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Abstract
Establishment of the rhizobia-legume symbiosis is usually accompanied by hydrogen peroxide (H2O2) production by the legume
host at the site of infection, a process detrimental to rhizobia. In Azorhizobium caulinodans ORS571, deletion of chp1, a gene
encoding c-di-GMP phosphodiesterase, led to increased resistance against H2O2 and to elevated nodulation efficiency on its
legume host Sesbania rostrata. Three domains were identified in the Chp1: a PAS domain, a degenerate GGDEF domain, and an
EAL domain. An in vitro enzymatic activity assay showed that the degenerate GGDEF domain of Chp1 did not have diguanylate
cyclase activity. The phosphodiesterase activity of Chp1 was attributed to its EAL domain which could hydrolyse c-di-GMP into
pGpG. The PAS domain functioned as a regulatory domain by sensing oxygen. Deletion of Chp1 resulted in increased intracel-
lular c-di-GMP level, decreased motility, increased aggregation, and increased EPS (extracellular polysaccharide) production.
H2O2-sensitivity assay showed that increased EPS production could provide ORS571 with resistance against H2O2. Thus, the
elevated nodulation efficiency of the Δchp1 mutant could be correlated with a protective role of EPS in the nodulation process.
These data suggest that c-di-GMP may modulate the A. caulinodans-S. rostrata nodulation process by regulating the production
of EPS which could protect rhizobia against H2O2.
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Introduction

Legumes have the ability to establish a symbiotic interaction
with N2-fixing rhizobia resulting in the formation of root

nodules. Within nodules, internalized rhizobia can find suitable
environmental conditions (with respect to oxygen concentra-
tions) to fix atmospheric nitrogen which can be subsequently
used for plant nutrition. Legume-rhizobia interaction is initiated
by signal exchange between bacteria and plant (Dénarié et al.
1996; Oldroyd 2013). After perceiving flavonoid compounds
exuded by the plant root, rhizobia can produce specific mole-
cules named “Nod factors” which are recognized by the host
and turn on the plant nodulation program. The next rhizobial
invasion can proceed using different routes; the best known
being the intracellular invasion via root hairs, with the forma-
tion of an infection thread (Goormachtig et al. 2004a).
However, another type of invasion (intercellular invasion)
which occurs at bases of lateral or adventitious roots is far less
characterized. This particular mode of infection is found in the
case of the Azorhizobium caulinodans-Sesbania rostrata inter-
action, and this interaction has been a classic model for the
s tudy of in t e r ce l lu l a r i nvas ion (Capoen e t a l .
2010; Goormachtig et al. 2004b; Lievens et al. 2001).
A. caulinodans ORS571 is a versatile nitrogen fixer which
could fix nitrogen not only in free-living state under
microaerobic conditions but also in symbiotic interaction with
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S. rostrata (Lee et al. 2008). Nitrogen-fixing nodules formation
by A. caulinodans ORS571 through intercellular invasion re-
quires the formation of the outer cortical infection pocket which
is characterized by release of a massive amount of hydrogen
peroxide (H2O2) (D'Haeze et al. 2003). In addition, oxidative
burst and accumulation of H2O2 also exists in the process of root
hair invasion (Santos et al. 2001). It was shown that H2O2 played
a positive role in the infection processes and was required for the
successful establishment of final symbiosis (D'Haeze et al. 2003;
Jamet et al. 2007). However, since H2O2 is detrimental to bacte-
ria, it is of great importance for rhizobia to develop survival
mechanisms during the process of nodulation.

Depending on physiological/environmental conditions, bac-
teria can be embedded in an extracellular matrix composed of
complex extracellular polymeric substances including extracel-
lular polysaccharides (EPSs) (Flemming andWingender 2010).
EPSs could confer survival advantages by protecting bacteria
from various biotic and abiotic stresses including oxidative
stress (Perez-Mendoza and Sanjuan 2016). As a major part of
the extracellular matrix, EPSs are also involved in cell-cell in-
teractions and surface adhesion (Koo et al. 2013; Matthysse
2014). Two gene clusters involved in EPS synthesis, exp cluster
I (AZC_1831-1834) and exp cluster II (AZC_3319-3332), are
present in A. caulinodansORS571. These two clusters are both
corresponding to the exp gene clusters of Sinorhizobium
meliloti, which have been analysed extensively (Tsukada et al.
2009). The AZC_1831 (oac3) and AZC_1832 (oac2) genes of
the exp cluster I are encoding dTDP-D-glucose synthase and
dTDP-L-rhamnose synthase enzymes, respectively, and their
involvement was demonstrated in the synthesis of EPSs essen-
tial for successful nodulation on its legume host S. rostrata
(Gao et al. 2001; Goethals et al. 1994).

The secondary messenger c-di-GMP (cyclic bis-(3′-5′) di-
meric guanosine monophosphate) has been extensively stud-
ied for its multiple regulatory functions including involvement
in cell motility, cell aggregation, biofilm formation, and viru-
lence (Galperin 2004; Hengge 2009) as well as in regulation
of EPSs synthesis (Liang 2015; Perez-Mendoza and Sanjuan
2016). Generally, high levels of c-di-GMP stimulate the pro-
duction of various exopolysaccharides. c-di-GMP is synthe-
sized by diguanylate cyclases (DGCs) from two molecules of
GTP and hydrolysed by phosphodiesterases (PDEs) into 5′-
phosphoguanylyl-(3′-5′)-guanosine (pGpG) (Chan et al. 2004;
Rao et al. 2008). DGC activity is associated with a domain
containing a conserved motif of amino acids “GGDEF”, and
PDE activity is associated with a domain containing the motif
“EAL” (Ryjenkov et al. 2005; Schmidt et al. 2005; Tal et al.
1998). Both motifs (GGDEF and EAL) are essential for the
enzymatic activity being parts of the enzyme active sites. In
addition, the GGDEF and EAL domains are often accompa-
nied by regulatory domains such as PAS, REC, and GAF
(Kazmierczak et al. 2006; Lee et al. 2007). These regulatory
domains could respond to specific intracellular or external

signals to regulate the activity of DGCs and PDEs. As a sec-
ond messenger, c-di-GMP must be recognized by different
receptors to perform its regulatory role. The receptors of c-
di-GMP are also various including the well-known PilZ do-
main, degenerate GGDEF and EAL domains, and some c-di-
GMP-specific riboswitches (Krasteva et al. 2012).

In this study, we identified a c-di-GMP PDE named Chp1
(c-di-GMP hydrolysis protein 1) in A. caulinodans ORS571.
The Δchp1mutant had decreased motility, increased EPS pro-
duction, increased resistance against H2O2, and increased nod-
ulation efficiency on the legume host S. rostrata. The elevated
nodulation efficiency suggests a protective role of EPS against
hydrogen peroxide in the nodulation process which favours
our conclusion that c-di-GMP may modulate the nodulation
process by regulating the EPS production.

Materials and methods

Bacterial strains, plasmids and culture medium The strains
and plasmids used in this study are listed in Supplemental
Table S1. The wildtype (WT) A. caulinodans ORS571
(ATCC 43989) and mutants were grown at 37 °C in TY me-
dium (tryptone 10 g/L, yeast extract 5 g/L, CaCl2 · 2H2O 4 g/
L, and agar 1.5% for plate) with corresponding antibiotics
(ampicillin 100 μg/mL, nalidixic acid 25 μg/mL, gentamycin
50 μg/mL). L3 minimal medium (KH2PO4 1.36 mg/mL,
MgSO4 · 7H2O 100 μg/mL, NaCl 50 μg/mL, CaCl2 · 2H2O
40 μg/mL, FeCl3 · 6H2O 5.4 μg/mL, Na2MoO4 · 2H2O 5 μg/
mL, biotin 2 μg/mL, nicotinic acid 4 μg/mL, pantothenic acid
4 μg/mL, succinate 1.18 mg/mL as carbon source, and sup-
plemented with 10 mM NH4Cl or not for L3+N/-N) was also
used when mentioned. The Escherichia coli strains used for
cloning and expression were routinely grown at 37 °C in LB
medium (tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L,
and agar 1.5% for plate). In addition, different kinds of anti-
biotics (ampicillin 100 μg/mL, kanamycin 25 μg/mL,
gentamycin 50 μg/mL, tetracycline 10 μg/mL) were added
to the LB medium to select the bacterial strains with correct
plasmids.

Protein expression and purification The expression plasmid
used in this study is pET30a with an engineered N-terminal
His6-SUMO tag (named pET30a-SUMO). The DNA frag-
ments corresponding to the PAS, GGDEF, EAL domain, and
the full-length Chp1 (BAF86306.1) were amplified from the
ORS571 genomic DNA with primer pairs PAS-BamHI-F/
XhoI-R, GGDEF-BamHI-F/XhoI-R, EAL-BamHI-F/XhoI-R,
and Chp1-BamHI-F/XhoI-R, respectively. The fragments
were cloned into the BamHI/XhoI site of pET30a-SUMO to
create recombinant expression plasmids and then be trans-
formed into the expression strain E. coli BL21 (DE3). The
PASH45A and Chp1H45A mutants (H45 was labelled by an
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asterisk in Fig. 1c) were generated by using the
QuickChange® Site-Directed Mutagenesis Kit (Stratagene,
La Jolla, USA) with primers pairs PASH45A-F/R and
Chp1H45A-F/R, respectively. Proteins were overexpressed
by induction with 50 μmol/L IPTG at 16 °C for 20 h. The
harvested cells were resuspended in binding buffer
(50 mmol/L Tris, 100 mmol/L NaCl, 10 mmol/L imidazole,
pH 8.0) and lysed by sonication. The debris was removed by
centrifugation and the supernatant was collected and loaded
on a His-trap FF crude column (GE Healthcare, Wauwatosa,
USA). After removing impurities by washing buffer
(50 mmol/L Tris, 100 mmol/L NaCl, 100 mmol/L imidazole,
pH 8.0), the target protein was harvested by elution buffer
(50 mmol/L Tris, 100 mmol/L NaCl, 500 mmol/L imidazole,
pH 8.0). The imidazole present in protein solution was then

removed by using the Amicon® Ultra-15 10 K centrifugal
filter device (Merck KGaA, Darmstadt, Germany), and the
protein was finally dissolved in storage buffer (20 mmol/L
Tris, 5 mmol/L EDTA, 5% glycerol, pH 8.0). For the final
purified target protein, the purity was analysed by using the
SDS-PAGE, the concentration was quantified by using the
Nanodrop 2000c (Thermo Fisher Scientific, Waltham, USA)
combined with the standard BCA protein assay (Pierce,
Rockford, USA).

Absorption spectroscopy The absorption spectra were all per-
formed in reaction buffer (50 mmol/LTris, 100 mmol/L NaCl,
pH 8.0) and measured by using the UV-Vis spectrophotometer
of the Nanodrop 2000c (Thermo Fisher Scientific, Waltham,
USA). The apo-PAS and apo-PASH45A were measured first

Fig. 1 Chp1 schematic representation, purification, and sequence
alignment. a Transcription directions are indicated by the arrows, and
the chp1 gene (AZC_0308) is flanked by two genes with different
transcription directions (AZC_0307 and AZC_0309). Domain structures
of Chp1 were predicted by using the SMART program. Abbreviations:
PAS, Per-Arnt-Sim domain; GGDEF, diguanylate cyclase domain; EAL,
phosphodiesterase domain. b Proteins with SUMO tag: Chp1 (residue 1–
566, 74.3 kDa), EAL domain (residue 322–564, 41.6 kDa), GGDEF
domain (residue 132–320, 35.2 kDa), PAS domain (residue 20–120,
25.8 kDa). c Sequence alignment of PAS domain of the Chp1 with two
other heme-binding PAS domains from different proteins. A. cau,
Azorhizobium caulinodans; E. coli, Escherichia coli, Dos (GI
1036410138); B. jap, Bradyrhizobium japonium, FixL (GI 39523). The

asterisk indicates the key residue histidine responsible for heme binding.
Sequence alignment of GGDEF domains. A. cau, Azorhizobium
caulinodans; C. cre, Caulobacter crescentus, DgcA (GI 221236330);
A. xyl, Acetobacter xylinus, Dgc1 (GI 3659615); C. cre, Caulobacter
crescentus, PdeA (GI 221236443); P. fluo, Pseudomonas fluorescens,
WspR (GI 18535672). The asterisks indicate the conserved GGDEF mo-
tif. Sequence alignment of EAL domains. A. cau, Azorhizobium
caulinodans; E. coli, Escherichia coli, Dos (GI 1036410138); C. cre,
Caulobacter crescentus, PdeA (GI 221236443); K. pneu, Klebsiella
pneumoniae, BlrP1 (GI 241913377); P. aeru, Pseudomonas aeruginosa,
RocR (GI 1176904427). The asterisks indicate the conserved EAL motif.
The backgrounds of conserved residues are labelled black and grey ac-
cording to their conservation degree
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in reaction buffer. Hemin (Sigma-Aldrich, Munich, Germany)
was dissolved in 100 mmol/L NaOH, and aliquots were added
into the sample of blank buffer, the sample containing
2 μmol/L purified PAS protein, 2 μmol/L purified
PASH45A protein and 50 μmol/L haemoglobin (Sigma-
Aldrich, Munich, Germany), respectively. Purchased
haemoglobin was used here as positive control. The mixed
samples were then incubated at room temperature for 30 min
before being measured. Absorption spectra between 250 and
800 nm were recorded, and the absorption spectra were
analysed.

Enzymatic activity assays by HPLC-MS The in vitro purified
GGDEF domain and EAL domain proteins were assayed for
the diguanylate cyclase (DGC) activity and the phosphodies-
terase (PDE) activity as described previously with some mod-
ification (Russell et al. 2013). HPLC-MS was used to detect
the level of c-di-GMP present in the reaction buffer. The DGC
and PDE activity were all investigated in the same reaction
buffer (25 mmol/L Tris, 250 mmol/L NaCl, 10 mmol/L
MgCl2, pH 7.9). For DGC activity assay, 2 μmol/L purified
protein and 10 μmol/L GTP were added and the reaction
mixture was incubated at 37 °C for 2 h. For PDE activity
assay, 2 μmol/L purified protein and 10 μmol/L c-di-GMP
were added and incubated at 37 °C for 2 h.

Purified apo-Chp1 and apo-Chp1H45A protein were first
titrated with hemin. Hemin was dissolved in 100 mmol/L
NaOH, and aliquots of solution were added to protein solutions.
The absorptions of protein solutions were read at 411 nm by
Nanodrop 2000c after each addition, and the titrations were
completed when the absorptions remained constant. The deoxy
proteins were prepared by adding 10 mmol/L dithiothreitol to
reconstituted proteins solutions which were flushed with nitro-
gen gas in a glovebox. The oxy proteins were then prepared by
treating the deoxy proteins with O2. For anaerobic and aerobic
conditions, the reactions were performed in glovebox and air,
respectively. For investigation of NO regulation, the deoxy pro-
teins were treated with NO, and all reactions were performed in
the glovebox. To investigate the GGDEF domain regulation of
neighbouring EAL domain by binding GTP, 10 μmol/L GTP
was added into reaction buffer. After 30 min incubation at
37 °C, all reaction mixtures were stopped by boiling for
5 min and then centrifuged at 15,000g for 5 min to remove
any debris. The supernatant was then measured by HPLC-MS
with a reverse phase Hypersil GOLD™ C18 column (3 μm
particle size, Thermo Fisher Scientific, Waltham, USA) accord-
ing to procedures reported previously. The mobile phase
consisted of solvent A: 15 mmol/L acetic acid in 97% water
and 3% methanol and solvent B: 100% methanol. Then, a 50-
min gradient was created by these solvent as follows: t = 0 min,
100% solvent A; t = 5 min, 100% solvent A; t = 10 min, 80%
solvent A; t = 15 min, 80% solvent A; t = 30 min, 35% solvent
A; t = 33 min, 5% solvent A; t = 37 min, 5% solvent A; t =

38 min, 100% solvent A; t = 50 min, 100% solvent A. In addi-
tion, the column temperature was 25 °C, the inject volume was
10 μL, the flow rate was 200 μL/min and the UVabsorbance of
c-di-GMP was measured at 254 nm. Under these chromatogra-
phy conditions, c-di-GMP had a retention time of 18.70 min,
pGpG (the product of PDE activity) had a retention time of
18.37 min and GTP had a retention time of 9.56 min.
Accurate mass measurement of the c-di-GMP, pGpG, and
GTP in negative ion mode was made on tandem quadrupole
mass spectrometer LCQ Fleet (Thermo Fisher Scientific,
Waltham, USA).

Construction of the mutants The gentamycin substitution mu-
tants were constructed by using the allelic exchange vector
pCM351, a vector carrying cre/lox system and a gentamycin
cassette (Marx and Lidstrom 2002). DNA fragments flanking
upstream and downstream of each gene were amplified from
the genomic DNA of ORS571 and cloned into pCM351. The
recombinant vectors were introduced into A. caulinodans
ORS571 by tri-parental conjugation with the helper plasmid
pRK2013. Subsequent allelic exchange between ORS571
chromosome and the recombinant plasmid led to the substitu-
tion of target genes with gentamycin. The resulting
gentamycin substitution mutants were further confirmed by
PCR with corresponding primer pairs. The chp1 gene and
oac cluster deletion mutants were generated by using the sui-
cide vector pK18mobsacB, a vector carrying a sacB gene con-
ferring sensitivity to sucrose which allows selection for vector
loss (Schäfer et al. 1994). To construct the deletion mutants,
upstream fragments and downstream fragments of the target
genes were linked in tandem before inserted into the suicide
vector pK18mobsacB. The following procedures to construct
deletion mutants were the samewith substitutionmutants. The
primers used in the construction are all listed in Supplemental
Table S2.

Extraction and quantification of intracellular c-di-GMP The
extraction of intracellular c-di-GMP was performed as de-
scribed by Russell et al. (2013). The concentration of extract-
ed c-di-GMP was analysed by HPLC-MS and normalized
with the amount of whole cell protein.

Motility assay The motility assay was performed as previously
described with some modification (Vicario et al. 2015). The
A. caulinodansORS571 and mutants grown in TYmedium to
mid-log phase were washed with L3-N minimal liquid medi-
um and normalized to an OD600 of 1.0. Aliquots of 5 μL of
bacterial suspensions were inoculated at the centre of TYand
L3+N/L3-N minimal soft agar plates (agar 0.3%). The inocu-
lated soft agar plates were then incubated for 48 h at 37 °C
before the swimming ring of strains being measured. For mi-
croscopic observation, an aliquot of 5 μL of bacterial suspen-
sion was added to a microscope slide, and the swimming
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behavior was recorded using cellSens Dimension 1.7 imaging
software on an Olympus BX53 system microscope (Olympus
Optical Ltd., Tokyo, Japan) as previously described (Liu et al.
2017b). The swimming velocity of each strain was then cal-
culated by tracking at least 30 cells on video recordings.

Aggregation assay The aggregation assay was performed as
previously described (Jiang et al. 2016).

Quantification of EPS production The EPS produced by
ORS571 and mutants were measured based on the method
described by Nakajima et al. (2012). The Congo red plates
were used as qualitative assay of EPS production. The colo-
nies grown on plates without Congo red were processed to
quantitatively determine the EPS production.

H2O2 sensitivity assay The sensitivity assay was performed
based on the previous reported method (D'Haeze et al. 2004).
Wild type and mutants were grown in L3+N/L3-N medium
overnight to mid-log phase and then normalized to an OD600

of 1.0. To remove the EPS, strains were washed by λ buffer
(10 mmol/LTris, 10 mmol/L MgSO4, pH 7.0) and then washed
with minimal liquid medium twice. The unwashed and washed
cell suspensions were untreated or incubated with 10 mmol/L
H2O2 at room temperature for 20 min. After incubation, cells
were diluted serially and 100 μL aliquot of each dilution was
plated onto TY plates to count the CFU (colony forming unit).
The viability of cells treated with H2O2 was then calculated.

Plant growth and bacterial inoculation The seeds of
S. rostrata were treated with concentrated sulphuric acid for
30 min and washed three times with sterile water. The seeds
were then soaked in sterile water on petri dish and incubated in
the dark at 37 °C for 2 days. After germination, the seedlings
were planted in Leonard jars full of water. For single bacterial
nodulation, the germinated seeds were inoculated with cell
cultures of single strain. For competitive nodulation, the cell
cultures of wild type and mutants were mixed in 1:1 ratio,
respectively. Then, the cell mixtures were inoculated onto
the germinated seedlings. All plants were grown in green-
house, and the root nodules were harvested after 3 weeks.

Acetylene reduction activities (ARAs) assay The assay was
performed by using the protocol developed by Akiba et al.
(2010) with modifications. For measurement of ARAs under
symbiotic state, the root nodules of plants inoculated with a
single strain were used. For measurement of ARAs of strains
under free-living state, bacteria were cultivated under
microaerobic conditions. The acetylene reduction activities
were measured by using gas chromatography 7890A
(Agilent Technologies, Santa Clara, USA) and defined as
C2H4 production/h/g of fresh nodules and C2H4 production/
h/g of protein, respectively.

RNA isolation and qRT-PCR analysis Overnight grown cells of
ORS571 and the mutant Δchp1were inoculated into fresh TY
liquid mediumwith or without 2 mmol/L H2O2 and grown for
another 5 h. The cells were harvested by centrifuging at low
temperature and quickly frozen with liquid nitrogen before
RNA isolation. RNA was isolated by using the SV Total
RNA Isolation System (Promega, Madison, USA) according
to the manufacturer’s instructions. The isolated RNAwas then
used as template for the synthesis of cDNA with the
GoScript™ Reverse Transcription System (Promega,
Madison, USA). For RT-PCR analysis, the GoTaq® qPCR
Master Mix (Promega, Madison, USA) was used and the
cDNAwas diluted differently to determine the expression lev-
el of 16S rRNA and other genes of interest. Primer pairs used
in RT-PCR analysis are all listed in Supplemental Table S2.

Results

GGDEF and EAL domains of A. caulinodans ORS571

The whole genome sequence of A. caulinodans ORS571 had
been determined earlier (Lee et al. 2008). According to the
prediction of SMART database (http://smart.embl.de/), there
were a total of 37 proteins carrying GGDEF and/or EAL do-
mains in ORS571, including 23 and 4 proteins containing
GGDEF and EAL domains alone, respectively, and 10 com-
posite proteins containing both domains (Supplemental Fig.
S1). In addition, there were different regulatory domains, such
as PAS, GAF, REC, and PAC, present in 14 proteins. Previous
studies have shown that these domains are responsible for
binding of signal and regulating function of proteins
(Bourret RB 2010; Heikaus et al. 2009; Henry and Crosson
2011). Therefore, six proteins containing characteristic com-
bination of these regulatory domains were selected. The
encoding genes were AZC_0308, AZC_3085, AZC_3226,
and AZC_4658 (encoding four composite proteins) and
AZC_2412 and AZC_2765 (encoding two GGDEF single do-
main proteins), respectively. The gentamycin resistance sub-
stitution mutants of selected genes were constructed to inves-
tigate their functions. As shown in Supplemental Fig. S2, the
swimming motility of the mutant 0308::gent was impaired
most seriously compared with other mutants. In particular,
high level of c-di-GMP was reported to suppress cell motility
(Simm et al. 2004). The impaired motility of the mutant
0308::gent may suggest the function of AZC_0308, and this
gene was subjected to further investigation.

The chp1 gene is encoding a multidomain protein
related to c-di-GMP metabolism

Since the protein encoded by the gene AZC_0308 was named
as Chp1 (c-di-GMP hydrolysis protein 1) in the introduction
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part, the gene AZC_0308 was renamed as chp1 herein for
convenience. As shown in Fig. 1a, the chp1 gene is flanked
by two genes AZC_0307 and AZC_0309 encoding a
polyhydroxyalkanoate synthesis repressor and a protein of
unknown function, respectively. According to prediction of
the SMART program, the chp1 gene encodes a multidomain
protein containing putative PAS, GGDEF, and EAL domains
(Fig. 1a). To further characterize Chp1, gene portions
encoding the three domains of Chp1 as well as the full-
length Chp1 were subcloned to overexpress the respective
polypeptides products for purification (Fig. 1b) and in vitro
assay of their individual catalytic activity.

Chp1 is a c-di-GMP PDE and it is devoid of DCG activity

GGDEF and EAL domains have long been identified as en-
zyme domains catalysing the synthesis and hydrolysis of c-di-
GMP, respectively. Emerging evidences support the hypothesis
that proteins containing both GGDEF and EAL domains have
variable functionality. Several composite proteins have been
reported to have only one function, either cyclase or esterase
(Garcia et al. 2004; Kuchma et al. 2007; Weber et al. 2006).
But, other composite proteins were shown to be bifunctional
enzymes (Ferreira et al. 2008; Tarutina et al. 2006).

The protein sequence of the putative Chp1 GGDEF domain
was aligned with other GGDEF domains (Fig. 1c). The highly
conserved GGDEF (often GGEEF) motif is known to constitute
the active site of the enzyme responsible for binding of sub-
strates (Jenal and Malone 2006). Alignment data revealed a
degenerate motif containing SGNKF residues showing a poor
conservationwith the consensus sequence, suggesting that Chp1
may not have DGC activity. This was indeed the case. TheDGC
activity of the purified GGDEF domain and full-length Chp1
protein were assayed with GTP as substrate, but there was no
production of c-di-GMP and only the substrate GTP were de-
tected by HPLC-MS (Supplemental Fig. S3).

Multiple sequence alignment of the putative EAL domain
showed that the key residues in the motif of Chp1 EAL do-
main were fully conserved (Fig. 1c). The PDE activity of
purified EAL domain was assayed with c-di-GMP as sub-
strate, which led to production of significant amounts of
pGpG in the reaction buffer after incubation, suggesting that
c-di-GMP was hydrolysed into pGpG (Fig. 2). The results
indicate that Chp1 is a phosphodiesterase with a functional
EAL domain. Previous studies have shown that the catalyti-
cally inactive neighbouring GGDEF domain could allosteri-
cally regulate the activity of EAL domain by binding to its
substrate GTP (An et al. 2010; Christen et al. 2005). To ex-
plore the possible regulatory role of Chp1 protein “GGDEF”
domain, the activity of the purified full-length Chp1 protein
was assayed. However, the PDE activity of Chp1 was not
affected by the addition of GTP (Supplemental Fig. S4),

suggesting that the GGDEF domain did not have a regulatory
role under the conditions of our assay.

The activity of Chp1 is regulated
by the oxygen-sensing PAS domain

PAS domains, which are widely distributed in proteins from
different species, sense changes in oxygen concentrations,
light, redox potential (Taylor and Zhulin 1999). A variety of
ligands are known for PAS domains, such as heme, FAD,
metal ion, and even specific dicarboxylic acids (Cho et al.
2006; Gong et al. 1998; Rebbapragada et al. 1997; Zhou
et al. 2008). PAS domains are commonly located at the N-
terminus of signalling proteins such as histidine kinases,
methyl-accepting chemotaxis proteins, and c-di-GMP
synthases/hydrolases (Galperin 2004). The E. coliDos protein
is a c-di-GMP PDE containing a PAS domain binding heme
(Nixon et al. 2000). The sensor histidine kinase FixL of
rhizobia is also known to sense oxygen via a heme ligand of
its PAS domain (Key and Moffat 2005). The protein sequence
of Chp1 PAS domain was then aligned with PAS domains of
Dos and FixL. Similarity between the aligned sequences was
limited (< 12% identity), but the histidine residue required for
heme binding was fully conserved (labelled with an asterisk in
Fig. 1c). To confirm the role of histidine at position 45 in heme
binding, the mutant PAS45A and Chp1H45Awere construct-
ed by replacing histidine with alanine (Supplemental Fig. S5).
Heme-binding activity was investigated using purified Chp1
PAS domain protein and mutant PASH45A, and the UV-Vis
spectra were analysed. The fresh purified PAS and PASH45A
showed no trace of heme, which suggested that the PAS do-
main was purified primarily as an apoprotein (Fig. 3a). After
heme addition to the preparation, the spectrum of PAS re-
vealed a specific band corresponding to heme binding with
an absorption at 411 nm, similar to what appeared with the
positive control haemoglobin (Fig. 3a) (Sekine et al. 2016).
However, the absorption peak of PASH45A with heme was
similar to that of the free heme. The spectrometric analysis
confirmed that the PAS domain could bind heme by His45,
indicating that the heme-binding PAS domain may regulate
the function of Chp1.

To further document the regulatory role of the PAS domain,
purified apo-proteins were first reconstituted with hemin, de-
oxy, and oxy proteins were then prepared. As shown in
Fig. 3b, the amount of c-di-GMP hydrolysed by oxy-Chp1
was about 30% of deoxy-Chp1 within the same time, which
meant that the PDE activity of Chp1 was greatly reduced
when oxygen bound to heme. As negative controls, the PDE
activities of EAL single domain protein and Chp1H45A
showed no difference in anaerobic and aerobic conditions. In
addition to oxygen, heme could also bind nitric oxide and
carbonic oxide (Gilles-Gonzalez et al. 2005). Furthermore,
there is nitric oxide production in the process of legume-
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rhizobia symbiosis (Nagata et al. 2008). Thus, the nitric oxide
was tested for its potential regulatory role. However, the PDE
activities of all assayed proteins with nitric oxide were about
the same with the activities in anaerobic conditions
(Supplemental Fig. S6). These results suggested that the
heme-binding PAS domain could sense oxygen and regulate
the activity of Chp1.

The Δchp1 mutant shows increased intracellular
c-di-GMP level, decreased motility, increased
aggregation, and EPS production

Construction of a full-length chp1 gene deletion mutant was
achieved to identify phenotypic changes between the wild
type and the mutant strain. The intracellular c-di-GMP level
was first determined. As shown in Fig. 4a, the intracellular c-
di-GMP concentration of Δchp1 mutant was about 1.6-fold
higher than WT, and the result confirmed that Chp1 was truly
a functional PDE in ORS571.

In addition, several phenotypes usually associatedwith sec-
ond messenger c-di-GMP were assayed. Swimming motilities
of the wild type and the Δchp1 mutant were examined on

0.3% soft agar plates of both rich medium (TY) and minimal
medium (L3) containing or not a nitrogen source (+N, -N). As
shown in Fig. 4b, the swimming motility of Δchp1was appar-
ently impaired on all three kinds of medium tested. Also, the
impaired motility of Δchp1 was in accordance with mutant
0308::gent. On TY plates, the swimming diameter of the
Δchp1mutant was about 60% of the wild type. The swimming
diameters of the Δchp1mutant on L3+N and L3-N plates were
75% and 68% of the wild type, respectively. In addition, the
impaired swimming motility of Δchp1 mutant was also con-
firmed by microscopic observations (Supplemental Fig. S7).

c-di-GMP was also reported to positively regulate cell aggre-
gation of several bacterial species (such as Clostridium difficile,
Pseudomonas aeruginosa) (Purcell et al. 2012; Ueda and Wood
2009). Since A. caulinodans ORS571 is capable of auto-
aggregating and forming flocs (Nakajima et al. 2012), the cell
aggregation of the wild type and the Δchp1 mutant was mea-
sured. Cell aggregationwas enhanced over timewith both strains
and the flocs formed at 24 hwere larger than flocs formed at 12 h
(Fig. 4c). However, the Δchp1 mutant strain showed superior
aggregation ability than the wild type, both after 12 h (aggrega-
tion ratio 34% vs 11%) and 24 h (54% vs 16%) incubation.

Fig. 2 HPLC-MS analysis of PDE activity of EAL domain. a HPLC of
the CK sample (c-di-GMP without protein addition). The substrate c-di-
GMP had a retention time of 18.70 min. b HPLC of the EAL reaction
sample. The substrate c-di-GMP had a retention time of 18.70 min, and

the product of PDE activity pGpG had a retention time of 18.37 min. c
ESI-MS of the substrate c-di-GMP (m/z 689). d ESI-MS of the PDE
product pGpG (m/z 707). Mass spectrometry detection was performed
in negative ion mode
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EPS production is reported to be positively regulated by c-
di-GMP (Perez-Mendoza and Sanjuan 2016), and Congo red
is known to bind to polysaccharides. Congo red staining of the
colonies of the Δchp1 mutant was stronger than that of the
wild type suggesting an increased EPS production by the
Δchp1 mutant (Fig. 4d). It was previously shown that the
genes involved in EPS synthesis in A. caulinodans ORS571
were expressed to higher extent in minimal medium than in
rich medium (Tsukada et al. 2009). Consistent with this, the
Congo red staining of the colonies of both strains on minimal
agar plates were stronger than that on rich agar plates. In
addition, the quantitative anthrone-sulphuric acid colorimetric
assay used to quantify EPS production of both stains con-
firmed that the Δchp1 mutant produced more EPS than the
wild type. The EPS production levels of the Δchp1 mutant
were about 40%, 25%, and 50% higher than that of the wild
type on rich (TY) and minimal media (L3+N and L3-N)
plates, respectively (Fig. 4d).

Increased EPS production confers ORS571
with resistance against H2O2

The process of nodulation is accompanied by a massive pro-
duction of H2O2 toxic to bacteria (D'Haeze et al. 2003; Santos
et al. 2001). Previous data showed that EPSs were associated
with protection against reactive oxygen species including
H2O2 (Jang et al. 2016; Lehman and Long 2013). Viability
of the wild type and the Δchp1 mutant strains were compared
after 20-min exposure to H2O2. The mutant strain, which is
producing more EPSs than the wild type, was found more
resistant to H2O2 than the wild type, in all the conditions
assayed (Fig. 5). In addition, decreased viability was observed
when EPS were extensively washed prior the H2O2 treatment
confirming the protective role of EPS (Fig. 5). It is assumed
that the slightly higher viability of Δchp1 mutant (in L3-N
washing condition) may result from the residual EPS. EPS-
related genes are highly expressed in Δchp1 mutant.

EPS production was reported to be regulated by c-di-GMP
both at transcriptional and post-translational levels (Hickman
and Harwood 2008; Perez-Mendoza et al. 2017). Thus, quan-
titative RT-PCR was used to determine if c-di-GMP played a
role in EPS gene expression in the case of ORS571. For exp
gene cluster I (AZC_1831-1834), all of four genes were select-
ed for analysis (Supplemental Fig. S8a). According to Fig. 6a,
the expression levels of exp cluster I genes were at least 10-
fold higher in the Δchp1mutant than in the wild type. Among
them, the AZC_1832was especially highly expressed with 20-
fold higher than the wild type. The expression levels of these
genes were also analysed in H2O2-treated condition. When
both strains were subjected to H2O2 treatment, all four genes
of the wild type were expressed to higher extent (2- to 3-fold),
indicating that bacteria could respond to external oxidative
stress by increasing production of self-protect EPS. The ex-
pression levels of genes in the Δchp1 mutant did not increase
as much as the wild type, and this may result from the in-
creased EPS function as physical barrier against H2O2.
Among exp gene cluster II (AZC_3319-3332), four genes
(AZC_3321, 3322, 3326, 3330) were selected for analysis
(Supplemental Fig. S8b). Different from genes of exp cluster
I, the expression levels of four genes of exp cluster II in the
Δchp1mutant only displayed 3-fold increment above the wild
type (Fig. 6b).

The EPS produced by A. caulinodans ORS571 has been
characterized as a linear homopolysaccharide of α-1, 3-linked
4, 6-O-(1-carboxyethylidene)-D-galactosyl residue (D'Haeze
et al. 2004). As mentioned in the introduction section,
AZC_1831 (oac3) and AZC_1832 (oac2) of the exp cluster I
(named oac cluster) were reported to be involved in the syn-
thesis of EPSs essential for successful nodulation. Moreover,
the positive correlation between increased intracellular c-di-
GMP level and a high expression level of oac cluster genes in
the Δchp1mutant suggested that the oac cluster may be highly

Fig. 3 Analysis of PAS domain and oxygen regulation of activity Chp1. a
Absorption spectra of the negative control free heme (black line), the
positive control haemoglobin (red line), apo-PAS (cyan line), apo-
PASH45A (magenta line), heme-binding PAS (green line), and heme-
binding PASH45A (blue line). b The PDE activity of assayed proteins
was presented by c-di-GMP level. The more c-di-GMP left in reaction
samples, the weaker PDE activity of assayed proteins. CK, no protein
control; EAL, negative control without PAS domain; Chp1, full-length
protein with PAS domain; Chp1H45A, negative control with heme-
binding residue mutation
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induced by c-di-GMP. In order to further investigate the vital
role of oac cluster, an oac cluster deletion mutant Δoac was
constructed. As expected, the EPS production of Δoac was
less than of the wild type and the corresponding viabilities
after H2O2 exposure were also decreased (Supplemental Fig.
S9). However, the EPS production of Δoac was still increased
when grown on minimal plates (L3+N/-N plates). According
to the above results, we could say that the oac cluster I was
mainly regulated by c-di-GMP, while the exp cluster II may be
mainly regulated by the limitation of nutrients.

The Δchp1 mutant has advantage in nodulation
compared to the wild type

The nodulation efficiencies of WT and mutants were then
measured to further examine the protective role of EPS during

the intercellular invasion. First, Δchp1 and Δoacmutants were
inoculated together with the wild type with ratio 1:1 on the
plant host S. rostrata, respectively. The quantitative analysis
showed that the nodulation efficiency of Δchp1 mutant
outcompeted the wild type with about 1.7-fold in numbers
of root nodules, while the nodulation efficiency of Δoac was
significantly reduced down to 10% of the wild type (Fig. 7a).
The positive correlation between EPS production and compet-
itive nodulation efficiency suggested that EPS may play a role
in the nodulation process. Next, both mutants and the wild
type were inoculated separately on the plant host. The number
of nodules formed by the wild type and mutants was not com-
parable since nodule formation varied from plant to plant,
while the size of root nodules could be comparable. As shown
in Fig. 7b, the nodule fresh weight per plant of the Δchp1
mutant was heavier than the wild type. But the nodules formed

Fig. 4 The phenotypes of A. caulinodansORS571 and its mutant Δchp1.
a Intracellular c-di-GMP concentration of WTand Δchp1. c-di-GMP was
extracted from WT and Δchp1, and the concentration was then analysed
by HPLC-MS. b Swimming motility assay. The swimming motility of
WTand Δchp1was detected on 0.3% soft agar plates (TY, L3+N, and L3-
N with succinate as carbon resource), and the swimming diameters were
measured after 2 days of incubation at 37 °C. c Flocculation assay. Top
panel, flocculation conditions ofWTandΔchp1 after shaking for 12 h and

24 h in L3+N (with succinate as carbon resource) liquid medium. Bottom
panel, quantification of the flocculation percentage. d EPS production
assay. Top panel, colonies of WT and Δchp1 grown for 72 h on TY,
L3+N, and L3-N (with succinate as carbon resource) Congo red plates,
respectively. Bottom panel, quantification of EPS production of different
plates. Error bars indicate standard deviations, and asterisks represent
significant differences (*P < 0.05; **P < 0.01)
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by Δoac were much smaller than the wild type, indicating the
reduced fitness caused by the decreased EPS production.

A. caulinodans ORS571 could not only fix nitrogen in
nodules formed on S. rostrata, but was also able to fix nitro-
gen in free-living state under microaerobic conditions
(Dreyfus et al. 1988). Thus, the nitrogen fixation efficiencies
of strains in symbiotic state and free-living state were assayed
using the acetylene reduction test (ARA; see the “Materials
and methods” section). Although the ARAs of Δoac had no
difference with wild type in free-living state, the ARAs of
Δoac in symbiotic state was severely impaired (Fig. 7c, d).
Combined with the impaired nodule formation of Δoac, the
results further suggested that the EPS played vital roles in both
the nodulation process and the symbiosis. The ARAs of the
Δchp1 and the wild type were about the same both in symbi-
otic and free-living state, indicating that the deletion of chp1
genes had no effect on nitrogen fixation efficiency of
ORS571. While with higher weight of nodules, the Δchp1
mutant was still superior to the wild type in nitrogen fixation
efficiency.

Discussion

Genome-wide screening of A. caulinodans ORS571 revealed
37 proteins containing either a GGDEF or EAL domain or
both. Such vast number of c-di-GMPmetabolic genes is com-
mon in rhizobia, ranging from 51 in Bradyrhizobium
japonicum and 21 in S. meliloti (Gao et al. 2014). In
S. meliloti Rm2011, only six putative c-di-GMP metabolic
genes were proved to have an impact on the intracellular c-
di-GMP level (Schäper et al. 2016). Further, the results may
suggest a redundancy of GGDEF and EAL domains. For

A. caulinodans ORS571, the systematic genome-wide inves-
tigation of all c-di-GMP-related genes needs to be further
conducted.

As a GGDEF-EAL composite protein, the Chp1 protein is
actually a phosphodiesterase with a single EAL domain
possessing PDE activity. Previously, the heme-binding PAS
domain-containing protein AxPDEA1 provides an example of
oxygen regulation of PDE activity (Chang et al. 2001). When
the heme iron is coordinated with oxygen, the PDE activity of
AxPDEA1 is reduced. In some bacteria, extracellular H2O2

can enter cells and be hydrolysed into H2O and O2 by catalase
activity (Seaver and Imlay 2001). In this study, there exists a
possibility that the O2 generated from hydrolysis of H2O2

functions as a negative regulatory factor of the Chp1 and leads

Fig. 6 Quantitative RT-PCR analysis of EPS synthesis related genes in
A. caulinodansORS571 and its mutant Δchp1 under different conditions.
a Expression levels of exp genes in cluster I (AZC_1831 to AZC_1834). b
Expression levels of exp genes in cluster II (AZC_3321, AZC_3322,
AZC_3326, and AZC_3331). Total RNAs were isolated from free-living
cells of WT and Δchp1 grown in L3+N liquid medium with or without
addition of H2O2. The expression levels of exp genes were all evaluated
by normalization to the 16S rRNA level. Error bars indicate standard
deviations

Fig. 5 The cell viabilities of A. caulinodans ORS571 and Δchp1 mutant
after treatment with H2O2. The viabilities were calculated after harvested
cells were treated with 2 mmol/L of H2O2 for 20 min after or without
washing the cells. L3+N No washing: cells grown in L3+N liquid medi-
um without washing; L3+N cell washing: cells grown in L3+N liquid
medium with washing; L3-N no washing: cells grown in L3-N liquid
medium without washing; L3-N cell washing: cells grown in L3-N liquid
medium with washing. Error bars indicate standard deviations for six
replicates, and asterisks represent significant differences (*P < 0.05;
**P < 0.01)
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to the elevated c-di-GMP levels. The highly expressed EPS-
related genes of the wild type when treated with H2O2 may
result from the H2O2-caused elevated c-di-GMP levels.
Besides H2O2, the NO production in the nodulation process
has also been reported, and the NO production was induced
transiently in the first 4 h and decreased to its basal level at
10 h (Nagata et al. 2008). Our study showed that NO had no
effect on the PDE activity of Chp1. This indicates that the
potential regulatory role of NO in the nodulation process
may be performed through different mechanisms.

As an important signalling molecule, H2O2 is also involved
in many other physiological processes in plants. For example,
root hair growth and stomatal closure are all regulated by
H2O2 (Cardenas et al. 2008; Pei et al. 2000). The accumula-
tion of H2O2 during the infection process suggests that
rhizobia should have a mechanism to deal with H2O2.
Previously, the H2O2 scavenging enzyme catalase of rhizobia
has been studied for its crucial role in the infection process
(Jamet et al. 2003). However, the catalase is accommodated
inside of the cells and only functions when H2O2 diffuses into
cells (Seaver and Imlay 2001). EPSs are located on the bacte-
rial surface. A previous study has shown that EPSs have H2O2

scavenging ability and could provide the first line of defence
against exogenous H2O2 (Gao et al. 2015). Thus, EPSs and
catalase may work together to protect rhizobia against H2O2

during the nodulation process. For root hair invasion, the pro-
tective function of S. meliloti EPSs against H2O2 has been
reported, and EPS may function during the early stage of
symbiosis with Medicago species (Lehman and Long 2013).
The initial rhizobia invasion is reminiscent of pathogen infec-
tion especially in terms of the host-generated oxidative stress
(Flint et al. 2016). Previous studies showed that increased c-
di-GMP level could confer resistance of the opportunistic
pathogen P. aeruginosa against H2O2 which is part of the host
immunity system. The resistance is attributed to the c-di-GMP
regulated EPSs which function as physical barrier to reduce
H2O2 penetration into cell membranes (Chua et al. 2016). In
the present work, we come to the conclusion that deletion of
the phosphodiesterase Chp1 leads to the elevated intracellular
c-di-GMP level. Then, the resulting increased EPS production
confers A. caulinodans ORS571 with survival advantage
against H2O2 during the infection process (Fig. 8). Finally,
the nodulation efficiency of mutant Δchp1 outcompetes the
wild type.

Many studies have shown that the c-di-GMP regulation of
EPS synthesis functions at different levels. For example, the
repression of the EPS synthesis operon by transcriptional reg-
ulator FleQ could be relieved by the direct binding of c-di-
GMP on the repressor (Hickman and Harwood 2008). The
post-translational regulation of c-di-GMP on EPS synthesis

Fig. 7 The nodulation properties of A. caulinodans ORS571 and
mutants. a The relative nodulation ratio of WT, Δchp1, and Δoac in
competitive nodulation assay, respectively. b The fresh weight of
nodules per plant when WT and mutants were inoculated on Sesbania

rostrata, respectively. cThe ARA activities of root nodules induced by
WT and mutants. d The ARA activities of WT and mutants in free-living
state. Error bars indicate standard deviations for six replicates, and aster-
isks represent significant differences (*P < 0.05; **P < 0.01)
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has also been demonstrated in S. meliloti. The EPS synthase
BgsA is allosterically activated by c-di-GMP binding to its C-
terminal domain (Perez-Mendoza et al. 2017). In this study,
the results of qRT-PCR analysis suggest that the c-di-GMP
regulation of EPS synthesis in A. caulinodans ORS571 may
occur partially at the transcriptional level.

Deletion of the chp1 gene impairs swimming motility
while promoting cell aggregation of A. caulinodans
ORS571. Similarly, the inverse regulation of cell motility
and aggregation by c-di-GMP has been reported inmany other
species (Lee et al. 2010; Purcell et al. 2012; Ueda and Wood
2009). The swimming motility is dependent on bacterial
flagellae, and the c-di-GMP regulation functions at different
levels including transcriptional level and allosteric level.
Transcriptional factors such as FleQ from P. aeruginosa and
VpsT from Vibrio cholera can directly bind c-di-GMP to reg-
ulate the expression level of flagellar biosynthesis genes
(Hickman and Harwood 2008; Krasteva et al. 2010). The
PilZ domain-containing YcgR from E. coli and Salmonella
functions as a molecular brake to reduce the flagellar motor
output (Boehm et al. 2010; Paul et al. 2010; Ryjenkov et al.
2006). According to previous reports, cell aggregation is also
dependent on other factors under the control of c-di-GMP, for
example, type IV pili inC. difficile, cellulose production in the
cyanobacterium Thermosynechococcus or Psl polysaccharide
of P. aeruginosa (Colley et al. 2016; Enomoto et al. 2015). In
addition, the reduced swimming motility also contributes to
the cell aggregation (Caldara et al. 2012; Qi et al. 2013). In the
case of the ORS571 Δchp1mutant, increased EPS production
and impaired swimming motility may function together to
finally lead to the increased cell aggregation.

Previous work of our lab has identified several chemotaxis
proteins including CheZ and chemotaxis receptor IcpB and
TlpA1 (Jiang et al. 2016; Liu et al. 2017a; Liu et al. 2017b).
Deletion of these chemotaxis proteins also affected motility,
EPS production, and nodulation of A. caulinodans ORS571.
In P. aeruginosa PAO1, the interaction between chemotaxis
protein CheR and c-di-GMP receptor MapZ was reported (Xu
et al. 2016). This favours the hypothesis that the complex

network of c-di-GMP may also cross talk with bacterial che-
motaxis in ORS571, a hypothesis which needs to be further
documented.

In conclusion, our study revealed the regulatory role of c-
di-GMP in the nodulation process, which provided a new
perspective to further investigate the rhizobia-legume
symbiosis.
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