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Deep Learning-Based 
Quantification of Pulmonary 
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Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative 
impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is 
considered the most sensitive diagnostic method. Macrophages are classified depending on the degree 
of cytoplasmic hemosiderin content. The current gold standard is manual grading, which is however 
monotonous and time-consuming. We evaluated state-of-the-art deep learning-based methods for 
single cell macrophage classification and compared them against the performance of nine cytology 
experts and evaluated inter- and intra-observer variability. Additionally, we evaluated object detection 
methods on a novel data set of 17 completely annotated cytology whole slide images (WSI) containing 
78,047 hemosiderophages. Our deep learning-based approach reached a concordance of 0.85, partially 
exceeding human expert concordance (0.68 to 0.86, mean of 0.73, SD of 0.04). Intra-observer variability 
was high (0.68 to 0.88) and inter-observer concordance was moderate (Fleiss’ kappa = 0.67). Our object 
detection approach has a mean average precision of 0.66 over the five classes from the whole slide 
gigapixel image and a computation time of below two minutes. To mitigate the high inter- and intra-
rater variability, we propose our automated object detection pipeline, enabling accurate, reproducible 
and quick EIPH scoring in WSI.

Patients with pulmonary hemorrhage (P-Hem) suffer from repeated bleeding into the lungs, which can result in 
dyspnea and if untreated, may have life threatening consequences1. There are various causes which lead to P-Hem, 
including drug abuse, premature birth, leukaemia, autoimmune disorders and immunodeficiencies2–6. In this 
paper, we focus on a special subtype of P-Hem called exercise-induced pulmonary hemorrhage (EIPH) in horses. 
Although EIPH also affects healthy human athletes7 and racing greyhounds8, it is diagnosed most commonly in 
racing horses and causes reduced athletic performance9–12. The gold standard for diagnosis of P-Hem in humans 
and equine animals is to perform cytology of bronchoalveolar lavage fluid (BALF)4,13 using a scoring system as 
explained by Golde et al.4. The red blood cells of the bleeding are degraded into an iron-storage complex called 
hemosiderin by alveolar macrophages. Hemosiderin-laden macrophages are called hemosiderophages. Prior to 
microscopic evaluation, the cells are extracted by the BALF procedure and stained with Perlss’ Prussian Blue14 
or Turnbull’s Blue15 in order to visualise the iron pigments contained in the hemosiderin. According to the com-
monly used scoring system (macrophages hemosiderin score) by Golde et al.4, alveolar macrophages can be dis-
tinguished into five grades depending on their hemosiderin content. This scoring system is based on the principle 
that a higher score correlates with increased alveolar bleeding16.
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The macrophages’ hemosiderin score is determined on cytological specimens, which can be digitalised using 
a whole slide scanner resulting in whole slide images (WSI). One of the main issues with manual counting of 
hemosiderophages in digital microscopy - just like in traditional light microscopy - is that it is a laboursome and 
time-consuming task. More importantly, these images are commonly subject to inter- and intra-observer vari-
ability. Additionally, there is the problem that the continuous process of hemosiderin absorption is mapped to 
a discrete grading system. To our knowledge, no previous research has investigated the use of end-to-end, deep 
learning-based object detection methods for the multi-class problem of pulmonary hemorrhage on WSI. In par-
ticular, no study to date has examined the inter- and intra-observer variability for hemosiderophage classification, 
which is crucial when comparing human performance to algorithmic approaches. This is especially important, 
since there is no measurable ground truth available and therefore the consistency of the ground truth annotation 
by an expert is unknown. In this work, the main objective is to develop an overarching deep learning-based 
system for the analysis of whole slide EIPH images. This includes the detection and classification of hemosi-
derophages in an accurate, efficient, explanatory and reliable manner.

The major contributions of this paper are as follows: Firstly, we created the largest published data set of fully 
annotated EIPH images, containing 78,047 single cell annotations by a pathology expert. Secondly, we conducted 
an analysis of the inter- and intra-observer variability for the classification of single hemosiderophages (CoSH) 
by multiple experts and compared the results with deep learning-based methods. Thirdly, we developed a custom 
network architecture dedicated to multi-class whole slide analysis (MCWSA).

This results in a deployable object detection system for EIPH on WSIs, which can process gigapixel images 
in under two minutes on a modern graphics processing unit (GPU) and is freely available for research purposes.

Related Work
To date, the topic of hemosiderophage classification and quantification has not been approached using com-
puter vision methods. However, there have been numerous studies in the past decades with the goal of detecting 
cells, nuclei and mitotic figures for multiple modalities like digital fluorescence microscopy and histopathol-
ogy17–19. Historically, this started as hand-crafted low-level feature extraction20–22. With the recent advent of deep 
learning-based techniques23 these methods transitioned into modern end-to-end optimised object detection 
algorithms like Faster-RCNN24, SSD25 or RetinaNet26. Their underlying end-to-end optimisation approach is 
the foundation of their success in object detection challenges for natural images like PASCAL VOC27 and MS 
COCO28 where no classical approach could outperform a modern deep learning-based object detection method29 
since 2014. The aim of object detection algorithms is to predict the bounding box as well as a class for multiple 
objects irrespective of the scale or a partial occlusion of the objects. These methods have generated state of the 
art results in the fields of pedestrian-, face- and car-detection and are used in state of the art autonomous vehicles 
as well as the interpretation of satellite images27,28,30. Regarding the field of digital pathology object detection, 
the review by Litjens et al.31 reveals that no one had implemented deep learning-based object detection methods 
for the evaluation of medical images as of 2017. In contrast, they mention that sliding window approaches in 
combination with a deep learning-based classification network or U-Net-like segmentation architectures32 are 
being commonly used. The frequent use of U-Net in particular is quite remarkable since segmentation provides 
no means of separating touching or overlapping objects and these methods highly rely on post-processing steps 
for the task of separation. Additionally, in the case of U-Net, the architectures are computationally more complex 
due to their encoder-decoder architecture. Moreover, these networks require a pixel-wise annotation mask for 
obtaining better results, which is time-consuming compared to the relatively simple and fast creation of bounding 
box annotations needed for object detection methods. Ferlaino et al.33 used deep learning-based object detection 
on fully annotated multiclass WSI. For this, they employed RetinaNet26 for nuclei detection and a separate, not 
end-to-end trainable, network for nuclei classification.

Modern object detection approaches can be categorised into the two major categories of single stage and two 
stage algorithms. In single stage setups, the task of detection and classification is solved in one single network, 
examples are YOLO34, SSD25 or RetinaNet26. In two stage algorithms, the task of detection is solved by the use 
of a region proposal network (RPN)24 in the first stage and then classified using an additional network in a sub-
sequent stage. While two stage detection is more accurate in general, the single stage methods yield the better 
ratio of accuracy and inference speed35. This trade-off between speed and accuracy is crucial when analysing WSI 
with billions of pixels. In this work, we used RetinaNet as a starting point for analysing EIPH on WSI because its 
architecture is straightforward, easy to modify and adapt for WSI analysis.

Material
Our research group built a data set of 17 cytological slides of equine bronchoalveolar lavage fluid. The slides were 
prepared by cytocentrifugation and stained for iron content with Prussian Blue (n = 10) or Turnbull’s Blue (n = 
7) which results in an identical colour pattern. Digitalisation of the glass slide was performed using a linear scan-
ner (Aperio ScanScope CS2, Leica Biosystems, Germany) at a magnification of 400× (resolution: . µ0 25 m

px
). Finally, 

all macrophages on each slide were annotated by a veterinary pathologist. All bronchoalveolar lavage fluids were 
obtained from horses with clinical signs of lower respiratory tract disease during routine diagnostic service for 
therapeutic reasons. Written informed consent was obtained from the owners. Therefore, no animal was harmed 
for the construction of this data set. Individual case histories were not considered in the present study and all data 
we received was anonymised by the routine diagnostic service in advance. Using the open source software solu-
tion SlideRunner36, we were able to build a database that includes the annotations for each hemosiderophage on 
the slides with their corresponding grade. This was done by first annotating all pulmonary macrophages and 
afterwards classifying them into their corresponding grade. The scoring system for hemosiderophages was intro-
duced by Golde et al.4 and consists of five classes: It ranges from zero (no intracytoplasmic blue coloured pigment) 
to four (cell filled with hemosiderin; dark blue throughout cytoplasm). The final score was calculated by the 
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method of M. Y. Doucet and L. Viel16 which is an adaptation of Golde et al.4 to be used for horses. In this scoring 
system, three hundred alveolar macrophages were first graded from zero to four, then the total number per grade 
was divided by three and multiplied with the corresponding grade. The resulting total hemosiderin score (THS) 
thus ranges from zero to four hundred. If the score is higher than 75 then the diagnosis pulmonary hemorrhage 
is considered to be confirmed. The completely annotated data set consists of 17 slides and covers an area of 
1,266 mm2(mean = 74 mm2, SD = 9 mm2) containing 78,047 labelled cells (mean = 4,591, SD = 3,389) (see 
Table 1) making it the largest published data set of hemosiderophages and one of the largest of WSI. This novel 
data set allows us to perform object detection on whole hemosiderophages slides for the first time.

Methods
The research was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration 
of Helsinki) and the guidelines of the institutions conducting the experiments.

The aim of this work was to develop and compare algorithmic approaches for predicting the hemosi-
derophages score of WSI. In order to assess how challenging the classification of single hemosiderophages (CoSH) 
is, we investigated two methods considering the single cell labels as a classification and as a regression task. We 
then compared the results with human performance. Additionally, we present methods for multi-class WSI anal-
ysis (MCWSA). Here, we adopted state of the art deep learning-based object detection and regression approaches. 
We used a support vector regression to draw a baseline. To compensate for the sparse cell distribution, we intro-
duce a novel quadtree-based sampling approach to train the object detection networks.

Human performance evaluation. In order to compare our algorithmic approaches with human recogni-
tion performance, we investigated the accuracy and reproducibility of nine cytology experts in labelling single 
cell pulmonary hemosiderophages. We divided them into three groups according to their qualification and expe-
rience with BAL cytology. Each group contained three participants:

• (E)xpert: Veterinary pathologists or clinician with high degree of experience in BAL cytology.
• (P)rofessional: Professional clinician or pathologist with basic experience in BAL cytology.
• (B)eginner: General skills in cytology, but no experience with BAL cytology in particular.
To evaluate the human inter- and intra-observer variability for single cell classification, we extracted two 

test sets containing 1,000 cells each. For test set 1, the images were randomly selected among the labelled cells 
resulting in a representative distribution. Test set 2 contained 1,000 cells with a balanced distribution of 200 cells 
per grade.

Each of the nine cytology experts was asked to classify two thousand cells from the single cell test set 1 and 
2. We did not set a time limit to perform this task. In order to measure the intra-observer variability, they were 
asked to classify all cells again two weeks after the initial assessment. The participants were instructed to perform 
classification according to the methods published by Doucet et al.16.

Sampling strategy. Taking into account that not all slides contain hemosiderophages of grade three and 
four, we used the same fourteen slides to train and validate. However, we used the upper half of each image for 
training and the lower half for validation in order to prevent over-fitting. Three separate slides were selected as 
hold out test set slides.

File Staining Total Cells Score

Count of Cells by Grade

0 1 2 3 4 mean SD

01_EIPH Prussian 4446 126 1013 1782 1218 348 85 1.26 0.96

02_EIPH Prussian 12812 72 5084 6203 1450 64 11 0.72 0.68

03_EIPH Prussian 6325 37 4295 1697 330 3 0 0.37 0.58

04_EIPH Prussian 5448 63 2551 2379 508 10 0 0.63 0.66

05_EIPH Prussian 2489 34 1754 634 99 2 0 0.34 0.55

06_EIPH Turnbull 2992 41 1908 933 148 3 0 0.41 0.59

07_EIPH Turnbull 1073 235 48 127 352 495 51 2.35 0.91

08_EIPH Turnbull 924 67 471 290 160 3 0 0.67 0.76

09_EIPH Turnbull 4752 216 568 1053 932 1446 753 2.16 1.27

10_EIPH Prussian 10385 208 592 2131 4037 3098 527 2.08 0.96

11_EIPH Prussian 5751 59 2839 2452 435 25 0 0.59 0.65

12_EIPH Turnbull 1112 35 767 302 43 0 0 0.35 0.55

13_EIPH Turnbull 968 43 637 252 70 8 1 0.43 0.67

14_EIPH Prussian 3143 39 1995 1062 81 5 0 0.39 0.55

15_EIPH Prussian 1841 148 283 553 859 131 15 1.48 0.86

16_EIPH Prussian 6491 87 2611 2509 984 363 24 0.87 0.89

17_EIPH Turnbull 7095 133 1639 2566 1818 1066 6 1.33 0.99

Table 1. Data set statistics for each fully annotated WSI. The columns show the total number of alveolar 
macrophages/hemosiderophages, the number of cells for each grade and their corresponding mean grade and 
standard deviation. The three final bold lines indicate the test set.
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For deep neural networks, it is beneficial to be trained with equally distributed labelled examples. As shown 
in Table 1, cell grade 3 and 4 rarely occur on some of the WSI. For example, slide 14 includes only one grade 4 
and eight grade 3 hemosiderophages. This means that with an image size of 35,999 × 34,118 pixels and random 
sampling with a patch size of 1024 × 1024 pixels, the chance to sample the grade 4 cell is only 0.08% percent.

Two-stage cluster sampling strategies. For this sampling strategy, we clustered all cells from one WSI on the basis 
of their grade. For training, we randomly selected one of those clusters and chose one of the cells within that 
cluster by chance. Then a patch is randomly shifted in the direct proximity of that cell and the area is sampled for 
training.

Generic quadtree sampling strategies. We developed a novel sampling strategy for microscopy images based on 
a quadtree in order to consider the probability of occurrence of cells as well as their neighbouring cells (see Fig. 1 
center). At each level of the quadtree (depth of the tree can be customised), we saved the cells, their corresponding 
sampling probability and their grade. As seen in Fig. 1 (center), at each level of the quadtree, we have up to four 
nodes. One constraint for the tree while it is being created was that there must be at least three hundred cells in 
each node. One other option would be that the size of the final node must be identical to the training patch size 
(e.g. 1024 × 1024 pixels). In contrast to the sampling strategy described in the previous section, we can sample at 
nodes without any cells by defining a minimum probability. To train our networks, we created a quadtree with a 
depth of three. To create a training sample, we randomly traversed the quadtree according to the sampling prob-
ability of the cells. Figure 1 visualises this novel sampling approach. At the first level, the image is divided into 
four nodes with the sampling probabilities of 35.3%, 32.4%, 13.9% and 18.4% (clockwise). In this example, the top 
right node was selected by chance and was traversed further. This process was repeated until the final node at level 
three was reached and one patch was extracted for training.

Single cell classification (CoCH). The hemosiderophages score is based on a subjective, semi-quantitative 
method in which each cell in a selected region of the WSI is assigned one out of five grades (ranging from zero to 
four). However, this quantised grading system does not reflect the biological nature since there is a continuous 
gain of iron in the hemophages as opposed to a stepwise rise. To take this continuous increase into account, we 
propose a regression-based cell score estimation. We then compare the result to the classification approach mim-
icking the human scoring system.

Classification. For the cell-based classification task, we used a compact ResNet-18 Architecture37 pre-trained on 
ImageNet38 with a fully connected two layer classification head and a final softmax activation. The cells used for 
training and validation were extracted according to the proposed quadtree-based sampling strategy. The Network 
was trained in two stages with the Adam optimiser and a maximal learning rate schedule of 0.01. Categorical 
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Figure 1. Left: Clumps of hemosiderin in an area with artefacts (hair). The used staining method is inadequate 
to distinguish between intra-cellular and extra-cellular hemosiderin, clearly making the annotation of the area 
especially ambiguous. Centre: Example for the sampling strategy on image 17_EIPH Turnbull blue with 7,095 
cells. We can see a high sampling probability for the node with the only grade four cell. Each cells was marked as 
a dot. Right: Object detection result for a region of the image 17_EIPH Turnbull blue with their ground truth on 
top and the predictions at the bottom.
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cross entropy was used as the loss function. First, we trained only the classification head for three epochs, after-
wards we fine-tuned the complete network for an additional twenty epochs until convergence was reached.

Regression. As stated, the hemosiderin absorption is a continuous process which is mapped to a discrete grading 
system. To take his continuity into account, we developed a network with a regression head and a final scaled sig-
moid activation which predicts continuous values in a range of −0.5 to 4.5. This compensates for the implemen-
tation instability for sigmoid activations close to zero and one. The main focus of the experiment was to estimate 
the intra-grade confusion and increase the human interpretability of the results. This modification enables the 
network to predict decimal values between any two grades given that the cell has features supporting two grades, 
which is not possible with a classification approach (see Fig. 2). The network and training schedule were applied 
as described in the single cell classification paragraph. The mean squared error was used as the loss function.

Object detection-based WSI score estimation (MCWSA). Besides investigating pure classification 
performance on single cells where the coordinates are previously known, the actual task in diagnostics is the 
estimation of scores on complete WSIs or subparts thereof. Object detection networks mimic human expert 
behaviour by both detecting and classifying the cells and calculating the score afterwards. One object detection 
approach with a good accuracy-speed trade-off is RetinaNet26 which is a single, unified network composed of a 
backbone network for feature extraction (see Fig. 3a). A feature pyramid network (FPN)39 is built on top of the 
feature extractor to generate rich, multi-scale features by combining low-resolution with semantically strong fea-
tures and high-resolution with semantically weak features (see Fig. 3c). On each layer of the FPN, a classification 
subnet and a regression subnet are called to make predictions (see Fig. 3d,e). The classification head predicts the 
probability of the target object’s presence at each spatial position for each anchor. Anchors are defined by the scale 
and aspect ratio to match the targeted objects on each spatial position. To compensate for the class imbalance, 
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Figure 2. Cell-based regression results on the test data set visualised as a density histogram for the predicted 
scores. As an example, both cells in the middle are labelled with grade two and the regression model assigned 
very different scores to both, which is also clearly comprehensible from the visual appearance of the cell.

Figure 3. Object detection and score prediction based on RetinaNet. (a) ResNet-18 is used as input network for 
the (c) Feature Pyramid Network39 to generate rich, multi-scale features. The features ResNet-18 extracted from 
the patch are used for a direct regression-based score estimation. (d) Predicts a regression-based score for each 
cell, (e) classifies the cell into the five grades and background. (f) Is used for regressing from anchor boxes to 
ground truth bounding boxes.
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focal loss26 was employed during training. The bounding box regression subnet (see Fig. 3f) is generally built in 
a similar fashion as the classification head but was trained with smooth L1 loss and predicted four coordinates 
(x-offset, y-offset, width, height) for each box if a corresponding anchor box existed.

We have modified the RetinaNet architecture in three significant ways to further optimise it for hemosi-
derophage WSI analysis. Firstly, we added an additional regression head which predicts the hemosiderophages 
score for each hemosiderophage (see Fig. 3f). This had the intent to increase the human interpretability of the 
results. As the loss function for the cell-based regression head, mean squared error was used. Secondly, to utilise 
the features extracted from the RetinaNet backbone, we fitted an additional regression head on top of the 
ResNet-18 feature extractor for patch-wise hemosiderophages score prediction. This process is further described 
in the later section deep learning-based regression and visualised in Fig. 3b. Mean squared error was used as loss 
function for the patch-based regression head. The total loss for training our network was calculated by Eq. 1, 
where c specifies the ground truth grade, γ  is a tuneable focusing parameter, αt the class imbalance weighting 
factor, pt is the model’s estimated probability for the class with grade c = 1, and x,y are the arbitrary shapes. The 
network was trained with the Adam optimiser by using a maximal learning rate of 0.001 for 100 epochs until 
convergence was reached. Additionally, to minimise the number of anchors and therefore further optimise the 
architecture towards inference speed we only used the 32 × 32 feature map from the FPN. This was motivated by 
the fact that anchors of higher feature map sizes did not fit the small cell sizes and are limited in their total 
number.
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For comparison, we additionally tested Faster-RCNN24 with a ResNet-50 backbone and SSD25 with 
MobileNetV2 as provided by Huang et al.35. Both networks were trained with the Adam optimiser and a learning 
rate of 0.0001 for 100 epochs until convergence was reached. All networks were trained with random rotation, 
horizontal and vertical flips, but without intensity augmentations. This was appropriate since a shift in intensity 
could alter the cell grade.

Estimation based on image patch regression. Direct estimation of the hemosiderophages score by 
using an image patch-based regression approach is an alternative if the bounding box illustration is not required. 
Furthermore, an image patch-based regression approach could be used to find regions of interest efficiently 
even with standard computer vision approaches which we will discuss in the following two methods for a 
regression-based score estimation. While the first one used a support vector machine (SVM), the second was an 
adaptation of the RetinaNet architecture. The goal of the regression-based algorithm was to predict the grading 
score in a range the from zero to four on an image patch and to average the results for a total WSI.

Support vector machine. In order to set a computationally inexpensive baseline for the task of estimating a 
hemosiderophages score, we trained a support vector machine with a Radial Basis Function (RBF) kernel and a 
convexity value of 0.1. These parameters were found by a grid search for the kernel and complexity parameter. 
As features we used the extracted histograms of a hundred patches per WSI with the sampling strategy described 
before.

Deep learning-based regression. To estimate the hemosiderophages score with a deep learning-based method we 
used the features extracted from RetinaNet and added two fully connected layers and a sigmoid activation for the 
regression head (see Fig. 3b). To compensate for the numerical instability of sigmoid activations close to zero and 
one and in order to enable a prediction score of up to grade four we scaled the sigmoid activation to a range from 
−0.5 and 4.5. The deep learning-based regression network was trained as a part of our RetinaNet-based object 
detection pipeline described in section object detection-based WSI score estimation.

Results
All experiments were run on a Linux workstation with a NVIDIA Quadro P5000 graphics card. The average 
calculation time for the object detection task was 101 seconds per WSI. The code for all experiments is available 
online and implemented in pytorch40 with fast.ai. The trained model can be downloaded freely and utilised with 
the open source software SlideRunner36 as shown in the Supplementary Video file.

Object detection evaluation. Average Precision (AP) was originally introduced in the 2007 PASCAL VOC 
challenge27 and is commonly used to assess object detection performance. AP is the average detection precision 
under different recalls and mean Average Precision (mAP) is the average over all five grades.

Cell classification (CoCH). As stated above, we conducted an assessment of expert classification perfor-
mance for comparison and to set a baseline. Comparing human experts and the deep learning classification 
pipeline, we found only offsets by one class by the deep learning system, whereas human expert disagreement 
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was generally higher, especially for the higher grades 2, 3 and 4. In these categories disagreement in grade was 
significant for some cases (see Fig. 4). Concordance with the ground truth data was 85% for both automatic 
methods, whereas the human experts scored in a range of 69–86% (mean = 74, SD = 5) for the first round of 
labelling (V0) and 66–81% (mean = 73, SD = 4) for the second round of labelling (V1). This illustrates that we 
were able to reach human expert-level concordance with the cell-based regression and classification approach. 
The intra-observer variability ranges from 68 to 88% (mean = 79, SD = 6) with a mean Cohen’s kappa score of 
0.74. The inter-observer Fleiss’ kappa score was 0.67 at the first round of labelling (V0) and 0.68 at the second 
(V1). For the first round of labelling (V0) the F1 score per grade was F1(0) = 0.86 (SD = 0.08), F1(1) = 0.74 (SD 
= 0.08), F1(2) = 0.62 (SD = 0.11), F1(3) = 0.50 (SD = 0.16) and F1(4) = 0.68 (SD = 0.21) and the second round 
of labelling (V1) F1(0) = 0.87 (SD = 0.07), F1(1) = 0.73 (SD = 0.07), F1(2) = 0.60 (SD = 0.09), F1(3) = 0.47 (SD 
= 0.14) and F1(4) = 0.61 (SD = 0.28). The process of classifying two thousand cells took each expert roughly 
two hours while the deep learning approach took five seconds. The human expert classification accuracy lead to 
a hypothetical mAP in the range of 0.57 (concordance 0.68) to 0.74 (concordance 0.86) with a mean of 0.60 (con-
cordance 0.73) under the precondition that all cells are detected exactly as in the ground truth. The ground truth 
mean hemosiderophages score for the 2000 cells was 147 which was predicted by both deep learning approaches 
with a margin of 1 whereas the human experts have a mean score error of −15 with a standard deviation of 12. 
The results are visualised in the left sub figure of Fig. 5.

Object detection (MCWSA). Our object detection approach showed a mean average precision (mAP) of 
0.66 (SD = 0.18, IoU = 0.5) over the three test set WSIs with a total of 3,518 patches and 15,427 cells. Table 2 
shows the results per WSI over all tested networks with a maximal mAP of 0.66 reached by multiple approaches. 
The average error for cell-based grade score was 9 (SD = 24) and was calculated by taking the absolute difference 
of all ground truth cell grades and the predicted grades. For better understanding, a patch-wise analysed WSI is 
shown in Fig. 5.

The comparison of the three sampling strategies revealed a good overall convergence for the two stage cluster 
sampling strategy (mAP 0.66) and the quadtree sampling strategy (mAP 0.66), while completely random sam-
pling showed very slow convergence to a lower mAP of 0.28.
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Patch regression. As stated before, we evaluated two approaches to predict the grade score directly without 
additionally predicting bounding boxes and compared the results with our object detection-based approach and 
the ground truth. The bounding box-based approach produced the best results with an error of 9 compared to 
the deep learning-based regression approach with 19 and the classical support vector-based method with 21 as 
shown at the bottom of Table 2.

Discussion and outlook
We demonstrated that the task of classifying hemosiderophages into the corresponding grading system as pro-
posed by Golde et al.4 is not only monotonous and time-consuming but also highly subjective. This was shown 
by the observed high inter- and intra-observer variability and a moderate inter-observer reliability of agreement 
which strongly suggests that a discrete grading system has its limitations for the quantification of pulmonary 
hemosiderophages. This is an interesting topic for future work. Additionally, human experts who showed a ten-
dency towards assigning grades below the reference grade were occasionally off by two grades. On the other 
hand, there was no obvious difference between the performance of the three defined groups of participants with 
different degree of experience with BAL cytology. In this paper, we proposed a single cell-based classification and 
regression system (CoCH) with a performance comparable to human experts in order to overcome this grading 
limitation. In contrast to the human experts, the classification and regression approaches showed both plausible 
and reproducible outcomes while having an extremely high processing speed. However, the CoCH algorithm 
has the limitation that hemosiderophage cells had to be annotated by a human expert for further classification. 
Unfortunately, there is currently no true gold standard method such as chemical measurement of iron content 
which, of course, would be highly beneficial to validate our deep learning methods13.

Since manual scoring of P-Hem has some limitations, we proposed the use of computerised quantification. 
This could lead to a scoring with promising results regarding accuracy, reproducibility and inference speed. We 
have shown that even with a perfect detection rate at a human level classification, the mAP is less than 0.74. Based 
on this data set, this defines an upper limit for human and algorithmic approaches, which was almost reached by 
the streamlined object detection pipeline based on the RetinaNet-Architecture (MCWSA). Patch-based regres-
sion approaches did not achieve the accuracy of object-based methods as a consequence of their susceptibility to 
blue coloured artefacts. The introduction of the quadtree-based sampling strategy led to more stable and better 
results at the beginning of the training process but ends up with results similar to the two stage cluster-based 
sampling method. Furthermore, besides the investigated intra-observer variability for single cell classification, 
we identified regions where the expert and the algorithm yielded different results. These differences could be 
attributed to artefacts in the sample like hairs (see Fig. 1). The nuclear fast red (counterstain) dyes the nucleus 
light red but not the cytoplasm, which induces difficulty recognising cell borders. To reduce the possibility that 
regions of the WSI were missed by the annotating human expert, an interactive augmented annotation method 
that was trained on already annotated WSI could be introduced. This interactive annotation process could fur-
ther increase the quality of annotated WSI by highlighting areas of the WSI where human annotations and the 
deep learning-based predictions strongly diverge (Fig. 5). Furthermore, this interactive annotation method could 
be used to decrease the amount of required human interactions for annotating WSI by creating a preliminary 
result which has to be subsequently reviewed by the experts. This process should be closely monitored in order 
to refrain from introducing a bias towards accepting the deep learning-based predictions and further research is 
required regarding reliability.

The variance of the human P-Hem scoring could be even higher if human experts have to select a region of 
interest from the WSI to grade instead of getting single cut-out cells as similar research shows for the task of 
mitotic count41. We can see from Fig. 5 that the score is not equally distributed over the whole image and thus the 
final score highly depends on the selected region of interest.

Architecture Backbone Parameter mAP_50
Score 
Error

Inference 
speed

Ours RN-18 11.434.555 0.64 15 101s

Ours RN-18 11.987.739 0.65 13 101s

Ours RN-18 13.683.675 0.66 9 103s

Ours RN-18 22.625.439 0.66 9 111s

RetinaNet RN-18 19.729.755 0.66 9 111s

RetinaNet RN-34 29.837.915 0.66 9 142s

RetinaNet RN-50 36.288.347 0.66 8 258s

SSD MobileNetV2 13.871.354 0.61 21 105s

Faster-RCNN RN-50 128.383.642 0.66 7 305s

SVM RBF-Kernel / / 21 65s

DL-Regression RN-18 11.704.897 / 19 92s

Table 2. Comparison of multiple object detection architectures with their corresponding backbone, number 
of parameters, accuracy, score error and average inference speed per test WSI. We incrementally increased the 
number of channels and convolutional layers in our implementation until the accuracy converged against 0.66. 
Additionally, the errors of the deep learning-based regression and of the support vector machine are shown for 
comparison.
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Finally, this work has some limitations that need to be mentioned. All ground truth annotations were made 
by a single veterinary pathologist, data was collected at one laboratory and specimens were digitised with a single 
slide scanner. The data set comprises only seventeen WSIs, so our proposed approaches need to be validated on 
a larger, more diverse data set. Furthermore, we have taken no action to make an external colour calibration of 
the participants’ screens which could positively influence the results of the participants but does not correspond 
to current clinical practice. In further work, we plan to analyse the effect of manual region selection by human 
experts and evaluate and reduce its impact on the proposed object detection pipeline. Furthermore, we are going 
to introduce an interactive annotation to increase the quality of the data set and effectively label new WSIs while 
analysing possible bias introduced by this. Also, it would be of high interest for us to analyse and evaluate our 
proposed methods and trained models on human pulmonary haemorrhage data sets. We believe a transfer to an 
application on human samples may be possible using only a small data set and transfer learning.

Data availability
The data sets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 26 August 2019; Accepted: 4 May 2020;
Published: xx xx xxxx

References
 1. Ahmad, K. A., Bennett, M. M., Ahmad, S. F., Clark, R. H. & Tolia, V. N. Morbidity and mortality with early pulmonary haemorrhage 

in preterm neonates. Archives of Disease in Childhood-Fetal and Neonatal Edition 104, F63–F68 (2019).
 2. Maldonado, F., Parambil, J. G., Yi, E., Decker, P. A. & Ryu, J. H. Haemosiderin-laden macrophages in the bronchoalveolar lavage fluid 

of patients with diffuse alveolar damage. European Respiratory Journal 33, 1361–1366 (2009).
 3. van Houten, J. et al. Pulmonary hemorrhage in premature infants after treatment with synthetic surfactant: an autopsy evaluation. 

The Journal of Pediatrics 120, S40–S44 (1992).
 4. Golde, D. W., Drew, W. L., Klein, H. Z., Finley, T. N. & Cline, M. J. Occult pulmonary haemorrhage in leukaemia. Br Med J 2, 

166–168 (1975).
 5.  Martínez-Martínez, M. U., Herrera-van Oostdam, D. A. & Abud-Mendoza, C. Diffuse alveolar hemorrhage in autoimmune 

diseases. Current rheumatology reports 19, 27 (2017).
 6. Kahn, F. W., Jones, J. M. & England, D. M. Diagnosis of pulmonary hemorrhage in the immunocompromised host. American Review 

of Respiratory Disease 136, 155–160 (1987).
 7. Hopkins, S. R. et al. Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am J Respir Crit Care 

Med 155, 1090–1094 (1997).
 8. Epp, T. et al. Evidence supporting exercise-induced pulmonary haemorrhage in racing greyhounds. Comp. Exerc. Physiol. 5, 21–32 

(2008).
 9. Morley, P. S., Bromberek, J., Saulez, M. N., Hinchcliff, K. W. & Guthrie, A. J. Exercise-induced pulmonary haemorrhage impairs 

racing performance in t horoughbred racehorses. Equine Vet. J. 47, 358–365 (2015).
 10. Hinchcliff, K. W. et al. Association between exercise-induced pulmonary hemorrhage and performance in thoroughbred racehorses. 

Journal of the American Veterinary Medical Association 227, 768–774 (2005).
 11. Birks, E. K., Durando, M. M. & McBride, S. Exercise-induced pulmonary hemorrhage. Veterinary Clinics: Equine Practice 19, 87–100 

(2003).
 12. Hinchcliff, K. et al. Exercise induced pulmonary hemorrhage in horses: American college of veterinary internal medicine consensus 

statement. J. Vet. Intern. Med. 29, 743–758 (2015).
 13. Hoffman, A. M. Bronchoalveolar lavage: sampling technique and guidelines for cytologic preparation and interpretation. Veterinary 

Clinics of North America: Equine Practice 24, 423–435 (2008).
 14. Depecker, M. et al. Comparison of two cytological methods for detecting pulmonary haemorrhage in horses. Veterinary Record 177, 

305–305 (2015).
 15. Denk, H., Künzele, H., Plenk, H., Rüschoff, J. & Seller, W. Romeis mikroskopische technik. Urban und Schwarzenberg, München-

Wien. Baltimore 439–450 (1989).
 16. Doucet, M. Y. & Viel, L. Alveolar macrophage graded hemosiderin score from bronchoalveolar lavage in horses with exercise-

induced pulmonary hemorrhage and controls. J Vet Intern Med 16, 281–286 (2002).
 17. Waithe, D. et al. Object detection networks and augmented reality for cellular detection in fluorescence microscopy acquisition and 

analysis. bioRxiv 544833 (2019).
 18. Baykal, E., Dogan, H., Ercin, M. E., Ersoz, S. & Ekinci, M. Modern convolutional object detectors for nuclei detection on pleural 

effusion cytology images. Multimedia Tools and Applications 1–20 (2019).
 19. Aubreville, M., Bertram, C., Klopfleisch, R. & Maier, A. Field Of Interest Proposal for Augmented Mitotic Cell Count: A Comparison 

of Two Networks. In SciTePress (ed.) Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and 
Technologies - Volume 2: BIOIMAGING, 30–37, https://doi.org/10.5220/0007365700300037 (2019).

 20. Lowe, D. G. et al. Object recognition from local scale-invariant features. In ICCV, 99, 1150–1157 (1999).
 21. Ojala, T., Pietikäinen, M. & Harwood, D. A comparative study of texture measures with classification based on featured distributions. 

PATTERN RECOGN 29, 51–59 (1996).
 22. Dalal, N. & Triggs, B. Histograms of oriented gradients for human detection. In CVPR, vol. 1, 886–893 (IEEE Computer Society, 

2005).
 23. Maier, A., Syben, C., Lasser, T. & Riess, C. A gentle introduction to deep learning in medical image processing. Zeitschrift für 

Medizinische Physik 29, 86–101 (2019).
 24. Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Adv Neural 

Inf Process Syst, 91–99 (2015).
 25. Liu, W. et al. Ssd: Single shot multibox detector. In ECCV, 21–37 (Springer, 2016).
 26. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal loss for dense object detection. In ICCV, 2980–2988 (2017).
 27. Everingham, M., Van Gool, L., Williams, C. K., Winn, J. & Zisserman, A. The pascal visual object classes (voc) challenge. 

International journal of computer vision 88, 303–338 (2010).
 28. Lin, T.-Y. et al. Microsoft coco: Common objects in context. In ECCV, 740–755 (Springer, 2014).
 29. Zou, Z., Shi, Z., Guo, Y. & Ye, J. Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055 (2019).
 30. Mundhenk, T. N., Konjevod, G., Sakla, W. A. & Boakye, K. A large contextual dataset for classification, detection and counting of 

cars with deep learning. In ICCV, 785–800 (Springer, 2016).
 31. Litjens, G. et al. A survey on deep learning in medical image analysis. Med Imag Anal 42, 60–88 (2017).

https://doi.org/10.1038/s41598-020-65958-2
https://doi.org/10.5220/0007365700300037


1 0Scientific RepoRtS |         (2020) 10:9795  | https://doi.org/10.1038/s41598-020-65958-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 32. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Med Image Comput 
Comput Assist Interv, 234–241 (Springer, 2015).

 33. Ferlaino, M. et al. Towards deep cellular phenotyping in placental histology. arXiv preprint arXiv:1804.03270 (2018).
 34. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In Proc IEEE Comput Soc 

Conf Comput Vis Pattern Recognit, 779–788 (2016).
 35. Huang, J. et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proc IEEE Comput Soc Conf Comput Vis 

Pattern Recognit, 7310–7311 (2017).
 36. Aubreville, M., Bertram, C., Klopfleisch, R. & Maier, A. Sliderunner. In Bildverarbeitung für die Medizin 2018, 309–314 (Springer, 

2018).
 37. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. In CVPR, 770–778 (IEEE, 2016).
 38. Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int J Comput Vis 115, 211–252 (2015).
 39. Lin, T.-Y. et al. Feature pyramid networks for object detection. In Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 

2117–2125 (2017).
 40. Paszke, A. et al. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop (2017).
 41. Bertram, C. A. et al. Computerized calculation of mitotic distribution in canine cutaneous mast cell tumor sections: Mitotic count 

is area dependent. Veterinary Pathology (in press) (2019).

Acknowledgements
C.B. gratefully acknowledges financial support received from the Dres. Jutta & Georg Bruns-Stiftung 
für innovative Veterinärmedizin.

Author contributions
C.M. Created the toolchain and deep neural networks, conceived the experiments, analysed the results and wrote 
the main part of the manuscript. M.A. co-wrote the manuscript, created algorithmic baseline results, provided 
expertise through intense discussions, C.B. co-wrote the manuscript, Created the ground truth data set, provided 
expertise through intense discussions and participated in the study as expert J.S., A.J., F.B., M.F., A.B., S.E., S.J., 
J.K. Participated in the study as expert P.M., J.V., R.K., A.M.Provided expertise through intense discussions J. 
H. Provided cytological specimens and expertise through intense discussions All authors contributed to the 
preparation of the manuscript and approved of the final manuscript for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-65958-2.
Correspondence and requests for materials should be addressed to C.M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-65958-2
https://doi.org/10.1038/s41598-020-65958-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep Learning-Based Quantification of Pulmonary Hemosiderophages in Cytology Slides
	Related Work
	Material
	Methods
	Human performance evaluation. 
	Sampling strategy. 
	Two-stage cluster sampling strategies. 
	Generic quadtree sampling strategies. 

	Single cell classification (CoCH). 
	Classification. 
	Regression. 

	Object detection-based WSI score estimation (MCWSA). 
	Estimation based on image patch regression. 
	Support vector machine. 
	Deep learning-based regression. 


	Results
	Object detection evaluation. 
	Cell classification (CoCH). 
	Object detection (MCWSA). 
	Patch regression. 

	Discussion and outlook
	Acknowledgements
	Figure 1 Left: Clumps of hemosiderin in an area with artefacts (hair).
	Figure 2 Cell-based regression results on the test data set visualised as a density histogram for the predicted scores.
	Figure 3 Object detection and score prediction based on RetinaNet.
	Figure 4 From left to right: Confusion matrix for the automatic single cell classification results Accumulated confusion matrix for all human experts On the right the performance metrics diagram visualise the results for the concordance with the ground tr
	Figure 5 The left diagram visualises the regression error for the single cell classification task.
	Table 1 Data set statistics for each fully annotated WSI.
	Table 2 Comparison of multiple object detection architectures with their corresponding backbone, number of parameters, accuracy, score error and average inference speed per test WSI.




