearly, weekly and daily frequencies
and their harmonics. The identification is justified by Proposition 6.2. This again
confirms our model for electricity load given in Equation (6.1).

1Dataset from https://data.open-power-system-data.org/time series/.



CHAPTER 6. TESTING BREAK IN MEAN IN ELECTRICITY LOAD 77

4,000

6,000

8,000

10,000

12,000

4,000

6,000

(a) Austria (top), Hungary (bottom)

4,000

6,000

8,000

10,000

40,000

60,000

80,000

(b) Czech Republic (top), France (bottom)

Figure 6.1: Observations of electricity demand of exemplary countries over the last
12 years.

Country p-value Country p-value Country p-value

Austria 0 Bosnia 0 Belgium 0.1371
Bulgaria 0.0185 Czech Rep. 0.8089 Switzerland 0.0185
Germany 0.5949 Estonia 0.6443 Spain 0.0709
France 0.7234 Greece 0 Croatia 0
Hungary 0 Italy 0.354 Luxembourg 0.2724
Montenegro 0 Macedonia 0 Netherlands 0.056
Poland 0.0122 Portugal 0.2602 Romania 0.1485
Serbia 0.1068 Slovenia 0 Slovakia 0.0409

Table 6.4: P-values for the test statistic Λ(n, r) for different countries when the test
is applied to electricity demand. We use c = 0.15 and bandwidth b = 0.75, i.e.
m = [n0.75].

We apply the test from section 6.2 using c = 0.15 and the estimators for d and σ
as in the previous section. In Table 6.4 we show the p-values for the hourly electricity
demand series for the 24 European countries. For 8 countries we can reject the null
hypothesis of no break in mean for a significance level of α = 0.01.

In order to make these results plausible we plot observations of hourly electricy
demand in Figure 6.1. In the subplot 6.1a we have plots of Austria and Hungary for
which the null hypothesis of no break is rejected by our test. On the other hand in
the subplot 6.1b we have plots of Czech Republic and France which have p-values
of 0.8 and 0.72 respectively. From visual inspection these examples show that the
results seem reasonable.

6.6 Conclusion

In this paper we have introduced a change in mean test under long-range dependent
errors and seasonality. The test is inspired by isotonic regression. We derive its
asymptotic distribution and show that the test is consistent against a local alterna-
tive. Finite sample properties of the test are studied in a Monte Carlo study. Our



CHAPTER 6. TESTING BREAK IN MEAN IN ELECTRICITY LOAD 78

test is applied to electricity load data from European countries. We can reject the
null hypothesis of no break in the mean for the electricity load data in a various
countries.

6.7 Appendix

6.7.1 Proof of Theorems

Proof of Theorem 6.1. Following Wu et al. (2001) lines, we prove the convergences
of Λd(n, r) and Λd(n, r) separately: First

Λd(n, r) ⇒
∫ 1

0

[bφd,c(t)]
2dt. (6.7)

Let Sk,r =
∑k

i=1 Xi,r and Gn,r(t) for t ∈ [0, 1] be a continuous, piecewise linear
function, where Gn,r(k/n) = Sk,r/n for k = 1, . . . , n. For r = 0 we denote Sk and
Gn for simplicity. Analogously, let Tn be a continuous, piecewise linear function for
which Tn(t) =

∑k
i=1 Zi for t = k/n, k = 1, . . . , n. Then we define

Hn,r(t) =
n1/2−d

σ
(Gn,r(t)− X̄nt).

Furthermore, let Ln,r and Φn be continuous, piecewise linear functions for which

Ln,r(0) =Ln,r(1) = 0, Ln,r(
1

n
) = Ln,r(1−

1

n
) =

r

n1/2
,

Φn(
k

n
) =n−1

k∑
p=1

φ(
p

n
).

So we may express Hn,r in terms of these functions

Hn,r(t) =
Tn(t)− tTn(1)

σn1/2+d
+ Φn(t)− tΦn(1) +

n1/2

σ
Ln,r(t).

Finally, for a bounded function H on [0, 1] we denote by H the greatest convex
minorant of H and by H the left-hand derivative of H. This justifies our choice of
bφd,c(t) for the left-hand derivative of the GCM of Bφ

d,c.
From Robertson et al. (1988), p. 7, it is known that ψ

k,r
= g

n,r
(k/n) for k =

1, . . . , n. Hence ψ
k,r
− X̄n = σhn,r(k/n)/n1/2−d and thus

1

σ2n2d

n∑
k=1

(ψ
n,r
− X̄n)2 =

∫ 1

0

(
hn,r(t)

)2
dt.

So it is sufficient to show that∫ 1

0

(
hn,r(t)− b

φ
d,c(t)

)2

dt
p−→ 0.

This follows along the lines of the proof of Theorem 1 of Wu et al. (2001), p. 802,
where we use Lemmas 6.1-6.4. The Lemmas can be found below. After having
proved (6.7) the proof of the convergence of Λd(n, r) can be shown similarly.
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Proof of Proposition 6.1. Consider the function Jn(t) = Φ(t) + δ−1
n B0

d,c(t) for t ∈
[0, 1]. By Marshal’s Lemma we have ‖Jn −Φ‖ = Op(δ

−1
n ). Furthermore we see that

j
n
(0+) = inf

0<t<1

Jn(t)

t
= Op(1)

and similarly that j
n
(1−) = Op(1). Hence we may apply Lemma 6.3, which gives

us
‖j

n
‖2

2 = ‖φ‖2
2 +Op(δ

−1/2
n )

by the Cauchy-Schwarz inequality. Similarly we may deduce that ‖jn‖2
2 = ‖φ‖2

2 +

Op(δ
−1/2
n ). Therefore the power of the test converges to 1 if δn →∞.

Proof of Proposition 6.2. We write κn(ω) =
∑n

k=1 exp(ωki). For a fixed ω ∈ (0, 2π)
it holds that supn≥0|κn(ω)| ≤ 2/|1 − exp(ωi)| = O(1). Then we may write using
summation by parts

|wn,X(ω)− wn,S(ω)|
n1/2

=
1

n1/2

∣∣∣∣∣
n∑
k=1

f(k/n) exp(ωki)

∣∣∣∣∣
=

1

n1/2

∣∣∣∣∣
n∑
k=2

[f(k/n)− f((k − 1)/n)]κk(ω)

∣∣∣∣∣+O

(
1

n1/2

)
=O

(
1

n1/2

)
,

where we use the bounded variation of f . Furthermore we have

|wn,X(ω) + wn,S(ω)|
n1/2

= Op(n
d).

Combining both estimates yields

|In,X − In,S| = |wn,X − wn,S| |wn,X + wn,S| = Op(n
d−1/2) = op(1).

Proof of Proposition 6.3. The proof essentially follows from the proof of Theorem 3
of Wu (2004). From the proof of Theorem 6.1 we recall thatGn,r(k/n) =

∑n
i=1Xi,r/n

and Hn,r(t) = n1/2−d[Gn,r(t)−X̄nt]/σ. Similarly, we define Pn,r(t) = n1/2−d[Rn,r(t)−
Ȳnt]/σ, where Rn,r(k/n) =

∑n
i=1 Yi,r/n. By Lemma 6.3 we have∫ 1

0

[ψ
k,r

(t)− νk,r(t)]2dt

≤ ‖P n,r −Hn,r‖ [ψ
k,r

(1−)− ψ
k,r

(0+) + νk,r(1−)− νk,r(0+)].

The right term of the right-hand side stochastically bounded (see the proof of Lemma
6.4). However, for the left term we have by Marshall’s lemma,

‖P n,r −Hn,r‖ ≤ ‖Pn,r −Hn,r‖ = O

(
sup

1≤k≤n

∣∣∣∣∣
k∑
i=1

θi

∣∣∣∣∣ /n1/2+d

)
= o(1).

Therefore ‖ψ
k,r
− νk,r‖2

2 = op(1) and we can show the same for ‖ψk,r − νk,r‖2
2 using

similar techniques.
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6.7.2 Lemmas

The following lemmas 6.1-6.3 are from Wu et al. (2001). Here, G and H are bounded
functions on [0, 1] and ‖G‖ = sup0≤t≤1|G(t)|.

Lemma 6.1. If G is lower semi-continuous at 0 (resp. 1), then G(0) = G(0) (resp.
G(1) = G(1)).

Lemma 6.2. If B ⊂ [0, 1], |G(t) − H(t)| ≤ ε for all t ∈ B and |G(t) − H(t)| ≤ ε
for all t ∈ [0, 1] \B, then ‖G−H‖ ≤ ε.

Lemma 6.3. If

G(0) = H(0), G(1) = H(1)

(−∞ < g(0+) ≤ g(1−) <∞,−∞ < h(0+) ≤ h(1−) <∞),

then ∫ 1

0

(
h− g

)2
dt ≤ ‖H −G‖

(
g(1−)− g(0+) + h(1−)− h(0+)

)
.

Lemma 6.4. For any c > 0, −∞ < bφd,c(0+) ≤ bφd,c(1−) < ∞ with probability 1.
Furthermore, hn,r(0+) and hn,r(1−) are stochastically bounded.

Proof. First, it is clear that for a fractional Brownian bridge Bd

0 ≥ bd,r(0+) = inf
0<t<1

Bd(t) + Φ(t) + c

t
∧ 0 > −∞.

Analogously, one shows the result for bd,r(1−) <∞. Next, for the stochastic bound-
edness we write

Pr(hn,r(0+) < −λ) ≤Pr

(
n1/2−d max

k≤δn

Sn,r
σk

> λ

)
≤Pr

(
max
k≤δn

∣∣∣∣ Sk
σ(δn)1/2+d

∣∣∣∣ > c

δ1/2+d

)
+ Pr

(
max
δn≤k≤n

∣∣∣∣ Sk
σn1/2+d

∣∣∣∣ > λδ1/2+d

)
,

where δ = 1/
√
λ. But maxk≤n Sk/n

1/2+d is stochastically bounded, so Pr(hn,r(0+) <
−λ) → 0 as first n → ∞ and then λ → ∞. The same result holds for the right
endpoint hn,r(1−) by a similar calculation.
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