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Abstract We used field measurements and multimission satellite data to evaluate how well an inherent
optical properties (IOPs) data processing system performed at correcting the residual error of the
atmospheric correction in satellite remote sensing reflectance (Rrs) and how well the system simultaneously
minimized intermission biases between different remote sensing systems. We developed the IOPs data
processing system as a semianalytical algorithm called IDAS. Our results show that IDAS generates accurate
and consistent IOPs products from two ocean color missions: Sea‐viewing Wide Field‐of‐View Sensor
(SeaWiFS) and Moderate Resolution Imaging Spectroradiometer Aqua (MODISA). Specifically, with
“high‐quality” SeaWiFS and MODISA Rrs data, IDAS provided temporally consistent IOPs products for the
oligotrophic open ocean resulting in an annual mean intermission difference of less than 3%, which is
significantly lower than what a quasi‐analytical algorithm (QAA) provided.We used IDAS to generate a long
time series of bb(555) from the Northwest Atlantic Subtropical Gyre using SeaWiFS (1998 to 2002) and
MODISA (2003 to 2017) images. Our results show that the IDAS‐derived annual bb(555) decreased
monotonically by 2.81% per decade from 1998 to 2017. Comparing the IDAS‐generated annual trend for
bb(555) to the same data processed with the QAA algorithm, we found that the QAA results differed because
of impacts of the residual errors of the atmospheric correction and intermission biases. The differences in the
annual trends existed despite the same temporal changing patterns of in situ particulate organic carbon
existing in the Sargasso Sea and in the satellite chlorophyll‐a concentration in the Northwest Atlantic
Subtropical Gyre.

1. Introduction

Using ocean color data to understand oceanic primary production and climate change on a global scale is a
widespread approach. The National Aeronautics and Space Administration (NASA) oversees a continuous
mission for gathering global ocean color observations. NASA launched the SeaStar satellite equipped with
the Sea‐viewing Wide Field‐of‐View Sensor (SeaWiFS). NASA also launched the Earth Observing System
equipped with the Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA). Following
the success of the first ocean color mission, Coastal Zone Color Scanner (Aiken et al., 1995; Gordon et al.,
1980), NASA designed these recent missions to have less than 5% uncertainty in water‐leaving radiances
for blue wavelengths in blue water (Ahmad et al., 2010; Gordon & Wang, 1994) and less than 35% uncer-
tainty in chlorophyll‐a concentration estimates in the open ocean (Carder et al., 2004; Wang & Son, 2016).
These well‐calibrated ocean color data improve our knowledge of regional marine ecological disasters and
global biological cycles, which include when spring blooms begin (Mahadevan et al., 2012; Siegel et al.,
2002; Tin et al., 2016), heat fluxes in the upper ocean (Ballabrera‐Poy et al., 2007; Lewis et al., 1990;
Strutton & Chavez, 2004; Zhang, 2016; Zhang et al., 2015), mixed layer depth anomalies caused by changing
biomass (Cotroneo et al., 2016), carbon cycles (Roy et al., 2017), and other biochemical processes (Ford &
Barciela, 2017).

Separating the signature of basin‐scale ecological oscillations from potential climate change in the ocean
requires a long time series of consistent satellite observations. However, because of the typical short lifetime
of ocean color satellites, it is common to combine several successive missions into a single data set to increase
observation time scales beyond the limited lifetime of a single mission, for example, making the shift from a
single satellite centric datum to a variable‐centric one (Mélin et al., 2017). It is commonly assumed that
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single‐mission ocean color data are free of spurious temporal artifacts so that these data can be used as the
benchmark of a time series (Lee et al., 2010; Siegel et al., 2002). However, for this assumption to be true, mul-
timission ocean color data should reproduce the trends within each single‐mission series when calculating
the trend over the same period despite any intermission differences (Gao et al., 2018; Gregg & Casey, 2010;
Mélin et al., 2017). The confidence in results acquired from applying ocean color data at climatic time scales
lies greatly in this intermission consistency.

Chlorophyll‐a concentration is an essential climate variable of the global climate observing system (Bojinski
et al., 2014). Thus, it is not unusual that many scholars have focused on improving the intermission consis-
tency of chlorophyll‐a concentration (Ballabrera‐Poy et al., 2003; Gregg & Conkright, 2001; IOCCG, 2007;
Kwiatkowska & Fargion, 2003; Pottier et al., 2006; Zhang et al., 2006). For instance, Gregg and Casey
(2010) stated that the intermission difference in chlorophyll‐a concentration between SeaWiFS and
MODISA exceeded the maximum interannual amplitude variation in the global and major oceanographic
basins. Later, Gregg and Casey developed an empirical satellite and in situ data algorithm to minimize these
inconsistencies. Mélin (2016) showed that the ±5% intermission difference could lead to a trend that was sig-
nificantly different from the trend derived from a corrected reference series. However, these intermission
inconsistencies could be improved using a bias correction scheme that Mélin et al. (2017) proposed.

In addition to chlorophyll‐a concentration, we need to reliably obtain intermission consistency for other
optical and biogeochemical products, such as inherent optical properties (IOPs) (Behrenfeld et al., 2009;
Boyce et al., 2010; Son & Wang, 2015). IOPs control the natural changes of ocean color, which is another
essential climate variable (Bojinski et al., 2014).

To retrieve consistent IOPs frommultimission ocean color data (Garver & Siegel, 1997; IOCCG, 2006; Kahru
et al., 2015; Lee et al., 2002;Werdell et al., 2013), wemust remove the difference in remote sensing reflectance
(Rrs) products between missions. Maritorena and Siegel (2005) assumed that the normalized water‐leaving
radiances observed from different satellites had similar uncertainty levels so that optical data from different
sensors could be combined. In theory, the bio‐optical algorithm that Garver and Siegel (1997) developed
could be used to combine the optical data from different sensors, but the effect of an intermission difference
in Rrs would still propagate through the algorithm to the retrieved IOPs. Practically, due to differences in sen-
sitivities, signal‐to‐noise ratios, calibration and degradation histories, observation times, data processing sys-
tems, observation geometries, weather conditions, and so on (Ahmad et al., 2010; Gordon & Voss, 1999;
Gordon &Wang, 1994; Yuan et al., 2019), the radiance products observed from various satellites differ signif-
icantly, even for the same nominal band (Mélin et al., 2016).

To mitigate the effects of intermission differences, Kahru et al. (2015) suggested applying an empirical linear
adjustment to remove the difference between missions when retrieving IOPs for the California current. As a
result of their adjustment, their merged time series had a more dominant annual cycle than the original time
series. In a different attempt at correcting for intermission differences, the CCI (2016) expressed the target
satellite Rrs at SeaWiFS wavebands through a band‐shifting scheme. Then CCI applied a bias correction to
a SeaWiFS reflectance data set. But despite these early attempts at removing intermission differences, there
are still many sources of intermission difference in Rrs data that cannot be effectively removed using a simple
adjustment or correction so an accurate algorithm is needed.

Due to differences in instrument spectral characteristics, it is difficult to find two satellites with the same Rrs.
The residual error is the error that remains in satellite Rrs after processing with an imperfect procedure,
including atmospheric correction. The intermission bias is the difference between the Rrs from two different
satellites due to the discrepancies in the wavelength systems and overpass times. Therefore, the intermission
difference (△Rrs,d) is the sum of residual error and the intermission bias. The residual error in satellite Rrs is
a data uncertainty, which is mainly due to imperfect data processing and includes instrument noise, irradi-
ance calibration, and atmospheric correction (Ahmad et al., 2010; Gordon & Wang, 1994; Hu et al., 2013).

NASA's default data processing procedure for atmospheric correction uses the black pixel assumption at
near‐infrared bands (Gordon & Voss, 1999). In NASA's procedure, first the aerosol type and reflectance at
near‐infrared regions are determined with the black pixel assumption. Then the near‐infrared regions are
extrapolated to visible bands with a lookup table (Gordon & Wang, 1994). When the aerosol reflectance at
visible bands is known, we obtain the satellite Rrs by subtracting the aerosol contribution from the
Rayleigh‐corrected total satellite signal. For well‐calibrated satellite instruments such as MODISA and
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SeaWiFS, the residual error is more like an additive uncertainty not a multiplying uncertainty, which is con-
sistent with what Hu et al. (2013) proposed. The intermission bias is not an uncertainty; it is the bias between
two true satellite Rrs. Therefore, it might be acceptable to deem the intermission bias to be an additive item in
an intermission difference analysis and simultaneously differentiate the two uncertainty concepts between
residual error and intermission bias. In addition to affecting the residual errors, the intermission bias can also
affect the intermission consistency of IOPs products derived from multiple missions.

Chen et al. (2016) developed a semianalytical IOPs data processing system for retrieving IOPs from satellite
Rrs. Their algorithm simultaneously corrected residual errors in satellite Rrs (△Rrs,r) with a residual error
correction (REC) algorithm. The results showed that the residual errors decreased the smoothness of the
time series of IOPs for the open ocean, which could increase the intermission difference. The semianalytical
processing algorithm (IDAS) that Chen et al. developed retrieves the spatially and temporally consistent
IOPs products from a single ocean color satellite in the open oceans (Chen et al., 2016). However, we still
do not know whether the IDAS algorithm can provide an improved intermission consistency of Rrs and
IOPs products. We especially do not know to what extent the physical mechanism of the IDAS algorithm
improves the intermission consistency.

In this study, we introduce the IDAS algorithm and use SeaWiFS and MODISA data as processing examples
after first describing these data sets. We show how the physical mechanism of the IDAS algorithm compen-
sates for intermission bias in the solution for the residual error in the closed equations of the REC algorithm.
Furthermore, we present the significant improvements that the IDAS algorithm produced in intermission
consistency for retrieving IOPs from “ocean deserts” because the oligotrophic oceans are more sensitive to
intermission differences than other types of seas (Mélin, 2016). Lastly, using the backscattering coefficient
at 555 nm in the Northwest Atlantic Subtropical Ocean as an example, we show how important multimis-
sion consistency of Rrs observations is to temporal trend analysis.

2. Data and Methods
2.1. Testing and Assessing the Data

We used in situ measurements and satellite images to assess how well IDAS performed in producing consis-
tent products frommultiple missions over the open ocean.We used three different kinds of data sets to assess
IDAS:

1. Simple synthetic data to test how well IDAS reduces intermission bias in REC
2. Sample point data to see how well IDAS retrieves a(443)
3. Satellite data to compare the performance of IDAS to the performance of two other similar algorithms
2.1.1. In Situ Measurements
Our in situ data set (see Table 2) was the NASA bio‐optical marine algorithm data set (NOMAD) (Werdell &
Bailey, 2002). The NASA Ocean Biology Processing Group compiled these data from global field measure-
ments archived in the SeaWiFS Bio‐optical Archive and Storage System. This data set includes measured
Rrs values at the SeaWiFS wavelengths and IOPs data (Werdell & Bailey, 2002). The NOMAD data were fil-
tered with Rrs(λ) > 0 at blue and green SeaWiFS wavelengths. In addition, we had in situ particulate organic
carbon (POC) concentrations at the ocean surface (<5 m) from the Bermuda time series site (Gundersen
et al., 2001). We used the POC to validate the annual trends of the backscattering coefficient that we pro-
duced with IDAS and a quasi‐analytical algorithm (QAA). All the data were measured following rigorous
and community‐defined protocols for deploying and collecting data (Mueller et al., 2003) with in situ radio-
metric measurement uncertainties on the order of 3% to 5% under ideal conditions (Bailey & Werdell, 2006;
Hooker et al., 2001).
2.1.2. Satellite Data
We used the SeaWiFS Level‐2 Global Area Coverage (GAC) image collected from over the Sargasso Sea on 20
February 1998 to assess how △Rrs,r for a single mission influenced the IDAS and QAA algorithms when
retrieving IOPs. In addition, we used the coincident MODISA Level‐2 Local Area Coverage (LAC) images
over the North Atlantic Gyre (17° to 27°N, 54° to 60°W) from 12 October 2006 to evaluate how well the
IDAS algorithm reduced impacts of intermission difference in Rrs data when retrieving IOPs. We obtained
the SeaWiFS Level‐2 GAC data and MODISA Level‐2 LAC data from the NASA/Goddard Space Flight
Center in March 2018.
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To minimize the interface of the intermission bias between MODISA and SeaWiFS caused by spectral char-
acteristics on IOPs retrievals, we used the green MODISA band at 555 nm even though the green MODISA
band at 555 nm was not originally designed for ocean color applications. We could not use the green
MODISA band designed for ocean color applications (the band at 547 nm) because it was about 8 nm shorter
than the green SeaWiFS band at 555 nm. We used the satellite data for evaluating the algorithms so which
satellite band was better was not important. Furthermore, our practical data processing results showed that
the greenMODISA band at 555 nm could be used for ocean color study after correcting for the residual error,
even though the signal‐to‐noise ratio was very low. Thus, for our study, the MODISA images represented Rrs

data at 412, 443, 488, 555, and 667 nm, and the SeaWiFS images referred to Rrs data at 412, 443, 490, 555, and
670 nm.

The 1987 daily SeaWiFS Level‐2 GAC images were from 1998 to 2003 and the 12,823 daily MODISA Level‐2
LAC images were from 2004 to 2017. All the images covered the oligotrophic North Atlantic Gyre (17° to
34°N, 50° to 60°W). In addition, we obtained 172 SeaWiFS Level‐2 GAC images and 904 MODISA Level‐2
LAC images over the oligotrophic South Pacific Gyre (34° to 36°S, 114° to 116°W) from 2009 to see how well
IDAS achieved consistent products frommultiple missions over an oligotrophic ocean compared to the QAA
algorithm. The spatial resolution of the SeaWiFS Level‐2 GAC images was about 4 km, and the spatial reso-
lution of the MODISA Level‐2 LAC images was about 1 km.

In March 2018, the NASA/Goddard Space Flight Center provided us with 365 daily SeaWiFS and MODISA
Level‐3 images from 2006 with 9‐km resolution over the oligotrophic Northwest Atlantic Subtropical Ocean
(20° to 30°N, 50° to 60°W). We used these images to calculate gain factors between the satellites to under-
stand the natural intermission difference between MODISA and SeaWiFS Rrs data for the global ocean.
The Level‐3 images were filtered with high quality exclusion criteria that included an l2_flags mask and
accurate geometric correction.

It is hard to accurately correct geometry for the open ocean in SeaWiFS and MODISA images due to the lack
of notable corresponding image points. The lack of corresponding image points means that analyzing the
images pixel‐by‐pixel would be restricted so that, inevitably, there would be some differences in spatial reso-
lution and geometric deformation between the SeaWiFS and MODISA Level‐2 images. To circumvent this
problem, we analyzed the intermission consistency temporally with image statistics based on a small homo-
geneous area common to image pairs instead of comparing images pixel by pixel. We used the mean value of
a square region in a daily image to compare patterns as they changed in time for each satellite. However,
there might not have been enough valid pixels for a temporal analysis due to cloud coverage so the size of
the square region would be too small. Conversely, the temporal changing pattern might have been disturbed
by a spatially changing characteristic if the size of the square region were too large. Therefore, we used a
practical data processing experiment to empirically define the size of the square region as 2° × 2° for the open
ocean. Defining a standard size for the square region allowed us to reasonably evaluate how well IDAS
removed the intermission difference. In addition, we used original and corrected pixel‐based histograms
to show the changes in the intermission consistency before and after correcting for the intermission differ-
ence. Using the original and corrected histograms minimized effects of the small difference associated with
the spatial resolution and effects of geometric deformation on the shape of the histograms.

2.2. General Description of IDAS

Unlike the IOPs retrieval algorithm for a single‐mission satellite, IDAS obtains consistent IOPs products
from multimission data in the open ocean. IDAS is a step‐wise procedure, and we explain each step that
we performed here. (Figure 1). First, we estimated the△Rrs,r at 670 nm using a REC algorithm (Chen et al.,
2016), then we extended the derivation to other wavelengths with an empirical spectral relationship
determined using Hu et al.'s (2013) algorithm. Next, we removed the residual errors in satellite Rrs using

REC‐corrected △Rrs,r, after which we derived the absorption and backscattering coefficients from the
error‐corrected Rrs using the neural network‐based quasi‐analytical algorithm (NQAA) (Chen et al., 2016).

Using SeaWiFS and MODISA as examples, we detail the key components of the IDAS scheme.

1. The residual error tolerant NQAA algorithm for a(555) and Y retrievals: The NQAA algorithm
diminishes some effects of residual error. NQAA generates a greater noise‐tolerant absorption coefficient
(a(555)) and a power coefficient of the backscattering coefficient of particles (Y) (Appendix A) than the
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traditional approaches can (e.g., the QAA algorithm) (Lee et al., 2002). Unlike general neural network
algorithms structured for IOPs that are quantified from single‐mission data (Chen et al., 2014; Ioannou
et al., 2013; Jamet et al., 2012), the NQAA algorithm includes the residual errors associated with an
imperfect data processing system and sensor noise in error‐free Rrs that are spectrally linked by
empirical linear relationships (Chen et al., 2016). Because the intermission bias between satellite Rrs is
absorbed as part of the residual error (section 2.3), the NQAA algorithm generates consistent
intermission a(555) and Y for sensors that spectrally resemble SeaWiFS.

2. The spectral linear relationship of the residual errors for IDAS algorithm: The spectral linear relation-
ship of △Rrs,r is the key feature of IDAS that accurately retrieves and corrects the residual error (Chen
et al., 2016). However, the spectral slope of the linear relationship could vary with different data
sources due to changing aerosol properties of the open ocean (Ibrahim et al., 2018; Wang, 2014).
Therefore, it is unreasonable to use a fixed spectral linear relationship to correct the residual error.
In addition, the IDAS algorithm determines IOPs from satellite Rrs data and from Rrs data that are
measured in the field or numerically simulated. The uncertainties in rigorously quality‐controlled field
Rrs data and simulated Rrs data from a radiative transfer numerical model are much smaller than the
uncertainties in Rrs data observed by satellite (Bailey & Werdell, 2006; Lee et al., 2013). In addition,
the spectral characteristics of the residual errors in the field measurements or simulations can be dif-
ferent from the spectral characteristics in the satellite Rrs. Consequently, unlike the original IDAS
algorithm (Chen et al., 2016), there are three scenarios of the spectral linear relationship of the resi-
dual errors for the REC algorithm in IDAS that we use to estimate the residual error. The different
input types determine which spectral relationships to use for the residual errors. The three scenarios
are as follows:

(1). The slope and bias of the spectral linear relationship are set to zero when the in situ measured or
numerically simulated Rrs data are used as inputs for running the IDAS algorithm because the quality
of those data is much higher than the satellite data (Bailey & Werdell, 2006; Lee et al., 2013).

(2). Hu et al. (2013) proposed an approach for determining the spectral relationship of residual errors for
each satellite image (one spectral relationship per image) when the satellite Rrs images run the IDAS
algorithm because these spatial relationships vary from image to image, even in the oligotrophic open
ocean.

(3). The SeaWiFS and MODISA spectral relationships of the residual errors, respectively proposed by Chen
et al. (2016) and Hu et al. (2013), run the REC algorithmwhenHu et al.'s residual error retrieval method

Figure 1. Flow chart for IDAS.

10.1029/2019JC015811Journal of Geophysical Research: Oceans

CHEN ET AL. 5 of 30



fails because there are not enough data (less than 10,000 pixels) for residual error statistical analyses to
construct the spectral relationship.

3. Residual error retrievals with known a(555), Y, and the spectral relationship of residual errors: For a
given Rrs spectrum of any pixel, because the NQAA algorithm accurately determines a(555) and Y at
555 nm, there are two unknowns (bb(555) and △Rrs,r(555)) for the IOPs‐Rrs semianalytical relationship
that Gordon et al. (1988) proposed. Chen et al. (2016) suggested using the IOPs‐Rrs relationship at 670 nm
to algebraically calculate these two unknowns, pixel by pixel, so that there are two unknowns and two
equations. When △Rrs,r(670) is known, △Rrs,r at short wavelengths can accurately determine with a
spectral linear relationship (Chen et al., 2016; Hu et al., 2013). The IDAS algorithm Rrs, a(555), and Y
accurately determine intermission consistency (section 2.3) so that, in the end, IDAS improves the inter-
mission consistency of the IOPs products.

2.3. Key Components of IDAS for Improving Intermission Consistency

The factors affecting the magnitude of residual error and intermission bias are very complicated (Ahmad
et al., 2010; Gordon &Wang, 1994; Hu et al., 2013), which makes it impossible to completely isolate the resi-
dual error or the intermission bias from the total error budget. The IDAS algorithm estimates the residual
error in the satellite Rrs spectrum as follows (Chen et al., 2016):

Rrs;s;r 555ð Þ ¼ Rrs;t 555ð Þ þ ΔRrs;r 555ð Þ (1)

Rrs;s;r 670ð Þ ¼ Rrs;t 670ð Þ þ ΔRrs;r 670ð Þ (2)

where Rrs,t refers to the “true” remote sensing reflectance of the reference satellite, and△Rrs,r represents the
residual error. Lastly, Rrs,s,r is the remote sensing reflectance observed by the reference satellite. Because we
trained the IDAS algorithmwith a data set of SeaWiFS wavelengths, we used SeaWiFS as the reference satel-
lite in this study.

For the target satellite, we consider the intermission bias. Equations (1) and (2) are rewritten as follows:

Rrs;s;t 555ð Þ ¼ Rrs;t 555ð Þ þ ΔRrs;r 555ð Þ þ ΔRrs;b 555ð Þ (3)

Rrs;s;t 670ð Þ ¼ Rrs;t 670ð Þ þ ΔRrs;r 670ð Þ þ ΔRrs;b 670ð Þ (4)

where△Rrs,b represents the intermission bias between target and reference satellite Rrs,t, where Rrs,s,t is the
remote sensing reflectance observed by the target satellite. Equations (1) and (2) include two unknowns
(bb(555) and△Rrs,r), which are solved algebraically for each satellite Rrs spectrum using the IDAS algorithm
(Chen et al., 2016). Because the NQAA algorithm accurately determines a(555), the intermission consistency
of the Rrs data mainly depends on the intermission consistency of the bb(555) data. The dependency occurs
because IDAS assumes that Rrs,t is accurately deduced from the relationship of IOPs with Rrs (Gordon et al.,
1988) (Appendix A). However, in addition to residual errors, equations (3) and (4) contain intermission bias.
Actually, the intermission bias can be deemed as a small uncertainty for bb(555) and △Rrs,r retrievals in
IDAS equations. When we apply the IDAS algorithm to the target satellites, the intermission bias propagates
into bb(555) and △Rrs,r retrievals because equations (3) and (4) are closed equations (called this as IDAS
equations constraint). Thus, to understand how the IDAS algorithm improves the intermission consistency
between satellite Rrs data, it is necessary to show the impacts of the intermission bias on bb(555) and△Rrs,r
retrievals in equations (3) and (4).

When we assume that ξ is the portion of intermission bias propagating into the△Rrs,r retrievals, the remain-

ing intermission bias (△Rrs,b‐ξ) propagates into the bb(555) estimates and are expressed as follows:

f −1 Δbb λð Þ½ � ¼ ‐ ΔRrs;b λð Þ‐ξ λð Þ� �
(5)

△bb(555) is the increment of the backscattering coefficients caused by the remaining intermission bias and f
is the function that propagates the remaining intermission bias into the bb estimates. When we combine
equations (3) and (4) with equation (5) we get the following:

Rrs;idas 555ð Þ ¼ Rrs;s;t 555ð Þ þ f −1 Δbb 555ð Þ½ � ¼ Rrs;t;r 555ð Þ þ ΔRrs;r 555ð Þ þ ξ 555ð Þ� �
(6)

Rrs;idas 670ð Þ ¼ Rrs;s;t 670ð Þ þ f −1 Δbb 670ð Þ½ � ¼ Rrs;t;r 670ð Þ þ ΔRrs;r 670ð Þ þ ξ 670ð Þ� �
(7)
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where Rrs,idas is called as Rrs,s,t but under constraint of IDAS equations. Hu et al. (2013) and Chen et al. (2016)
showed that the residual error has strong wavelength‐dependent characteristics that linearly decrease as
follows:

ΔRrs;r 555ð Þ ¼ S 555; 670ð Þ×ΔRrs;r 670ð Þ þ B 555; 670ð Þ (8)

where S(555,670) and B(555,670) are, respectively, the slope and bias of the linear relationship between
the residual errors at 555 and 670 nm. In this study, S(555,670) and B(555,670) dynamically changed with
the images and we determined S(555,670) and B(555,670) using Hu et al. (2013) in an image‐by‐image
manner.

The ξ at 555 and 670 nm must meet the following relationship requirement because of the closed
equation properties:

ξ 555ð Þ ¼ S 555; 670ð Þ×ξ 670ð Þ (9)

When we simplify (△Rrs,r+ξ) as △Rrs,u, equations (6) and (7) reduce to the following:

Rrs;idas 555ð Þ ¼ Rrs;t;r 555ð Þ þ ΔRrs;u 555ð Þ (10)

Rrs;idas 670ð Þ ¼ Rrs;t;r 670ð Þ þ ΔRrs;u 670ð Þ (11)

Substituting right term of equations (8)–(11) into equation (A1), Rrs,idas just below the sea surface (rrs,idas)
can be approximated as follows:

rrs;idas 555ð Þ ¼ Rrs;t;r 555ð Þ þ S 555; 670ð ÞΔRrs;u 670ð Þ−B 555; 670ð Þ
0:52þ 1:7 Rrs;t;r 555ð Þ þ S 555; 670ð ÞΔRrs;u 670ð Þ−B 555; 670ð Þ� � (12)

rrs;idas 670ð Þ ¼ Rrs;t;r 670ð Þ þ ΔRrs;u 670ð Þ
0:52þ 1:7 Rrs;t;r 670ð Þ þ ΔRrs;u 670ð Þ� � (13)

Combining with equation (A2), rrs,idas can be rewritten as a function of IOPs:

rrs;idas 555ð Þ ¼ 0:089
bb;t 555ð Þ

a 555ð Þ þ bb;t 555ð Þ þ 0:1245
bb;t 555ð Þ

a 555ð Þ þ bb;t 555ð Þ
� �2

(14)

rrs;idas 670ð Þ ¼ 0:089
bb;t 670ð Þ

a 670ð Þ þ bb;t 670ð Þ þ 0:1245
bb;t 670ð Þ

a 670ð Þ þ bb;t 670ð Þ
� �2

(15)

where bb,t(λ) is the backscattering coefficient but under IDAS equations constraint, which is equal to the
sum of bb(λ) and △bb(λ). Combining equations (12) and (13) with equations (14) and (15), we write the
IDAS algorithm for the target satellite as follows:

0:089
bb;t 555ð Þ

a 555ð Þ þ bb;t 555ð Þ þ 0:1245
bb;t 555ð Þ

a 555ð Þ þ bb;t 555ð Þ
� �2

¼

Rrs;t;r 555ð Þ þ S 555; 670ð ÞΔRrs;u 670ð Þ−B 555; 670ð Þ
0:52þ 1:7 Rrs;t;r 555ð Þ þ S 555; 670ð ÞΔRrs;u 670ð Þ−B 555; 670ð Þ� � (16)

0:089
bb;t 670ð Þ

a 670ð Þ þ bb;t 670ð Þ þ 0:1245
bb;t 670ð Þ

a 670ð Þ þ bb;t 670ð Þ
� �2

¼

Rrs;t;r 670ð Þ þ ΔRrs;u 670ð Þ
0:52þ 1:7 Rrs;t;r 670ð Þ þ ΔRrs;u 670ð Þ� � (17)

For each satellite Rrs spectrum, there are two unknowns (bb,t(555) and △Rrs,u) in this set of equations that

can be solved for. Equations (16) and (17) show that accurate retrievals of △Rrs,u improve intermission
consistency of bb, which makes the intermission Rrs more consistent. When a(555) can be “fixed” by
NQAA algorithm with high accuracy (Chen et al., 2016), the uncertainty including residual error and inter-
mission bias would propagate to bb(555) estimates following the relationship of IOPs with Rrs (Gordon

10.1029/2019JC015811Journal of Geophysical Research: Oceans

CHEN ET AL. 7 of 30



et al., 1988). As a result, the IOPs data from reference satellite are easy to intermission inconsistent with the
target satellite. The IDAS algorithm can remove most residual error and partial intermission bias for IOPs
estimates, thus can provide intermission consistent IOPs data. It is worthy note that ξ usually does not equal
△Rrs,b, so IDAS suppresses most of the effects of the intermission difference, rather than eradicating
it completely.

2.4. Statistical Evaluation

In this study, we assessed the accuracy of the IOPs retrieval algorithms using the mean absolute percent dif-
ference (MAPD), root‐mean‐square of log transformed difference (RMSDlog), mean ratio value (MRV) of
SeaWiFS to MODISA ocean color products, and coefficient of variation (CV). These statistics are expressed
as follows:

MRV ¼ ∑
N

k¼1

1
N
xe;k= ∑

M

k¼1

1
N
xr;k (18)

MAPD ¼ 1
N

∑
N

k¼1

xe;k−xr;k
xr;k

����
���� (19)

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
3

i¼1
∑
3

j¼1
xe;i;j−xr;i;j
� 	2s

xr;m
(20)

RMSDlog ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k¼1
log xe;k

� 	
−log xr;k

� 	� �2s
(21)

xr ¼ slope×xe þ bias (22)

g ¼ 1
N

∑
N

k¼1

xe;k
xr;k

(23)

δg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k¼1

xe;k−xr;k
xr;k


 �2
s

(24)

where xe,k is the algorithm‐estimated IOPs product of the kth element from the field‐measured or satellite‐
observed Rrs. xr,k is the equivalent product of the kth element provided by Hydrolight (radiative transfer
numerical model), in situ measurements, or derived from the satellite‐observed Rrs of our reference satellite
(SeaWiFS) in this study. N is the number of elements. xr,m is the mean value of xr,k for a 3 × 3 pixel box. The
“slope” and “bias” represent the slope and intercept of the linear relationship between the field‐measured
and algorithm‐estimated IOPs products and are determined using least squares. g and δg are the vicarious
adjustment gain factor and related standard deviations, respectively, that Gordon (1998) and Zibordi et al.
(2015) proposed. The annual mean MRV is the ratio of the annual mean SeaWiFS IOPs or Rrs to the annual
mean MODISA IOPs or Rrs.

3. Results
3.1. Testing With a Simple Synthetic Data Set

We used daily composite SeaWiFS and MODISA Level‐3 images from 2006 to compare SeaWiFS Rrs with
MODISA Rrs. The composite images were of the annual mean Rrs, g, and δg for the global ocean. We com-
puted g and δg with equations (23) and (24) (Figure 2).

We found that the significant spatial trends in these two satellite data sets were consistently distributed, but
the trends exhibited some differences. Overall, the SeaWiFS Rrs were higher than MODISA's, but the
MODISA Rrs images were spatially smoother than the SeaWiFS Rrs images. Specifically, the global annual
mean gain factors were 1.028, 0.995, 1.092, and 1.470 at 443, 490, 555, and 670 nm, respectively. In other
words, the SeaWiFS Rrs data were annually 2.8%, 9.2%, and 47.0% higher than the MODISA Rrs data, respec-
tively, at 443, 555, and 670 nm, but annually 0.5% lower than the MODISA Rrs data at 490 nm. The higher
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gain factors (greater than 1.05) were in the coastal zones and subtropical and tropical oceans, while the lower
gain factors (less than 0.95) were in the midlatitudes and Arctic and Antarctic Oceans. Gordon and Voss
(1999) suggested that ±5% errors in satellite Rrs data could result in ±35% errors in chlorophyll‐a
concentration retrievals. Therefore, an intermission difference in Rrs data greater than 5% would
inevitably influence the intermission consistency of the ocean color products derived from the
multimission satellite system.

To show how IDAS performed in reducing the intermission bias in REC, we looked at the intermission pixel‐
by‐pixel differences (SeaWiFS Rrs minus MODISA Rrs) from the 2006 SeaWiFS and MODISA daily Level‐3
data over the oligotrophic Northwest Atlantic Subtropical Ocean (20° to 30°N, 50° to 60°W). Figure 3 shows
the spectral relationship of △Rrs,d among the visible bands (a total of 365 images and 242,708 valid pixels),

indicating that△Rrs,d was strongly spectrally dependent and the coefficients of determination (R2) between
SeaWiFS and MODIS Rrs were greater than 0.7.

For each Hydrolight Rrs spectrum, we generated a random △Rrs,d(670) value using a Gaussian shape (cal-

culated from△Rrs,d(670) in Figure 3d), and then we extrapolated to△Rrs,d at the short‐visible bands using
the relationships shown in Figure 3. We added those short‐visible bands to all bands of the Hydrolight Rrs
data that had the residual error included. Knowing that the intermission difference was the sum of the resi-
dual error and the intermission bias, we used the intermission difference to replace the intermission bias
because of the difficulty in separating the intermission bias from the intermission difference.

Due to the influences of△Rrs,b and△Rrs,r, the error‐included Rrs data were quite different from the error‐
free Rrs data whose MAPD at 555 nm reached 35.51% (Figure 4a), which impacted retrieving IOPs without
any correction. As a result, after applying the NQAA algorithm to the original error‐included Rrs data, the
NQAA algorithm generated 12.25% and 34.72% MAPD values for the a(443) and bb(555) retrievals, respec-
tively (Figures 4b and 4c). However, after we corrected the data with the IDAS algorithm, the data quality
of the Rrs notably improved, with the MAPD at 555 nm decreasing to 9.99% (Figure 4d).

Using these improved Rrs data as inputs, the NQAA algorithm produced more consistent IOPs with known
values than the NQAA algorithm with the original error‐included Rrs data (Figures 4e and 4f). Specifically,
the MAPD values of the IDAS algorithm were 9.22% and 12.19% for a(443) and bb(555), respectively, which
were 3.03% and 22.53% lower than the NQAA algorithmwith the original error‐included Rrs data. Compared
to the spectral relationship of residual errors that Hu et al. (2013) and Chen et al. (2016) proposed, we found

Figure 2. Climatological yearly mean (a–d) SeaWiFS Rrs(λ), (e–h) MODISA Rrs(λ), (i–l) g(λ), and (m–p) δg(λ) at 443, 490, 555, and 670 nm in the global oceans. The
yearly mean data are merged from the daily Level‐3 data from 2006.
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that the wavelength‐dependent characteristics of△Rrs,d (including slope and bias of the linear relationship)
differed slightly from the residual error in the open ocean. However, after processing with the IDAS
algorithm, most △Rrs,d plus △Rrs,r in the satellite Rrs were removed and gave us consistent IOPs
(Figures 4b and 4d).

Figure 3. Spectral relationship of △Rrs,d obtained from 365 daily Level‐3 SeaWiFS and MODISA Rrs images from 2006,
corrected for residual error, over the North Atlantic Gyre (20° to 30°N, 50° to 60°W).

Figure 4. NQAA‐derived Rrs(555), a(443), and bb(555) from Rrs data (a–c) before and (d–f), after correcting △Rrs,d, compared to the same variables from the
Hydrolight simulations. The Hydrolight data set had 5,000 data points with chlorophyll‐a concentration varying between 0.01 and 2 mg/m3. We determined the
IOPs by chlorophyll‐a and used the IOPs relationship included in Hydrolight 5.2 (Mobley & Sundman, 2013).
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3.2. Testing With Sample Point Data

Chen et al. (2016) developed the NQAA algorithm, and their results showed that the algorithm performed
well in quantifying a(555) and Y, even from Rrs data that had noise. Therefore, in this study, we did not refine
the neural network of the NQAA algorithm. Y was not a standard product in the NASA ocean color data so
we could not evaluate how IDAS performed at retrieving Y. Instead, we looked at how well IDAS performed
at retrieving a(443) because Y is an important parameter for determining a(443) (Gordon et al., 1988).

We evaluated the IDAS algorithm's performance by comparing a(443) and bb(555), as predicted by the IDAS
and QAA algorithms (version 5), with equivalent field measurements (Table 2). Based on 1132 samples for
a(443) and 473 samples for bb(555) collected from NOMAD, Figure 5 shows that the IDAS and QAA
algorithm‐derived a(443) and bb(555) agreed very well with the measured a(443) and bb(555). Specifically,
the MAPD values did not exceed 41%, and the R2 values were greater than 0.58.

After comparing the IDAS algorithm results to the QAA algorithm results, we found that IDAS was more
effective at retrieving IOPs. The R2 values for IDAS were greater than 0.82 and were higher than the QAA
R2 for the a(443) and bb(555) retrievals. After using IDAS, the MAPD values decreased by 0.07% and were
4.13% greater than the QAA algorithm's MAPD for the a(443) and bb(555) retrievals. At the higher end
(a(443)>1.1 m−1 or bb(555) > 0.1 m−1), the IDAS‐derived a(443) and bb(555) versus the field‐measured
a(443) and bb(555) were much closer to a 1:1 line than when we used the QAA algorithm. The difference
between the two algorithms at the higher end was because some band ratio approaches employed in the
QAA algorithm just reduce effects of the backscattering coefficients (refer to the Rrs‐IOPs relationship for
a(555) retrieval in the QAA algorithm), rather than removing the effects of the backscattering coefficients
for a(555) retrievals in turbid waters (Chen et al., 2014). Due to the low number of suspended particles in
the open ocean (Morel & Prieur, 1977), the impacts of the backscattering coefficients on QAA performance
would be much weaker than in turbid waters (Chen et al., 2014). Therefore, a(443) and bb(555) could be
accurately retrieved by the IDAS and QAA algorithms for the open ocean. However, this conclusion

Figure 5. Comparing known and model‐derived a(443) and bb(555) for the in situ data set. (a) and (b) are results from the
IDAS model, and (c) and(d) are results from the QAA model.
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might only be valid for strictly quality controlled optical data due to the highly sensitive nature of the band
ratio approach to the residual error in ocean color data.

3.3. Assessing the Algorithms Using Satellite Images

If we were to use the IDAS algorithm to accurately determine a(555) (Chen et al., 2016), the uncertainties in
satellite Rrs(555) would propagate into the bb(555) data because of the IOPs versus Rrs semianalytical rela-
tionship at 555 nm that Gordon et al. (1988) first noted (equations (16) to (17)). Therefore, we examined
how IDAS performed in achieving consistent IOPs products from multiple satellites for the open ocean by
checking their intermission consistency for bb(555) instead of using a(555). Note that we used the
MODISA 555‐nm band because the spectral response function of this band was much closer to SeaWiFS
555 nm than theMODISA 547‐nm band. Additionally, the MODISA Rrs(555) is also part of the standard data
in the Level‐2 GAC data set, even though this band was not originally designed for ocean color measure-
ments. Showing the impacts of band difference on the performance of the IDAS algorithm was beyond
the scope of our current study.
3.3.1. Evaluating and Comparing Algorithms Using a Single‐Mission SeaWiFS Image
The accuracy of satellite bb(555) products that the QAA or IDAS algorithms provide are affected by the accu-
racy of satellite Rrs and by the performance of satellite a(555), which also depends on the accuracy of satellite
Rrs. Therefore, the bb(λ) products are more sensitive to residual error and intermission bias in satellite Rrs

than a(λ) (Chen et al., 2016).

Figure 6 shows the bb(555) that IDAS and QAA produced from the SeaWiFS images collected on 20 February
1998 over the Sargasso Sea, an oligotrophic region. Due to the inherent residual error, the QAA bb(555)
image was patchy and speckled (Figure 6a). Because we retrieved and corrected for the residual error,
IDAS generated better estimates of bb(555) than the QAA algorithm did (Figures 7a and 7b). Compared to
the QAA bb(555) image, the IDAS bb(555) were more tightly distributed (Figure 6e), and the standard devia-
tions and CV values were significantly reduced (>50%) (Figures 6c–6f). Because the band ratio algorithm is
sensitive to the residual errors in satellite data, there weremany pixels in the QAA bb(555) image (Figures 6a,
6c, and 6f) whose CV values were very large (greater than 0.8) because some adjacent pixels were contami-
nated by clouds. However, when we used IDAS, the bb(555) data quality improved significantly. Specifically,
we found much fewer pixels with high CV values in the IDAS bb(555) image (Figures 6d and 6f). Note that
we used the spectral relationship of the residual error in the second scenario in section 2.2 in the IDAS algo-
rithm for retrieving bb(555); thus, the mean CV value of the IDAS bb(555) in Figure 6f was much lower than
the results found by Chen et al. (2016).
3.3.2. Evaluating and Comparing Algorithms Using Single‐Synchronized Images
We used SeaWiFS and MODISA Level‐2 image data of the North Atlantic Gyre (17° to 27°N, 54° to 60°W),
from 12 October 2006 to see if we can apply IDAS to retrieve bb(555) from open blue water. Figure 7 com-
pares bb(555) from the SeaWiFS and MODISA Rrs data derived using IDAS and QAA. We found that the
SeaWiFS QAA bb(555) image exhibited significant noise speckling with much discontinuity and patchiness
(Figure 7a). The speckling in the images was primarily caused by the cloud adjacency, and the patchiness
was more likely associated with atmospheric correction errors, whitecap correction errors, digitization
noise‐included errors, and other factors (Hu et al., 2013).

Even though the MODISA and SeaWiFS sensors have some similar central wavelengths and spectral
response characteristics, they exhibit differences in bandwidth, digitized bytes, and signal‐to‐noise ratio.
Because MODISA is 12‐bit digitized as opposed to 10 bit for SeaWiFS, and MODISA has approximately
twice the signal‐to‐noise ratio than SeaWiFS (Gordon & Voss, 1999), the MODISA QAA bb(555) was spa-
tially smoother than the equivalent product derived from SeaWiFS (Figures 7a to 7b).

Because SeaWiFS has larger spatial resolution than MODISA, the pixels in the SeaWiFS images are more
likely to include a small fraction of bright cloud or other bright targets; yet the standard ocean color data pro-
cessing system still considers these brighter pixels to be normal pixels and exports them to the Level‐2 pro-
ducts. As a result, our SeaWiFS images covered more area than MODISA images did (Figures 7a to 7b),
but there was more patchiness near cloud edges in the SeaWiFS images (Figure 7b), which resulted in many
large bb(555) values (greater than 0.004 m−1) in the histograms in Figure 7 (Figure 7a). In contrast to the pat-
chy and speckled QAA‐produced bb(555) image, the IDAS bb(555) in Figures 7e to 7f was much smoother,
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and the IDAS bb(555) distribution was more spatially coherent, even near cloud edges. Specifically, when we
used the IDAS algorithm for the SeaWiFS and MODISA images, IDAS produced a narrow and sharp
frequency distribution of bb(555) compared to the distribution derived from the QAA algorithm
(Figures 7d and 7h). The MRV values of bb(555) were 1.049 and 1.424 for the IDAS and QAA algorithms,
respectively. The MAPD values for the pixel‐by‐pixel comparison of the bb(555) produced by IDAS and
QAA were 29.63% and 14.42%, respectively. In other words, the MRV value of bb(555) produced by the
IDAS algorithm was 0.375 (the latter minus the former) lower than the MRV of bb(555) produced by the
QAA algorithm. IDAS generated an intermission difference within ±5% for this pair of single‐
synchronized images.

Figure 8 shows the residual errors at 670 nm derived from the SeaWiFS and MODISA Level‐2 Rrs data using
IDAS. The residual errors mainly ranged from −10−4 to 10−4 sr−1. The SeaWiFS images were patchy and
speckled and were not spatially coherent or smooth. In comparison, the MODISA images were spatially
smoother than the SeaWiFS images (Figures 8a and 8b) because the instrument quality of the former is much
higher than that of the latter (Gordon & Voss, 1999). The mean and standard deviation of the SeaWiFS Rrs,
r(670) were 0.74 × 10−4 and 3.02 × 10−4 sr−1, respectively, which were approximately five times larger than
the mean and standard deviation of the MODISA Rrs,u(670) (Figures 8d and 8e).

If we know the SeaWiFS Rrs,r(670) and MODISA Rrs,u(670), then we can approximately calculate the inter-
mission difference. We found that the mean and standard deviation of Rrs,d(670) were 0.31 × 10−4 and 2.40 ×
10−4 sr−1, respectively. Figures 8c and 8f show that the intermission difference was spatially distributed

Figure 6. bb(555) derived with IDAS and QAA using SeaWiFS Level‐2 data over the Sargasso Sea from 20 February 1998: (a) and (b) are the QAA and IDAS bb(555)
images (10−3 m−1); (c) and (d) are the CV values of the QAA and IDAS bb(555) images; (e) and (f) are the histograms of bb(555) and CV values of the bb(555) images.
White represents clouds. The “red line” represents the results from the IDAS algorithm, while the “blue bar” represents the results from the QAA algorithm. All
pixels with Rrs(λ) > 0 were analyzed.
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more like the SeaWiFS Rrs,r(670) than the MODSIA Rrs,u(670). For example, there were many noisy pixels
around the cloud edges in the intermission difference distribution, which was consistent with what we
saw in the SeaWiFS images. The similarity of the intermission difference and statistics with the SeaWiFS
Rrs,r(670) distribution and statistics implies that the intermission difference between SeaWiFS and
MODISA Rrs data was mainly from the SeaWiFS satellite due to its low instrumental quality.
3.3.3. Evaluating and Comparing Algorithms Using Multisynchronized Images
For a single perfectly calibrated ocean color sensor, the radiance or reflectance at the top of atmosphere is
ideally error free so that the only source for error in the satellite‐observedRrs data would originate from atmo-
spheric correction and other external influences. However, for multiple calibrated ocean color sensors, the
sources of uncertainty are more complicated than for a single calibrated sensor, which leads to differences
in the ocean color data between missions. In addition to imperfect atmospheric correction, band output
effects, spatial scaling effects, spectral response functions (Mélin et al., 2017), ratio of signal‐to‐noise level
(Gordon & Voss, 1999; Gordon & Wang, 1994), interval time for satellite overpass (Bailey & Werdell,
2006), on‐orbit radiance calibration (Gordon, 1998) impact the consistency of the ocean color data observed
by multiple missions (Gordon, 1998).

Figures 9a to 9c compare the original 2009 SeaWiFS Level‐2 Rrs data with 2009MODISA Level‐2 Rrs from the
North Atlantic Gyre. From the figures, we see that a clear difference exists. Specifically, the annual mean
MRV values for SeaWiFS Rrs were 1.070, 1.278, and 2.176, respectively, at 443, 555, and 670 nm, so that
the annual mean SeaWiFS Rrs were 7.0%, 27.8%, and 117.6% higher than the MODISA Rrs. The difference
was significantly large and exceeded the required maximum difference for climate change trend analysis
of the open ocean at green and red wavelengths (Gregg et al., 2009; Mélin, 2016). After processing with
IDAS, the annual MRV values for SeaWiFS Rrs decreased to 1.002, 1.032, and 1.067, respectively, at 443,
555, and 670 nm (Figures 9d to 9f). We attributed the notable improvement to the effectiveness of IDAS

Figure 7. Comparison of bb(555) retrieved from SeaWiFSwithMODISA Level‐2 data over the North Atlantic Gyre (54–60°W, 17–27°N) on 12 October 2006. (a) and
(b) are the QAA bb(555) images derived from SeaWiFS and MODISA Rrs data (×10

−3 m−1); (e) and (f) are the IDAS bb(555) images derived from SeaWiFS and
MODISA Rrs data (×10

−3 m−1); (c) and (g) are the ratio of SeaWiFS to MODISA bb(555) for QAA and IDAS (dimensionless); (d) and (h) are the histograms of QAA
and IDAS bb(555) images. The “red line” represents the results from SeaWiFS images, and the “blue bar” represents the results fromMODISA images. The white in
the bb(555) images represents clouds, while that in the ratio images represents clouds existing either in MODISA or SeaWiFS. All pixels with Rrs(λ) > 0 were
analyzed.

10.1029/2019JC015811Journal of Geophysical Research: Oceans

CHEN ET AL. 14 of 30



in removing the residual errors and partial intermission bias in Rrs. Specifically, at the higher end of the red
and green wavelengths (Rrs(555) > 0.003 sr−1 or Rrs(670) > 0.0003 sr−1), more than 8% SeaWiFS pixels had
values at least twice as high as the MODISA Rrs. In comparison, the high Rrs values in the IDAS‐corrected
data became much smaller than the original high Rrs values, as shown by the histograms in Figure 9
(Figures 9b and 9c and Figures 9e and 9f).

Figures 9g and 9h show the QAA and NQAA bb(555) time series derived from the original SeaWiFS and
MODISA Level‐2 Rrs data. The QAA and NQAA bb(555) time series were highly variable and the missions
were inconsistent between the SeaWiFS and MODISA data (Figures 9g and 9h). Due to the low‐noise toler-
ance of the band ratio approach to residual errors, the QAA algorithm performed poorly in generating inter-
mission consistent bb(555) compared to the NQAA algorithm. For example, the annual mean MRV values
were 1.83 and 1.42 for the QAA and NQAA algorithms, respectively. However, because REC in IDAS
improves the consistency between the SeaWiFS and MODISA Rrs data, the IDAS‐corrected intermission
bb(555) time series was more consistent than the Rrs data from the original time series (Figures 9h to 9j).
Having the more consistent IDAS‐corrected data meant that when we used IDAS‐corrected Rrs data as
inputs, the QAA algorithm compared favorably with the IDAS results (Figures 9i and 9j). The annual mean
MRV and CV values for the IDAS results did not exceed 1.07 and 0.193, respectively. From the results in
Figures 10a to 10f, we concluded that IDAS largely reduced the intermission differences in Rrs data, which
improved intermission consistency of the IOPs for the open ocean.

The original Level‐2 Rrs data commonly include “high‐quality” (HQ) and “low‐quality” (LQ) data sets
(Table 1), as defined by NASA staff and science teams (Hooker, 2003). To generate the global Level‐3 com-
posite ocean color data, a 32‐bit value for each pixel (called “l2_flags”) separates the HQ pixels from the LQ
pixels in Level‐2 data. Figure 10 shows the histograms of LQ and HQ Rrs from the North Atlantic Gyre in
2009, before and after processing with IDAS.

Figure 8. Same as Figure 7 but for residual error and intermission difference for SeaWiFS andMODISA Level‐2 data over the North Atlantic Gyre (54° to 60°W, 17°
to 27°N) on 12 October 2006. (a) is SeaWiFS residual error at 670 nm (×10−4 m−1); (b) is MODISA residual error plus partial intermission bias propagated into
residual error retrievals by IDAS (×10−4 m−1); (c) is the intermission difference between SeaWiFS and MODISA at 670 nm (×10−4 m−1); and (d)–(f) are the
corresponding histograms in (a)–(c). The white in the bb(555) images represents clouds, while that in the ratio images represents clouds existing either in MODISA
or SeaWiFS. All pixels with Rrs(λ) > 0 were analyzed.
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Because backscattering coefficients at the green and red wavelengths in the open oceans are low, a small
error in the Rrs(555) or Rrs(670) can greatly impact the blue to green and green to red band ratios. Because
of these low backscattering coefficients (Figures 10a to 10d), the band‐ratio QAA algorithm was sensitive
to the intermission difference in the satellite Rrs, which resulted in poor intermission consistency of
bb(555) derived from the LQ Rrs data. The annual MRV value of the LQ Rrs data for bb(555) was 1.967. In
comparison, the intermission consistency of bb(555) derived from the HQ Rrs data was much higher than
the intermission consistency of the LQ data, but the annual MRV value was 1.104. Because of the results
from the original level‐2 Rrs in Figure 9 (LQ data mixed with HQ data), we concluded that the LQ Rrs data
were the main cause of the intermission inconsistency in the QAA bb(555) products.

Because IDAS removes the intermission difference in Rrs data, IDAS works better than QAA in producing
consistent intermission bb(555) with LQ and HQ Rrs data (Figures 10i to 10p). Specifically, the annual
MRV values for bb(555) were 1.025 and 1.110, respectively, for the HQ and LQ Rrs data so that IDAS with
LQ Rrs data had comparable intermission consistency to QAA with HQ Rrs data. Because bb(555) can be

Figure 9. The IDAS andQAA algorithm‐processed Rrs and bb(555) over the North Atlantic Gyre (24° to 26°N, 54° to 56°W) from 2009. (a)–(c) are original Rrs, while
(d)–(f) are IDAS Rrs; and (g) and (h) are QAA and IDAS daily bb(555). The “red line” represents the results from SeaWiFS images (n= 1.3 × 106), and the “blue bar”
represents the results from MODISA images (n = 4.3 × 106). The “circle” represents the daily mean bb(555) calculated from all pixels in daily images within a 2° ×
2°square region, while the “vertical bar” denotes the mean deviation calculated from all pixels in daily images within a 2° × 2°square region. The histograms were
calculated from all pixels in the 2° × 2°square region in all original or IDAS‐corrected daily Level‐2 data from 2009.
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converted to particle matter in these waters, the annual mean (within ±2.5%) intermission difference
between SeaWiFS and MODISA bb(555), derived from the HQ Rrs data, might be useful for detecting
global interannual variability and analyzing particle matter concentration. We used the SeaWiFS and
MODISA Level‐2 data obtained over the South Pacific Gyre in 2009 to further demonstrate how capable
IDAS was in generating intermission consistent bb(555) for global blue water (Appendix B). The results
were consistent with our results for the North Atlantic Gyre. Note that there are some cases, such as
tracing eddies, where accuracy could be relaxed to allow for more data coverage (Hu, 2011) so that
improving the quality of the LQ Rrs data could be very useful.

Figures 11a to 11d show the time series of SeaWiFS bb(555) versusMODISA bb(555) derived from the LQ and
HQ Rrs data for the North Atlantic Gyre using the IDAS and QAA algorithms. The IDAS and QAA algo-
rithms produced bb(555) from the HQ Rrs data that made a more consistent intermission time series than

Figure 10. The IDAS and QAA algorithm‐processed bb(555) from LQ and HQ Rrs over a small region within the North Atlantic Gyre (24° to 26°N, 54° to 56°W)
from 2009. (a)–(c) are original LQ Rrs, while (e)–(g) are original HQ Rrs; (d) and (h) are QAA bb(555) derived from original LQ and HQ Rrs data; (i)–(k) are
IDAS‐corrected LQ Rrs, while (m)–(o) are IDAS‐correctedHQ Rrs. (f) and (p) are IDAS bb(555) derived from IDAS LQ andHQ Rrs data. The “red line” represents the
results from SeaWiFS images (n = 6.1 × 105 and n = 7.2 × 105, respectively, for HQ and LQ data), while the “blue bar” represents the results fromMODISA images
(n= 1.9 × 106 and n= 2.4 × 106, respectively, for HQ and LQ data). All pixels with Rrs(λ) > 0 were analyzed. The histograms were calculated from all pixels in the 2°
× 2°square region from all original or IDAS‐corrected daily images from 2009. The l2_flags distinguished HQ pixels from LQ pixels.
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what they produced from the LQ Rrs data. For the QAA algorithm, the annual MRV values were 2.353 and
1.177, respectively, for the LQ and HQ Rrs data. However, after applying IDAS to the same data set, the
annual MRV values for the LQ and HQ Rrs data decreased to 1.170 and 1.015, respectively. This signifies
that IDAS with LQ Rrs data had an intermission consistent time series comparable to the QAA time series
with HQ Rrs data.

All our results in this section confirmed that the intermission biases for Rrs at the visible wavelengths had the
same sign (equations (16) to (17)), and only the intermission biases at visible wavelengths had the same sign.
So IDAS works at absorbing intermission bias for residual error computation, or the intermission biases can-

not be removed using IDAS, which makes IDAS effective in generating
the intermission consistent bb(555) for detecting interannual variability
and analyzing the global blue ocean.
3.3.4. Assessing the Individual Component Absorption Retrievals
It is difficult to use one spectral relationship to describe the spectral
dependent characteristics of residual error and intermission bias in Rrs

(Figure 3). So the △Rrs(670) cannot completely reduce the intermission
bias in Rrs for retrieving bb(555). Because it is possible to accurately deter-
mine the a(555) and Y, the Rrs(555) error propagates to bb(555) (Chen
et al., 2016; Lee et al., 2002) when bb(555) is retrieved based on the Rrs‐

IOPs relationship that Gordon et al. (1988) proposed. Because we extrapo-
lated bb(λ) from bb(555) in IDAS, after applying a spectral model of the

Table 1
Symbols and Definitions

Symbol Description Units

λ Wavelength nm
Rrs(λ) Remote sensing reflectance just above the water surface sr−1

Rrs,t(λ) Error‐free Rrs at algorithm wavelength system sr−1

△Rrs,r(λ) Residual error in satellite Rrs(λ) sr−1

△Rrs,b(λ) Intermission bias between true satellite Rrs sr−1

△Rrs,d(λ) Intermission difference between satellite Rrs sr−1

a(λ) Total absorption coefficient m−1

bbp(λ) Backscattering coefficient of suspended particles m−1

bb(λ) Total backscattering coefficient m−1

POC Particulate organic carbon μg/kg
MAPD Mean absolute percent difference %
MRV Mean ratio value Dimensionless
Y Power coefficient of bbp(λ) Dimensionless
S (λi, λj) Slope of linear relationship of △Rrs(λ) between λi and λj Dimensionless
B (λi, λj) Bias of linear relationship of △Rrs(λ) between λi and λj Dimensionless
Sdg Spectral slope of sum absorption of detritus and gelbstoff Dimensionless
RMSElog Root‐mean‐square of log transformed difference Dimensionless
CV Coefficient of variation Dimensionless
STD Standard deviation Vary with inputs
IOPs Inherent optical properties N/A
IDAS IOPs data processing system N/A
QAA Quasi‐analytical algorithm N/A
NQAA Neural network‐based quasi‐analytical algorithm N/A
REC Residual error correction algorithm N/A
SeaWiFS Sea‐viewing Wide Field‐of‐view Sensor N/A
SeaBASS SeaWiFS Bio‐optical Archive and Storage System N/A
NASA National Aeronautics and Space Administration N/A
AERONET Aerosol Robotic Network N/A
SIMBIOS Biological and Interdisciplinary Oceanic Studies N/A
Low quality (LQ) Level‐2 data associated with one or more l2_flags but still within the application boundaries defined in this study
High quality (HQ) Level‐2 data not associated with any l2_flags but still within the application boundaries defined in this study
l2_flags ATMFAIL (1), LAND (2), HIGLINT (4), HILT (5), HISATZEN (6), STRAYLIGHT (9), CLDICE (10), HISOLZEN (13), LOWLW (15),

CHLFAIL (16), NAVWARN (17), MAXAERITER (20), CHLWARN (22), ATMWARN (23), NAVFAIL (26), and FILTER (27)

Table 2
Ranges of Optical Properties of the In Situ NOMAD Data Set Used to Test
IDAS, Including Rrs(λ)‐bb(555) Sample Pairs Measured From 473 Stations
and Rrs(λ)‐a(443) Sample Pairs Measured From 1,132 Stations

Data set Variable Min Max Median Average STD

NOMAD data
set, n = 954

aph(443) 0.002 1.480 0.174 0.119 0.047
adg(443) 0.003 1.802 0.283 0.203 0.064
bb(555) 0.001 0.009 0.003 0.004 0.002
Sdg 0.005 0.034 0.014 0.014 0.001
Y −0.785 2.378 0.637 0.644 0.481
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particle backscattering coefficient (Garver & Siegel, 1997; IOCCG, 2006; Lee et al., 2002), there will be some
compensation between bb(λ) and u(λ) for a(λ).

Figure 12 compares SeaWiFS a(443) with MODISA a(443) derived from LQ and HQ Rrs data in the Level‐2
images of the North Atlantic Gyre and South Pacific Gyre from 2009. Because QAA performed poorly in
quantifying the intermission consistent bb(λ) at the reference wavelength, there were some clear intermis-
sion differences from the QAA a(443) (Figures 12a to 12d). For the HQ Rrs data (Figures 12a and 12c), the
annual MRV values for a(443) were 1.068 and 1.051, respectively, for the North Atlantic Gyre and South
Pacific Gyre. Contrary to the QAA result, IDAS with LQ Rrs data produced intermission consistent a(443)
(Figures 12f and 12h) comparable to what QAA produced from the HQ Rrs data. For the HQ Rrs data, the
annual MRV values for a(443) were very close to 1 (equal to 0.988) for the North Atlantic Gyre and South
Pacific Gyre (Figures 12e and 12g). We attributed these significant improvements to the strong performance
of IDAS in generating the high intermission consistent bb(555) time series for blue water (within ±3%
annual MRV).

When we determine the a(λ) at blue wavelengths with high intermission consistency, we can obtain the
component individual absorption from a(λ) with high intermission consistency for the open ocean (Lee

Figure 11. Daily bb(555) retrieved from LQ and HQ SeaWiFS and MODISA Level‐2 images over a small region within the North Atlantic Gyre (24° to 26°N, 54° to
56°W) from 2003 to 2004. (a) and (b) are LQ and HQ QAA bb(555) retrieved from the original Rrs data. (c) and (d) are IDAS LQ and HQ bb(555). (e) and (f) are LQ
and HQ QAA bb(555) retrieved from IDAS‐corrected Rrs data. The “red line” represents the results from SeaWiFS images (n = 3.8 × 106 and n = 4.7 × 106,
respectively, for HQ and LQ data), while the “blue line” represents the results from MODISA images (n = 1.3 × 107 and n = 1.8 × 107, respectively, for HQ and LQ
data). All pixels with Rrs(λ) > 0 were analyzed. The “red line” represents the SeaWiFS data, while the “blue bar” represents the MODISA data. The “circle”
represents the daily mean bb(555) calculated from all pixels in daily images within a 2° × 2°square region, while the “vertical bar” denotes the mean deviation
calculated from all pixels in daily images within the 2° × 2°square region. The l2_flags distinguished HQ pixels from LQ pixels.
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et al., 2002; Werdell et al., 2013). We used the SeaWiFS and MODISA Level‐2 Rrs data from the North
Atlantic Gyre and South Pacific Gyre to run the IDAS and QAA algorithms to retrieve ag(443) and
aph(443). The detritus absorption coefficients are very low in the open ocean (Mobley, 1994); thus, we
used ag(443) to represent the nonphytoplankton absorption coefficients in this study. Due to its strong
performance in generating intermission consistent a(λ) products, IDAS performed far better than the
QAA algorithm in retrieving intermission consistent ag(443) and aph(443) products for blue
water (Figure 13).

The QAA algorithmwith HQ Rrs data producedmore intermission consistent ag(443) and aph(443) than with
LQ Rrs data, and the corresponding annual MRV values varied from 1.027 to 1.280. This meant that the QAA
component individual absorptions retrieved from SeaWiFS data were 2.7% to 28.0% larger than those from
MODISA for blue water. Overall, the intermission consistency for QAA ag(443) was much better than the
QAA aph(443). For example, the annual MRV values were less than 1.054 for the former but more than
1.166 for the latter. It seems that most intermission differences in a(λ) propagated to aph(443) products as
opposed to ag(443) (Figures 12, 13). In fact, the QAA aph(443) values were much lower than the QAA
ag(443), so the QAA aph(443) were more sensitive to the uncertainty in a(λ) than the QAA ag(443).

Like the QAA algorithm, IDAS worked significantly better with HQ Rrs data than with LQ Rrs data, but the
annual MRV values for ag(443) and aph(443) were clearly closer to 1.0 than the MRVs of the QAA algorithm.
Specifically, the annual MRV values for the component individual absorption varied from 0.971 to 0.981. In
other words, using IDAS resulted in an annual intermission difference for ag(443) and aph(443) within only
±2.91%, which was significantly lower than the difference observed for the QAA algorithm.

Because of the effects originating from the intermission difference, we found many poor points (negative
values) in the QAA IOPs results (Figures 13b, 13d, and 13k). We removed the negative values for aph(443)
and ag(443) because they were not appropriate for the analysis, which lead to decreasing data coverage of
the open ocean. After processing the images with the IDAS algorithm, the number of invalid points
decreased significantly. Compared to the QAA results, the new IOPs data from the IDAS algorithm were
more tightly distributed, and the standard deviations decreased. These results indicate that IDAS improved
the IOPs quality for blue water.

Figure 12. Histograms of daily a(443) over a small region within the North Atlantic Gyre (24° to 26°N, 54° to 56°W) and South Pacific Gyre (34° to 36°S, 114° to
116°W) from 2009. (a) and (c) are HQ QAA a(443) from the North Atlantic Gyre and South Pacific Gyre, while (b) and (d) are LQ QAA a(443) from the North
Atlantic Gyre and South Pacific Gyre; (e) and (g) are HQ IDAS a(443) from the North Atlantic Gyre and South Pacific Gyre, while (f) and (h) are LQ IDAS a(443)
from the North Atlantic Gyre and South Pacific Gyre. The “red line” represents the results from SeaWiFS images (n = 6.1 × 105 and n = 7.2 × 105, respectively, for
HQ and LQ data in the North Atlantic Gyre and n = 2.5 × 106 and n = 2.5 × 106, respectively, for HQ and LQ data in the South Pacific Gyre), while the “blue bar”
represents the results fromMODISA images (n= 1.9 × 106 and n= 2.4 × 106, respectively, for HQ and LQ data in the North Atlantic Gyre and n= 6.9 × 106 and n=
8.6 × 106, respectively, for HQ and LQ data in the South Pacific Gyre). All pixels with Rrs(λ) > 0 were analyzed. The histograms were calculated from all pixels in the
2° × 2°square region in all original or IDAS‐corrected daily images from 2009. The l2_flags distinguished HQ pixels from LQ pixels.
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4. Discussion
4.1. Comparing Gain Factor Calibration Results

In the past, methods for removing the intermission difference have focused on the intermission consistency
of chlorophyll‐a concentration (Gregg et al., 2009; Kahru et al., 2015; Mélin et al., 2017; Pottier et al., 2006;
Saulquin et al., 2013). One of these methods is the empirical gain factor cross‐calibration approach, which
reduces the deviation between two measurements (Eplee et al., 2011; Mélin et al., 2017; Quan, 2014; Teillet
et al., 2007). The empirical gain factor approach is similar to the empirical satellite‐to‐satellite approach that
Kahru et al. (2015) proposed. To further examine howwell IDAS performs in generating intermission consis-
tent IOPs for the global open ocean, we determined the gain factors from the North Atlantic Ocean and then
applied them to minimize the intermission difference for IOPs retrievals. Note that the satellite‐to‐satellite

Figure 13. Histograms of daily ag(443) and aph(443) over a small region within the North Atlantic Gyre (24° to 26°N, 54° to 56°W) and South Pacific Gyre (34° to
36°S, 114° to 116°W) in 2009. (a)–(d) and (e)–(h) are QAA and IDAS results from the North Atlantic Gyre, while (i)–(l) and (m)–(p) are QAA and IDAS results
from the South Pacific Gyre. The “red line” represents the results from SeaWiFS images (n = 6.1 × 105 and n = 7.2 × 105, respectively, for HQ and LQ data in the
North Atlantic Gyre and n = 2.5 × 106 and n = 2.5 × 106, respectively, for HQ and LQ data in the South Pacific Gyre), while the “blue bar” represents the results
from MODISA images (n = 1.9 × 106 and n = 2.4 × 106, respectively, for HQ and LQ data in the North Atlantic Gyre and n = 6.9 × 106 and n = 8.6 × 106,
respectively, for HQ and LQ data in the South Pacific Gyre). All pixels with Rrs(λ) > 0 were analyzed. The histograms were calculated from all pixels in the
2° × 2°square region in all original or IDAS‐corrected daily images from 2009. The l2_flags distinguished HQ pixels from LQ pixels.
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Rrs relationship at 670 nm was very poor, so, instead, we used the gain factor approach to correct the
intermission difference.

Figure 14 shows the gain factors calculated from the global 9‐km climatological daily images of the North
Atlantic Gyre in 2009 (Level‐3 data that were masked by l2_flags suggested by Hooker et al., 2001). The
SeaWiFS Rrs differed from the MODISA Rrs for the open ocean, which was consistent with the results in
Figure 2. For example, the SeaWiFS Rrs were slightly smaller than the MODISA Rrs at blue wavelengths,
but the former were significantly larger than the latter at the green and red wavelengths. The coefficients
of determination (R2) of the linear relationship between MODISA and SeaWiFS Rrs were very small at 555
and 670 nm (R2 < 0.1) because the Rrs values at those wavelengths were low and comparable to the residual
error (Chen et al., 2016). The gain factors reached 1.120 and 1.406 at 555 and 670 nm, respectively.

We used the gain factors to minimize the intermission difference in the HQ Level‐2 Rrs data between the
SeaWiFS and MODISA images of the North Atlantic Gyre and South Pacific Gyre. Figure 15 compares the
SeaWiFS IOPswithMODISA IOPs that we derived using the IDAS andQAA algorithmswith theHQRrs data
corrected with the gain factors. Compared with the results we derived from the original HQ Rrs data
(Figures 9–13), the gain factor approach reduced some intermission difference for the IOPs retrieved with
the QAA algorithm for the South Pacific Gyre data (Figures 15a to 15d), but the performance was better
for the North Atlantic Gyre data (Figures 15e to 15h). When we applied the gain factors to the HQ Level‐2
Rrs data, the spectral characteristics of remote sensing reflectance and residual errors changed, which nega-
tively influenced IDAS in consistently retrieving intermission IOPs (Figures 15i to 15p).

Figure 14. The gain factor cross‐calibration algorithm forMODISA Rrs versus the same for SeaWiFS Rrs at (a) 443, (b) 490,
(c) 555, and (d) 667 nm regressed from 365 daily Level‐3 SeaWiFS andMODISA Rrs images of the North Atlantic Gyre (20°
to 30°N, 50° to 60°W) from 2006.
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Many factors lead to the residual errors in the satellite Level‐2 Rrs data, including digitization noise, atmo-
spheric corrections, whitecap corrections, and cloudy neighborhood effects. In the open ocean, the water
bodies are very homogeneous and stable at large spatial and temporal scales, especially in the South
Pacific Gyre and North Atlantic Gyre (Chen et al., 2016; Hu et al., 2013). When the data quality is ideally con-
trolled by l2_flags, the residual error in the satellite Rrs data is very small and the intermission Rrs might be
strongly related with each other because of similar oceanic and atmospheric conditions and different spectral
responses in the sensors. However, the actual intermission relationships for Rrs are more complicated than
the ideal scenario. Therefore, there were systematic differences (SeaWiFS Rrs was statistically larger than
MODISA Rrs) among most of the intermission Rrs data in Figure 10, and there were large variations around
the average difference between the SeaWiFS andMODISA Rrs (Figure 14). These different residual error and
intermission bias characteristics eliminated the applicability of the gain factor approach for correcting inter-
mission consistency of Rrs for the open ocean. The results showed that the IDAS algorithm worked more
effectively than the gain factor approach in obtaining the intermission consistent Rrs.

Figure 15. Histograms of the empirical gain factor cross‐calibration approach corrected daily IOPs over a small region within the North Atlantic Gyre (24° to 26°N,
54° to 56°W) and South Pacific Gyre (34° to 36°S, 114° to 116°W) from 2009. (a)–(d) and (i)–(l) are QAA and IDAS results from North Atlantic Gyre, while (e)–(h)
and (m)–(p) are QAA and IDAS results from South Pacific Gyre. All HQ pixels with Rrs(λ) > 0 were analyzed. The histograms were calculated from all pixels in
the 2° × 2°square region in all original or IDAS‐corrected daily images in 2009. The “red line” represents the results from SeaWiFS images, while the “blue bar”
represents the results from MODISA images. The l2_flags distinguished HQ pixels from LQ pixels.
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4.2. bb(555) Trend Analysis in the Oligotrophic Northwest Atlantic Subtropical Ocean

Mélin (2016) indicated that the satellite‐derived climate record of oligotrophic oceans is more sensitive to
intermission differences than other kinds of satellite records in trend analysis. We computed the trend in
bb(555) in the Northwest Atlantic Subtropical Ocean (20° to 30°N, 50° to 60°W), before and after 2003,
from the HQ SeaWiFS (1998 to 2003) and MODISA (2004 to 2017) Level‐2 data, respectively, as shown in
Figure 16a. The factors affecting the intermission difference between sensors with a large‐analysis window
were much more complicated than with a small‐analysis window. For example, in addition to differences
originating from the sensor's spectral characteristics, instrument noise, data processing procedures, and so
on, the intermission differences were also impacted by the instantaneous variations in foams, Sun glints,
atmospheric composition, coverage, and so on. We do not discuss the consistency of bb(555) for years com-
mon to both sensors in the large‐analysis window.

Due to the sensitivity of QAA to intermission differences in Rrs, we found a significant discontinuity from the
QAA bb(555) interannual trend at the intermediate node where SeaWiFS switched toMODISA. After proces-
sing with IDAS, this discontinuity significantly improved, and the time series became smoother. Moreover,
Figure 16a shows that the overall IDAS bb(555) interannual trend differed from the QAA results.
Specifically, the yearly mean QAA bb(555) clearly decreased from 1998 to 2003 but increased from 2004 to
2017. In contrast to the QAA results, the yearly mean IDAS bb(555) monotonically decreased from 0.00191
to 0.00181 m−1 during the past two decades, with the decadal decreasing ratio reaching 2.81%. The temporal
change patterns of IDAS bb(555) were similar to the QAA bb(555) trend at interannual scales from 2004 to
2017. For example, the interannual change curves of QAA and IDAS bb(555) had peaks and troughs during
the same year. However, the interannual variation amplitudes for QAA bb(555) were much larger than the
IDAS bb(555) variation amplitudes in 2003 due to the high intermission difference sensitivity of QAA, which
resulted in the difference in the trends between the IDAS and QAA bb(555) at decadal scales. Therefore, the
residual error and intermission bias significantly improved and were meaningful for decadal bb(555) trend
analysis with IDAS in the Northwest Atlantic Subtropical Ocean.

The traditional bio‐optical definition of Case I waters assumes that the optical properties of the open ocean
mainly depend on chlorophyll‐a concentration and its covarying matter (Morel & Prieur, 1977). However,
due to the impacts of atmospheric deposition of mineral dust transported from Africa (Sarthou et al.,
2003), the ratio of particulate organic matter to suspended particulate matter in the North Atlantic Ocean
is as low as <50% (Stramski et al., 2008). Therefore, it is difficult to confirm the actual annual trend of
bb(555) in the North Atlantic Ocean using only chlorophyll‐a even though Mélin (2016) showed from

Figure 16. Changing trend of (a) bb(555) and (b) POC in the Northwest Atlantic Subtropical Ocean (20° to 30°N, 50° to 60°W) from 1998 to 2017. The yearly bb(555)
changing pattern in the North Atlantic Gyre before and after 2003 are, respectively, retrieved from SeaWiFS and MODISA Level‐2 data. All “high‐quality” pixels
with Rrs(λ) > 0 were included in the analysis. The “circle” in (a) represents the yearly mean bb(555) calculated from all pixels in daily images within the 10° ×
10°square region, while the “circle” in (b) represents the field‐measured POC concentration. The “red line” in (b) represents the linear relationship between POC
concentration and time.
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merged SeaWiFS and MODISA chlorophyll‐a series that the chlorophyll‐a concentration in this region
changes significantly at −1.84% per year. Stramski et al. (2008, 1999) found a high correlation between
bb(555) and POC (R2 > 0.87) in the North Atlantic, despite particulate organic matter contributing very little
to the total suspended matter. In the end, we decided to use POC to assess the trend in bb(555).

According to the Bermuda time series site for the northwestern part of the oligotrophic Northwest Atlantic,
POC changed by 1.7% per year during the past two decades (Figure 16b). These results support the assump-
tion that bb(555) decreased in the Northwest Atlantic Subtropical Ocean over the past two decades, which is
consistent with the results produced by IDAS.

5. Conclusion

The ocean color community uses continuous multimission ocean color data to study the impacts of global
climate change on ocean ecology. Our main objective in this study was to demonstrate how well our
IDAS algorithm performed in removing intermission differences in IOPs retrievals. Eliminating the differ-
ences among missions is important because IOPs are directly linked to biogeochemical properties including
phytoplankton biomass, gelbstoff, and suspended particles. We presented a series of simple formulas that
explain the physical mechanism of IDAS in correcting intermission biases. After applying the algorithm
to field measurements and satellite images, we found that the intermission difference between SeaWiFS
and MODISA Rrs data mainly originated from SeaWiFS residual errors. The IDAS algorithm removed the
residual errors in satellite Rrs, and simultaneously partially reduced the intermission bias. In this way, the
IDAS algorithm provided accurate and temporally consistent IOPs products for the open ocean.

We used HQ SeaWiFS andMODISA Level‐2 Rrs data to compare results we obtained with IDAS to results we
obtained with another algorithm called QAA. IDAS provided intermission consistency for the IOPs products
with less than 3% intermission differences for the oligotrophic open ocean, which was much lower than
what we obtained using the QAA algorithm.

Furthermore, we used IDAS to understand the temporal trend of bb(555) in the Northwest Atlantic Ocean
from 1998 to 2017. The results showed that the yearly mean IDAS bb(555) monotonically decreased by
2.81% per decade, which was consistent with the change of POC in the Bermuda Sea and chlorophyll‐a con-
centration in the Northwest Atlantic Subtropical Ocean. Comparing the trend results that we obtained with
IDAS to trend results obtained with QAA, we found slightly different temporal patterns in bb(555) for the
same decades. We concluded that the difference in resulting trends between the two algorithms was because
of differing resulting residual errors and intermission biases. The QAA results reminded us that residual
error and intermission bias could result in misleading conclusions from trend analysis. Although we need
further tests to validate the corrected data products, these preliminary results indicated that the IDAS algo-
rithm has the potential to minimize effects of intermission differences in long‐term monitoring with satel-
lites. Even though we only applied our system to NASA missions, after some adjustments it should also
be applicable to ocean color missions carried out by the European Space Agency, the National Oceanic
and Atmospheric Administration, and the Chinese National Satellite Ocean Application Service.

Appendix A.: Brief Overview of Mathematical Relationships in IDAS
Because satellite observe Rrs just above the sea surface, Rrs should be converted into rrs just below the sea
surface for IOPs retrievals (Mobley, 1994):

rrs λð Þ ¼ Rrs λð Þ
0:52þ 1:7Rrs λð Þ (A1)

According to Gordon et al. (1988) and Lee et al. (2009), rrs is a function of IOPs as follows:

rrs λð Þ ¼ 0:089
bb λð Þ

a λð Þ þ bb λð Þ þ 0:1245
bb λð Þ

a λð Þ þ bb λð Þ
� �2

(A2)

where a is the total absorption coefficient, and bb is the total backscattering coefficient.
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Based on the assumption of a spectral linear relationship for △Rrs,r, Chen et al. (2016) developed an algo-
rithm for REC as follows:

0:089
bb 555ð Þ

a 555ð Þ þ bb 555ð Þ þ 0:1245
bb 555ð Þ

a 555ð Þ þ bb 555ð Þ
� �2

¼
Rrs;s 555ð Þ−S 555; 670ð ÞΔRrs;r 670ð Þ þ B 555; 670ð Þ

0:52þ 1:7 Rrs;s 555ð Þ−S 555; 670ð ÞΔRrs;r 670ð Þ þ B 555; 670ð Þ� � (A3)

0:089
bb 670ð Þ

a 670ð Þ þ bb 670ð Þ þ 0:1245
bb 670ð Þ

a 670ð Þ þ bb 670ð Þ
� �2

¼
Rrs;s 670ð Þ−ΔRrs;r 670ð Þ

0:52þ 1:7 Rrs;s 670ð Þ−ΔRrs;r 670ð Þ� � (A4)

where Rrs,s represents the satellite‐derived Rrs and aw refers to the absorption coefficient of pure water. Note
that the aw is much larger than the absorption coefficient of particle and gelbstoff at 670 nm in the open
ocean; thus, a(670) can be approximated by the aw(670) in equation (A4). In equations (A3) and (A4), the
left‐hand terms denote the Rrs based on IOP‐Rrs relationships, while the right‐hand terms represent the the-
oretical error‐free Rrs. bb(670) has strong spectral dependence and is denoted as follows:

bb 670ð Þ ¼ 555
670


 �Y

bb 555ð Þ−bbw 555ð Þ½ � þ bbw 670ð Þ (A5)

where bbw represents the backscattering coefficient of pure seawater.

Because S(555,670) and B(555,670) can be fixed using the approach that Hu et al. (2013) proposed,
equations (A3) and (A4) still contain four unknowns: a(555), bb(555), Y, and △Rrs,r(670), after

Figure B1. Same as Figure 9 but for SeaWiFS and MODISA Level‐2 data over a small region within the South Pacific Gyre (34° to 36°S, 114° to 116°W) from 2009.
(a)–(c) are original Rrs, while (d)–(f) are IDAS Rrs; (g) and (h) are QAA and IDAS daily mean bb(555). The “red line” represents the results from SeaWiFS images (n
= 1.9 × 106), while the “blue bar” or “blue line” represents the results fromMODISA images (n= 7.7 × 106). The “circle” represents the daily mean bb(555) within a
2° × 2°square region, while the “vertical bar” denotes as themean deviation within the 2° × 2°square region. The histograms were calculated from all pixels in the 2°
× 2°square region in original or IDAS‐corrected daily images from 2009.
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substituting equation (A5) into equation (A4). To solve △Rrs,r from equations (A3) and (A4) algebraically
for each Rrs,s spectrum, two unknowns still need to be fixed. Many algorithms have been developed for
determining a(555) and Y from Rrs data (Chen et al., 2014; IOCCG, 2006; Lee et al., 2002; Werdell et al.,
2013), but most of the algorithms were based on the band ratio approach. Band ratio approaches are very
sensitive to the residual errors in satellite Rrs data (Chen et al., 2016; Hu et al., 2013). To overcome this
sensitivity problem, Chen et al. (2016) developed a band difference approach neural network algorithm
for retrieving a(555) and Y from Rrs data. Moreover, the neural network algorithm was trained by
including residual errors in error‐free Rrs data, so that it could diminish some influences from the residual
errors and obtain better results than the band ratio approaches obtained (Chen et al., 2016). When a(555)
and Y are derived with the neural network algorithm, △Rrs,r and bb(555) can be determined algebraically
for each satellite Rrs spectrum.

Figure B2. Same as Figure 10 but for SeaWiFS and MODISA Level‐2 data over a small region within the South Pacific
Gyre (34° to 36°S, 114° to 116°W) from 2009. (a)–(c) are original LQ Rrs, while (e)–(g) are original HQ Rrs; (d) and (h)
are QAA bb(555) derived from original LQ and HQ Rrs data; (i)–(k) are IDAS‐corrected LQ Rrs, while (m)–(o) are IDAS‐
corrected HQ Rrs. (l) and (p) are IDAS bb(555) derived from IDAS LQ and HQ Rrs data. The “red line” represents the
results from SeaWiFS images (n = 0.8 × 106 and n = 1.1 × 106, respectively, for HQ and LQ data), while the “blue bar”
represents the results fromMODISA images (n= 3.2 × 106 and n = 4.5 × 106, respectively, for HQ and LQ data). All pixels
with Rrs(λ) > 0 were analyzed. The histograms were calculated from all pixels in the 2° × 2°square region in original or
IDAS‐corrected daily images from 2009. The l2_flags distinguished HQ pixels from LQ pixels.
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Appendix B.: Assessing Algorithms With Satellite Images of the South
Pacific Gyre
We used SeaWiFS and MODISA Level‐2 data (HQ and LQ data) obtained for the South Pacific Gyre from
2009 to further demonstrate the capability of IDAS in generating intermission consistent bb(555) for global
blue water. Similar to the results obtained from LQ and HQ Rrs data for the North Atlantic Gyre from 2009,
the annual MRV values for the original Rrs data were 1.031, 1.301, and 2.214, respectively, at 443, 555, and
670 nm (Figures B1a to B1c), but the corresponding MRV values decreased significantly to 0.997, 1.093,
and 1.083, respectively, after correcting with IDAS (Figures B1d to B1f).

As expected, due to the low noise tolerance of the QAA algorithm to residual errors and intermission bias,
the QAA bb(555) derived from SeaWiFS data was about onefold larger than the QAA bb(555) derived from
the MODISA data (Figure B1g). After processing with IDAS, the SeaWiFS bb(555) time series varied at
almost the same level as the MODISA bb(555) time series, and the annual MRV value for bb(555) decreased
from 2.019 to 1.110 (Figure B1h).

We divided the SeaWiFS and MODISA Level‐2 Rrs data into LQ and HQ Rrs data by turning the l2_flags on
and off. Then we used the IDAS and QAA algorithms to retrieve the IOPs from these data (Figure B2). The
results show that the QAA algorithmwith HQ Rrs data performed well in generating the intermission consis-
tent bb(555) products (Figure B2d), but the annual MRV value still reached 1.127, which exceeded the ±3%
maximum interannual variability of bb(555) for blue water. Despite the fact that some unsystematic differ-
ences were found in the LQ and HQ Rrs data (Figures B2a to B2h), IDAS still generated good intermission
consistent bb(555) data from the LQ and HQ Rrs data (Figures B2i–B2p). The annual MRV values for
bb(555) were 1.176 and 1.022, respectively, for the LQ and HQ Rrs data processed with IDAS. The former
was comparable to the QAA results derived from the HQ Rrs data, and the latter was like the intermission
difference level for the North Atlantic Gyre data from 2009. Therefore, we concluded that IDAS is an effective
approach for achieving consistent bb(555) data from multiple missions for the open ocean.
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