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Abstract

Background: In epidemiology, causal inference and prediction modeling methodologies have been historically
distinct. Directed Acyclic Graphs (DAGs) are used to model a priori causal assumptions and inform variable selection
strategies for causal questions. Although tools originally designed for prediction are finding applications in causal
inference, the counterpart has remained largely unexplored. The aim of this theoretical and simulation-based study
is to assess the potential benefit of using DAGs in clinical risk prediction modeling.

Methods: We explore how incorporating knowledge about the underlying causal structure can provide insights
about the transportability of diagnostic clinical risk prediction models to different settings. We further probe
whether causal knowledge can be used to improve predictor selection in clinical risk prediction models.

Results: A single-predictor model in the causal direction is likely to have better transportability than one in the
anticausal direction in some scenarios. We empirically show that the Markov Blanket, the set of variables including
the parents, children, and parents of the children of the outcome node in a DAG, is the optimal set of predictors
for that outcome.

Conclusions: Our findings provide a theoretical basis for the intuition that a diagnostic clinical risk prediction
model including causes as predictors is likely to be more transportable. Furthermore, using DAGs to identify Markov
Blanket variables may be a useful, efficient strategy to select predictors in clinical risk prediction models if strong
knowledge of the underlying causal structure exists or can be learned.

Keywords: Causality, Clinical risk prediction, Prediction models, Markov blanket, Directed acyclic graph,
Transportability, Predictor selection

Background
In modern epidemiology, prediction modeling and
causal inference are generally considered separate
branches with unique sets of methods and aims. How-
ever, recently, the emerging field of “causal learning” or
“causal discovery” has led to the introduction of predic-
tion modelling and machine learning techniques as tools
to generate causal structures based on data-driven pro-
cedures [1]. Despite some specific implementations [2],
movement in the other direction has been less explored;

namely, the application of causal inference principles
and graph theory in clinical risk prediction modeling
strategies.
Diagrams and graphs are intuitive, visual tools used to

inform analytic methods to answer causal questions [3].
The increasing use of causal graphs and the need for au-
tomated procedures to assess causal effects given the
combination of previous structural knowledge and new
data led to the development of a compact, formal theory
free of parametric assumptions to transparently model
causal relationships [3]. Directed Acyclic Graphs (DAGs)
are used to rigorously map all a priori assumptions sur-
rounding a causal question of interest [3] and to graph-
ically describe the underlying data generating process. In
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DAGs, each node represents a random variable, and di-
rected causal paths are represented by arrows. The
causal graph structure thus provides qualitative informa-
tion about the conditional independencies of the vari-
ables of interest. DAGs are used as a tool in causal
inference to illustrate potential sources of confounding
and selection bias and ultimately identify suitable strat-
egies to address them [3, 4]. We assume the reader is fa-
miliar with DAGs; for those not yet familiar, several
accessible introductions have been published elsewhere
[3, 5].
The aim of this work is to investigate the potential

benefits of using DAGs and causal thinking in clinical
risk prediction problems. Specifically, we describe the
use of causal knowledge in assessing transportability and
selecting predictors for a clinical risk prediction model.

Methods
Transportability and the principle of independent
mechanisms
A causal concept that could be useful in clinical risk pre-
diction modeling is the principle of independent mecha-
nisms [1]. This fundamental assumption was formalized
to justify the inference of causal structure from observed
data [1, 6] and was later suggested as a useful hypothesis
to drive machine learning-based prediction approaches
[7].
This principle of independent mechanisms states that

the “causal generative process of a system’s variables is
composed of autonomous modules that do not inform
or influence each other” [1]. This means that a causal
process can be interpreted as a chain of independent
mechanisms, in which each causal mechanism takes the
state output from the previous mechanism as input and
“feeds” the next mechanism with its own state output.
Each causal mechanism on the chain can be conceptual-
ized as a physical mechanism invariant to the input it re-
ceives [1]. The idea of the autonomy of the mechanisms
is actually more intuitive than it seems. In fact, it is how
we justify all clinical interventions: we assume that artifi-
cially changing one mechanism or its input will not
affect any of the other mechanisms [1].
Let’s consider two variables with an unconfounded

causal relationship. For simplicity, we will call these two
variables “Cause” and “Effect”. The joint probability dis-
tribution of these two variables ℙ(Cause,Effect) can be
factorized in two ways [1, 7]:

ℙ Cause; Effectð Þ ¼ ℙ EffectjCauseð Þℙ Causeð Þ ¼ ℙ CausejEffectð Þℙ Effectð Þ

The principle of independent mechanisms states that
the marginal distribution of the variable Cause,
ℙ(Cause), and the conditional distribution of the variable
Effect on the variable Cause, ℙ(Effect|Cause), contain no

information about each other [1, 7]. Indeed, ℙ(Effect|-
Cause) is the distribution of the variable Effect for each
given value of the variable Cause. It represents the phys-
ical mechanism that transforms the input (Cause) into
an output (Effect), while ℙ(Cause) represents the state of
the input. Under the principle of independent mecha-
nisms, ℙ(Cause) and ℙ(Effect|Cause) change independ-
ently of each other across different joint distributions
[1].
This independence constraint in the first factorization

induces a dependency between the conditional distribu-
tion of Cause on Effect, ℙ(Cause|Effect), and the mar-
ginal distribution of the Effect, ℙ(Effect), shown in the
second mathematical factorization in the anticausal dir-
ection [1, 7]. Therefore, ℙ(Effect) and ℙ(Cause|Effect)
often change in a dependent way across different joint
distributions [1]. Since this concept of independence in-
volves mechanisms rather than variables, it cannot be
simply defined, tested, or quantified like the concept of
statistical independence in probability theory [1].
In this work, we present two hypothetical, simplified

clinical examples from the field of neurodegenerative dis-
ease to illustrate the consequences of the principle of in-
dependent mechanisms in the context of diagnostic
clinical risk prediction models. Specifically, we describe
the transportability of two clinical risk prediction models
for Alzheimer’s disease diagnosis using different predic-
tors. In the first example, the disease is the effect of the
predictor (allele APOE ε4 status, which is a known cause
of Alzheimer’s disease), while in the second example, the
disease is the cause of the predictor (concentration of tau
protein in cerebrospinal fluid, which is described as an ef-
fect of the Alzheimer’s disease pathological process).

Predictor selection and the Markov blanket
There is another causal concept that may be useful for
the first and arguably most important step in building
clinical risk prediction models: predictor selection. Here,
we focus on the main challenge of selecting the smallest
possible subset of all available variables that provide
enough information to predict the outcome of interest
with good validity in terms of calibration.
There are many well-known reasons to limit the num-

ber of predictors used to build a risk prediction model:
(i) to reduce problems due to the high number of vari-
ables in the model, thereby increasing performance, (ii)
to reduce the costs, time and effort associated with data
collection and storage, model development or training,
(iii) to enable easier use of the model in different set-
tings, and (iv) to increase the interpretability of the
mechanisms behind the generation of the probability es-
timates [8, 9]. The last reason is particularly important
in the context of clinical risk prediction models. Indeed,
medical doctors are reluctant to use prediction models
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without a certain degree of interpretability [10], since
the output probabilities are used to support clinical deci-
sions about treatments and prevention strategies.
Intuitively, the predictor selection problem can be

interpreted as how to choose the smallest subset of vari-
ables excluding all variables that do not provide add-
itional information on the outcome of interest.
By operationalizing the lack of additional information

using the notion of conditional independence [11], the
entire problem of predictor selection is analogous to
identifying the so-called “Markov Blanket” of the out-
come variable.
We define Y as the random variable for the outcome

of interest and X as the set of all available candidate pre-
dictor variables of Y. We assume that X is a superset of
the variables relevant to the causal processes in which Y
is involved. The Markov Blanket of Y, MB(Y), is the
minimal subset of X, conditioned on which, all other
variables of X not included in MB(Y) are independent of
Y [8, 9]:

∀V ∈ X−MBðYÞ : PrðYjMBðYÞ;VÞ ¼ PrðYjMBðYÞÞ;

where X - MB(Y) denotes the set of variables which are
contained in X but not in MB(Y). The concept of the
Markov Blanket was first introduced by Pearl in 1988 in
his work on Bayesian networks [12]. Years later, it was
first used to identify the theoretical optimal set of vari-
ables for prediction tasks [11].
According to the definition above, given MB(Y), the

other variables contained in X are independent of the
outcome Y. This means that they do not provide any
further information about Y, and all the information to
predict the behavior of the outcome is already contained
in the Markov Blanket MB(Y) [1, 13].
If the technique used to build the prediction model for

Y can fully describe the underlying true probabilities
Pr(Y|MB(Y)), and a model with fewer variables is pre-
ferred, then the variables included in the Markov Blanket
of the outcome Y are the only variables needed for an op-
timal prediction in terms of calibration [8]. Therefore, in
an idealized regression setting, to fit the appropriate
model, the predictor selection task consists of finding the
Markov Blanket of the outcome variable [1, 9]. This con-
cept can be used to link variable selection in clinical risk
prediction modeling to the underlying causal structure of
the data [14].
Let’s consider a DAG G and a set of variables S de-

scribed by a joint distribution ℙS with a density. The dis-
tribution ℙS, is said to be Markovian with respect to G if
each variable is conditionally independent of its non-
descendants (i.e. variables it does not affect), given its
parents (i.e. its direct causes) [1, 9]. This Markov prop-
erty creates a link between ℙS and G, ensuring that all

the conditional independencies entailed by the DAG are
also present in the probability distribution [1, 15].
A further condition makes this link stronger; “faithful-

ness” implies that the only conditional independencies
to hold in the joint distribution ℙS are the ones entailed
in G [14].
The previous intuition can be formalized; it has been

demonstrated that if the joint distribution of the vari-
ables is faithful and Markovian with respect to the DAG,
a predictor is strongly relevant (see [16, 17] for a defin-
ition) for predicting the outcome if and only if it is part
of the Markov Blanket of the outcome [17]. Under these
conditions, the Markov Blanket of the outcome is
unique and has a particular constitution: it includes all
parents of the outcome node, all of its children, and all
parents of its children [1, 8, 9, 12].
As shown in Fig. 1, these nodes “shield” the outcome

variable Y from all the remaining variables in the DAG
[13]. Therefore, the information contained in these
nodes is sufficient to describe the outcome variable’s
status.
These results are appealing for researchers tasked with

selecting predictors for clinical risk prediction modeling.
According to a 2010 review, at least 8 different algo-
rithms have been developed to identify the Markov Blan-
ket for an outcome variable using data-driven
procedures [9]. In the field of causal learning, algorithms
that learn the entire causal structure [14] and the local
causal structure [18] based on the identification of Mar-
kov Blankets have been developed. Given this theoretical
line of argumentation, we believe that a knowledge of
the underlying causal processes behind the data gener-
ation can help to identify the best predictors to be in-
cluded in a clinical risk prediction model.
As proof of concept, we conducted a series of simula-

tions using R version 3.6.3 (R code can be found in the
Supplementary file). We simulated 100,000 datasets with

Fig. 1 Example of the Markov Blanket (in black) of outcome Y in a
simple Directed Acyclic Graph (DAG) with many nodes
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25 variables and 10,000 observations each. Each dataset
was simulated according to a randomly generated DAG
(using the randomDAG function in the dagitty R pack-
age). The DAG included 25 ordered nodes correspond-
ing to 25 variables. Each node was given a probability of
0.1 of receiving a directed arrow from each of the indi-
vidual previous nodes. One of the nodes was then ran-
domly selected as the binary outcome of interest, all
other 24 variables were assumed to be continuous. Any
exogenous variables (i.e. variables without any parent
nodes) were generated as normally distributed variables
with a mean of 0 and variance of 1, or, if the outcome
was exogenous, as a Bernoulli random variable with an
event probability of 0.2.
When the outcome was an endogenous variable (i.e.,

with at least one parent node), each observation was
drawn from a Bernoulli distribution with a defined prob-
ability parameter. This was set as the inverse-logit func-
tion evaluated at the linear combination of the outcome
node’s parent variables, with randomly drawn coeffi-
cients. Specifically, the coefficients (including the inter-
cept) for the outcome endogenous variable were drawn
from a uniform distribution on (− 1,1).
Similarly, the observations of the continuous endogen-

ous variables were randomly drawn from a normal dis-
tribution with unit variance and with the mean equal to
the linear combination of randomly drawn coefficients
and the values of the node’s parent variables. Here, the
coefficients (including the intercept) for each endogen-
ous variable were drawn from a uniform distribution on
(− 2,2). The choice of the regression coefficients was
therefore not restricted in order to satisfy the faithful-
ness assumption by design.
For each of the 100,000 datasets, eight prediction tools

were developed to predict the probability that the binary
outcome equals 1:

(i) a logistic regression model including only variables
in the Markov Blanket of the outcome as
predictors,

(ii) a logistic regression model including all 24 variables
as predictors,

(iii)a logistic regression model including any variable
with a path leading to the outcome node (regardless
of arrow direction on the path) as predictors,

(iv) a logistic regression model including only the
outcome node’s parent variables as predictors,

(v) a logistic lasso regression model inputting all 24
variables,

(vi) a logistic ridge regression model inputting all 24
variables,

(vii)a logistic elastic net regression model with mixing
parameter alpha of 0.5 inputting all 24 variables,
and

(viii) a random forest algorithm inputting all 24
variables.

In all regression models, all included variables were
modeled as being linearly related to the logit of the out-
come. Lasso, ridge, and elastic net models were com-
puted using the glmnet function in the glmnet R
package with default settings. The regularization param-
eter, lambda, that minimized the 10-fold cross-validated
error based on the deviance for logistic regression with
the cv.glmnet function (glmnet package) was selected.
Random forests were built using the randomForest func-
tion in the randomForest R package with 1000 trees and
default settings.
For each dataset, the calibration of each prediction

tool was measured using the Integrated Calibration
Index [19] (ICI) based on 10-fold cross-validation. Lower
ICI indicates better model calibration. The ICI estima-
tion relies on a non-parametric regression between the
outcome variable and the predicted risk estimated by the
prediction tool. Therefore, if the non-parametric regres-
sion fails in one or more of the 10 cross-validation sets,
it is not possible to compute the ICI. This happens if an
intercept-only model or a model with variables’ regres-
sion coefficients very close to 0 is evaluated. We also
compared the variable sets included in the Markov
Blanket-based logistic models with the ones selected by
the lasso and elastic net regression models. We consid-
ered a variable to be selected by the model if the abso-
lute value of its estimated regression coefficient was
nonzero, which we operationalized as a value higher
than 10− 10.

Results
Transportability and the principle of independent
mechanisms
The potential benefit gained from applying the principle
of independent mechanisms to the assessment of trans-
portability of clinical risk prediction models is presented
using two simplified clinical examples from the field of
neurodegenerative disease.

Example 1
Say that we are interested in building a diagnostic clin-
ical risk prediction model for the presence of Alzhei-
mer’s disease (Y = 1), using the APOE ε4 allele status
(X = 1, presence; X = 0, absence) as the sole predictor of
the outcome in the general population of older persons.
Y = 0 indicates disease absence.
Since APOE ε4 is a known cause for Alzheimer’s dis-

ease [20], we could draw the DAG shown in Fig. 2. Note
that we are assuming a direct, unconfounded causal rela-
tionship (a strong assumption). By convention, each vari-
able in the DAG is affected by a “noise” variable, which
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are assumed to be independent of other noise variables
and modeled as random variables. These are usually not
explicitly depicted because they are not of relevance to
the causal relationship under study. However, it is worth
noting that the noise variable affecting X determines the
prevalence of the APOE ε4 allele, while the noise vari-
able affecting Y contributes to the definition of the
causal mechanism between the APOE ε4 allele status
and Alzheimer’s disease [7].
Assume we collect cross-sectional data about Alzhei-

mer’s disease and APOE ε4 allele status in a population
A. Using this data, we can develop a simple diagnostic
clinical risk prediction model using logistic regression to
predict the presence of Alzheimer’s disease. The regres-
sion equation would be:

loge Pr Y ¼ 1jX ¼ xð Þ= Pr Y ¼ 0jX ¼ xð Þð Þ ¼ β0 þ β1x

Using the logistic regression equation it’s possible to
estimate the four conditional probabilities Pr(Y = 1|X =
0), Pr(Y = 1|X = 1), Pr(Y = 0|X = 0), and Pr(Y = 0|X = 1),
which define the conditional distribution ℙ(Y|X). We
will assume that the logistic regression is able to fully
describe this conditional distribution, while the preva-
lence of the APOE ε4 allele (Pr(X = 1)) defines the mar-
ginal distribution ℙ(X) of this predictor.
Next, say we want to use our newly developed risk

prediction model as a diagnostic tool for Alzheimer’s
disease in another population B in which we know there
is a different prevalence of the APOE ε4 allele. The new
distribution of the predictor X in population B can be
denoted as ℙ*(X).
According to the principle of independent mecha-

nisms, the fact that the original distribution of X, ℙ(X),
has been changed to ℙ*(X) does not give any information
on the mechanism ℙ(Y|X) in population B [1, 7]. This is
because X causes Y, and ℙ(Cause) is independent of
ℙ(Effect|Cause).
If the underlying causal mechanism is not altered

(ℙ(Y|X) is the same in the two populations), the diagnos-
tic clinical risk prediction model developed in popula-
tion A will produce valid estimates also in population B.
On the other hand, if the causal mechanism changed,
knowing the predictor distribution ℙ*(X) does not give
us any information about how the mechanism changed

[1, 7]. In this case, the logistic regression model devel-
oped in population A for modeling ℙ(Y|X) is still our
best diagnostic tool candidate [1, 7].
In this example, knowledge of the underlying causal

structure suggests that using the same diagnostic clinical
risk prediction model in the new population is a reason-
able choice [1, 7].

Example 2
Next, say we are still interested in building a diagnostic
clinical risk prediction model for the presence of Alzhei-
mer’s disease, but instead choose to use a different vari-
able as the sole predictor, which indicates whether the
concentration of tau protein in cerebrospinal fluid (CSF-
tau) is above a predefined threshold. As before, Y = 1
and Y = 0 indicate presence and absence of Alzheimer’s
disease. K = 1 indicates high tau protein concentration,
and K = 0 indicates low tau protein concentration.
It is known that high CSF-tau levels are associated

with the presence of Alzheimer’s disease. Specifically, as
a consequence of the deposition of proteins in the brain
that characterizes Alzheimer’s disease, the concentration
of tau protein is altered in the cerebrospinal fluid [21].
Therefore, the high level of tau protein in the cerebro-
spinal fluid can be interpreted as a consequence of Alz-
heimer’s disease, leading to the DAG shown in Fig. 3.
In this example, we define Alzheimer’s disease by its

underlying pathological process instead of based on
diagnostic criteria. However, in the real world, direct ef-
fects are usually incorporated as part of the diagnostic
criteria of the disease for practical clinical purposes. We
further assume a direct effect of Y on K without con-
founding, even though we acknowledge direct effects of
a disease are typically also caused by risk factors for the
disease (introducing confounding in the Y→K causal
relationship depicted in Fig. 3). These strong assump-
tions are needed to create a simplified, illustrative
example.
As before, assume we have collected cross-sectional

data about Alzheimer’s disease and CSF-tau concentra-
tion in a new population C. Using population C data, we
can develop another simple diagnostic clinical risk pre-
diction model to predict Alzheimer’s disease using logis-
tic regression. The estimated regression equation would
be:

Fig. 2 Directed Acyclic Graph (DAG), Example 1

Fig. 3 Directed Acyclic Graph (DAG), Example 2
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loge Pr Y ¼ 1jK ¼ kð Þ= Pr Y ¼ 0jK ¼ kð Þð Þ ¼ γ0 þ γ1k

Assuming that logistic regression is suitable, its equa-
tion fully describes the underlying conditional distribu-
tion ℙ(Y|K), while the prevalence of the high CSF-tau
(Pr(K = 1)) defines the marginal distribution ℙ(K) of the
predictor.
Say that we now want to apply this diagnostic clin-

ical risk prediction model developed in population C to
detect the presence of Alzheimer’s disease in a popula-
tion D with a different prevalence of high CSF-tau con-
centration. However, we are now in an anticausal
scenario in which we are trying to use the effect, CSF-
tau concentration, to detect the cause, Alzheimer’s dis-
ease. Therefore, ℙ(Y|K) does not represent a causal
mechanism and is not independent of ℙ(K).
Since the marginal distribution of CSF-tau levels

changes from ℙ(K) in population C to ℙ* (K) in popula-
tion D, a change in the conditional distribution, ℙ(Y|K),
is likely to occur because we are in an anticausal direc-
tion [1, 7]. The model developed in population C to de-
scribe ℙ(Y|K) will probably not be well calibrated for use
in the population D because the underlying conditional
distribution of Y on K is different in the two popula-
tions. This would also hold if the causal mechanism that
leads from Alzheimer’s disease to the high CSF-tau con-
centration was the same in the two populations, as the
equation describing the conditional distribution of Y on
K is purely a mathematical artefact and does not de-
scribe the causal process.

Predictor selection and the Markov blanket
The results of the simulation study investigating whether
a strong knowledge of the causal structure underlying
the data generation process improves predictor selection
compared to other commonly implemented methods are
shown in Table 1.
In 37,272 of the 100,000 simulated datasets, the out-

come variable node did not have any parents, therefore
it was not possible to assess the performance of logistic
regression including only the outcome node’s parent
variables as predictors in these cases (Table 1). In 8032
simulated datasets, the outcome variable node did not
have any parents or children, therefore it was not pos-
sible to assess the performance of the Markov Blanket-
based logistic model and the logistic regression including
all the variables with a path to the outcome as predictors
(Table 1).
When the Markov Blanket set was empty, both the

lasso and elastic net regression models correctly shrunk
all regression coefficients to zero or very close to zero
approximately 93.3% of the time, leading to an uncom-
putable ICI. Overall, the lasso regression selected exactly
the Markov Blanket set of variables in at least one of the

ten cross-validations in 14,936 (14.9%) simulated data-
sets. The percentage was higher when the Markov Blan-
ket was empty (93.3%) or included only one variable
(46.8%) compared to when it contained two (7.6%) or
more variables. This finding supports the idea proposed
by Li et al. that there is a link between the lasso
regularization and selection algorithm and the identifica-
tion of the Markov Blanket [22].
Overall, the average ICI of the Markov Blanket-based

logistic model (0.01882) was lower compared with all
other investigated prediction tools. This model also
yielded the lowest average ICI (0.01956) when consider-
ing only those datasets in which all prediction tools had
computable ICI values (Table 1). In head-to-head com-
parisons, the ICI of the various prediction tools were
greater than or equal to the ICI of the Markov Blanket-
based logistic model in the majority of the simulated
datasets (range: 57.0 to 98.2%).

Discussion
Transportability and the principle of independent
mechanisms
Through the two simple examples presented, we provide
a theoretical basis for the intuition that a diagnostic clin-
ical risk prediction model including causes as predictors
may be more transportable [23]. As illustrated in Ex-
ample 2, transportability in terms of calibration is likely
to be lower in anticausal scenarios, in which the pre-
dicted outcome is the disease and the predictor is an ef-
fect of the outcome [1, 7].
No common causes of Y and K were included in the

simplified Example 2, and we note that the transport-
ability of the diagnostic clinical risk prediction model to
different populations in similar anticausal scenarios
could be higher if the predictor and the disease share
one or more common cause(s). The idea that risk pre-
diction models including the direct causes of an out-
come of interest as predictors will be more transportable
to different settings is also exploited in the causal learn-
ing “invariant causal prediction” method [1] and in the
machine learning practice of “covariate shift” [1, 7]. In
general, we think the field of diagnostic clinical risk pre-
diction modeling could greatly benefit from the practice
of incorporating knowledge of the underlying causal
structure in modelling strategies. The integration of such
information could provide insights into the transport-
ability of a given diagnostic risk prediction model in dif-
ferent settings [7].

Predictor selection and the Markov blanket
Our results empirically demonstrated equal or superior
performance of the Markov Blanket-based logistic
model, corroborating the theories presented earlier. In
the head-to-head comparisons with each of the other
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approaches, the Markov Blanket-based logistic model
yielded an equal or better calibration in more than 57%
of all generated datasets (range 57 to 98% across the
compared prediction tools). Not only did the Markov
Blanket-based logistic model show good performance in
terms of calibration but also required considerably fewer
input variables than the number of available variables.
Moreover, this approach relies explicitly on summarizing
causal knowledge, which provides a high degree of inter-
pretability in contrast to commonly encountered causally
agnostic approaches.
We acknowledge that in real-world settings, it is un-

likely to encounter ideal situations in which there is per-
fect knowledge of the underlying causal structure, all
requisite variables are available and complete, and non-
linear relationships and interactions are absent. Further
research on deviations from these ideal conditions is
needed, in particular to understand consequences of
model misspecification when statistical interactions or
non-linear relationships are present as well as measure-
ment error. Nevertheless, we believe our results provide
an important contribution as a theoretical basis for using
a DAG that summarizes a priori knowledge of the causal
structure to identify predictors in a simple and struc-
tured way in an ideal setting.

Conclusions
Through a series of theoretical examples and simulation
results, we have shown that strong knowledge of the
underlying causal structure can be useful for under-
standing potential transportability and optimizing pre-
dictor selection for a given clinical risk prediction
model. In the field of clinical risk prediction model de-
velopment and application, we think that a priori causal
information is often ignored or used intuitively without
a structured framework. We are eager to see first appli-
cations of the framework we have outlined, further the-
oretical development, and scientific discussion of this
concept.
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Additional file 1.
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