
SPECIAL SECTION ON FEATURE REPRESENTATION AND LEARNING METHODS
WITH APPLICATIONS IN LARGE-SCALE BIOLOGICAL SEQUENCE ANALYSIS

Received February 26, 2020, accepted March 11, 2020, date of publication March 16, 2020, date of current version March 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980897

An Improved Method for Identification of
Pre-miRNA in Drosophila
TIEYING YU 1,2,3, MIN CHEN1,2, AND CHUNDE WANG1,2,4
1Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
2Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, China
3College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
4Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China

Corresponding author: Chunde Wang (chundewang2007@163.com)

The work of Chunde Wang was supported by the Natural Science Foundation of China under Grant 31572618 and Grant 31972791.

ABSTRACT Identification of microRNAs is important in studies of regulation of gene expression in many
biologyical processes. In this study, we developed an improved method for identification of microRNAs
in Drosophila. We used the iLearn, PyFeat, and Pse-in-One methods to extract the features and then used
Max-Relevance-Max-Distance (MRMD2.0) and t-Distributed Stochastic Neighbour Embedding (t-SNE) to
reduce dimension of the features and the random forest classifier in Weka to identify miRNAs. With this
method, we found that the discriminative features for identification of pre-miRNAs were, in Drosophila
melanogaster, the occurrences of G_GUG and C_AGU when the value of the feature vector was greater
than 2, and inDrosophila pseudoobscura, the 4-tuple nucleotide composition and the occurrence of 4-length
neighbouring nucleic acids when the value of the feature vector was less than 0.02. These vectors covered
all compositional information or the frequency of bases. Classification results showed the classification
accuracy was 95.7% and 93.6%, the precision rate was 95.8% and 93.6%, and the recall rate was 95.7%
and 93.6% in Drosophila melanogaster and Drosophila pseudoobscura, respectively, which are higher than
those reported in previous studies.

INDEX TERMS microRNA, iLearn, PyFeat, Pse-in-One, MRMD2.0, t-SNE, accuracy, random forest,
discriminative features.

I. INTRODUCTION
MicroRNAs (miRNAs) are endogenous small RNAs of
approximately 20-24 nucleotides in length [1]–[3]. The
expression of a gene can be fine-tuned via a combination
of several miRNAs [4]–[6]. MiRNAs are thought to reg-
ulate one-third of human genes [7]. More than 50% of
human miRNAs are situated in cancer-related gene fragment
areas, including breast cancer, nerve-cell carcinomas and so
on [6], [8]–[10]. Moreover, miRNAs are closely related to
many common diseases [11]–[23]. Currently, gene silenc-
ing and RNA interference technologies play vital roles in
the development of anticancer medicines and crop improve-
ments [24], [25]. Therefore, given the important biological
function of miRNAs, the accurate detection and prediction of
miRNA sequences is a significant issue, andmay provide new
solutions for many biological problems [26]–[28].
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MicroRNAs can be routinely identified by sequencing
methods, such as RNA-Seq [29], [30], but these methods
have many disadvantages, including high costs [31], [32],
sensitivity to environmental influences, and difficulty in dis-
tinguishing pre-miRNA from other RNAs [33], In addition,
RNA-Seq-based approaches have been shown to be biased
against miRNAs with higher copy number or expression
levels, andmay exclude transient or cellular or developmental
stage-specific miRNAs [34].

Computational prediction based on discriminative features
provides new means for identification of microRNAs. Good
discriminative features should represent the major features
of the whole sequence and can be found by feature extrac-
tion and feature selection. These operations seek to find the
most effective features for classification and recognition of
miRNA from a large number of features to decrease the
feature dimension, that is, to obtain a ‘‘fewer but better’’
group of classification characteristics with a low probability
of classification error. A good method should be able to
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TABLE 1. Summary of the miRNA datasets in two Drosophila species.

FIGURE 1. Main flow chart for the identification of pre-miRNAs.

find the discriminative features in a shorter time and yet
produce a better classification effect. Researchers have used
many methods to extract the features for identification of
miRNAs. For example, Xue et al. suggested 32D novel triplet
features, but the method requires a long time to run [35].
Some methods may generate multidimensional features, such
as those proposed Wei et al. [36]. The method developed by
Jiang et al (2016) increased the classification accuracy by
extracting 98 dimensional features, but it took a long time to
run, and none of the most discriminative features were able
to identify whether a sequence was a miRNA [37].

To obtain a good classification effect, in this study we
developed a new method which combined several feature
extraction methods including iLearn [38], PyFeat [39], and
Pse-in-One [40] and used the random forest [41]–[50] as
the classifier. With this improved method, we were able to
identify the key features for identification of pre-miRNAs in
two Drosophila species. Cross-validation tests [51]–[58] and
classification results showed that the classification accuracy,
precision rate and recall rate obtained with this method were
increased compared with those of previous reports.

II. MATERIALS AND METHODS
A. DATASETS
The miRNA sequence data of the two Drasophila species, D.
melanogaster and D. pseudoobscura, used in this study were
taken from the published article ‘‘A framework for improving
microRNA prediction in non-human genomes’’ [34]. The
details of the datasets are summarized in Table 1.

As seen in Table 1, datasets for each species included both
positive data, which are true miRNAs, and negative data,
which are not miRNAs.

B. THE SCHEME OF THE ANALYSES
As shown in Fig. 1, in this study, firstly, we converted the
miRNA sequence data into feature vectors using the mixed
feature extraction method, and then used the random forest
classifier for classification. With the n-fold cross-validation
of the model built in this study, accuracy, precision, and
recall rates were tested. Thirdly, we combined the fea-
tures with classification accuracy greater than 90% obtained
by iLearn, PyFeat and Pse-in-One, and then reduced the
dimensionswithMax-Relevance-Max-Distance (MRMD2.0)
and t-Distributed Stochastic Neighbour Embedding (t-SNE).
Finally, we identified the lowest number of dimensional fea-
tures and the most discriminative features that could distin-
guish miRNAs from non-miRNAs and using Excel to draw
scatter plots to find the most discriminative features.

C. FEATURE EXTRACTION
iLearn, PyFeat, and Pse-in-One were used to extract features.
The pseudoKNC, z-Curve [59], gcContent, cumulativeSkew,
atgcRatio, monoMonoKGap, monoDiKGap, monoTriKGap,
diMonoKGap, diDiKGap, diTriKGap, triMonoKGap and
triDiKGap algorithms from PyFeat produced 2971 dimen-
sional features and automatically optimized the selection
of more discriminative features. Additionally, the Pseudo
k-tupler Composition (PseKNC) [60]–[65] and the other
12 algorithms from iLearn and the Mismatch, Kmer and
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PC-PseDNC-General algorithms from Pse-in-One were used
to convert the miRNA sequences into feature vectors. The
FyFeat feature encoding algorithms are described in details
in the Supplementary Material.

D. CLASSIFIER
In this study, Waikato Environment for Knowledge
Analysis (Weka) was used as a classifier. For the ‘Classify’
panel choice, we used the random forest [41], [66] which
has been successfully employed in many studies [67]–[72]
for identification and classification. Moreover, in Weka,
the n-fold (n ∈ 5, 9, 10, 11, 12) cross-validation test was
adopted to perform the predictions.

E. FEATURE COMBINATION
After feature extraction, the features with classification accu-
racies higher than 90 % were chosen and combined. For
Drosophila melanogaster, we combined the results of eight
feature extraction methods. For Drosophila pseudoobscura,
we combined the results of twelve feature extractionmethods.

F. DIMENSION REDUCTION
Max-Relevance-Max-Distance (MRMD2.0), proposed by
Qu et al. [73]. was used to reduce dimension. The features
were ranked according to their classification scores so that the
more discriminative features will have higher ranks. We then
determined the lowest number of dimensional features that
could distinguish between positive and negative examples
and the most discriminative features to distinguish whether
a sequence was a miRNA.

In addition to MRMD2.0, after feature combination,
we further used t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) [74] to reduce dimension and visualized the
combined features in a 2D feature space, and then the positive
and negative samples were easily separated by two distinct
background areas of SVM [75]. The points of the positive
cases could be allocated in the red area, and the points of
the negative cases could be allocated in the blue area. So,
the positive and negative cases could be separated easily.

After dimension reduction with both MRMD2.0 and
t-SNE,we found the best two-feature pairs that could discrim-
inate positive cases and negative cases for the two species of
Drosophila. They were the first two features in the dimension
reduction accuracy list of each species. Then, we used Excel
to draw a scatter plot of the best two-dimensional features to
determine whether the two features were discriminative.

G. MEASUREMENT
To evaluate the performance of the newly developed method,
we calculated the classification accuracy (ACC), precision
and recall and compared them with those from previous
studies. These indices have been widely used in several bioin-
formatics studies [14], [20], [38], [76]–[88].

To calculate these indices, the data were divided into
4 categories including true positive data (TP), true negative

data (TN), false positive data (FP) and false negative
data (FN).

Accuracy(ACC) rate is the proportion of the dataset that
is correctly classified, and can be calculated by the below
formula [89].

ACC =
TP+ TN

TP+ FP+ TN + FN
× 100%

Precision rate is the proportion of the positive dataset that
is correctly classified and can be calculated following the
formula [89].

precision =
TP

TP+ FP
× 100%

Recall rate is the proportion of the positive examples
that are correctly classified and can be calculated by the
formula [89].

recall =
TP

TP+ FN
× 100%

III. RESULTS
A. FEATURE EXTRACTION
Tables 2a-2b compare the classification results for two
Drosophila species with the previous study [37]. The best
feature extraction method is a combination of the first
13 methods from PyFeat. For Drosophila melanogaster,
a total of 312 dimensional features were extracted. The
accuracy rate, precison rate and recall rate were 95.7%,
95.8% and 95.7%, respectively, which were all higher than
those reported in the previous study [37]. For Drosophila
pseudoobscura, a total of 413 dimensional features were
extracted. The accuracy rate, precison rate and recall rate
were 93.6%, 93.6% and 93.6%, respectively, which were
also higher than those the previous study [37]. Thus our
feature extraction methods are able to extract features for dis-
crimination of positive and negative cases and the accuracy,
precision and recall are all improved compared with previous
methods [37].

B. DIMENSION REDUCTION
Figures 2a-2b show the dimension reduction results for the
two species of Drosophila. The details of the results are
described in Supplementary Material Tables S1-S2.

In Drosophila melanogaster, after feature extraction with
iLearn, PyFeat, and Pse-in-one, a total of 1761 dimensional
features with a classification accuracy of more than 90%were
combined. After using MRMD2.0 to reduce the dimension,
the lowest number of dimensional features that could dis-
tinguish positive and negative cases was found to be a total
of 12 dimensions to achieve the same accuracy as that of the
previous study [37] (Fig. 2a).

InDrosophila pseudoobscura, after feature extraction with
iLearn, PyFeat, and Pse-in-one, a total of 1784 dimensional
features with a classification accuracy of more than 90%
were combined. After using MRMD2.0 to reduce the
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TABLE 2. Comparison of the classification results with the previous study.

FIGURE 2. Lowest number of dimensional features that distinguish
positive and negative cases well for the different species.

dimension, the classification accuracy was approxi-
mately 90%, which was slightly lower than that of the pre-
vious study [37]. The lowest number of dimensional features
that could distinguish positive and negative cases was found
to be a total of 28 dimensions (Fig. 2b).

We further used t-SNE to visualize them in a 2D feature
space and the positive and negative cases were easily sepa-
rated by two distinct background areas of SVM, as shown
in Figures 3a-3b. As can be seen in the figures, the points

of the positive cases were allocated in the red area, and the
points of the negative cases were allocated in the blue area.
In this method, the positive cases and negative cases were
clearly separated, indicating that the two features were very
discriminative.

C. DETERMINATION OF THE MOST
DISCRIMINATIVE FEATURES
The MRMD2.0 dimensionality reduction produced a list
ranked by classification accuracy. In the list, the features
with higher ranks were more discriminative. For Drosophila
melanogaster, the most discriminative features for miRNA
recognition were the numbers of G_GUG and C_AGU in
the miRNA whole sequence. The feature extraction method
integrates the 13 small methods from PyFeat, corresponding
to monoTriKGap, and the accuracy of the first two dimen-
sional features was 77.2%. The scatter plot using the two-
dimensional features is shown in Fig. 4a. The algorithm for
the feature extractionmethod is detailed in the Supplementary
Material.

In Fig. 4a, the negative cases are overwhelmed by the
positive cases, so we magnified the negative cases. The data
label shows the number of feature vectors for the positive
and negative cases that coincided. There are 443 negative
feature vectors and 238 positive feature vectors. Except for
the overlapped points, the remaining points are the feature
vectors of the positive cases. As can be seen, when the value
of the feature vector is greater than 2, it is likely a pre-miRNA
sequence.

For Drosophila pseudoobscura, the most discriminative
features for miRNA recognition were the 4-tuple nucleotide
composition and the occurrences of a 4-length neighbouring
nucleic acids that differ by at most m mismatches (m < 4).
The feature extraction methods are PseKNC from iLearn and
Mismatch from Pse-in-One and the accuracy of the first two
dimensional features was 80.2%. The scatter plot using the
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FIGURE 3. Dimensionless scatter plots using t-SNE. Note: Note that the positive cases are represented as green points, and
the negative cases are represented as red points.

FIGURE 4. Scatter plots of the best two - dimensional features to
distinguish miRNA and non-miRNA for the two kinds of Drosophila. Note:
Note that the orange points represent positive cases, and the blue points
represent negative cases.

two-dimensional features is shown in Fig. 4b. The algorithms
for the two feature extraction methods are detailed in the
Supplementary Material.

In Fig. 4b, when we magnify the points of the negative
cases and shrink the points of the positive cases, we can see
that when the value of the feature vector is less than 0.02,
the subject sequence is likely a pre-miRNA sequence.
Although there are some overlapping points, the positive
cases and negative cases are easier to separate, indicating
that these two features are discriminative for distinguishing
of miRNAs from non-miRNAs.

IV. DISCUSSION
Previous studies have shown that miRNAs are much more
abundant and functional than previously thought and the
identification and prediction of miRNA has important biolog-
ical significance in many bioinformatics studies [90]–[99].
There are many ways to identify miRNAs, but many of these
methods have disadvantages. Our goal in this study was
to find the lowest number of dimensional features and the
most discriminative features that could distinguish miRNAs
from non-miRNAs. Using machine learning and computa-
tional prediction to identify miRNAs can reduce the cost
and achieve fast, accurate and good results. In this study,
we developed an improvedmethodwhich uses PyFeat, iLearn
and Pse-in-one for feature extraction and the random forest as
the classifier. N-fold cross-validation test was used to train the
classification model together with t-SNE and MRMD2.0 for
dimension reduction. Compared with MRMD2.0, t-SNE is
more comprehensive. It is better for determining whether
the positive cases and negative cases are split and makes
it easier to determine whether the extracted features were
discriminative or not. However, t-SNE cannot produce a pro-
file with a feature list like MRMD2.0. Therefore, the two
methods could be used together to achieve a better effect.
Compared with the previous study [37], we improved the
classification accuracy, precision and recall and we were able
to find the lowest number of dimensional features and the
most discriminative features that could distinguish miRNAs
from non-miRNAs. With this method, it is easy to distinguish
the positive cases and negative cases and determine whether
the extracted features were discriminative for identification
of miRNAs. We were also able to identify the discriminative
features for identification of pre-miRNAs in two Drosophila
species. In addition, our feature selection method can be
applied to identify lncRNAs [100] and predict their target
genes [101] and functions [102], [103].
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