
A Spatio-Temporal Bayesian Network

Classifier for Understanding Visual Field

Deterioration

Allan Tucker 1, Veronica Vinciotti, Xiaohui Liu,

Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

David Garway-Heath

Glaucoma Unit, Moorfields Eye Hospital, London, UK

Abstract

Progressive loss of the field of vision is characteristic of a number of eye diseases
such as glaucoma which is a leading cause of irreversible blindness in the world. Re-
cently, there has been an explosion in the amount of data being stored on patients
who suffer from visual deterioration including field test data, retinal image data and
patient demographic data. However, there has been relatively little work in mod-
elling the spatial and temporal relationships common to such data. In this paper
we introduce a novel method for classifying Visual Field (VF) data that explicitly
models these spatial and temporal relationships. We carry out an analysis of this
method and compare it to a number of classifiers from the machine learning and
statistical communities. Results are very encouraging showing that our classifiers
are comparable to existing statistical models whilst also facilitating the understand-
ing of underlying spatial and temporal relationships within VF data. The results
reveal the potential of using such models for knowledge discovery within ophthalmic
databases, such as networks reflecting the ‘nasal step’, an early indicator of the on-
set of glaucoma. The results outlined in this paper pave the way for a substantial
program of study involving many other spatial and temporal datasets, including
retinal image and clinical data.
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1 Introduction

Progressive loss of the field of vision is characteristic of a number of eye dis-
eases such as glaucoma, a leading cause of irreversible blindness in the world.
Recently, there has been an explosion in the amount of data being stored
on patients who suffer from visual deterioration, including visual field (VF)
test, retinal image and patient demographic data. The aim now is to extract
as much information as possible from these data in order to address funda-
mental questions still open within the glaucoma community. For example, the
diagnosis of glaucoma made by clinicians would be highly improved by the
identification of the various causes of VF loss as well as the detection of pat-
terns of VF loss that match with glaucomatous patterns. It would also be very
beneficial to be able to integrate different types of clinical data (such as intra-
cocular pressure and visual field data) for both the diagnosis and detection of
the disease progression. Furthermore, since the visual field loss is characterised
by a slow progression, early detection of glaucoma can be invaluable as early
intervention can slow VF deterioration. Statistical and classification models
that address all of these issues would therefore be extremely helpful to the
glaucoma community.

There has been very little modelling of spatial and temporal relationships
which are characteristic of VF data. Swift and Liu [26] have looked into learn-
ing statistical time series models of VF data. Other approaches that explore
the temporal aspect of VF data include trend analysis [5,14], event analy-
sis [14] and state space models [1]. Ibanez and Simo [17] have investigated
spatio-temporal statistical models with the aim of forecasting visual field de-
terioration, but to date have only looked at visual fields of normal eyes.

Various models have been developed for classifying VF data. Hothorn and
Lausen [16] make use of the retinal image data to classify glaucoma with
tree classifiers. Goldbaum et al. [8] document a comprehensive comparison of
machine learning classifier systems for the classification of glaucomatous visual
fields. Many of these classifiers are ‘black box’ in nature and therefore do not
give much insight into the behaviour of the VF. Much research in glaucoma
has involved exploring the distribution of point-by-point light sensitivity, at
a single point in time, in normal [13,19] and glaucomatous populations [30].
However, much remains unknown about the behaviour of the visual field test,
such as the light sensitivity relationship between adjacent and distant visual
field test points, the relationship between light sensitivity and other ocular
parameters (such as optic nerve appearance and intraocular pressure level),
and how stable and deteriorating visual fields behave over time.

It is our intention to make use of the vast amounts of data available in order to
build models for classification that fully exploit the spatio-temporal nature of
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these data whilst avoiding the inherent problem of black box paradigms. This
has led us to investigate the use of Bayesian networks which are transparent in
the way that they model data. Here we extend the Bayesian network classifier
to explicitly handle the spatial and temporal relationships found within visual
field data.

The paper is broken down into the following sections. In Section 2, we describe
some relevant background in classification methods. In Section 3, we describe
existing Bayesian network classifiers as well as the extension of the Bayesian
network to incorporate temporal links. In Section 4, we describe our Spatio-
Temporal Bayesian network Classifier (STC), which is a combination of the
existing Bayesian classifiers and the temporal Bayesian networks in order to
model and classify data with spatial and temporal relationships. This section
includes an outline of the architecture of the model, the learning algorithm
and the spatial operators used. Section 5 includes a description of the parame-
ters and the datasets used in the experiments, one dataset being non-temporal
and the other being a longitudinal time series. In Section 6, the results of the
experiments are documented, firstly just applying the non-temporal classifiers
on the non-temporal data, and secondly applying our STC to the temporal
dataset. Furthermore, we compare our method with two standard statistical
classifiers, linear regression and k nearest neighbour, and illustrate the bene-
fits that spatio-temporal Bayesian networks offer over these models. Results
include ROC analysis, network structure analysis and inference analysis. Sec-
tion 7 discusses the implications of our results, whilst in Section 8 conclusions
are made and future work is outlined.

2 Overview of Classifcation Problems

In this paper, we look at classification models to predict whether a certain
patient has glaucoma or not, given measures of its visual field as well as other
variables, like age, gender and intraocular pressure. Denote with Y = (X,C)
the vector of variables for this problem, where X is the vector of attributes,
and C = {0, 1} the corresponding class (with 0=normal, 1=glaucoma). Sta-
tistical classifiers provide an estimate of p(c|x), the probability that a patient
with observed measurement vector x belongs to class c. Linear and logistic
regression, linear and quadratic discriminant analysis, k-nearest neighbours
and graphical models are amongst the most popular statistical classifiers.

The estimated p(c|x) provided by one of these models, either directly or indi-
rectly via Bayes theorem, is compared to a threshold t to predict the class of
x. This threshold is usually chosen to minimise the expected misclassification
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loss [10], resulting in the classification rule: classify x to class 1 if

p(1|x) > t =
k0

k0 + k1

, (1)

and otherwise to class 0, where ki denotes the cost of misclassifying an object
from class i.

When the misclassification costs are equal (k0 = k1), the resulting rule will
classify an object to the class with the highest predicted probability. Although
this is the default option in many implementations, in real applications the
misclassification costs are seldomly the same. In credit scoring applications,
for example, it is more costly for the bank to classify a bad customer as a
good one than vice versa [29]; in glaucoma applications, like the one that
we are considering in this paper, the cost of misclassifying a normal eye as
glaucomatous is usually considered much higher than the reverse, since the
disease has a low frequency and a slow progression [8]. Hand and Vinciotti
[12] discuss the importance of taking the relative misclassification costs into
consideration when building and assessing the model. After all, we want the
classifier to perform well for the particular choice of costs that we make.

In order to assess the performance of a classifier and to compare different clas-
sifiers, it is common practice to use Receiver Operator Characteristic (ROC)
curves [10]. An ROC curve allows one to view graphically the performance of
a classifier by plotting the sensitivity, which in our case is the proportion of
glaucomatous eyes correctly classified as glaucomatous, versus (1-specificity),
the proportion of normal eyes misclassified as glaucomatous, as the threshold
t in equation 1 assumes increasing values between 0 and 1. Different points
in the curve will correspond to different values of the threshold, i.e. differ-
ent values of the misclassification costs. The perfect classifier would have an
ROC curve that follows the top-left corner of the unit square, whereas the
worst situation would be a classifier whose curve follows the diagonal. Real
applications will usually show curves between these two extremes.

A global measure of the classifier performance, often used in classification
problems, is the Area Under the ROC Curve (AUC). This will be some value
between 0.5, associated to the diagonal of the square, and 1, corresponding
to the curve that follows the top-left corner. Such a global measure of perfor-
mance will not be very useful in the situation where curves relative to different
classifiers will cross at multiple points, which is actually very common in real-
life applications. If curves cross at various points, then one classifier is better
than the others on a certain range of values for the threshold, but worse on
other values. In situations like this, it is more appropriate to compare the
classifiers for the values of the threshold that one is interested in. A common
measure of classifier performance relative to a certain threshold is given by
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the misclassification cost

C =
k0(# misc pts from class 0) + k1(# misc pts from class 1)

total # pts
. (2)

In this paper we will compare various statistical classifiers using both the AUC
and the misclassification cost measures, in order to gain a better insight into
the relative performance of the classifiers.

3 Bayesian Networks

Bayesian Networks (BNs) are probabilistic models that can be used to combine
expert knowledge and data. They facilitate the discovery of complex relation-
ships in large datasets and enable non-statisticians to query resultant models.
For this reason they are particularly useful in the analysis of VF data when
trying to understand underlying relationships between VF points and other
clinical variables.

3.1 The Basics

A BN consists of a directed acyclic graph, made up of links between nodes that
represent variables in the domain. The links are directed from a parent node
to a child node, and with each node there is an associated set of conditional
probability distributions. A Bayesian network thus consists of the following: a
set of N nodes, {Y1 . . . , YN}, representing the N variables in the domain and
directed links between the nodes. Associated with each node Yi with parents
πi, there is a probability table, p(Yi|πi). The set of these probabilities for all
nodes Yis provides an efficient factorization of the joint probability p(Y ) in
terms of dependencies between variables [25].

The process of learning a BN from data is made up of two distinct phases. First
of all, a network has to be selected amongst the space of all possible models.
Then, the probabilities p(Yi|πi) have to be estimated. Learning the structure
of a BN from data [2] is a non-trivial problem due to the large number of
candidate network structures. As a result there has been substantial research
in developing efficient algorithms within the optimisation communities. Most
methods involve scoring candidate network structures and one of the most
common metrics is the log-likelihood which is calculated by

log p(D|bnD) =
N∏

i=1

qi∏

j=1

(ri − 1)!

(Fij + ri − 1)!

ri∏

k=1

Fijk!, (3)
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where N is the number of variables in the domain, ri denotes the number of
states that a node Yi can take, qi denotes the number of unique instantiations
of the parents of node Yi, Fijk is the number of cases in the database D, where
Yi takes on its kth unique instantiation and the parent set of i takes on its jth
unique instantiation, and Fij =

∑r
k=1 Fijk.

3.2 Bayesian Networks for Classification

Bayesian network classifiers have recently shown excellent properties [6]. Be-
cause the discovered relationships in the classifiers are explicit, it means that
the models can be analysed to understand how classification decisions are
made. This is an extremely useful property when trying to understand classi-
fication decisions in medical data such as glaucomatous VFs.

There are a number of Bayesian network classifiers, the most common being
the näıve Bayes classifier. This architecture assumes that every feature in the
classifier is independent given the class, i.e. p(x|c) =

∏N−1
i=1 p(xi|c). Despite the

fact that the independence assumption in the näıve Bayes classifier is almost
always incorrect in real applications, many studies have shown a very good
performance of the model, even in comparison with much more sophisticated
classifiers(for example[4,6,11,21,22]). These results are of particular interest
especially considering the many advantages of the näıve Bayes classifier in
practical applications: it is very simple, very efficient and very easy to interpret
and implement. Hand and Yu [11] give some mathematical justifications of
why such a simple and unrealistic model might perform so well on future
observations: simple models, like this, have a lower variance than more complex
models. Hence, despite having a larger bias, they might perform better on
observations outside the training data.

Other authors have suggested extensions to this classifier that relax the strong
assumption of independence. The Tree Augmented Network (TAN) is one of
these [6]: in addition to the näıve Bayes structure, this model learns a tree
structure amongst the features. Another possible extension to the näıve model
is to learn a standard Bayesian network, where the class variable is simply
included as one of the nodes.

3.3 Temporal Bayesian Networks

A typical feature of visual field data is their temporal aspect: patients attend
the clinic regularly to take VF tests and at each patient visit, a classification
is made to decide whether an eye has developed glaucoma or, if glaucoma
is already present, whether it has worsened (progressed). For this reason, we

6



have also looked at classifiers that take the time aspect into consideration. In
particular, we looked at Temporal Bayesian Networks (TBNs).

Fig. 1. A Typical TBN with 2 Time Slices. Note the links within one time slice and
those spanning from one to the next.

A TBN is a Bayesian network where the N nodes represent variables at dif-
fering time slices. Therefore links occur between nodes over time and within
the same time lag. Figure 1 shows an example of a TBN where each node
represents a variable at a certain time slice and each link represents a con-
ditional dependency between two nodes. Given some evidence about a set of
variables at time t, we can infer the most probable explanations for the current
observations.

Inference in TBNs is very similar to standard inference in static BNs [3]. In
this paper, we use a form of stochastic simulation [15] because of its speed and
its intuitive appeal when explaining to clinicians how the prior distributions
are calculated. Previously, we have developed methods for learning different
specialist TBN structures. In [27] we developed methods for learning TBNs
with large time lags and in [28] we developed operators for learning TBNs
from spatio-temporal data which we call spatio-temporal Bayesian networks.

To our knowledge, Bayesian network classifiers have not been extended to
classify multivariate time series data using TBN models or to classify spatio-
temporal data, characteristic of many VF datasets. Within this paper we
develop a spatio-temporal Bayesian network model to classify VF data. The
method is fully described in the next section.

7



4 The Spatio-Temporal Bayesian Network Classifier

Previously we have investigated learning temporal Bayesian networks from VF
data in order to explore the VF relationships discovered within the network
structure. Due to the spatial as well as the temporal nature of VF data we
developed spatial operators to efficiently learn spatial-temporal network struc-
tures [28]. In this paper, we employ these operators to learn Spatio-Temporal
Bayesian network Classifiers (STC) and compare them to standard statistical
classifiers.

The STC contains relationships that are both temporal and non-temporal
between different variables. When learning these relationships it is assumed
that there is a spatial relationship between nodes in the network based upon
the cardinal coordinate system. Therefore, nodes that are spatially close to
other nodes are deemed more likely to be dependent upon one another. The
class node has no spatial relationships but does have temporal properties as we
are trying to classify the set of variables at each time point. Figure 2 illustrates
the main features of a STC, where C represents the class node and t represents
the time slice. Note that the spatial relationships can extend to more than first
order cardinal neighbours. Note also that the number and direction of links
between the class node and the feature nodes may vary.

Fig. 2. The Spatio-Temporal Bayesian Network Classifier.

4.1 The Algorithm

In our learning algorithm, candidate structures of a network, bn, given a
dataset, D, are scored using the metric in equation 3. In order to increase effi-
ciency of our algorithms, we have developed an evolutionary approach without
the necessity of storing a population of candidate solutions. Rather, we con-
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sider each point in the spatial dataset to be an individual within the population
of points. Therefore, the population, itself, is the candidate solution. We have
looked at a similar method before for grouping algorithms [24]. The algorithm
also makes use of a simulated annealing type of selection criteria [20], where
good operations are always carried forward, but sometimes less good ones are
also accepted dependent upon a temperature parameter. A form of elitism [9]
is employed to ensure that the final structure is the best discovered. This is
to prevent the simulated annealing process from moving away from a better
solution when the temperature is still high. We formally define the algorithm
below where maxfc is the maximum number of calls to the scoring function,
c is the ‘cooling parameter’, t0 is the initial temperature, b is the branching
factor of a network, and R(a, b) is a uniform random number generator with
limits, a and b.

Input t0, b, maxfc, D
fc = 0, t = t0
Initialise bn to a STC with no links

result = bn
While fc ≤ maxfc do

score = L(bn)
For each operator do

Apply operator to bn
If bn is valid given b Then newscore = L(bn) fc = fc + 1

dscore=newscore-oldscore
If newscore > score Then

result = bn Else

If R(0, 1) < e
dscore

t Then

Undo the operator

End If

End If

End For

t = t × c
End While

Output result

4.2 Operators

We now introduce three spatial and three non-spatial operators. All involve
manipulating links within the STC. Note that a random link can be either
temporal or non-temporal. For the scope of this paper, we only look at first
order temporal links.
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4.2.1 Non-Spatial Operators

We have chosen three non-spatial operators as these represent common op-
erators used in optimisation techniques such as hill climbing and simulated
annealing.

• Add - A link with random parent and child is added to the network.
• Take - Randomly remove a single existing link.
• Mutate - Randomly change the parent of an existing link.

4.2.2 Spatial Operators

For the scope of this paper, we assume that the points in a spatial dataset are
located according to cartesian coordinates. Therefore, each point in a dataset
with coordinates (x,y) has a first order neighbourhood which includes all nodes
with coordinates (i,j) for i = x± 1 and j = y ± 1. The spatial operators that
we have developed exploit the cartesian spatial nature of a dataset.

Fig. 3. The Spatial Operators: (a) Add a Link in the 1st Order Neighbourhood (b)
Mutate a Parent to Within its 1st Order Neighbourhood (c) Spatial Crossover

Figure 3 shows examples of parent coordinates, relative to the child node,
when applying the operators. Unfilled circles represent child nodes, filled circles
represent parents of the child.

• Spatial Add (Figure 3a) - Add a link with random child and a parent that
is one of the child’s first order neighbours.

• Spatial Mutate (Figure 3b) - Randomly change the parent of an existing
link by setting it to the first order neighbour of its previous position.
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• Spatial Crossover (Figure 3c) - Randomly swap the relative positions of two
nodes parents.

5 Experimental Set-up

In this paper, we introduce an extension of Bayesian network classifiers which
handles spatio-temporal data and show how the resulting models can be anal-
ysed in order to discover new knowledge about visual field deterioration. We
compare our method with different classifiers from the statistic and machine
learning communities, including the family of Bayesian network classifiers, lin-
ear regression and k-nearest neighbour method, in the context of glaucoma de-
tection. We apply these methods to two visual field datasets which we describe
in this section, followed by a description of how the data were preprocessed
and how the methods were parameterised.

5.1 The Datasets

The Visual Field (VF) test assesses the sensitivity of the retina to light. It is
typically measured by automated perimetry, a technique in which the subject
views a dim background as brighter spots of light are shone onto the back-
ground at various locations in a regular grid pattern. The brightness at which
the subject sees the spots of light is related to the retinal sensitivity. See Fig-
ure 4 for an example of two VF tests, one from a healthy eye and one from a
patient suffering from glaucoma.

Fig. 4. A Typical VF Test from a Healthy Eye and a Glaucomatous Eye.

All VF testing was performed with the Humphrey Field Analyzer model and
the 24-2 full threshold program [32] . We investigate two separate datasets:

(1) Subjects included 78 with established early glaucomatous VF loss and
102 normal volunteers known not to be sufferers. One visual field per
subject was used for analysis. Early glaucomatous VF was defined as
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an AGIS score between 1 and 5, on three consecutive reproducible and
reliable Humphrey 24-2 strategy visual fields, with at least one location
consistently below the threshold for normality [32]. Normal subjects had
VF tests scoring ‘0’ in the AGIS classification.

(2) The visual fields of 24 subjects attending the Ocular Hypertension Clinic
at Moorfield’s Eye Hospital were examined at 4-monthly intervals [18].
All subjects initially had normal visual fields and developed reproducible
glaucomatous VF damage in a reliable VF during the course of follow-up
(‘conversion’). Conversion was defined as the development of an AGIS
score greater than or equal to 1 from an initial score of 0, on three con-
secutive reproducible and reliable Humphrey 24-2 strategy visual fields,
with at least one location consistently below the threshold for normality.
If a patient developed a visual field defect, then the test was repeated
within 1 month, and if the same defect was then reproduced on a reli-
able second field, then a third test was performed 3-4 months after this.
Conversion is confirmed if the field defect is present on the three consecu-
tive reliable tests. VF were not re-classified following conversion. For this
data, the average number of field tests in each patient’s series was 24.08,
the maximum was 45, and the minimum was 1.

Both datasets are slightly imbalanced (the number of glaucomatous VF is
not equal to the number of non-glaucomatous VFs) and include some other
variables such as gender, age, and intraocular pressure. For the scope of this
paper, we only look at the right eye of patients. Table 1 provides a summary
of each dataset.

***INSERT TABLE 1 ABOUT HERE***

5.2 Data Preprocessing and Parameterisation

For the Bayesian network (BN) models, all continuous data are discretised into
four states using a frequency-based method where bin sizes are determined
such that there are equal numbers of each state per variable in the dataset.
Discretisation was performed on a point-wise basis.

For our experiments, the following parameters were used. For the BN learning,
we set maxfc = 50000, t0 = 5 and c = 0.9999, with these parameters defined
as in Section 4.1. These were chosen as they were found to be the most efficient
based upon previous empirical studies. We have found that the individual
improvements in score during the early iterations of our algorithm are a good
indication for the value of t0. The maximum number of parents, b, was varied
between 1 and 3 depending upon the experiments, and t0 and c were set
so as to finish on a suitably cold temperature to ensure a stable solution.
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Inference involved setting the number of stochastic simulations to 10000 so
as to compromise the time taken to perform inference with generating an
accurate prior distribution.

6 Results

The following results are split into two main sections for each dataset. Firstly,
the non-temporal visual field (VF) data are analysed with respect to classifi-
cation and structural analysis. This involves a comparison of the efficiency of
different classifiers in identifying glaucomatous VFs, followed by an analysis
of the Bayesian Network (BN) classifier structure. Secondly, a comparison is
carried out of the classifiers when applied to the multivariate time series VF
data. This includes the results of our spatio-temporal classifier (STC) and an
analysis of the BN and STC structures.

6.1 Non-Temporal Classification and Analysis

6.1.1 Comparison of Classifiers

Figure 5 shows the ROC curves of the Bayesian network classifiers when 10-
fold cross-validation is applied to each classifier on the non-temporal VF data.
Also included is the AUC for each method. It can be seen that of the Bayesian
classifiers the best curve is generated when using the Bayesian network with
only one parent allowed (AUC is 0.94). The next best is näıve Bayes classifier
with an AUC of 0.9 with Tree-Augmented Network (TAN) and the Bayesian
network with two parents performing worst. This could well be due to overfit-
ting or lack of data as these models will have a higher number of parameters.

Figure 6 shows a comparison between the best Bayesian classifier found with
linear regression and k-nearest neighbour (k-nn), where k was chosen using
10-fold cross validation. The BN with one parent performs generally better
than k-nn (which has an AUC of 0.91) and is comparable to linear regression
(both have an AUC of 0.94).

6.1.2 Network Analysis

One of the advantages of the BN classifier over the näıve Bayes classifier,
k-nn and linear regression is the transparency of the model. That is, all of
the relationships are made explicit in the BN structure. Figure 7 shows one
such structure with respect to the spatial arrangement of the VF. This has
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been learnt from the non-temporal VF dataset. It is obvious that many of the
dependencies between VF points are spatial in nature.

Fig. 7. Structure of BN1 on static data

We now make use of expert knowledge concerning the anatomy of the eye in
order to assess the quality of the BN structure. Figure 8 shows the visual field
of the right eye with the angle of corresponding nerve fibre bundle entry to the
optic-nerve-head of each VF point [7], the optic nerve being where information
is carried from the retina to the visual cortex .

Fig. 8. Expert Knowledge: The Angle Between Each Visual Field Point and the
Optic-Nerve-Head

It is expected that VF points with similar angles should be more closely related
and so we calculate the mean angle difference between the parent of a link
and the child of a link. We now introduce a metric to score the mean optic-
nerve-head angle distance in equation 4.

m∑

i=1

1

m
|α(par(i)) − α(chd(i))|, (4)
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where m is the number of links in a network, α(i) returns the optic-nerve-head
angle of VF point i, par(i) return the VF point of the parent of link i, and
chd(i) returns the VF point of the child of link i.

For the BN with a maximum of one parent it was found to be 15.28 degrees.
This is relatively low as the maximum difference between two angles will be
180 degrees.

We are interested in which VF points are most predictive in classifying the
VF as glaucomatous or not. Marked in ‘x’s on Figure 9 are the VF points that
are discovered with direct links from the classifier node. Learning these links
can be thought of as a form of feature selection for classifying the VF. This is
similar, for example, to a selective näıve Bayes classifier [23] which is used to
find relevant features. Interestingly, these VF points reflect a common feature
of the early stages of glaucoma called the ‘nasal step’ where particular VF
points around the nasal and superior peripheral areas indicate the early onset
of glaucoma.

The discovered features also include arcuate paracentral defects which was
unexpected. Some of these x’s are in the temporal visual field (temporal in
the physiological sense), which are not conventionally thought to be important
points for classification. This will be followed up in further research and may
show the potential of Bayesian network models in learning links that can teach
clinicians interesting/informative patterns in clinical data.

Fig. 9. Features discovered as Direct Descendants of Class Node for BN1 on static
data

It is worth pointing out that there is the possibility that our models are learn-
ing links that reflect that classification process (in this case, AGIS). The AGIS
classification requires clusters of abnormal points. Because of the distribution
of VF test points in nerve fibre bundles, clusters are more likely in some re-
gions of the VF than others. The models may, therefore, be more likely to find
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‘influential’ points in some regions of the field than others. This, of course,
does not prevent our models finding other ‘unrecognised’ influential points.
The finding of temporal and paracentral influential points may indicate this.

In this section we have shown how Bayesian network classifiers have the po-
tential to perform as well as other statistical classifiers in determining glau-
comatous VFs, but also offer a way to help understand the nature of such
conditions through the analysis of the network structures. In the next section
we extend the BN classifier paradigm to model spatial and temporal VF data.

6.1.3 Comparison of Bayesian Inference with Clinicians’ Decisions

Before we train the Bayesian classifiers on the temporal data, we investigate
how the non-temporal classifiers, trained on the non-temporal data, perform
on unseen time series data and compare how they perform to the classifica-
tions made by clinicians. We have done this because it will give us a more
accurate idea of how the classifiers perform when tested on new data from
completely different distributions. Figure 10 shows some typical results from
the experiments: it plots the probability of a VF being glaucomatous accord-
ing to the BN classifier with a maximum of one parent along with the point of
conversion according to clinicians (dotted line). Note that clinicians did not
reclassify the field after conversion has been determined.

Fig. 10. p(1|x) versus true class for representative set of time series

Many cases occurred within the unseen data where the probability of glaucoma
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according to the BN classifier rapidly increases from almost zero to one several
time points before the clinician decides the VF has converted to glaucomatous
(for example see Figure 10a). This may well be due to the methods employed
by clinicians whereby a VF is not considered to be glaucomatous until three
VF tests in a row have reached the threshold for classification of glaucoma.
Another common feature was where the probability remained low for a while
and then began to fluctuate from one time point to the next before settling
on a high probability of glaucomatous, shortly before the clinicians classifies
the VF as converted (for example, see Figure 10b). This may be useful in that
the fluctuation may be an early indicator that the VF is about to convert as
it tends to begin some time before the clinician decides. Another interesting
result that was observed occasionally was where the BN classifier classified
the VF as glaucomatous from the outset (Figure 10c). This could be due to
an error or bias in the classifier (such as overfitting or lack of data) or the
fact that the classifier has discovered a feature not used by the clinicians and
has in fact correctly identified the early onset of glaucoma. Examples were
also noticed during the experiments, where the classifications are less clear
cut. For example, Figure 10d implies that the BN classifier has really failed
to successfully classify the VF before or after conversion, though it must be
stressed that these were uncommon (as the ROC results in the previous section
indicate). It should also be reiterated that clinicians did not reclassify a VF
after it was considered to convert so the classifier may not be performing as
badly as it seems (the fluctuations may reflect genuine variance in the VF
datasets). We will be investigating these cases in the future.

6.2 Analysis of STC for Temporal Classification

6.2.1 Comparison of Classifiers

We now explore how the different classifiers perform on temporal VF data.
This includes the Spatio-Temporal Bayesian Network Classifier (STC) which
makes use of our spatio-temporal learning algorithms, described in Section 4.
Figure 11 shows the ROC curves for the different Bayesian classifiers including
the STC (with a maximum of 2 and 3 parents). It can be seen that the worst
performers are näıve Bayes and TAN on this dataset (with respective AUCs
of 0.77 and 0.79). This could be due to there being more data than on the
static dataset and so the more complex models are less prone to suffering from
over-parameterisation. The BN classifier with 2 parents scores an AUC of 0.81.
However, the STCs with 2 and 3 parents do better with AUCs of 0.84 and
0.85, respectively.

The misclassification versus cost chart in Figure 12 shows how the classifiers
perform when we assign different costs to the misclassifications. This corre-

18



1-specificity

se
n

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Naive (0.77)
TAN (0.79)
BN2 (0.81)
STC2 (0.84)
STC3 (0.88)

Fig. 11. ROC curves of Bayesian network classifiers on temporal VF Data

cost

m
is

cl
a

ss
ifi

ca
tio

n

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

Naive
TAN
BN2
STC2
STC3

Fig. 12. Misclassification cost (equation 2)versus k0 for Bayesian network classifiers
on temporal VF Data

19



sponds to considering different values for the threshold t in equation 1. After
scaling the costs k0 and k1 such that k0 + k1 = 1, it follows that t = k0, the
cost of misclassifying a normal eye as glaucomatous. This is reported on the
horizontal axis. As such, higher values will tend to correspond to higher speci-
ficity. On the vertical axis the misclassification cost of Equation 2 is plotted.
The plot shows that Näıve and TAN perform worse than the other classifiers
for all values of the threshold. This is a much stronger result than the one
already suggested by the AUC measure, as it implies that the models are not
recommended for any value of the threshold that might be chosen. The BN
classifier with 2 parents performs worse than the temporal models for an in-
termediate range of the cost, but is competitive with STC2 and STC3 for low
and high values of specificity. The latter was not that evident from the ROC
curves. It should be pointed out that results may be more precise than they
appear because of inherent imprecisions of clinical classification. Firstly, they
require a repeat of 3 abnormal fields. Fields will therefore be glaucomatous
earlier in the series. Secondly, fields are not re-classified following conversion
(so a field may be labelled as converted but, in reality, may have returned to
normal. Our classifiers will pick this up and will suffer as a false negative.

To have a fairer comparison with the STC model, we decided to build the
linear regression and k-nn models on the same training data used for STC. The
columns of this database are now the VF variables and intraocular pressure
at time t−1 and t, as well as age and gender. The value of k was chosen using
10-fold cross validation. Figure 13 shows the ROC curve of the STC with a
maximum of three parents against linear regression and k-nn, both using the
time-shifted variables. It seems that linear regression does somewhat better
(AUC = 0.93) than STC and k-nn, both of which have similar ROC curves, the
AUCs being 0.89 and 0.88, respectively. When we look at the misclassification
versus the cost in Figure 14, we can see that whilst linear regression does
considerably better when the cost is not extreme (between 0.4 and 0.6), the
performances of the three methods are relatively similar beyond these costs,
at either extreme.

Generally, because glaucoma prevalence is low and the condition is usually
only slowly progressive, false positive diagnoses are regarded as more costly.
Cost includes harm to the patient through a false diagnosis as well as the
actual cost of treatment. This means that the right-hand side of the plots in
Figures 12 and 14 is the most interesting. However, in reality, costs depend
also on the individual patient. For instance, in a young patient with advanced
disease, the cost of failing to identify progression is greater than in an elderly
patient with early disease.
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Fig. 15. Network Structures on temporal VF Data using BN2 (left) and STC3
(right). The Grey Lines Represent First Order Temporal Links

6.2.2 Network Analysis

Figure 15 shows the discovered network structures for the BN with a maxi-
mum of 2 parents and the STC with a maximum of 3 parents, learnt from the
temporal dataset. It is evident primarily that both networks have a distinct
spatial nature as would be expected. However, the blind spot, which should
be independent of other VF variables, has been linked to other variables. This
could be due to noise in the data or due to spurious correlations between vari-
ables. This may be made even worse when temporal correlations are allowed.
Indeed, the STC does appear to indicate more relationships associated with
the blind spot than the non temporal BN (likely due to spurious correlation),
though enlargement of the blind spot (peripapillary atrophy) is a feature of
glaucoma and may show up.

Looking at the mean optic-nerve-head angle metric that was introduced in
equation 4 in Section 6.1.2 for comparing the networks to expected charac-
teristics of the eye, we see a relatively low mean angle difference again, 24.71
degrees for BN2 and 24.74 degrees for STC3. This shows that our networks
are reinforced by anatomical knowledge.

The ‘x’s mark the direct links to the class node. Notice that these are far fewer
than in the BN discovered from the non-temporal data (Figure 9). This is likely
to be due to the IOP variable that was also included in the temporal data and
has been found to be a strong indicator of glaucoma. It was discovered to be
linked to the class node in all networks in our experiments. Also, many fields in
the temporal series are ‘nearly’ glaucomatous (but AGIS classified as normal)
which may affect the number of direct links to the class node. Links that are
grey are temporal. However, many of the temporal links that were discovered
were autoregressive links (links from one variable to itself at the subsequent
time point) and as such they are not visible in the figures. The improvement
in classification when using the STC over the BN, which is evident in the
ROC curves and misclassification costs of figures 11 and 12 are likely to be
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due to its ability to take into account these temporal relationships in order to
classify VFs. In the next section we discuss how this is achieved and possible
implications.

7 Discussion

The use of spatio-temporal Bayesian network classifiers (STCs) have allowed
us to gain insight into the evolution of glaucomatous damage, by modelling
the spatio-temporal nature of the data. The model brings many benefits to
the glaucoma community. First of all, it allows one to easily combine different
types of data, for example visual field, intraocular pressure (IOP) and optic-
nerve-head structures. These measurements are rarely useful when taken in
isolation, so a model that combines them into a common framework whilst
making explicit the relationships between them is highly useful to clinicians.

Furthermore, the STC allows one to incorporate the temporal aspect of the
data in the model. This will help researchers model the disease process and
learn about its pathogenesis, which could result in more accurate and precise
estimates of the rate of progression and in the identification of risk factors
for progression (indeed, the STCs will identify some of these themselves) and
responses to therapeutic intervention. What is more, temporal models are
capable of modelling more complex interactions.

The obvious improvement in the ROC curves when including the temporal
links is likely to be due to the ability of the model to capture the changes
within VF points. For example, many links were found such as those illustrated
in Figure 16 whereby an autoregressive temporal link was found between a VF
variable at time t− 1 and at time t. VF at time t was also the child of a non-
temporal link to the class node. This means that the interaction between VF

Fig. 16. Temporal Relationships modelling change in VF Values to Improve Classi-
fication

at time t − 1 and VF at time t can affect the probability of the class node
(Glauc) due to the ‘explaining away effect’ [31]. This is where the observation
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of one parent of a node (here the VF point at time t-1) will affect the posterior
distribution of another parent of that node (here the class node). Obviously,
this type of interaction cannot be modelled by non-temporal classifiers.

We have begun experiments on some incoming data, which include more clin-
ical variables such as IOP and medication. We have found interesting results
whereby the glaucoma converter class node is regulated by IOP which is in
turn regulated by whether a patient receives medication. The medication node,
itself is regulated by the glaucoma node and so a cycle exists over time (see
Figure 17). If someone exhibits high IOP, it is likely to be related to the risk of

Fig. 17. A Temporal Cycle Whereby IOP Regulates Glaucoma Which in Turn Reg-
ulates Medication

converting to glaucomatous VF loss. If someone suffers from glaucoma, they
are likely to be given medication (e.g. to lower IOP), resulting in their IOP
dropping by their next visit. This means that in many cases a low IOP is
observed despite the onset of glaucoma. The temporal nature of this can eas-
ily be modelled by temporal BNs. However, such temporal cycles cannot be
modelled with static models.

As well as allowing one to combine different types of data and to include
temporal links, Bayesian networks have the advantage of explicitly modelling
the spatial relationships between the visual field and the clinical variables.
Links have been discovered within our networks that were not previously rec-
ognized clinically and could lead to the discovery of new characteristics of VF
deterioration. Indeed, some known characteristics have been identified in our
networks, as well as interesting new ones which we intend to follow up. Fur-
thermore, by querying the network or changing the prior probabilities one can
observe the effect of these on the network structure. This could for example
inform clinicians about possible sources of risk for progression.

Bayesian network models are similar in nature to the way in which clinicians
work - various examinations are made and the result of each is added to ‘the
clinical picture’ to either increase or decrease the probability of disease being
present or of disease progressing. As such, the network provides the clinician
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with probabilities for abnormality. These are clinically more meaningful than
discrete thresholds on scores, which are used to currently determine glaucoma
conversion, as described in Section 5.1.

8 Conclusion and Future Work

In this paper we have investigated a number of different classifiers for iden-
tifying deterioration in the visual field associated with glaucoma. We have
focussed on Bayesian classifiers due to their ability to explicitly model the
relationships between variables.

We have introduced a new form of Bayesian classifier which we call the Spatio-
Temporal Bayesian network Classifier which has been shown to be an im-
provement on the other Bayesian classifiers and comparable to other statisti-
cal classifiers. We have tested the classifiers on two visual field datasets, one
non-temporal and one temporal, and have shown how the resulting Bayesian
network classifiers can be used to help understand the nature of visual field
deterioration in the form of network structure analysis and inference. We have
identified within the structures, various characteristics including the ’nasal
step’, whereby certain areas of the visual field indicate the onset of glaucoma.
Inference has shown that there is potential to understand how the clinicians
come to their decisions and possibly use the information to improve upon the
current classification algorithms of a visual field.

Since we aim to learn temporal models from visual field data, a natural exten-
sion of the work in this paper would be to see how the models can be used to
forecast future states of the visual field given previous observations. It would
also be extremely valuable if we could use the models to predict future class
states given the previous states of a visual field.

BNs facilitate the use of prior knowledge which we intend to explore. For
example, we can integrate expert knowledge regarding the structure of nodes
as well as the angle from each visual field point to the optic-nerve-head. We also
intend to look at other visual field datasets. The problem with the temporal
dataset in this paper is that classification required 3 abnormal fields in a row.
Our resulting classifiers may well end up ‘tied’ to the clinical classification
and may be reflecting those decisions rather than modelling the true nature
of change. Another way around this problem would be to submit only normal
patient data and allow our models to identify visual fields that are significantly
different from normal. However, this type of model will tell us less about the
nature of visual field deterioration as it will be modelling healthy eyes.
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Table 1
Breakdown of the Datasets

Dataset VFstatic VFtemporal

# VF Variables 54 54

# Clinical Variables 2 3

# VF Tests 180 588

# Patients 180 24

Pos/Neg Class Ratio 43:57 39:61
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Figure 1: A Typical TBN with 2 Time Slices. Note the links within one time
slice and those spanning from one to the next.

Figure 2: The Spatio-Temporal Bayesian Network Classifier.

Figure 3: The Spatial Operators: (a) Add a Link in the 1st Order Neighbour-
hood (b) Mutate a Parent to Within its 1st Order Neighbourhood (c) Spatial
Crossover

Figure 4: A Typical VF Test from a Healthy Eye and a Glaucomatous Eye.

Figure 5: ROC curves of Bayesian network classifiers on static VF Data

Figure 6: ROC curves of best Bayesian network and standard statistical clas-
sifiers on static VF Data

Figure 7: Structure of BN1 on static data

Figure 8: Expert Knowledge: The Angle Between Each Visual Field Point and
the Optic-Nerve-Head

Figure 9: Features discovered as Direct Descendants of Class Node for BN1
on static data

Figure 10: p(1|x) versus true class for representative set of time series

Figure 11: ROC curves of Bayesian network classifiers on temporal VF Data

Figure 12: Misclassification cost (equation 2)versus k0 for Bayesian network
classifiers on temporal VF Data

Figure 13: ROC curves of best temporal Bayesian network, temporal linear
regression and temporal k-nn on temporal VF Data.

Figure 14: Misclassification cost (equation 2) versus k0 for temporal Bayesian
network, temporal linear regression and temporal k-nn on temporal VF Data

Figure 15: Network Structures on temporal VF Data using BN2 (left) and
STC3 (right). The Grey Lines Represent First Order Temporal Links

Figure 16: Temporal Relationships modelling change in VF Values to Improve
Classification

Figure 17: A Temporal Cycle Whereby IOP Regulates Glaucoma Which in
Turn Regulates Medication
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