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Summary

Examinees differ in how they interact with assessments. In low-stakes large-scale
assessments (LSAs), missing responses pose an obvious example of such differences.
Understanding the underlying mechanisms is paramount for making appropriate
decisions on how to deal with missing responses in data analysis and drawing valid
inferences on examinee competencies. Against this background, the present work
aims at providing approaches for a nuanced modeling and understanding of test-
taking behavior associated with the occurrence of missing responses in LSAs. These
approaches are aimed at a) improving the treatment of missing responses in LSAs,
b) supporting a better understanding of missingness mechanisms in particular and
examinee test-taking behavior in general, and c) considering differences in test-taking
behavior underlying missing responses when drawing inferences about examinee
competencies. To that end, the present work leverages the additional information
contained in response times and integrates research on modeling missing responses
with research on modeling response times associated with observed responses. By
documenting lengths of interactions, response times contain valuable information on
how examinees interact with assessments and may as such critically contribute to

understanding the processes underlying both observed and missing responses.

This work presents four modeling approaches that focus on different aspects
and mechanisms of missing responses. The first two approaches focus on modeling

not-reached items. The second two approaches aim at modeling omitted items.

The first approach employs the framework for the joint modeling of speed and
ability by van der Linden (2007) for modeling the mechanism underlying not-reached
items due to lack of working speed. On the basis of both theoretical considerations
as well as a comprehensive simulation study, it is argued that by accounting for
differences in speed this framework is well suited for modeling the mechanism
underlying not-reached items due to lack thereof. In assessing empirical test-level
response times, it is, however, also illustrated that some examinees quit the assess-
ment before reaching the end of the test or being forced to stop working due to
a time limit. Building on these results, the second approach of this work aims at
disentangling and jointly modeling multiple mechanisms underlying not-reached
items. Employing information on response times, not-reached items due to lack
of speed are distinguished from not-reached items due to quitting. The former is
modeled by considering examinee speed. Quitting behavior — defined as stopping
to work before the time limit is reached while there are still unanswered items — is

modeled as a survival process, with the item position at which examinees are most
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likely to quit being governed by their test endurance, conceptualized as a third latent
variable besides speed and ability.

The third approach presented in this work focuses on jointly modeling omission
behavior and response behavior, thus providing a better understanding of how these
two types of behavior differ. For doing so, the approach extends the framework
for jointly modeling speed and ability by a model component for the omission
process and introduces the concept of different speed levels examinees operate on
when generating responses and omitting items. This approach supports a more
nuanced understanding of both the missingness mechanism underlying omissions
and examinee pacing behavior through assessment of whether examinees employ

different pacing strategies when generating responses or omitting items

The fourth approach builds on previous theoretical work relating omitted re-
sponses to examinee disengagement and provides a model-based approach that
allows for identifying and modeling examinee disengagement in terms of both omis-
sion and guessing behavior. Disengagement is identified at the item-by-examinee
level by employing a mixture modeling approach that allows for different data-
generating processes underlying item responses and omissions as well as different
distributions of response times associated with engaged and disengaged behavior.
Item-by-examinee mixing proportions themselves are modeled as a function of ad-
ditional person and item parameters. This allows relating disengagement to ability
and speed as well as identifying items that are likely to evoke disengaged test-taking
behavior.

The approaches presented in this work are tested and illustrated by a) evaluating
their statistical performance under conditions typically encountered in LSAs by
means of comprehensive simulation studies, b) illustrating their advances over
previously developed approaches, and c) applying them to real data from major LSAs,
thereby illustrating their potential for understanding examinee test-taking behavior
in general and missingness mechanisms in particular. The potential of the approaches
developed in this work for deepening the understanding of results from LSAs is
discussed and implications for the improvement of assessment procedures — ranging
from construction and administration to analysis, interpretation and reporting — are
derived. Limitations of the proposed approaches are discussed and suggestions for

future research are provided.
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Zusammentfassung

Personen unterscheiden sich in der Art und Weise wie sie mit Tests interagieren. In
low-stakes Large-Scale Assessments (LSAs) stellen starke Variationen im Auftreten
tehlender Antworten auf Individual- wie auf Gruppenebene sichtbare Manifesta-
tionen solcher Unterschieden dar. Ein umfassendes Verstandnis der Mechanismen
fehlender Werte ist sowohl fiir die Entscheidung, wie diese in der Datenanalyse
gehandhabt werden sollen, als auch fiir das Ziehen valider Schlussfolgerungen aus
den Testergebnissen von grofster Bedeutung. Vor diesem Hintergrund werden in der
vorliegenden Arbeit modellbasierte Ansitze zur Modellierung fehlender Antworten
weiterentwickelt. Ziel hierbei ist es, a) Methoden fiir einen verbesserten Umgang
mit fehlenden Antworten bereitzustellen, b) ein differenzierteres Verstandnis von
Testverhalten und insbesondere von zu fehlenden Werte fithrendem Verhalten zu
ermoglichen und c) Unterschiede in diesem Verhalten bei der Analyse und Inter-
pretation von LSA Daten zu berticksichtigen. Hierfiir werden Antwortszeiten als
zusétzliche Informationsquelle zu Testverhalten nutzbar gemacht und bestehen-
de Forschungszweige zur Modellierung fehlender Werte mit Forschungszweigen
zur Modellierung von Antwortszeiten im Kontext beobachteter Itemantworten ver-
kniipft. Antwortszeiten dokumentieren, wie lange TestandInnen mit Items interagie-
ren und konnen dadurch erheblich zum Verstdndnis derjenigen Prozesse beitragen,

die Itemantworten — sowohl beobachteten als auch fehlenden — zugrunde liegen.

Es werden vier Ansédtze vorgestellt, die je verschiedene Aspekte und Mecha-
nismen modellieren. Die ersten beiden Ansédtze behandeln die Modellierung nicht
erreichter Items, die letzten beiden Ansitze die Modellierung ausgelassener Items.

Zunidchst wird das Potential des Ansatzes zur gemeinsamen Modellierung von
Fahigkeit und Bearbeitungsgeschwindigkeit von van der Linden (2007) fiir die Model-
lierung eines Nicht-Erreichen des Testendes aufgrund mangelnder Bearbeitungsge-
schwindigkeit evaluiert. Dies geschieht sowohl auf Grundlage theoretischer Uberle-
gungen als auch mittels einer umfassenden Simulationsstudie. In einer Untersuchung
empirischer Bearbeitungszeiten auf Testebene wird jedoch auch aufgezeigt, dass
einige TestandInnen die Testung abbrechen noch bevor sie das Ende des Tests errei-
chen oder an die Zeitgrenze stofien. Der zweite vorgestellte Ansatz baut auf diesen
Ergebnissen auf, indem er mehrere Mechanismen des Nicht-Erreichen des Testendes
differenziert und gemeinsam modelliert. Informationen zu Antwortszeiten werden
genutzt um zwischen nicht erreichten Items aus mangelnder Bearbeitungsgeschwin-
digkeit und Abbruch zu unterscheiden. Ersteres wird durch die Beriicksichtigung
der Bearbeitungsgeschwindigkeit modelliert. Letzteres wird als Verweildauerprozess

1ii
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konzeptualisiert, bei dem die Itemposition, an der die Testung abgebrochen wurde,
als Funktion der Testausdauer der TestandInnen modelliert wird.

Der dritte vorgestellte Ansatz konzentriert sich auf die gemeinsame Modellierung
von Auslassungs- und Antwortverhalten. Zu diesem Zweck wird der Ansatz zur
gemeinsamen Modellierung von Fahigkeit und Bearbeitungsgeschwindigkeit um
die Auslassungsneigung der TestandInnen erweitert und das Konzept verschiedener
Bearbeitungsgeschwindigkeiten, einhergehend mit Antwortverhalten einerseits und
Auslassungsverhalten andererseits, eingefiihrt. Dadurch erlaubt der vorgestellte
Ansatz ein differenzierteres Verstandnis des Auslassungsmechanismus sowie die
Untersuchung von verschiedenen Testverhalten und Bearbeitungsgeschwindigkeiten,

die mit Antwort- und Auslassungsverhalten einhergehen.

Der vierte Ansatz baut auf theoretischen Arbeiten zu Auslassungen als Indikator
mangelnder Anstrengungsbereitschaft auf. Es wird ein modellbasierter Ansatz fiir
die Identifizierung und Modellierung mangelnder Anstrengungsbereitschaft entwi-
ckelt, wobei letztere durch sowohl Rate- als auch Auslassungsverhalten definiert
ist. Anstrengungsbereitschaft identifiziert der entwickelte Ansatz mittels Misch-
verteilungsmodellen auf Item-mal-Personenebene. Dazu werden unterschiedliche
datengenerierende Prozesse fiir beobachtete Itemantworten, Antwortszeiten und
Auslassungen angenommen, die mit Rate- und Auslassungsverhalten einerseits und
anstrengungsbereitem Testverhalten andererseits assoziiert sind. Die Mischungsge-
wichte auf Item-mal-Personenebene wiederum werden als Funktion zuséatzlicher
Personen- und Itemparameter modelliert. Auf diese Weise konnen Personen- und
Itemcharakteristiken untersucht werden, die mit geringer Anstrengungsbereitschaft
einhergehen; Anstrengungsbereitschaft, Fihigkeit und Bearbeitungsgeschwindig-
keit konnen miteinander in Beziehung gesetzt oder Items identifiziert werden, die

geringe Anstrengungsbereitschaft evozieren.

In der vorliegenden Arbeit werden alle Ansitze getestet und illustriert, indem a)
ihre statistische Leistung unter fiir LSAs typischen Bedingungen mittels umfassender
Simulationsstudien untersucht wird, b) die Vorteile der Modellierung der berticksich-
tigten Verhaltensweisen durch Vergleiche mit bisherigen Ansédtzen herausgearbeitet
werden sowie c) ihr Potential fiir das Verstdndnis von Testverhalten und insbesonde-
re von Verhalten, welches zum Auftreten fehlender Werte fiihrt, anhand empirischer
Daten grofier LSAs veranschaulicht wird. Die Potentiale der vorgestellten Ansétze
zum Verstandnis der Ergebnisse von LSAs werden abschliefiend diskutiert und Im-
plikationen fiir die Analyse, Administrierung, Interpretation und Berichterstattung
von LSAs abgeleitet. Limitationen der vorgestellten Ansédtze werden problematisiert
und Vorschlége fiir zukiinftige Forschung formuliert.
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Introduction

Large-scale assessments (LSAs) aim at measuring examinee competencies (von
Davier, Gonzalez, Kirsch, & Yamamoto, 2013). Their results are of increasing impor-
tance, driving discussions on educational systems and informing policy decisions
(e.g, Addey, Sellar, Steiner-Khamsi, Lingard, & Verger, 2017; UNESCO Institute for
Statistics, 2018). When comparing differences in performance, it is assumed that
these solely go back to differences in competencies. However, this interpretation is
in jeopardy when examinees not only differ in competency but also in the way they
approach the assessment. As such, differences in test-taking behavior might pose an
additional source of variation between examinees. For LSAs to allow valid inferences
on competency differences, recent policy papers on the analysis, interpretation, and
communication of LSA data thus called for “unpacking” examinee performance; that
is, to identify and describe sources of differences in performance that go beyond
differences in competencies (Singer & Braun, 2018). This work will follow their
call by focusing on test-taking behavior associated with the occurrence of missing

responses as an additional source of variation between examinees.

In LSAs it is rather common that examinees do not provide answers to all items
administered, either due to omitting items or due to not reaching the end of the
assessment. Understanding the underlying processes is important for at least two
reasons: First, missing responses force researchers to explicate their beliefs on the
nature of the underlying behavior, which becomes evident in their decision on how
missing data are treated in analysis. For an adequate decision, a comprehensive un-
derstanding of test-taking behavior underlying the occurrence of missing responses
is paramount. Second, there is large variation in the occurrence of missing responses
across examinees and countries, indicating differences in how examinees approach
the assessment. Understanding missingness mechanisms thus supports a better un-
derstanding of differences in test-taking behavior in general and allows considering

these differences when drawing inferences on examinee competencies.

The present work aims at providing approaches for modeling test-taking behavior

underlying missing responses, thereby a) providing tools for improving the treatment
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of missing responses due to examinee behavior in LSAs, b) supporting a more
nuanced understanding of missingness mechanisms in particular and examinee
test-taking behavior in general, and c) considering differences in test-taking behavior
underlying missing responses when drawing inferences on examinee competencies.
To that end, this work leverages the additional information contained in response
times (RTs). By documenting the length of interactions on both the item as well on
the test level, RTs contain valuable information on essential features of processes
underlying both observed and missing responses, namely on their duration. As
such, RTs may critically contribute to understanding the processes operating when
examinees interact with an assessment in general and the processes underlying the

occurrence of missing responses in particular.

In what follows, the approaches introduced in this work will be further motivated
and shortly summarized. First, the necessity of and the advantages coming with
modeling mechanisms underlying missing responses are discussed. Second, an
overview of previous approaches for dealing with missing responses based on
information retrievable from paper-and-pencil-based assessment is provided. Third,
the potential of considering RTs for understanding and modeling test-taking behavior
in general and behavior underlying missing responses in particular is discussed and
previous approaches utilizing RTs for modeling response behavior and handling
missing responses are reviewed. Based on these considerations, the objectives of the
present work are derived and its approaches will be shortly discussed. In the main
body of this work, four approaches for modeling behavioral processes associated with
missing responses are presented, with two approaches focusing on the occurrence of

not-reached items and two on item omissions.

1.1 Missing Responses in Large-Scale Assessments

1.1.1 Terminology

This work focuses on missing observations on items that, although administered,
have not been responded to. Two types of such missing responses are distinguished
in LSA data: omitted and not-reached items (NRIs). Items are said to be omitted
when the examinee has seen an item but, for whatever reason, has decided not to
respond (Mislevy & Wu, 1996). In the case that an examinee failed to attempt a
sequence of items presented at the end of a test, the resulting missing responses are
referred to as not-reached items (Mislevy & Wu, 1996).
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1.1.2 Prevalence of Missing Responses

Missing responses occur to a considerable degree in LSAs. At the same time, there
is large variation in missingness rates across countries, time, studies, and domains.
For instance, in 2012, omission rates within the Programme for the International
Assessment of Adult Competencies (PIAAC) ranged from 2% for the numeracy
domain in Korea to 25.9% for the literacy domain in Chile (OECD, 2013). Likewise,
there is strong variation in whether or not examinees reach the end of the assessment:
The Progress in International Reading Literacy Study on online informational reading
(ePIRLS) 2016, for instance, reported that 2% of examinees in Singapore did not reach
the end of the test, while in Georgia this number was as high as 29% (Foy, 2018). These
large differences in the prevalence of missing responses indicate large differences in

how examinees approach the assessment.

1.1.3 Importance of Understanding Missingness Mechanisms

Prior to analyzing LSA data, researchers need to decide how to deal with missing
responses. A better comprehension of the behavior underlying the occurrence of
missing responses may help to inform the proper treatment of missing data when
estimating parameters of interest (Jakwerth, Stancavage, & Reed, 2003; Kohler, Pohl,
& Carstensen, 2015a). In addition, by indicating differences in test-taking behavior,
missing values due to examinee behavior support insights into how examinees
approached the assessment and might as such be of great value for understanding
examinee performance. Performance decline in Ireland from 2000 to 2009 in the
Programme for International Student Assessment (PISA, OECD, 2017), for instance,
has been attributed to a decline of test-taking motivation rather than a decline in
competency, with an increase in item omissions considered being indicative thereof
(Cosgrove, 2011). In the present work, it is therefore argued to treat missing responses
as a valuable source of information supporting a more comprehensive understanding
of differences in test-taking behavior, and, as such, differences in performance, rather

than a mere nuisance need to be dealt with.

1.1.4 A Measurement Perspective on Missing Responses

For the last decades, item response theory (IRT) models have been the predominant
measurement method in LSAs (von Davier et al., 2013). IRT is grounded on the
assumption that the probability of a correct answer provided by examinee i to item j
can be described as a function of the examinee’s location on the latent construct to be

measured and one or more parameters characterizing the particular item (Molenaar,
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1995). Let u;; = 1 and wy; = 0 indicate a correct and incorrect response, respectively.
In the most simple IRT model, the Rasch model, the probability of observing a correct
response p(u;; = 1) is modeled as a function of examinee ability 6; and item difficulty
bjl
exp(0; — b;)

- 1 +exp(9i—bj)' (L.1)

pluy =1)

In IRT as employed in LSAs, item and person parameters are usually modeled
as fixed and random effects, respectively (Molenaar, 1995). Assuming a normal
distribution for examinee ability 6 yields the following likelihood function

N K
£ =TT pluilo;, 60" 5 g(6iluo, 00), (1.2)

i=1 j=1

where g(6i/ug, 0g) denotes the normal density of the latent trait in the population,
with pg and oy giving the mean and standard deviation of the distribution. In the
presence of missing responses, di; denotes whether or not a response of examinee
i to item j was observed, with djj = 0 denoting an observed and dj; = 1 a missing
response. Thus, estimates of parameters of interest — in this case difficulty parameters
as well as parameters of the distribution of ability — are estimated based on observed
responses, while unobserved responses do not contribute to the likelihood function
and are thus ignored.

Whether or not ignoring missing responses poses a threat to validity and unbi-
asedness of the conclusions drawn from LSAs depends on the missingness mecha-
nisms. The important role of missingness mechanisms for the decision on how to
deal with missing values in the analysis of incomplete data sets has first been fully
acknowledged and formalized in the theory of Rubin (1976) by treating missingness
as a probabilistic phenomenon and, on the basis of the distributional properties
of missingness, deriving conditions under which missing data can and cannot be
ignored in data analysis (Little & Rubin, 2002). Note that in this work, instead of
Rubin’s original notation, the notation and terminology introduced by Little and
Rubin (2002) are employed and adapted to the context of IRT and the notation of the

present work.

For a N subjects by K item response indicator matrix U, a missingness indicator
matrix D of the same dimensions contains information on which elements of U have

been observed and which are missing. That is, each element of D is defined as



MISSING RESPONSES IN LARGE-SCALE ASSESSMENTS

(1.3)

ij =

0 if uy; is observed
1 if uy; is not observed.

D is treated as a set of random variables whose distribution is referred to as missing
data mechanism (Schafer & Graham, 2002). Based on the conditional distribution of
D given U, f(D|U, ), where 1§ denotes the unknown parameters of the distribution
of D, Rubin (1976) has derived conditions under which missing data can be ignored
without threatening valid inferences. For doing so, Rubin (1976) has distinguished

between the observed U,y and missing components U,;s of U.

MISSING COMPLETELY AT RANDOM Data are missing completely at random (MCAR)
if, for all possible values of 1, missingness does not depend on the data U, missing

or observed:
p(DIU, W) = p(Dw) for all U, . (1.4)

Planned missingness occurring due to incomplete block designs (see Gonzalez &
Rutkowski, 2010; Mislevy & Wu, 1996) poses a typical example for responses being
MCAR. In assessments with incomplete block designs such as PISA (OECD, 2017),
examinees are administered different item blocks consisting of a fraction of all items
available in that assessment, with the blocks an examinee receives being assigned

randomly.

MISSING AT RANDOM The missing data mechanism satisfies missing at random
(MAR) if, for all possible values of 1, missingness depends on observed values,

however, not on missing ones. That is,

p(D|U/1|)) = P(D|Uob51 11)) for all Umisz P. (15)

An example for responses being MAR in LSAs are missing responses occurring
due to multistage adaptive testing (Mislevy & Wu, 1996). In PIAAC, for instance,
examinees are routed to item blocks in an adaptive way based on their performance
in previous blocks, such that more able examinees are more likely to receive a more
difficult set of items (OECD, 2013).

MISSING NOT AT RANDOM The missing data mechanism is missing not at random
(MNAR) if Equation 1.5 is violated, that is, if the conditional distribution of D given
U,ps and P does depend on the missing values U,,;;. Hence, MNAR can be written

as
p(DIU,¥) # p(D|Uops, ). (L.6)
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In assessment data, item omissions occurring because examinees could not solve
the items they omitted represent an example of missing responses being MNAR
since the probability of a missing response depends on the missing response itself
(Mislevy & Wu, 1996).

DISTINCTNESS In addition, Rubin (1976) has introduced the condition of distinctness
of P from the parameters of interest x — e.g., item and person parameters. For
likelihood-based inference, this implies that the joint parameter space of (x; ) is
the product of the parameter space of x and the parameter space of . For Bayesian
inference, this implies that prior distributions for x and 1 are independent (Rubin,
1976).

An intuitive example for a violation of distinctness in the context of LSAs are
NRIs occurring due to lack of speed in the case that the level of ability examinees
show on the assessment is related to the level of speed with which they generate

responses.

IGNORABILITY The missing data mechanism is ignorable in the case that the missing
data process is either MCAR or MAR and 1 is distinct from parameters of interest x
(Rubin, 1976). Under these conditions, D does not contain additional information
on the parameters to be estimated above and beyond the observed data Ugys. This,
in turn, implies that missing data can be ignored in data analysis and that it is not
necessary to incorporate the missingness mechanism into models for the observed
data processes (Holman & Glas, 2005). If, however, ignorability does not hold and
the missing data process is not considered, validity of both likelihood-based and
Bayesian inference is jeopardized. Under such conditions in order to draw unbiased
inferences about the parameters of interest, there is a need to establish a model for

the processes that cause missing data (Rubin, 1976).

1.1.5 An (Incomprehensive) Overview of Possible Missingness Mechanisms

Based on theoretical considerations as well as empirical evidence, various mecha-
nisms have been discussed in the literature as underlying item omissions. These
range from lack of confidence in the correct answer (Jakwerth et al., 2003; Mislevy &
Wu, 1996), to lack of willingness to engage with the assessment, respectively lack of
motivation (Cosgrove, 2011; van Barneveld, Pharand, Ruberto, & Haggarty, 2013),
fatigue, or refusal to participate (OECD, 2013). NRIs are often attributed to lack of
speed and reaching the time limit (Mislevy & Wu, 1996; Tijmstra & Bolsinova, 2018).

However, examinees have also been found to stop the assessment before reaching
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the time limit or the end of the test due to, e.g., feeling overtaxed to solve the items
administered or being unwilling to further respond (OECD, 2013).

Above and beyond, in low-stakes LSAs, omission behavior is often seen as
an indicator of lack of test-taking motivation (Cosgrove, 2011; Sachse, Mahler, &
Pohl, 2019; van Barneveld et al., 2013; Wise & Gao, 2017). Although coming with
major implications for policy makers and society at large, test performance in LSAs
comes with little or no consequences for examinees themselves. This renders it
highly probable that (at least some) examinees might not be fully willing “to engage
in working on test items and to invest effort and persistence in this undertaking”
(Baumert & Demmrich, 2001, p. 1). Instead, they “may opt to skip questions, guess
randomly, mark patterns, fail to review their answers for accuracy before handing in
their work, or quit answering assessment items entirely” (van Barneveld et al., 2013,
p- 44). In the case that a portion of item omissions goes back to lack of test-taking
motivation it is also likely for some observed item responses to stem from disengaged
test-taking behavior such as guessing or perfunctory answering (Wise & Gao, 2017).
If so, the data-generating process implied by models of IRT (see Equation 5.1) does
not hold for all observed responses.

Empirically, the occurrence of both item omissions and NRIs has often been found
to be related to ability (Kohler et al., 2015a; Pohl, Grife, & Rose, 2014; Robitzsch,
2014; Sachse et al., 2019; van den Wollenberg, 1979). This indicates that, whatever
the specific processes underlying missing responses, examinees with different levels
of ability differ in test-taking behavior yielding missing responses. Hence, item
omissions and NRIs are highly likely to be nonignorable. Thus, for not jeopardizing
validity of inferences drawn from LSAs, the underlying mechanisms need to be

accounted for.

1.2 Dealing with Missing Responses Employing Information Retrievable from

Paper-and-Pencil-Based Assessment

1.2.1 Classical Approaches

Operationally in LSAs, it is common to deal with missing values due to item omis-
sions and NRIs by either ignoring missing responses or by scoring them as (partially)
incorrect. Two-stage approaches can also be encountered. The Trends in International
Mathematics and Science Study (TIMSS) and PIRLS, for instance, ignore item omis-
sions when calibrating item parameters and subsequently treat missing responses as
incorrect when estimating ability parameters (Foy, 2017, 2018).
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ASSUMPTIONS AND LIMITATIONS Both scoring missing responses as (partially) incor-
rect as well as ignoring missing responses comes with strong assumptions concerning
the data-generating processes underlying missing responses. Ignoring missing data
implies ignorability of the underlying missingness mechanisms (Rose, von Davier,
& Xu, 2010). That is, by ignoring missing responses it is assumed that missing
responses are MAR given the observed responses and the considered background
variables. Empirical evidence (e.g., Kohler et al., 2015a; Pohl et al., 2014; Rose et al.,
2010) as well as substantial considerations (e.g., Mislevy & Wu, 1996) on examinee
behavior during the test, however, suggest that omitted responses as well as NRIs
are likely to be nonignorable and thus need to be accounted for. Not accounting
for nonignorable missing responses can have a strong impact on the conclusions
drawn from assessment data and has been shown to yield biased person and item
parameter estimates (Pohl et al., 2014; Rose, 2013), distort country rankings (Kohler,
Pohl, & Carstensen, 2017; Rose et al., 2010), as well the conclusions drawn from trend

analyses (Sachse et al., 2019).

Approaches scoring missing responses as incorrect assume that in assessment
data, there is no true response “hidden” by the missing value, but that instead
missing responses represent a separate response category, as well as that missing re-
sponses indicate that the examinee did not know the answer (Rohwer, 2013). Scoring
approaches, however, collide with assumptions of IRT. While IRT is grounded on the
assumption that the probability of a correct response is always greater than zero and
increases monotonically as a function of ability, scoring approaches implicitly assume
that the probability of solving a missing item is zero or equals a fixed expression,
regardless of the examinee’s ability level (Lord, 1974; Rose, 2013).

1.2.2 Model-Based Approaches

To model mechanisms underlying nonignorable missing values when estimating
the parameters of interest, various models have been introduced (see Heckman,
1977; Little, 1993, for early developments of such models). Within IRT, model-
based approaches for nonignorable missing data have in common that they perceive
missing data patterns to be a result of a person-specific tendency to (not) respond.
This tendency is incorporated into the IRT model either via an additional latent
(Debeer, Janssen, & Boeck, 2017; Glas & Pimentel, 2008; Holman & Glas, 2005; List,
Koller, & Nagy, 2019; Moustaki & Knott, 2000) or manifest variable (Rose, von Davier,
& Nagengast, 2017; Rose et al., 2010). In the following, when reviewing latent model-
based approaches, it will be focused on modeling item omissions. When reviewing
manifest model-based approaches, it will be focused on modeling NRIs. Note that
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latent approaches have also been adjusted to the context of NRIs (Debeer et al., 2017;
Glas & Pimentel, 2008; List et al., 2019) and there are manifest approaches for item
omissions (Rose et al., 2010).

LATENT MODEL-BASED APPROACH FOR NONIGNORABLE ITEM OMISSIONS Latent
model-based approaches for nonignorable item omissions (Debeer et al., 2017; Hol-
man & Glas, 2005; Moustaki & Knott, 2000; O’Muircheartaigh & Moustaki, 1999)
incorporate an additional latent variable, conceptualized as the examinees” omission
propensity, into the model for ability estimation. This is commonly done within a

multidimensional IRT framework as depicted in Figure 1.1.

For response indicators uy; customary IRT models are employed, e.g., a Rasch
model as given by Equation 5.1. Omission indicators dj; constitute the measurement
model for the examinees’ latent omissions propensity, taking the value 1 if examinee
i omitted item j and 0 if a response was observed. The measurement model for
omission propensity can be parameterized employing either a two-parameter logistic
model (2PL) or a Rasch model. However, since missing data is usually sparse, it is
recommended to employ a Rasch model (Holman & Glas, 2005; Pohl et al., 2014).
That is, the probability that examinee i omits item j is assumed to be a function of

examinee omission propensity &; and item omission difficulty aj:

exp(aj; — &)

~ T epla & (1.7)

Missing propensity £ and ability 8 are assumed to follow a multivariate normal

distribution with mean vector

up = (Mo, Ug) (1.8)
and covariance matrix
(72 Op
Iy = ( o). (1.9)
Opg G&

Doing so yields the following likelihood

N K

L =TT Tpwslbs, 00" %5 (dsla;, £)g(65, Eilug, Zo), (1.10)
o1 j=1

with g(6s, &ilup, Zp) denoting the bivariate normal density of the person parame-
ters. Modeling the omission mechanism in terms of an additional latent variable
(omission propensity) and assuming a joint distribution of omission propensity and

ability corresponds to the assumption that item omissions are MAR given examinee
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omission propensity. As such, in the model, the correlation between 6 and ¢ indicates
the degree of ignorablility in the data, with higher deviations of the correlation from
zero indicating a higher degree of nonignorability in the sense that the parameters
governing the distribution of observed responses are not distinct from the parameters
governing the distribution of item omissions (Holman & Glas, 2005; Pohl & Becker,

2019).

Uy [[Uz | - | Uk Dy || D2| - | Dk

Figure 1.1. Conceptual path diagram for the latent model-based approach
for nonignorable item omissions. U;j and D; represent the response and
omissions indicators for item j. 6 and ¢ represent latent ability and omission
propensity.

The model has been subject to further developments allowing for the relationship
between ability and omission propensity to differ from multivariate normal, omission
propensity to be item-type specific, or for including covariates explaining differences
in omission propensity (Glas, Pimentel, & Lamers, 2015; Kohler, Pohl, & Carstensen,
2015b).

MANIFEST MODEL-BASED APPROACH FOR NONIGNORABLE NOT-REACHED ITEMS
Due to the monotone missingness pattern resulting from NRIs, where all items
preceding the first NRI are reached and all items subsequent to the first NRI are
missing, all information on the missingness pattern following from NRIs is contained
in the person-level number (or proportion) of NRIs (Rose, 2013; Rose et al., 2017).
Therefore, for modeling NRIs, Rose et al. (2010) suggested to consider information
on the person-level proportion of NRIs d; as a manifest variable in the background
model. This can be achieved by either regressing ability 6; on d; or by applying
multi-group IRT models where stratification on d; serves as a grouping variable
(Rose et al., 2010). The approach is illustrated in Figure 1.2. The model is currently
implemented in the PISA analysis framework for handling NRIs (OECD, 2017).

ASSUMPTIONS AND LIMITATIONS Models aiming at modeling the missingness mech-
anisms underlying item omissions and NRIs rely on assumptions concerning the
nature of these processes, some of which might not be met in LSA data. Kohler
et al. (2015b), Pohl and Becker (2019) as well as Robitzsch (2014) addressed and

10
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u Y -

Figure 1.2. Conceptual path diagram for the manifest model-based approach
for nonignorable not-reached items by Rose, von Davier, and Xu (2010). U;
represents the response indicators for item j. 6 denotes latent ability. d gives
the proportion of not-reached items.

evaluated some of the major underlying assumptions for model-based approaches
for nonignorable item omissions. Kohler et al. (2015b) suggested model adjustments
of latent model-based approaches for item omissions that a) allow for omission
propensity to differ for different item types as well as b) incorporate a distributional
assumption for the joint distribution of ability and omission propensity more flexible
than a multivariate normal. In addition, the authors showed that the assumption
of a unidimensional omission propensity as well the assumption of a multivariate
normal distribution of ability and omission propensity oftentimes are not met in real
LSA data. Pohl and Becker (2019) and Robitzsch (2014) addressed the assumption
concerning the kind of nonignorability considered by model-based approaches for
omitted items: By modeling the joint distribution of ability and omission propensity,
model-based approaches for item omissions account for missingness mechanisms
that are nonignorable in the sense that the parameters governing the distribution
of observed responses are not distinct from the parameters governing the distribu-
tion of item omissions. As such, they assume item omissions to be MAR given the
parameters of the omission model. Pohl and Becker (2019) further investigated the
consequences of violations of this assumption for the performance of model-based
approaches for item omissions and showed that model-based approaches in their
present form can not properly deal with missingness mechanisms that directly de-
pend on the unobserved response as would, for instance, be the case when examinees
omit items they otherwise would have responded to incorrectly. Robitzsch (2014)
has provided means for conducting sensitivity analyses on how violations of the
kind of nonignorability assumed in model-based approaches affects conclusions on

examinee ability.

A further limitation of model-based approaches for NRIs and omitted items lies
in the scope of conclusions that can be gained on the basis of these models. Al-

though model-based approaches for item omissions and NRIs allow for conclusions

11



INTRODUCTION

on examinee and item characteristics associated with the occurrence of missing re-
sponses (Kohler et al., 2015a), they do not allow for further insights into the nature of
test-taking behavior underlying the occurrence of NRIs and omitted items.

This work aims at filling this gap by providing models that allow for a more
nuanced understanding of the test-taking behavior underlying NRIs and omitted
items by considering additional information on test-taking behavior that goes beyond
responses, information on missing values, and covariates. When doing so, this work
focuses on leveraging the additional information contained in RTs retrievable from
computerized testing. By documenting the duration of interactions on the item as
well as on the test level, these pose a valuable source of information on the processes

underlying both observed and missing responses.

1.3 Additional Insights Gained from Response Time Data

Using RTs for inferring the nature of cognitive processes has a long tradition in psy-
chology and is a key element for drawing inferences about cognitive and behavioral
processes in a variety of paradigms and theoretical frameworks (see De Boeck & Jeon,
2019; Kyllonen & Zu, 2016; Schnipke & Scrams, 2002, for overviews). Frameworks uti-
lizing RTs for identifying and modeling cognitive or behavioral differences are built
on the rationale that differences in RTs are indicative of qualitative or quantitative
differences in cognitive processes that differ in the time required for their execution.
Hence, RTs pose “natural and evident kinds of data to investigate processes” (De
Boeck & Jeon, 2019, p. 1). With LSAs moving to computerized testing, it becomes
common practice to register RTs for all item responses, resulting in parallel data:
For every item examinees have interacted with, information on both the response
given and the time examinees interacted with that particular item becomes available.
This has stimulated a rapidly growing body of research on how to integrate item-
by-examinee level RTs with IRT models for a more comprehensive understanding
for the processes underlying observed responses. Such approaches either integrate
RTs with response models (Molenaar & De Boeck, 2018; Roskam, 1987; Verhelst, Ver-
stralen, & Jansen, 1997), incorporate responses in models for RTs (Lee, 2007; Thissen,
1983) or model RTs and responses simultaneously but separately (van der Linden,
2007). Exhaustive overviews of psychometric models considering RTs can be found
in De Boeck and Jeon (2019), Lee and Chen (2011), Schnipke and Scrams (2002), and
van der Linden (2007). Considering the additional information contained in RTs
when modeling response processes has repeatedly been proven to be of immense
value from both a measurement as well as a substantive perspective, strengthening
estimation of both person and item parameters (e.g., Ranger & Kuhn, 2012b; van

12
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der Linden, Klein Entink, & Fox, 2010) as well as allowing for inferences on how
examinees allocate their time during the assessment (e.g., Fox & Marianti, 2016) or
detecting differences in response processes (e.g., Molenaar, Oberski, Vermunt, &
De Boeck, 2016; Partchev & De Boeck, 2012; Wang & Xu, 2015).

1.4 Modeling Responses and Response Times Simultaneously but Separately

For building on current practices for modeling observed responses jointly with the
associated RTs, this work builds on the hierarchical speed-accuracy (SA) model by
van der Linden (2007) and further developments thereof. Van der Linden (2007)
proposed to integrate RTs with the modeling of item responses within a hierarchical
framework, allowing for modeling RTs and responses simultaneously but separately
(Figure 1.3). In the SA model, responses and RTs comprise indicators for first-level
measurement models of ability and speed, respectively. On the second level, a joint

distribution is assumed for the first-level person and item parameters.

Van der Linden has presented the SA model with a three-parameter logistic model

(3PL) for response indicators:

exp (V)’ ei — b)’)
1 +exp(v)~6i — b])’

p(uij :]):Xj—f—(]—Xj) (111)
with 6; denoting examinee i’s ability and vj, bj, and x; denoting item i’s discrimina-

tion, difficulty, and pseudo-guessing parameter, respectively.

For RTs tjj, denoting the time examinee i required to generate an answer to item
j, van der Linden (2007) suggested a lognormal model with separate person and
item parameters. In this model, logarithmized RTs are assumed to follow a normal
distribution governed by examinee speed 1; and item time intensity 3;:

ll’l(tij) ~ N( B] — T, a;z). (112)

«; represents the inverse of the RTs” standard deviation and can be interpreted as a
time discrimination parameter. That is, the larger «;, the larger the proportion of the

RT variance that stems from differences in speed across examinees.

On the second level, joint multivariate normal distributions of person and item
parameters are specified. The joint distribution of person parameters is assumed to

be multivariate normal with mean vector

up = (Mo, Hr) (1.13)
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Figure 1.3. Hierarchical framework for the joint modeling of speed and
accuracy by van der Linden (2007).
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Tp— (Ue Ue;) . (1.14)
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Analogously, the joint distribution of item parameters is assumed to be multivariate

and covariance matrix

normal with mean vector

Uy = (Hb; Ky, Ux, u[_’)/ HO() (115)
and covariance matrix!
012) Obv Obx Obp Oba
Obv 0\2; Ovx Oyp  Ovx
Zj = be Ovx 072( Gx[} Gx(x . (116)
Obp Ovg Oxp O'é O0Bo
2

Obx Ova Oxa Opx Oy
This yields the following likelihood

N K
L= H Hp(uiﬂbj,\’jij, 00)f(ti;1B, Ti, o) g(03, Tilup, Zp)h(bj, vi, x5, By, oglug, Xg).

i=1j=1
(1.17)

The first two terms incorporate the assumption of conditional independence of re-
sponse and RT indicators given the second-order variables of the model. Multivariate
normal densities of the person and item parameters are denoted by g(6;, Ti|up, Z5)
and h(bj,vj,xj, Bj, ®lug, £g), respectively. This also illustrates that the hierarchical

Note that van der Linden (2007) and Klein Entink, Fox, and van der Linden (2009) have suggested
to consider transformations of v, x, and « in the joint distribution of item parameters in order to
improve the ranges and account for the skewness of typical empirical distributions of these parameters.
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framework models the relation between speed and ability for a population of ex-
aminees as well as the relations between item parameters for the response and RT
models for a population of items separately from the impact of these parameters on

the responses and RTs on the level of individual examinees or items.

1.4.1 Advantages of Jointly Modeling Responses and Response Times

Considering speed when estimating ability has been shown to come with various
advantages. From a measurement perspective, modeling the additional information
contained in RTs has been shown to strengthen the measurement of ability in the
sense that the SA model yields less biased and more reliable ability estimated as
compared to methods that only consider responses (van der Linden et al., 2010). From
a substantive perspective, the model allows assessing a) how much time examinees
require to generate a response to a given item, b) how this relates to item difficulty as

well as c) how, on an interindividual level, speed relates to ability.

In addition, Pohl and von Davier (2018) have argued that considering speed
and ability jointly allows to disentangle different aspects contributing to examinee
performance: When interacting with a test, examinees choose a certain level of speed
based on such factors as their understanding of the test instructions, perception of
the time limit, and style of work (van der Linden, 2011a). In the literature, the chosen
level of speed is referred to as the examinee’s effective speed during the test. This,
in turn, determines the level of accuracy (or effective ability) examinees can show
under the chosen speed level. Conversely, this implies that if examinees would want
to put a stronger focus on accuracy, they could do so at the expense of working at a
slower pace, resulting in higher effective ability and lower effective speed (van der
Linden, 2009). This intraindividual relationship between effective speed and ability is
referred to as speed-accuracy trade-off (see van der Linden, 2007, for an introduction).
For the interpretation of results obtained from LSAs, examinees choosing to operate
on different speed levels associated with different levels of effective ability could
be problematic. Van der Linden (2007) has noted that a) test scores can only be
assumed to reflect the rank order of the examinees’ abilities when examinees choose
the same level of effective speed and that b) otherwise examinees’ test scores are
“confounded with their decision on speed” (p. 21). Pohl and von Davier (2018)
have argued that modeling and reporting on the displayed level of effective speed
jointly with the displayed level of effective ability allows to explicate the chosen
speed level determining the effective ability examinees operated on when generating
responses and thus allows to disentangle different aspects involved in examinee
performance. Since the intraindividual relationship between speed and accuracy is
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unknown, estimating the effective ability for a certain level of chosen speed is not
possible with assessment designs as currently implemented in LSAs.2

A further advantage of the SA model lies in its flexibility. By choosing different
“plug-ins” for the component models (that is, the first-level models for responses
and RTs and/or higher order models), the model can be adjusted to incorporate
different assumptions on how examinees interact with the assessment. As such,
the SA model has been subject to various extensions and modifications. Examples
for these are models that allow for varying speed and accuracy throughout the test
(Fox & Marianti, 2016; Molenaar et al., 2016), models that assume distributions for
RTs different than lognormal (Klein Entink, van der Linden, & Fox, 2009), or aim at
detecting and modeling differences in response processes, e.g., aberrant response
behavior (van der Linden & Guo, 2008) such as rapid guessing behavior (Wang &
Xu, 2015) or item preknowledge (Lee, 2018; Wang, Xu, Shang, & Kuncel, 2018).

1.5 Response Times and Missing Responses

Compared to the extensive body of research on utilizing RTs for understanding and
modeling the processes underlying observed responses, approaches for utilizing RTs
for handling missing responses are relatively sparse. The additional information
on examinee behavior contained in RTs, however, might come especially valuable
when investigating the occurrence of missing responses and time allocation strategies
associated therewith. With respect to NRIs, cumulated RTs on the test level allow for
assessing whether examinees a) allocated their time unfavorably and reached the time
limit before reaching the end of the test or b) have quit the assessment before reaching
the time limit or the end of the test. Previous work has acknowledged the role of
speed for the occurrence of NRIs, however, only on a conceptual level. In addition,
little attention has been paid to quitting as a potential mechanism underlying NRIs
as well as to the potential of RTs for disentangling different mechanisms underlying
NRIs.

When items are omitted, RTs allow for inferences on the underlying behavioral
processes by, e.g., assessing whether examinees a) quickly skipped responses with
RTs being far below under what was to be expected for examinees taking time to
process and evaluate the item or b) whether RTs are similar to typical RTs associated
with observed responses for the same item, suggesting that examinees seriously
considered the item but, for whatever reason, decided to omit it (Weeks, von Davier,
& Yamamoto, 2016). So far, however, only few approaches exist that leverage the

2See Goldhammer (2015) for suggestions on how to estimate intraindividual speed-accuracy
trade-offs with experimental designs.
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information contained in RTs for dealing with item omissions, the majority of which
are rather heuristic. In what follows, previous work on the use of RTs for handling

NRIs and item omissions will be reviewed and discussed.

1.5.1 Response Times and Not-Reached Items

In tests with time limits, examinees’ decisions on speed determines the probability
of examinees running out of time and showing NRIs (van der Linden, 2011a). As
delineated above, RTs support inferences on the level of speed with which examinees
generated responses, and, as such, contain valuable information on the mechanisms
underlying NRIs. The relationship between speed and the occurrence of NRIs has
been noted in previous research. Tijmstra and Bolsinova (2018) have argued to
conceptualize the occurrence of NRIs as an indicator that examinees did not comply
with test instructions. According to this line of argumentation, by setting time
limits, test administrators aim at measuring the level of ability displayed at an
optimal speed level that makes use of all the time available for completing the test.
Examinees operating at a speed level insufficient to complete the test in time are
thus not complying with test instructions and, by taking more time on the items
they generate responses to, show a higher degree of effective ability than under the
optimal speed level. The authors concluded that currently no methods for dealing
with NRIs are available that allow for inferring on the level of ability that would

have been observed under the optimal speed level.

Pohl and von Davier (2018), however, have pointed out that Tijmstra and Bolsi-
nova’s line of argumentation comes with rather strong assumptions. First, they
neglected that examinees often tend to operate on speed levels higher than optimal.
This is evident in PISA, where the majority of examinees spent far less time on the
assessment than they had available (OECD, 2017). Second, Tijmstra and Bolsinova
(2018) assumed NRIs to result from a lack of speed. However, LSAs such as PIAAC
also report that examinees did not reach the end of the assessment due to quitting
(OECD, 2013). Third, the objectives of major LSAs do not necessarily entail aiming at
estimating ability at an optimal speed level. PIAAC, for instance, aims at measuring
skills that are “necessary for fully integrating and participating in the labor market,
education and training, and social and civic life” (OECD, 2013, p. 16). One could
argue that choosing an appropriate speed level is an important aspect of this skill
set and that, as such, differences in how examinees approach the assessment mirror

important aspects of real-life behavior (see Pohl & von Davier, 2018).
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1.5.2 Using Response Times for Coding Omissions

Omissions usually come with RTs considerably shorter and less variable than RTs
associated with observed responses (Weeks et al., 2016), indicating different under-
lying processes that differ in their execution time. Current approaches leveraging
the separation of RT distributions associated with omitted and observed responses
predominantly use RTs for coding omissions prior to scaling. For doing so, they aim
at identifying RT thresholds that separate RT distributions associated with omitted
and observed responses. Such approaches either employ RTs for scoring omissions

or for scoring both omissions and observed responses.

RESPONSE-TIME-BASED SCORING METHODS FOR OMISSIONS RT-based scoring meth-
ods for omissions assume omissions associated with RTs below a certain threshold
to stem from processes different from those operating when examinees generate
responses. Omissions associated with RTs exceeding the threshold are assumed to
stem from processes similar to those underlying (incorrect) observed responses, since
the examinee engaged sufficiently long with the item to generate a valid response,
however decided not to. Accordingly, in such approaches, the former type of item
omissions is treated as missing and the latter as wrong in all further analyses. Differ-
ent methods exist for identifying the thresholds. PIAAC first introduced RT-based
scoring methods for dealing with item omissions by scoring item omissions associ-
ated with RTs below and above five seconds as missing and incorrect, respectively
(Yamamoto, Khorramdel, & von Davier, 2013). This rule has, however, been crit-
icized to be rather arbitrary (Weeks et al., 2016). Recently, coding methods have
been extended to allow for setting more empirical-based thresholds (Frey, Spoden,
Goldhammer, & Wenzel, 2018; Weeks et al., 2016). Such methods usually report
thresholds that are considerably higher than five seconds and vary across items.

RESPONSE-TIME-BASED SCORING METHODS FOR OMISSIONS AND RESPONSES In re-
cently developed RT-based scoring methods, RTs are employed for scoring omissions
and responses simultaneously, with the underlying rationale being that omissions
and responses below a certain threshold can be assumed to stem from disengaged
test-taking behavior. In their RT-based scoring framework for identifying disengaged
test-taking behavior, Wise and Gao (2017) have defined disengaged test-taking be-
havior as “quickly proceeding through the test without applying [..] knowledge,
skills, and abilities” (p. 348). To achieve that end, examinees are assumed to either
a) rapidly guess on items with a multiple-choice format, b) provide perfunctory
answers to items with an open-response format, or c) rapidly omit items and provide

no response at all. This, in turn, implies a) that disengaged responses differ from
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engaged responses in that they are not generated according to the level of examinee
ability and, as such, show different measurement properties and b) that disengaged
omissions and disengaged responses stem from the same type of test-taking behavior.
In addition, in the approach by Wise and Gao (2017) disengaged behavior is assumed
to be less time consuming than engaged behavior, resulting in shorter RTs. Wise
and Gao (2017) have incorporated these assumptions in RT-based scoring methods
by scoring omissions and responses associated with RTs below a certain threshold
as missing. Omissions above the threshold are scored as incorrect and observed
responses correspond to the observed value. Wise and Gao (2017) thereby have
brought together research on employing RTs for scoring responses as either disen-
gaged guesses or engaged responses with research employing RTs for scoring item

omissions.

ASSUMPTIONS AND LIMITATIONS Although RT-based scoring approaches demon-
strate the use of RTs for dealing with item omissions, they come with strong as-
sumptions concerning the data-generating processes underlying item omissions and
the associated RTs. First, RT distributions for omissions assumed to stem from pro-
cesses different and similar to those operating when examinees generate (incorrect)
responses are not allowed to overlap. The same is true for the RT distributions
associated with engaged and disengaged responses in the framework by Wise and
Gao (2017). This is a rather strong assumption and, as pointed out by Wise (2017),
will inevitably result in misclassifications whenever RT distributions overlap. Sec-
ond, RT-based scoring approaches for item omissions come with strong assumptions
concerning the processes underlying item omissions associated with short and long
RTs. While rapid item omissions are assumed to be ignorable, the probability to solve
an omitted item which has been engaged with for some time is assumed to be zero
(see Lord, 1983; Rose, 2013). These assumptions have been thoroughly discussed in
Section 1.2.1. Likewise, in the approach for scoring both omissions and responses
suggested by Wise and Gao (2017), ignoring item omissions and responses assumed
to stem from disengaged behavior comes with the assumption that ability is unre-
lated to the processes underlying disengaged omissions and responses. Empirical
evidence, however, strongly suggests that this assumption is violated, with ability
and disengaged test-taking behavior frequently being found to be related (e.g., Boe,
May, & Boruch, 2002; Braun, Kirsch, & Yamamoto, 2011; Goldhammer, Martens,
Christoph, & Liidtke, 2016; Wise, Pastor, & Kong, 2009).
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1.6 Aims and Scope of the Present Work

In LSAs, missing responses due to item omissions and NRIs occur to a considerable
degree. Understanding their occurrence is of utmost importance. First, researchers
need to take some decision on how to handle missing responses in data analysis. For
an adequate decision, a comprehensive understanding of the missingness mecha-
nisms is key. Second, differences in missingness rates on both the individual and
the country level indicate substantial differences in how examinees interact with
assessments. Understanding these differences supports insights into, and allows
considering differences in test-taking behavior when drawing inferences on examinee

competencies.

Different approaches exist for handling missing responses, entailing different
assumptions on the underlying mechanisms. Traditionally, approaches for handling
missing responses have relied on information retrievable from paper-and-pencil-
based assessment, i.e., responses, information on missingness, and covariates. With
the rise of computerized testing and the opportunity to log additional information
on how examinees interacted with the assessment, some approaches emerged that
aim at leveraging the information contained in RTs for handling missing responses.
Yet, these approaches are somewhat heuristic and rely on rather strict assumptions

concerning the underlying missingness mechanisms.

Tackling the limitations of previous approaches for missing responses in LSAs,
this work aims at utilizing the additional information contained in RTs for the ob-
jective of providing model-based approaches that support modeling as well as a
nuanced understanding of the test-taking behavior underlying the occurrence of
missing responses in LSAs. This is achieved by integrating research on the modeling
of missing responses and on the modeling of RTs associated with observed responses.
When doing so, separate frameworks are presented for modeling mechanisms under-
lying NRIs (Chapter 2 and 3) and omitted items (Chapter 4 and 5).

Chapter 2 delineates and assesses the potential of modeling speed jointly with
ability as done in van der Linden’s SA framework for modeling the mechanism
underlying NRIs due to lack of speed. It is argued that by accounting for differences
in speed, the SA model is well suited for modeling the mechanism underlying
NRIs due to lack thereof. On the basis of theoretical considerations as well as a
simulation study, it is shown that, compared to the manifest model-based approach
for modeling NRIs by Rose et al. (2010), the SA model provides a closer description
of the missingness mechanism since a) the SA model includes a direct measure of
the mechanism underlying NRIs due to lack of speed, as compared to the number of

NRIs considered in the manifest model-based approach as a rough proxy measure, b)
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the SA model considers differences in working speed also for examinees who reached
the end of the test and thus did not show NRIs, and c) the SA model can also deal
with varying enforcement of time limits — given, that NRIs are the result of lack of
speed. In an application of the approach to empirical data, Chapter 2 also illustrates
the limitations of the SA model for modeling NRIs: Assessing distributions of total
time spent on the assessment jointly with information on the number of reached
items, it is shown that in the data set at hand some examinees with NRIs displayed
test-level RTs close to the time limit, while the vast majority of examinees with NRIs
exhibited test-level RTs far below the time limit due to quitting the assessment before
reaching the time limit or the end of the test. This illustrates that within the same
assessment two different mechanisms — lack of speed and quitting — can underlie the
occurrence of NRIs.

Chapter 3 further builds on these results and extends the SA framework by
additionally including a model for quitting behavior. The framework thus allows
for disentangling and jointly modeling multiple mechanisms - lack of speed and
quitting - underlying the occurrence of NRIs. In the proposed framework, quitting
behavior is defined as stopping to work before the time limit is reached while there
are still unanswered items. Based on the conclusions of Chapter 2, the SA framework
is employed to model NRIs due to lack of speed. To model the quitting process, the
framework utilizes the information contained in the number of reached items up to
the point where the assessment has been quit. These are employed as indicators for
a newly introduced latent variable, test endurance, that governs the item position
at which examinees are most likely to quit the assessment and is modeled jointly
with speed and ability. The framework assumes that every examinee will quit the
assessment at some point, however, that quitting behavior is censored due to the
fact that some examinees either reach the time limit or the end of the test before
quitting. The censoring of quitting behavior is considered by drawing on survival
modeling techniques. Considering test endurance jointly with speed and ability
allows for disentangling, modeling, and assessing multiple mechanisms underlying
NRIs simultaneously.

Chapter 4 provides a model-based framework that allows for assessing and
modeling omission behavior and response behavior jointly while also allowing
for a better understanding of time allocation strategies coming with the two types
of behavior. This is achieved by extending the SA model by two additional latent
variables: a) a latent omission propensity which accounts for the examinees’ tendency
to omit items as modeled in frameworks for modeling nonignorable item omissions
(see Holman & Glas, 2005; O’'Muircheartaigh & Moustaki, 1999) and b) an additional
speed factor based on RTs associated with item omissions, determining the speed

21



INTRODUCTION

with which examinees omit items. The model provides, among other things, the
possibility to a) model the missingness mechanism underlying omitted items when
estimating ability, b) model timing data in the presence of missing responses, and c)
get a better understanding of both the missingness mechanism underlying omissions
and examinee pacing behavior through assessment of whether examinees employ

different pacing strategies when generating responses or omitting items.

Chapter 5 builds on previous theoretical work relating item omissions to exami-
nee disengagement and provides a model-based approach that allows for identifying
and modeling examinee disengagement in terms of both omission and guessing
behavior. It is thus built on the assumption that omissions stem from data-generating
processes similar to those underlying disengaged guessing behavior and that both
item omissions as well as disengaged guesses qualitatively differ from the processes
operating when examinees provide responses by engagedly interacting with the as-
sessment. The framework thereby brings together the approach presented in Chapter
4 with a) model-based approaches for identifying examinee disengagement in terms
of rapid guesses and b) theoretical considerations underlying RT-based scoring meth-
ods that simultaneously score item omissions and observed responses. In the model,
disengagement is identified on the item-by-examinee level by employing a mixture
modeling approach that allows for different data-generating processes underlying
item responses, omissions, and RTs associated with engaged and disengaged be-
havior. Item-by-examinee mixing proportions are modeled with a latent response
framework as a function of examinee engagement and item engagement difficulty.
This allows relating disengagement to ability and speed as well as identifying items
that are likely to evoke disengaged test-taking behavior.

The approaches presented in Chapters 2 to 5 are tested and illustrated by a)
evaluating their statistical performance under conditions typically encountered in
LSAs by means of comprehensive simulation studies, b) illustrating their advances
over previously developed approaches, and c) applying them to data from major
LSAs, thereby illustrating their potential for understanding examinee test-taking
behavior in general and behavior underlying the occurrence of missing responses in

particular.

Finally, Chapter 6 discusses the potential of the developed frameworks for un-
derstanding results obtained from LSAs and derives practical implications for the
analysis, interpretation and reporting of LSA data. Limitations of the proposed

approaches are addressed and suggestions for future research are provided.
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2

Using Response Times to Model
Not-Reached Items due to Time Limits

This chapter is published as Pohl, S., Ulitzsch, E., & von Davier, M. (2019). Using
response time models to account for not-reached items. Psychometrika, 84(3), 892-920.
doi:10.1007 /511336-019-09669-21

Missing values at the end of a test typically are the result of test takers
running out of time and can as such be understood by studying test
takers” working speed. As testing moves to computer-based assessment,
response times become available allowing to simultaneously model speed
and ability. Integrating research on response time modeling with research
on modeling missing responses, we propose using response times to
model missing values due to time limits. We identify similarities between
approaches used to account for not-reached items (Rose et al., 2010) and
the speed-accuracy (SA) model for joint modeling of effective speed and
effective ability as proposed by van der Linden (2007). In a simulation,
we show a) that the SA model can recover parameters in the presence of
missing values due to time limits and b) that the response time model,
using item-level timing information rather than a count of not-reached
items, results in person parameter estimates that differ from missing data
IRT models applied to not-reached items. We propose using the SA model
to model the missing data process and to use both, ability and speed, to
describe the performance of test takers. We illustrate the application of
the model in an empirical analysis.

IThe indices for persons and items have been adapted to the notation of the present work.
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USING RESPONSE TIMES TO MODEL NOT-REACHED ITEMS DUE TO TIME LIMITS

Large-scale assessments (LSAs) such as the Programme for International Student
Assessment (PISA), the National Assessment of Educational Progress (NAEP), the
Trends in International Mathematics and Science Study (TIMSS), the Progress in Inter-
national Reading Literacy Study (PIRLS), and the National Educational Panel Study
(NEPS) aim at accurately measuring competencies such as reading comprehension or
mathematical literacy. Competencies in these studies are assessed by tests containing
a number of tasks that have to be completed in a certain time. Data collected in LSAs
usually show a large proportion of missing responses due to the low-stakes nature
of the assessment. Missing responses may be due to incomplete block assessment
designs (planned missingness), due to item-level nonresponse (omitted responses),
or items that were not reached (for example due to time limits). The amount of
unplanned missing responses in LSAs is not negligible. In PISA 2006, for example,
across all countries and all three domains (mathematics, reading, and science), an
average of 10% of the items were omitted and 4% were not reached (OECD, 2009, p.
219-220). Even more important for country rankings, the amount of missing values
largely varies across countries (from 1% in the Netherlands to 16% in Kyrgyzstan
for omitted items and from 0.3% in Azerbaijan to 13% in Colombia for not-reached
items).

This relatively large amount of missing responses needs to be dealt with in the
psychometric analysis of test data. While not administered items can usually be
considered as missing completely at random (MCAR) or missing at random (MAR),
omitted and not-reached items (NRIs) are usually nonignorable and may lead to
biased estimates of item and person parameters (see, e.g., Lord, 1983; Mislevy & Wu,
1996; Pohl et al., 2014). If not appropriately accounted for, estimates of group statistics
can be biased by missing values as well, resulting in, for example, a different country
ranking or biased regression coefficients when predicting test performance from
explanatory variables (Kohler et al., 2017; Rose et al., 2010). In order to avoid biased
item and person parameter estimates, the missing responses need to be appropriately
dealt with.

Most of the models for missing values rely on information that is available in
paper-and-pencil (P&P) tests, such as item responses, item nonresponses, and co-
variates. However, as testing moves to computer-based assessment (CBA), more
information, in particular process and timing data, becomes available. In this article,
we bring together research on missing values with research on process data, specifi-
cally response times (RTs), and aim to use RT information to model missing values
and to describe the performance of test takers. Note that in the following we will
focus on missing values due to not reaching the end of the test because of time limits;
the proposed approaches are not necessarily suited for other types of missing values.
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Note that the target ability that we aim at estimating is effective ability (and
in addition effective speed) as defined by van der Linden (2007). Effective ability
is the ability observed at the chosen (effective) speed level. Test takers may and
usually do differ in the speed they chose for a given test. Although in substantive
and methodological research, this is hardly ever discussed (see Kuhn & Ranger, 2015;
Pohl & von Davier, 2018; Tijmstra & Bolsinova, 2018; van der Linden, 2007, for a few
exceptions), this is what is done in almost all competence assessments in large-scale
studies. In these assessments, test takers differ in their speed (even if RTs are not
recorded) and no adjustment for speed is done.> While Tijmstra and Bolsinova (2018)
suggest aiming at estimating optimal ability, that is, the ability observed when the
test taker uses exactly the time given for answering all test items (i.e., optimal speed),
Pohl and von Davier (2018) point out that optimal ability can only be estimated in
very specific experimental settings that are hardly feasible in LSAs. They instead
suggest estimating effective speed and effective ability as introduced by van der
Linden (2007). By doing this, they explicate what has implicitly been modeled in
many studies and with many modeling approaches before. It is also in line with the
speed-accuracy model of van der Linden (2007). Pohl and von Davier (2018) argue
that this approach a) allows to disentangle the different aspects of performance (a
medium performance may be observed for persons with high ability and high speed
as well as for persons with lower ability and lower speed), b) allows to estimate
the same target ability for all groups of test takers, and c) better reflects real-life
performance, as persons also need to choose their speed when solving real-world
problems outside of testing situations. In this paper we will explicitly follow this
approach, i.e., we will focus on effective speed and effective ability making no claims
about optimal levels of these.

In the following, we will first introduce research on missing values. Then we will
give an overview of research on models for RTs with a focus on the speed-accuracy
model of van der Linden (2007). Finally, we will bring these two research lines
together and show how RTs may be used for modeling missing data due to time
limits. We will also discuss how RTs may be used for describing the performance of

test takers in the presence of missing values.

2This is different in the study by Goldhammer (2015), who imposed item-level time limits to reduce
the heterogeneity in RTs across persons. Note, however, that this only reduces heterogeneity in RTs
across persons, but does not get rid of it. Furthermore, item-level time limits may result in guessing
and item omission (Kuhn & Ranger, 2015; Pohl & von Davier, 2018).
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2.1 Modeling Missing Values within IRT

2.1.1 Classical Approaches

There are different approaches to dealing with missing values (for an overview see,
e.g., de Ayala, Plake, & Impara, 2001; Rose et al., 2010): 1) Missing responses may be
ignored and, thus, treated as if they were not administered. This approach assumes
that missing responses are MAR, given the observed responses on the items in the
test (and other covariates in the background model). This approach is applied to
missing values due to NRIs in NAEP (National Center for Education Statistics, 2009,
May 13). 2) Missing responses may also be scored as incorrect responses, assuming
that the subject did not know the answer. This is a deterministic scoring approach
ignoring the fact that any respondent has a positive (even if low) probability to solve
any item, given its trait level. Lord (1974) showed that the incorrect scoring method
results in biased parameter estimates and proposed 3) to score missing responses
as fractionally correct, for example, by scoring them according to the probability
of guessing correctly. Fractional correct scoring is used for omitted multiple choice
items in NAEP (National Center for Education Statistics, 2009, May 13). 4) In some
educational studies (e.g., PISA until 2012, TIMSS, and PIRLS), a two-stage procedure
for treating missing responses is used (see, e.g., OECD, 2009). For the estimation of
item parameters, missing responses are ignored. The estimated item parameters are
then used as fixed parameters for the estimation of person parameters where missing

responses are scored as incorrect.3

Each of these approaches involves certain assumptions regarding the occurrence
of missing responses. These assumptions do not necessarily hold in LSAs ( see, e.g.,
de Ayala et al., 2001; Pohl et al., 2014; Rose et al., 2010). The approaches scoring
missing values as incorrect do violate assumptions of IRT models (Lord, 1974; Rose,
2013). Also ignorability (i.e., MAR) of the missing values due to omitted items and
NRIs usually does not hold. Different studies (e.g., Glas et al., 2015; Holman &
Glas, 2005; Kohler et al., 2015a; Pohl et al., 2014; Rose et al., 2010) demonstrated that
missing responses due to omission and test time limits often depend on the ability of
the person and are thus nonignorable.

3This uses item parameters estimated with missing data ignored on data in which missing re-
sponses are coded as wrong. Hence, the item parameters do not fit the observed rates of wrong
responses. This procedure was abandoned in PISA 2015 (OECD, 2017).
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Figure 2.1. The manifest missing approach for not-reached items.

2.1.2 Model-Based Approaches for Nonignorable Missing Responses

Recently, model-based approaches for dealing with nonignorable missing data in
IRT models have been developed. As these models may account for nonignorable
missing data, which is most likely the missing data process present in cognitive test
data, we focus on these types of models. In these approaches, the tendency to omit
or not reach items is included in the model and accounted for in the estimation of the
item and person parameters. The missing response tendency can be either included 1)
via a latent missing propensity that is accounted for in a multidimensional IRT model
(Glas et al., 2015; Holman & Glas, 2005; Moustaki & Knott, 2000; O’Muircheartaigh &
Moustaki, 1999) or 2) by defining a manifest missing data indicator that is accounted
for in a latent regression or multiple-group IRT model (manifest missing approach
for not-reached items, mNRI, see, e.g., Rose et al., 2010). Rose (2013) showed that
the mNRI model performs well and described the approach as sufficient for NRIs.
In the following we will therefore focus on this approach. In the mNRI approach,
there is a unidimensional IRT measurement model for the responses U;j to item j.
Missing responses due to omissions and NRIs on response variables Uj of item j are
treated as missing values in the measurement model of U; . A missing propensity is
computed for each person as the relative number of NRIs d. This missing propensity
is included in the measurement model as an explanatory variable via latent regression,
or alternatively, as a grouping variable used in a multiple-group IRT model (see
Figure 2.1). As such, in the estimation of the item parameters and ability scores of the
cognitive measurement model, the relative number of missing responses is controlled

for. There is no restriction on the kind of measurement model for the latent ability.

Recently, researchers (Glas et al., 2015; Kohler et al., 2015a, 2015b; Moustaki &
Knott, 2000) acknowledged that the missing response process may be even more
complex and tried to more accurately model that mechanism by including further
covariates explaining the missing data mechanism. Kohler et al. (2015a) found that
additionally to ability, metacognitive competencies, reading speed, demographic

variables (such as immigration background and schooltype) and interactions of
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these variables are relevant predictors for the missing propensity. Glas et al. (2015)
proposed a model-based approach for dealing with missing values that extends
the latent variable approaches for missing values to incorporate further person

characteristics.

2.1.3 The Impact of Response Time

Although the approaches accounting for nonignorable missing responses employ
sophisticated modeling and show promising results, they rest on a number of implicit
assumptions that may not necessarily hold in practice. The models and the simulation
studies carried out in support of the models do not directly consider time on task
for solving an item (e.g., Culbertson, April 2011; de Ayala et al., 2001; Finch, 2008;
Holman & Glas, 2005; Kohler et al., 2017; Pohl et al., 2014; Rose et al., 2010). However,
test takers who do not respond to all items have more time available to solve the
items they choose to attempt, compared to test takers who attempt all items. In
particular, test takers that do not reach a large number of items have often spent a
much longer time on the (few) items they attempted. Studies using real data (e.g.,
Goldhammer & Krohne, 2014; Semmes, Davison, & Close, 2011) show that the time
available to solve an item does affect the probability of a correct response. This
aspect has been, to our knowledge, neglected so far in research on missing response
modeling.

2.2 Response Times Informing the Missing Response Process

Previous approaches for dealing with missing values rely solely on data of responses
to test items (and on person characteristics). With the shift from P&P assessment to
CBA, more information on how the test takers interact with items on a test becomes
available. Specifically, CBAs typically collect data on the time test takers use to
respond to each item. This information may be valuable for evaluating and modeling
missing values in cognitive tests. RTs may provide information about the time
allocation strategies of test takers. Moreover, process data do not only provide
information on how much time it took to respond to an item, but also on how much
time a person has spent on an item even if the person finally chooses not to respond
(nonresponse time). The total time spent on an item (the time point when the item is
tirst displayed to the time point when the respondent moves to the next item), no
matter whether a response was produced or not, may help determine whether test
takers indeed engaged in solving the item. Very short total time on an item may

indicate that the test taker did not make an effort to solve the item, while longer total
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times make it appear more likely that a person did attempt to solve the item (Weeks
et al., 2016).

Operationally, LSAs such as PISA and TIMSS have not used RTs simply due to
the fact that P&P assessments administered to groups of students within schools do
not allow for accurate measures. The OECD Programme for International Assess-
ment of Adult Competencies (PIAAC) was one of the first international assessment
programme that was fully computer-based, in the sense that all test takers except
those without sufficient computer experience were tested using laptop computers.
The database for this assessment includes timing data and is publicly available. The
analysis of RTs and missingness originated in this assessment with a more heuristic
rule, based on the observation that missing data appeared to be associated with, on
average, much shorter time measures (e.g., Yamamoto et al., 2013). That means that
missing data with a nonresponse time of below a certain threshold was considered
to be based on insufficient engagement with a task, while nonresponse that was
associated with times usually observed together with incorrect or correct responses
was considered as an indicator of a lack of skills. In other words, rapid skipping to the
next item was not penalized, and considered a missing response, while respondents
who did skip, but after a longer time had passed, would be assigned an incorrect
response. This is consistent with findings about rapid guessing in assessments where
test takers may feel forced to respond (Wise & DeMars, 2005) based on the high-stakes
nature of the assessment. Using data from a large-scale NAEP computer-based field
study, Lee and Jia (2014) found that rapid responses have no statistical association
with the ability estimated based on responses given when sufficient time has passed.
In PIAAC, researchers acknowledge the potential of RT for scoring missing values,
however, their approach so far is based on heuristic rules. A sophisticated model
that incorporates RT for modeling missing values would strengthen the existing
approach.

In PIAAC, the threshold of considering an omitted item as a missing rather than
an incorrect response is currently set to 5s. As research by Weeks et al. (2016) suggests,
this rule may establish a lower bound, but item-dependent variability appears to
exist. The authors found that RTs vary by item and argue that item-specific thresholds
should be chosen. They furthermore showed that a 5s threshold may be too low
and that — depending on the expected probability level of a response — median RT
thresholds vary from 7 (expected probability of .50) to 41s (expected probability of
90).

IRT models have been proposed that utilize RTs as an additional source of in-
formation. In these approaches, RTs have mainly been used to model differential

speededness of the test. Within this line of research, models have been developed
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that incorporate RTs in the scaling model to account for differential speed of persons.
While these models are quite elaborate, they have neither considered missing values
in item responses, nor have they been used to model missing values in item responses.
In the following, we will review these models and derive how they may be used for
accounting for missing values.

2.3 Response Time Modeling within IRT

There are different kinds of models that incorporate RTs in the scaling of response
data. These either incorporate RTs into the response model, incorporate responses
into an RT model, or simultaneously model RTs and responses. An overview of
these models is given in Schnipke and Scrams (2002) or Lee and Chen (2011). Note
that none of the RT models explicitly deals with missing values. For our work, we
focus on the third class of models, in which RTs and responses are simultaneously
modeled. The simultaneous modeling allows depicting the different aspects of testing
(ability and speed) separately, but in a combined model. We specifically focus on the
speed-accuracy (SA) model proposed by van der Linden (2007). In the following, we
describe this approach and discuss its potential utility to model missing values due
to time limits in cognitive tests.

2.3.1 Hierarchical Speed-Accuracy (SA) Model

Van der Linden (2007) notes that, even when accounting for random error, test scores
do not automatically reflect the rank order of the test takers’ abilities. They do
so only when test takers operate at the same speed. Otherwise test takers’ scores
are “confounded with their decision on speed” (p. 21). The approach of van der
Linden clearly distinguishes between ability and speed and recognizes that different
persons may choose different speed levels when working on a test. In the model,
effective abilities at the chosen (effective) speed of the test takers are estimated. Van
der Linden postulates different characteristics as the basis for his model. First, he
proposes that RTs on test items should be treated as realizations of random variables.
Second, van der Linden notes that the probability distribution of RTs is different
from the distribution of the response variable, but related. Third, RT and speed are
not equivalent. Instead, similar to the definition of speed in the natural sciences,
speed is defined as the rate of change of some measure with respect to time. As a
consequence, RT models with speed as a person parameter should also have an item
parameter to quantify varying levels of time intensity. Fourth, speed and ability may
be related. Van der Linden (2007) proposed a hierarchical model that incorporates

a structure for simultaneous modeling item responses and RTs. He assumes that
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response and RT distributions are determined by distinct parameters. At the lower
level, the measurement models for item responses and RTs are specified, while at the
higher level, the joint distribution of person parameters and the joint distribution of
item parameters are specified. For the item responses U; at the lower level, van der
Linden assumes a 3PL model and models the probability of success of an item as

p;(61) = ¢j + (1 —¢;)la;(0; — by)] (2.1)

with () being the logistic function, 8; being the ability parameter of test taker i, and
aj, bj, and ¢; being the discrimination, difficulty, and guessing parameters for item j,

respectively.

For the RT Tj; for each item j and person i the model postulates a lognormal
distribution:
lnTi]- = B] — T+ €ij, €ij ~ N(O, OC]-_Z), (22)

where T; denotes the speed at which person i operates, 3; denotes the time intensity
of the item, and o denotes the reciprocal of the standard deviation of the RTs on item
j and can be interpreted as a time discrimination parameter. The appropriateness
of a lognormal model for RTs has been investigated by van der Linden (2006) and
Schnipke and Scrams (1997).4

At the higher level, van der Linden postulates parametric distributions for the
item as well as for the person parameters of the two lower level models. For the
person parameters, he assumes a multivariate normal distribution of the ability
and speed variables. For the item parameters, he assumes a multivariate normal
distribution for all item parameters in the response model and the RT model (i.e., for
aj, bj, ¢, &, and B;). The model is depicted in Figure 2.2.

Conditionally on ability and speed, the model assumes independence between
responses to different items, independence between RTs on different items, and
independence between responses and RTs on the same items. Thus, it is assumed
that persons operate at constant ability and speed across the test. There may, however,
be a dependency of accuracy and speed across persons. This is implemented at the
higher level by means of a joint distribution for these random effects allowing for a

correlation between speed and ability.

The model of van der Linden has been the basis for further model developments
(e.g., Bolsinova, de Boeck, & Tijmstra, 2017; Bolsinova, Tijmstra, & Molenaar, 2016;
Fox & Marianti, 2016; Meng, Tao, & Chang, 2015; Molenaar et al., 2016; Molenaar,
Tuerlinckx, & van der Maas, 2015; Ranger & Kuhn, 2012a; Ranger & Ortner, 2012;

4See Equation 4 in their paper.
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Figure 2.2. Graphical illustration of the hierarchical model of van der Linden
(2007).

van der Linden & Glas, 2010) and substantive research (e.g., van der Linden, 2008;
van der Linden & Guo, 2008).

Van der Linden (2007) only mentions in passing the issue of missing values: He
notes that in his model “both speed and power aspects [are] captured by the variables
Ty (or Dyj) and Uy, respectively” (p. 16), where T;; denotes the RT, Dj; the missing
indicator variable which shows which items the test taker completed, and Uj; the
response variable. However, he does not further elaborate the role of missing values
in his model.

2.4 Objectives

Missing values occur in cognitive tests and may have a systematic impact on conclu-
sions drawn from cognitive test data. Different approaches for dealing with missing
data exist. These rely on information about item responses, missing values, and
covariates and try to adequately model the missing data process using this informa-
tion. While models for RT exist, they have not, yet, been used for modeling missing
values. We aim at filling this gap by bringing together research on missing values
with research on RTs. Specifically, we use the SA model of van der Linden (2007) to
account for missing responses due to time limits. We will show the usefulness of the
model, discuss implications for the evaluation of the performance of test takers, and

give an outlook to further model extensions

USING THE SPEED-ACCURACY MODEL FOR MODELING MISSING RESPONSES DUE
TO TIME LIMITS One may understand the propensity of not reaching items as a

measure of working speed. Then, the model of van der Linden is closely related to
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the mNRI model for NRIs (Rose et al., 2010, Figure 2.1). In both models, ability and a
measure of speed are considered. Both models include two variables for speed and
accuracy simultaneously but separately, and the relationship of ability and speed (or
the tendency to [not] reach items) is estimated. Both models make the assumption
that ability and speed /missing propensity are stationary within the test. They are
also similar in the (implicit or explicit) assumption of independence of responses and
RTs or missing indicators given ability and speed. Note that in contrast to Rose et al.
(2010), van der Linden (2007) also estimates a measurement model for speed as well

as the joint distribution of the item parameters of the response and the RT model.

While in the model by Rose et al. (2010) speed is indicated by the number of NRIs,
indicators for speed in van der Linden’s model are the RTs per item. The number
of NRIs can be seen as a rough proxy for RT at the level of the whole test. Thus, the
information contained in the number of NRIs is also contained in the RTs. The RTs
provide even more detailed information, that is, information on how much time a
person has spent on each item. Thus, the model by van der Linden may be able to

account for nonignorable missing values due to time limits.

INVESTIGATING THE PERFORMANCE OF THE MODEL AND COMPARING IT TO PREVI-
OUS MODELS In this paper, we investigate whether the SA model of van der Linden
may indeed be sufficient to account for missing values due to not reaching the end
of the test because of time limits. We investigate the performance of the SA model
in comparison to the model by Rose et al. for accounting for missing values. If the
SA model proves suitable, this approach may not only help to model missing values
due to time limits, but may also provide information about the missing response pro-
cess. Furthermore, it may help bringing together the research traditions of modeling
missing values and those of modeling RTs.

2.5 Method

We conducted a simulation study in which item responses and missing values were
generated following the SA model. For data analyses, we applied the SA model
as well as the mNRI model by Rose et al. (2010). Note that as the SA model is
used as the data-generating model, it is the true model with respect to comparisons
of models made in subsequent analyses. We decided to use the SA model as the
data-generating model for two reasons: First, the SA model is the more informative
model from which data of both approaches may be generated, i.e., it is not possible
to generate RTs from the number of NRIs alone without further assumptions. Second,
and more important, missing responses due to time limits of the test are thought
to be determined by the total of the times taken for each item. That is why the SA
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model will allow incorporating a theoretically sound missing data mechanism. As a
consequence of this simulation design the SA model will fit the generated data better
than the mNRI model. However, we do not aim at such a comparison, but rather at
a) evaluating whether the SA model is able to correctly estimate ability parameters in
the presence of nonignorable missing data and b) investigating whether the SA and
the mNRI model result in similar parameter estimates, in particular, to what extent

ability estimates agree between these approaches.

2.5.1 Data Generation

For data generation, we chose parameters that represent typical low-stakes LSAs.
Employing the SA model as the data-generating model, we generated data for
N = 1000 persons responding to K = 30 items. For setting the parameters of the
SA model, we relied on empirical results from the application of the SA model to
empirical data, while the applications were not specifically considering missing
values (e.g. Klein Entink, Fox, & van der Linden, 2009; van der Linden, 2007; van der
Linden, Breithaupt, Chuah, & Zhang, 2007; van der Linden & Guo, 2008; van der
Linden, Scrams, & Schnipke, 1999).

For the person parameters, 6 and 1, we chose the following settings: (6,1) ~
MVN(up, Zp) with up = (0,—3.50) and Zp = <covgeﬂ)c°g_(295”)). This corresponds to
findings from empirical data, for example, in van der Linden et al. (1999). The
correlation between the person parameters cor(6, 1) varies a lot in empirical data,
ranging from cor(6,t) = .30 (van der Linden, 2007; van der Linden et al., 2007) to
cor(6,T) = .04 (van der Linden et al., 1999) to negative values down to cor(6, 1) = —.76
(Klein Entink, Fox, & van der Linden, 2009). We reflected this range of results
by choosing different levels of correlations in our simulation, that is, cor(6,t) =

(—.50,.0,.50).

As the measurement model for item responses we chose the Rasch model, as it is
used, for example in PISA until 2012, or in NEPS. Hence, only item difficulties b; need
to be estimated. For the measurement model of RTs, we fixed the discrimination «; =
a« = 1.875 to be the same across all items. The value 1.875 was chosen in accordance
with empirical results of van der Linden (2006). For the remaining item parameters,
b and 3, we assumed a multivariate normal distribution: (b, ) ~ MVN(uy, £g) with

0.1
difficulty and time intensity of items have been found to vary between cor(b, ) = .30
(van der Linden, 2007) and cor(b,3) = .51 (Klein Entink, Fox, & van der Linden,
2009) and can even be as high as cor(b, 3) = .65 (van der Linden et al., 1999). We

ug = (0,0) and 5 = (Covgb,mcov(bf)). In empirical data, correlations cor(b, ) between
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reflected this range of correlations and added a zero correlation as a reference in our

simulation design, resulting in simulated correlations of cor(b, ) = (0, .60).

We combined each of the two item parameter correlations with each of the three
person parameter correlations, resulting in six simulation conditions. For each
condition, we generated 100 replicate datasets. The person and item parameters were
fixed and used in all 100 replications. We used the formulas in Equations 2.1 and 2.2
to generate item responses and RTs for each replication in each condition based on
the generated item and person parameters. This resulted in 9 x 100 = 900 complete
data sets without any missing values. The median RT of the items ranged from 14.17
to 71.58s. Within this data generation, no time limits were assumed.

We then considered a test setting in which the time limit for the test is 30 min. This
corresponds to the usual time limit of test forms in LSAs (e.g., in NEPS, test forms
ranging from about 24 to 36 items are presented with a 30 min time limit, see e.g.,
Duchhardt and Gerdes, 2012; Pohl, Haberkorn, Hardt, and Wiegand, 2012; Senkbeil,
Ihme, and Adrian, 2014). We induced missing values based on the cumulative RT of
the items. The items were assumed to be in the same order for every person (e.g.,
as in NEPS, Pohl et al., 2012) and the RTs were cumulated across the position of
the items in the test. All items with a cumulated RT exceeding the time limit were
assumed to be not reached and hence responses to these items were coded as missing.

This resulted in incomplete data sets with 4.73 to 5.71% of missing values.

We subsequently assessed the effects of sample size, number of items, as well as
rate of NRIs. To do so, we chose the condition with cor(6,t) = .50 and cor(b, ) = .60,
as this was one of the conditions with the most severe threat to parameter estimation.
We varied the number of examinees (adding a condition of N = 500), the number
of items (adding a condition of K = 10), and the rate of NRIs (adding a condition
of 15%). We controlled the amount of NRIs by setting stricter time limits (1,200s
for a missing rate of 15% under conditions with K = 30; 600 and 400s for missing
rates of 5% and 15%, respectively, under conditions with K = 10). This resulted in
seven additional conditions (two sample size conditions times two item number
conditions times two rate of NRIs conditions minus the baseline condition) evaluated

in additional analyses.

2.5.2 Data Analysis

We analyzed the generated data using the SA model as well as the mNRI model.
First, in order to evaluate how the SA model deals with missing values in general
we applied the SA model a) to the complete data (SAcomp) as well as b) to the
incomplete data (SAinc) and compared the results. Second, in order to evaluate the
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difference between the SA model and the mNRI model for dealing with missing
values, we applied both to the incomplete data. In order to get comparable results,
we estimated all models using Bayesian estimation with Gibbs sampling in JAGS
(Plummer, 2003), making use of the rjags package (Plummer, 2016) in R version 3.3.2
(R Development Core Team, 2017). Missing values in JAGS are imputed based on
the specified model. We used noninformative priors, keeping the priors for the same
parameters constant in all models. The settings for priors and syntax for the analyses
can be found in Appendix A.1.

For both, the SA model and the mNRI model, we used three chains and no
thinning. For the SA model, we chose a total of 45,000 iterations per chain, with
a burn-in of 5,000, yielding a total of 120,000 iterations for posterior analyses. For
the mNRI model, we ran 15,000 iterations per chain using a burn-in period of 5,000;
altogether 30,000 iterations were saved.

We evaluated convergence of the model via trace plots and the Gelman—Rubin
Potential Scale Reduction Factor (PSRF, Gelman & Rubin, 1992). We checked autocor-
relation by assessing plots of the autocorrelation function along with the effective
sample size (ESS as described in, e.g., Drummond, Nicholls, Rodrigo, & Solomon,
2002). For evaluating the performances of the models in retrieving accurate pa-
rameter estimates, we examined the estimates of person ability and speed, item
parameters, as well as the correlation between ability and speed and between item

difficulty and time intensity.

2.6 Results

In the following, we will first present the results for conditions with N = 1000, K = 30,
and a rate of NRIs of 5%. We will then show the results of the effects of sample size,
number of items, and rate of NRIs.

2.6.1 Convergence and Eftficiency

Across all conditions and models, no convergence problems were encountered. All
trace plots indicated good mixing of the chains and convergence. For both models,
PSRF values remained far below 1.05 for all parameters and thus were, in line with
Gelman and Shirley (2011), considered acceptable.

Autocorrelation in the MCMC chains varied largely across parameters when data
were analyzed with the SA model. ESS ranged from 473 and 526 (for a time intensity
parameter) to 26,691 and 26,694 (for an item parameter variance estimate) when

the SA model was applied to complete and incomplete data sets, respectively. This
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indicates that parameter space had been sufficiently explored to assess posterior
means and standard deviations (Kruschke, 2014, p.184). For the mNRI model, ESS
ranged from 5,587 (for a difficulty parameter) to 10,653 (for an ability estimate).

2.6.2 Performance of the Speed-Accuracy Model for Complete Data

As expected, the SA model for complete data yielded unbiased group-level parameter
estimates across all conditions with bias for all parameter types remaining below
10%. Figure 2.3 shows the difference of the individual ability estimates averaged
across all replications in the SA model for complete data (SAcomp) from the true

parameters for the nine conditions.
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Figure 2.3. Difference in ability estimates using the SA model for complete
data compared to the true ability values as a function of true ability. White
circles represent simulees without missing values and filled circles persons
with missing values. The number of missing values is given by the circles’
color, with darker colors denoting a higher number of not-reached items.

There is a noticeable shrinkage effect (see also Fox, 2010) in all conditions. Al-
though no missing values were induced for these analyses, in the graphs we marked
the average number of NRIs for each simulee to be induced later. The estimates do
not systematically differ across conditions with different item parameter correlations.
There are, however, differences across conditions with different person parameter
correlations. This is due to the adjustment that is made by incorporating speed in the
model. For a person parameter correlation of zero, there is no systematic difference
in person parameter estimation of persons with different numbers of missing values.
For a correlation unequal to zero, the relationship of the difference in person pa-
rameter estimation with the speed variable becomes evident. A negative correlation
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means that more proficient test takers work slower and therefore have a tendency to
produce more missing values. Also, for the same ability level, slower test takers are
those that have more missing values (see Figures 2.3 and 2.4) and by the negative
correlation between ability and speed this results in a higher ability estimate. Note
that in the SA model for complete data, there are no missing values; Figures 2.3 and
2.4 only show the missing values that will be induced. As can be seen in Figure 2.4,

there is no systematic bias in ability estimation for different values of true speed.
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Figure 2.4. Difference in ability estimates using the SA model for complete
data compared to the true ability values as a function of true speed. White
circles represent simulees without missing values and filled circles persons
with missing values. The number of missing values is given by the circles’
color, with darker colors denoting a higher number of not-reached items.

We found similar effects for the estimation of speed. There is a shrinkage effect in
the estimation of speed due to unreliability and there is an effect of the correlation
between ability and speed (Figures A.3 and A.4 in Appendix A.2). Summarizing the
results, it can be concluded that, in the case of complete data, the SA model was able
to adequately recover the true parameters. That is, the complete data model may
serve as a reference for comparison for subsequent analyses.

2.6.3 Performance of the Speed-Accuracy Model to Deal with Not-Reached Items

There is no systematic bias in group-level parameter estimates of the SA model for
incomplete data, bias for all parameter types remained below 10%. In the following,
we compare the results of the SA model applied to incomplete and complete data,
respectively. By doing this, we control the shrinkage effect due to using only 30 items,
as this number is the same in both cases. Differences between the results of the two
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analyses can, thus, be attributed to the existence of missing values. Figure 2.5 shows
the difference in ability estimates averaged across all replications between the SA
model for incomplete (SAinc) and the SA model for complete data (SAcomp) as a

function of true ability and the number of missing values in all conditions.
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Figure 2.5. Difference in ability estimates between the SA model for in-
complete data (SAinc) and the SA model for complete data (SAcomp) as a
function of true ability. White circles represent simulees without missing
values and filled circles simulees with missing values. The number of miss-
ing values is given by the circles’ color, with darker colors denoting a higher
number of not-reached items.

The results show that for simulees with no missing values, there is no difference
in parameter estimates. There is a difference in parameter estimates for simulees
with missing values; with greater differences being observed for simulees with a
higher number of NRIs. This difference may be explained by a shrinkage effect
that is due to the fact that for these respondents, information from fewer than 30
items is available. This is reflected in the posterior standard deviation for simulees
with a high number of NRIs: for persons with an average number of NRIs greater
than 15, posterior standard deviations ranged from 0.36 to 0.89 — as compared to a
range from 0.36 to 0.43 for the same person parameter estimates, however, estimated
using complete data. The greater uncertainty of these estimates is associated with an
increased shrinkage effect. Person parameters are thus estimated closer to the overall
ability mean. This effect is even more obvious when plotting the difference in ability
estimates as a function of speed (see Figure 2.6). Since simulees with a lower speed
produce more missing values, fewer item responses are available, resulting in greater
standard errors of ability estimates and a larger shrinkage effect. We found similar
results for the estimation of speed (see Figures A.5 and A.6 in Appendix A.2)
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Figure 2.6. Difference in ability estimates between the SA model for in-
complete data (SAinc) and the SA model for complete data (SAcomp) as a
function of true speed. White circles represent simulees without missing
values and filled circles simulees with missing values. The number of miss-
ing values is given by the circles’ color, with darker colors denoting a higher
number of not-reached items.

2.6.4 Illustrating the Shrinkage Effect due to Missing Values

In order to underpin the conclusion that the difference in parameter estimates be-
tween the SAcomp and SAinc model go back to shrinkage effects due to missing
values, we re-ran the analyses on the performance of the SA model for incomplete
data with missing values induced completely at random (SA MCAR). To do so, we
used the complete data sets of 1000 examinees responding to 30 items and introduced
missing values being MCAR. The number of missing values for each person was
drawn from a discrete uniform distribution ranging from 0 to 25. The number of
missing values for each person was fixed across replications; however, the specific
items bearing missing values were chosen randomly for each replication. By doing
so, we ensured that the average number of missing values for each person across
replications displayed a range comparable to the range of the average number of
NRIs in the main simulation. Figure 2.7 depicts the difference in ability estimates
between using the SA model on a data set with missing values being MCAR and
the SA model on the complete data set as a function of true ability and the number
of missing values for the condition with cor(8,t) = .50 and cor(b, ) = .60. As can
be seen, the resulting pattern resembles the pattern of differences between the SA
incomplete and the SA complete model, where the difference increased as a function
of the number of missing values. Since missing values for the SA MCAR model were

induced completely at random, systematic bias in person parameter estimates can
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be ruled out as an explanation for these differences; instead, the differences can be
attributed to the shrinkage effect as a result of the reduced amount of information for
individuals with fewer observed responses and a high number of missing responses.
From these results we conclude that the SA model can account for missing values
due to time limits. In the next step, we compare the SA model and the mNRI model

for dealing with missing data.
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Figure 2.7. Difference in ability estimates between the SA model for incom-
plete data with missing values induced completely at random (SA MCAR)
and the SA model for complete data (SAcomp) as a function of true abil-
ity for the condition with cor(6,t) = .50 and cor(b, ) = .60. White circles
represent simulees without missing values and filled circles simulees with
missing values. The number of missing values is given by the circles’ color,
with darker colors denoting a higher number of not-reached items.

2.6.5 Performance of the Manifest Missing Response Model for Incomplete Data

The simulation results show that bias in hyperparameters is comparable to the SA
model. There are, however, differences in person parameter estimation. So far, in
the analyses we have found a) a shrinkage effect due to using only 30 items and b)
a shrinkage effect due to missing values. These are to be expected for this model
as well, as it uses the same data as the SA model for incomplete data. In order to
separate the shrinkage effects from differences between the models, we compared the
mNRI model to the SA model for incomplete data (which was shown to appropriately
recover the parameters of the model). Figure 2.8 and 2.9 shows the difference in
ability estimates averaged across all replications between the mNRI model and the
SA model for incomplete data. There is no impact of item parameter correlation.
There is, however, one of person parameter correlation. For cor(6,T) = 0, there is
no difference between the two models. For a correlation of cor(6,t) # 0, there are
noticeable differences between the two models, which depend on the true ability and

on the number of missing values.
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Figure 2.8. Difference in ability estimates from the mNRI model and the
model for incomplete data (SAinc) as a function of ability. White circles
represent simulees without missing values and filled circles simulees with
missing values. The number of missing values is given by the circles’ color,
with darker colors denoting a higher number of not-reached items.
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Figure 2.9. Difference in ability estimates between the mNRI model and the
SA model for incomplete data (SAinc) as a function of true speed. White
circles represent simulees without missing values and filled circles simulees
with missing values. The number of missing values is given by the circles’
color, with darker colors denoting a higher number of not-reached items.

There are two mechanisms at work here: First, as all persons with sufficient
speed reach all items (i.e., have no missing values), there is a truncation of the
distribution of speed: The manifest missing variable does not distinguish between

persons who work with sufficient speed; all of these persons have zero NRIs. As such,
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for cor(0, T) = —.50, the ability of persons with a high speed level is overestimated,
while it is underestimated for cor(6, t) = .50. This is due to the adjustment made
to ability due to working speed. As in the mNRI model persons with high speed
have the same number of NRIs (i.e. zero), these persons are — in contrast to the data-
generating model - treated the same. In the data-generating model, for cor(8, T) = .50
persons with high speed are those with high ability; in the mNRI model, this is not
accounted for on the upper speed level.

Second, the mNRI model underestimates the association between ability and
speed. The estimated correlation of the number of NRIs (as a proxy for speed) and
ability was on average .32, .02 and -.33 in the condition with cor(6, 1) = —.50,0, and
.50, respectively. This may be due to the fact that a) a manifest instead of a latent
variable is used (see Pohl et al., 2014, for a similar result using manifest and latent
missing propensity) and/or b) there is truncation and as such a variance reduction,
and/or c) the number of NRIs is a nonlinear transformation of speed (see Figure 2.10)
which may violate the linearity assumption of the relationship of ability and speed.
As a consequence, the adjustment of ability estimates based on speed is different
than in the SA model for incomplete data. In Figures 2.8 and 2.9, we do see that
ability estimates of respondents with low speed (i.e., having many missing values) is

overestimated (underestimated) in the condition of cor(6,t) = —.50 (cor(6, T) = .50).
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Figure 2.10. Number of not-reached items per person across as a function
of true speed for the condition with N = 1000, K = 30, cor(6,T) = .50,
cor(b, B) = .60, and a rate of not-reached items of 5%.

2.6.6 Additional Analyses

We conducted additional analyses to study the effects of sample size, number of
items, as well as rate of NRIs on parameter estimation. Both models, the SA model
for incomplete data and the mNRI model, converged across all conditions and
replications. Again, no systematic bias was found in group-level parameter estimates
of the SA model. Only for conditions with a small number of items (K = 10), item
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parameter variances were estimated substantially higher than the respective true
values (1.11 as compared to 1.00 and 0.25 as compared to 0.14 for var(b) and var(f3),
respectively). Comparable effects on item parameter variance estimates occurring for
smaller number of items have been reported by Fox and Marianti (2016). Appendix
A.3 shows the result of person parameter estimation using the SAcomp model as
compared to the true ability parameters (Figure A.7) and using the SAinc model
as compared to the SAcomp model (Figure A.8). There was no effect of sample
size. As was to be expected, an increase in the amount of missing values resulted
in an increased shrinkage effect as less information was available for persons with
more missing values. There was also an effect of the number of items: There were
larger shrinkage effects for conditions with K = 10, since under these conditions less

information on the examinees’ ability is available.
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Figure 2.11. Difference in ability estimates between the mNRI model and the
SA model for incomplete data (SAinc) as a function of true speed. White
circles represent simulees without missing values and filled circles represent
simulees with missing values. The number of missing values is given by the
circles’ color, with darker colors denoting a higher number of not-reached
items.

Figure 2.11 shows the difference in ability estimates when using the mNRI ap-
proach as compared to the SA model for incomplete data. Again, there is no effect of
sample size. There is, however, an effect of the number of items: with more items,
there is more information available for estimating person ability. As a result, the
impact of speed becomes smaller relative to the impact of item responses. There is
also an effect of the amount of missing values, with more missing values resulting in
smaller differences between the two approaches. This is an effect of an increase in
discrimination regarding differences in speed and a reduction in the truncation effect
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in the mNRI model. With an increasing rate of NRIs, the number of NRIs displays
more variation and, as such, differences in speed are reflected better by the number
of NRIs. As a consequence, the relationship between speed and ability can better be
captured in the mNRI model by the relationship of the number of NRIs and ability.
Whereas in conditions with a rate of 5% NRIs the average correlation between ability
and the number of NRIs was as low as -.35 as compared to the generated correlation
between ability and speed of cor(6, T) = .50, in conditions with a rate of 15% NRIs an
average correlation of -.42 was estimated. °

2.7 Empirical Data Analysis

In order to evaluate the applicability of the approach, we analyzed data from the
Canadian sample of PISA 2015 (OECD, 2017). We applied a) the mNRI model and b)
the SA model to science cluster number 7 administered in the second position of the
CBA. In total, analyses were based on N = 840 examinees responding to K = 17 items
within a time limit of 1,800s. Six percent of the test takers did not reach all items.
In total, the science cluster under consideration displayed a rate of NRIs of 2%. For
reasons of simplicity, partial credit items were dichotomized and examinees with
missing data other than NRIs were removed from the analyses. We analyzed the
data employing the same MCMC setup as in the simulation study described above,
saving 6,000 and 8,000 iterations as a sample of the posterior distribution for the
mNRI model and the SA model, respectively. Convergence was assessed on the basis
of trace plots as well as PSRF values of all parameters. Judging by these criteria, both
models converged.

Figure 2.12 shows that not all test takers stopped working on the test when the
test time limit of 1,800s was reached. This indicates that the time limit may not have
been enforced rigorously. Most importantly, we see that only for persons with one
or two NRIs, the time limit was reached. Almost all test takers with more than one
NRI did not use the time they had. Thus, the test time limit seems to be not the only
reason for NRIs in the test, but missing values at the end of the test may also occur
due to quitting. Note that speed as estimated in the SA model and the number of
NRIs correlate -.16. This reflects the results from the descriptive statistics, indicating

that NRIs do not only occur due to low speed and reaching the time limit.

Figure 2.13 shows the difference in ability estimate between using the mNRI
model and the SA model. For persons without missing values, we see a similar
pattern as in the simulation study. As NRIs are a result of time limits for only very
few test takers, for persons with missing values, this pattern deviates from the pattern

5These results refer to a condition with N = 30 items and N = 1000 persons.
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Figure 2.13. Difference in estimated ability scores between using the mNRI
model and the SA model in the empirical application. White circles represent
simulees without missing values and filled circles persons with missing
values. The number of missing values is given by the circles’ color, with
darker colors denoting a higher number of not-reached items.

in the simulation study (see, e.g., Figure 2.9). This can also be seen in the parameter
estimates of the two models. Using the SA model, we estimated a correlation of -.40
between ability and speed. The correlation of ability and number of NRIs in the
mNRI model was estimated to be -.01. Summarizing the results, the SA model can
account for NRIs that occur due to reaching the time limits. However, NRIs did not
only occur due to time limits in this data set.
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2.8 Discussion

In this study, we integrated research on RT modeling with research on modeling
missing responses. We proposed using the SA model to model and account for
missing values due to time limits in the test. Our study showed that there are
similarities between the mNRI model for NRIs (Glas et al., 2015; Rose et al., 2010)
and the SA model of van der Linden (2007). In particular, we identified the potential
of the SA model to account for missing values due to time limits on tests. In a
simulation study that models this scenario, we showed a) that the SA model can
recover parameters in the case of missing values due to time limits and b) that the
SA model results in different person parameter estimates than the mNRI model. If
missing values due to not reaching the end of the test occur because test takers work
at different speed levels, then the SA model can describe the missing data process. In
addition, the SA model incorporates differences in working speed also for those test

takers who do reach the end of the test (i.e., who have no missing values).

Note that we explicitly aimed at estimating effective ability and effective speed.
Even for test takers without missing values, using the SA model or even just a
unidimensional model for responses, effective ability is estimated. The approach
adopted here for NRIs due to time limits also estimates effective ability for test takers
with missing values, resulting in the same target ability for all groups of test takers,
those with and those without missing values.

Of course, we cannot determine with certainty whether the assumed missing data
mechanism is the one at work leading to different numbers of NRIs for respondents
with different working speeds. From a theoretical point of view, the mechanism
seems quite plausible and in the real data analyses we found evidence in supporting
of this mechanism for some test takers. While the mNRI model does not describe
the mechanism of how missing values occur and includes the missing propensity
for adjustment purposes only, the SA model describes a mechanism that explains
missing values in terms of time spent on previous items. Empirical studies using
response times do hint at the plausibility of such mechanisms (e.g., Goldhammer &
Krohne, 2014).

Note that in our simulation study, we only considered NRIs that occur due to time
limits. We did not consider NRIs that occur because the test taker quits responding
before reaching the last item. In the empirical analysis, we found evidence that this
is another plausible mechanism in practice. While NRIs due to time limits can be
accounted for by the SA model, early quitting behavior needs to be accounted for
differently. RTs and other log data provide comprehensive information that may help

to distinguish between different nonresponse mechanisms.
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Moreover, the SA model proposed by van der Linden assumes stationarity of
speed and is most appropriately applied to data stemming from tests with a generous
time limit. This, however, is not necessarily the case in LSAs that administer tests
to groups of students: Testing situations in which test takers encounter (tight) time
restrictions and are either running out of time, or perceive it to be so, might lead
some test takers to speed up towards the end of the test in order to finish the test
within the allocated time. When working speed is used to account for missing values
due to NRIs, the very fact that some test takers were not able to reach the end of the
test is an indicator that testing time has been not sufficient for all participants. As a
consequence, some test takers might have adjusted their working speed in order to
reach the end of the test (e.g., Yamamoto & Everson, 1997). Under these conditions,
the assumption of stationarity of speed is not plausible and it appears necessary
to allow for within-person variation of speed (Fox & Marianti, 2016; Goegebeur,
De Boeck, Wollack, & Cohen, 2008).

Just by the position of a missing response in the test, within the test (omitted)
or at the end of the test (not reached), one cannot infer whether the item had really
been attempted or not. It may well be that some omitted items within the test
have not been attempted at all (resulting in low nonresponse time) or that NRIs at
the end of the test have been attempted (resulting in higher nonresponse time for
these items). So far, models for missing values have relied on the position of the
missing items within the test for drawing inferences on whether the item had been
attempted or not. In some LSAs (e.g., NAEP, Allen, Donoghue, & Schoeps, 2001),
the treatment of missing values is even based on this distinction (omitted items are
scored partially correct and NRIs are treated as if they were not administered). By
using RTs, one could potentially infer better whether items with missing responses
have been attempted or not, compared to making this determination just based on
the position of the missing response within the test. How not attempted items within
a test and different kinds of missing values can be evaluated with the help of RTs is
one important and promising future research task. While Weeks et al. (2016) set out
to explore how this can be achieved, their study remains mainly descriptive. A more
model-based approach is needed that describes mathematically the interdependence
between the time spent and the time remaining on the one hand and response vs.
omission propensity on the other hand. The present study shows that the SA model
proposed by van der Linden, together with some assumptions about how time on
tasks and time limits relate to NRlIs, can be used to model missing data by utilizing

more information than the missingness indicators alone.
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2.8.1 Implications for the Practice of Dealing with Not-Reached Items due to Time
Limits

In low-stakes LSAs — as they are currently implemented — persons differ in their
working speed. As a consequence, test takers are on a different position with regard
to their speed-accuracy trade-off (van der Linden, 2007). As such, we do estimate
the effective ability and effective speed, which differs between test takers. This is
true no matter whether we actually assess RT or not, or whether persons reach the
end of the test or not. Unless in very specific experimental settings (Goldhammer,
2015), which are however not feasible in LSAs, it is not possible to correct for chosen
speed and to estimate optimal ability (i.e., the ability observed when speed is chosen
so that the exact given testing time is used; not more or less). Thus, in line with
van der Linden (2007), we argue for the estimation of effective ability, as this quantity
can be estimated in the majority of testing situations. With the use of RTs and by
modeling the association between speed and ability, we can describe these different

aspects of performance.

We suggest describing the performance of groups of test takers (for example
grouped by language, country, or school type) by all aspects of performance: ability
and speed (and/or missing propensity in case of other reasons for missing values)
and use all of these for evaluating the performance (see also Pohl & von Davier,
2018). This allows to develop a richer description of differences in performance
and to disentangle the different constructs involved. For example, Cosgrove (2011)
investigated the decrease in the PISA trend results of Ireland from 2000 to 2009
and found that students showed much larger amounts of missing values in later
PISA assessments. They concluded that the decrease in PISA score may be a result
of lack of motivation that led to more omitted responses. If the different aspects,
that is, effective ability and speed (and/or possibly missing response propensity)
would have been estimated and presented separately, these changes over time would
have been more evident, and the apparent performance differences could have been
understood in the light of other changes (see Sachse et al., 2019, for an investigation
thereof). When comparing, for example, the performance of different countries in
a cognitive domain, one may want to compare these on both effective ability and
effective speed. For country rankings, policy makers are interested in the comparison
of only one score for each cognitive domain. If a single score is of interest, we
suggest using a composite score based on the estimated aspects of performance.
Substantive researchers may then decide how to combine ability and speed estimates
by developing a composite score that reflects the dimension they want to focus on
most. One advantage of such an approach would be that this composition of a total
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score would be the same for all test takers. Furthermore, the approach can also
deal with varying time restrictions, as has been present in the PISA data. As the
measure of speed does not dependent on the total time used, more or less rigorous

enforcement of time limits may be accounted for.

This is different in the approach of scoring missing values as incorrect. Scoring
missing values due to not reaching the end of the test as incorrect is also a constructed
measure incorporating accuracy of responses and speed into a single score. However,
a) the different aspects of performance cannot be disentangled. As such, subgroups
with the same estimated average score may differ in effective ability and effective
speed. The score may be a result of high effective ability or high effective speed. b)
Speed is only corrected for in the scoring for persons that do reach the time limit, but
not for test takers that complete the test within the limit. However, even test takers
that are within the time limit differ in their speed. Thus, different target abilities
would be estimated for both groups (see also Pohl & von Davier, 2018). This is not
the case in the SA model. If speed should be part of the construct to be measured,
it should be incorporated in the same way for all test takers. Additionally, c) scor-
ing NRIs as incorrect results in violations of model assumptions (local stochastic
independence, measurement invariance) and was recognized to introduce bias more
than 40 years ago (Lord, 1974). Last but not least, d) differences in test time limits
are not accounted for by incorrect scoring. Thus, we think that it is valuable and
incorporates the different advantages of the previous approaches to first disentangle
the different aspects of performance using the SA model and building composite

scores in an additional step.
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3

A Multi-Process Item Response Model
for Not-Reached Items due to Time

Limits and Quitting

This chapter is published as Ulitzsch, E., von Davier, M., & Pohl, S. (2019b). A
multi-process item response model for not-reached items due to time limits and
quitting. Educational and Psychological Measurement. doi:10.1177/0013164419878241.

So far, modeling approaches for not-reached items have considered one
single underlying process. However, missing values at the end of a test can
occur for a variety of reasons: On the one hand, examinees may not reach
the end of a test due to time limits and lack of working speed. On the other
hand, examinees may not attempt all items and quit responding due to,
e.g., fatigue or lack of motivation. We use response times retrieved from
computerized testing to distinguish missing data due to lack of speed from
missingness due to quitting. On the basis of this information, we present a
new model that allows to disentangle and simultaneously model different
missing data mechanisms underlying not-reached items. The model a)
supports a more fine-grained understanding of the processes underlying
not-reached items and b) allows to disentangle different sources describing
test performance. In a simulation study we evaluate estimation of the
proposed model. In an empirical study we show what insights can be
gained regarding test-taking behavior using this model.
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A MULTI-PROCESS ITEM RESPONSE MODEL FOR NOT-REACHED ITEMS DUE TO TIME
LIMITS AND QUITTING

In large-scale assessments (LSAs), examinees do not always attempt all items they
were assigned to answer. When an examinee fails to attempt a sequence of items
presented at the end of a test, the resulting missing responses are referred to as
not-reached items (NRIs). NRIs can occur for a variety of reasons. Examinees may
not reach the end of a test due to lack of speed when tests are administered with
time limits. This is supported by results from experimental research suggesting that
increased test-taking time results in lower NRI rates (e.g. Mandinach, Bridgeman,
Cahalan-Laitusis, & Trapani, 2005; Wild & Durso, 1979). However, the onset of NRIs
does not seem to depend solely on test time. Examinees may quit the assessment
prematurely due to, e.g., fatigue or lack of motivation. This is particularly the case in
low-stakes assessments where low motivation is likely to affect examinee test-taking
behavior (Chen, von Davier, Yamamoto, & Kong, 2015; Cosgrove, 2011; Liu, Rios, &
Borden, 2015; Wise & DeMars, 2005). Indeed, in LSAs, NRIs are even observed in
assessments administered without time constraints, such as in the Programme for
the International Assessment of Adult Competencies (PIAAC, OECD, 2013).

NRIs occurring due to lack of speed and NRIs occurring due to quitting repre-
sent different types of missingness processes which tend to occur under different
testing situations, correspond to different test-taking strategies, and might be related
differently to ability. Thus, disentangling and modeling different types of NRIs can
be beneficial for understanding examinee performance as well as for informing deci-
sions regarding the adequate treatment of missing values due to NRIs. In this context,
considering additional data retrieved from computer-based assessment facilitates the
understanding of examinee behavior and thus of potential mechanisms underlying
NRIs. For instance, cumulative response times (RTs) contain information on the
time passed up to the last item attempted before ending the assessment. This allows
to distinguish examinees who worked at a slow pace and reached the time limit
before reaching the end of the test from those who displayed cumulative RTs far
below the time limit without attempting all items administered (Pohl et al., 2019).
Based on the information contained in RT data, Pohl et al. (2019) illustrated that
within the same data set NRIs are plausible to occur due to different mechanisms
—i.e., lack of speed and quitting. In this article, we argue that these are potentially
different mechanisms that should be modeled as such. We propose a framework to

disentangle and simultaneously model these missingness mechanisms.

3.1 Dealing with Not-Reached Items in Large-Scale Assessments

Current practices for handling NRIs in LSAs are rather heterogeneous. While in the
majority of LSAs NRIs are either ignored (e.g., in the National Educational Panel
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Study (NEPS), Pohl & Carstensen, 2012) or scored as incorrect, mixed approaches
exist. For instance, in the Trends in International Mathematics and Science Study
(TIMSS) and the Progress in International Reading Literacy Study (PIRLS), NRIs are
ignored for item parameter estimation and scored as incorrect for person parameter
estimation (Foy, 2017, 2018). In PIAAC, NRIs are ignored if sufficient information
about examinee proficiency is available — that is, if there are more than five item
responses per domain. Otherwise, the examinees’ self-stated reasons for not complet-
ing the assessment are considered when handling missing responses due to NRIs. For
examinees quitting the assessment after giving responses to fewer than five items per
domain, all NRIs are treated as incorrect if the self-stated reason for not responding
is related to cognitive skills. If examinees give reasons unrelated to competence,
NRIs are ignored in the analysis (OECD, 2013). This treatment of NRIs acknowledges
that NRIs can occur due to different mechanisms. The approach is however rather
heuristic in that it a) relies on self-stated reasons for not reaching the end of the test
and b) distinguishes different types of NRIs only for examinees who responded to
less than five items.

Scoring NRIs as wrong assumes the probability to solve an NRI to be zero — re-
gardless of the examinee’s ability level (see Lord, 1983; Rose, 2013; Rose et al., 2017).
Ignoring NRIs assumes ignorability of the missingness mechanism. For ignorabil-
ity to hold, data need to be missing at random (MAR), that is, missingness needs
to be conditionally independent of the unobserved data given the observed data.
Furthermore, the (unobserved) parameters governing the distribution of NRIs need
to be distinct from ability (Mislevy & Wu, 1996; Rubin, 1976). There is, however, a
substantial body of research suggesting that not reaching the end of a test is indeed
related to ability (Debeer et al., 2017; Glas & Pimentel, 2008; Lawrence, 1993; List
et al,, 2019; Pohl et al., 2014; Rose et al., 2010). This indicates that the mechanisms
underlying NRIs are nonignorable. Not properly accounting for the mechanisms
that produce nonignorable missing data poses a threat to valid inferences and may
potentially lead to biased person and item parameter estimates or distort relation-
ships between ability and explanatory variables as well as country rankings (Glas
& Pimentel, 2008; Kohler et al., 2017; Pohl et al., 2014; Rose, 2013). In order to prop-
erly account for nonignorable NRIs, a model for the mechanisms underlying their
occurrence is needed.

3.1.1 Model-Based Approaches for Nonignorable Missing Values

In recent years, model-based approaches for handling nonignorable NRIs have been
developed. In this class of models, information about NRIs is integrated into item
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response theory (IRT) models — either employing a latent or manifest variable — and
thus accounted for when estimating ability.

For modeling ability, customary IRT models are employed. In the case of a Rasch
model, the probability of a correct response on response indicator w;j, containing
person i’s response on item j can be modeled as a function of person ability 8; and
the item’s difficulty b;

o exp(0; — b;)
'P(LLU N ” 1 +exp(9i—bj)' (31)

Missing values due to not reaching the end of the test are not coded as wrong, but
rather treated as MAR by including terms for missing data in the likelihood function

used to estimate parameters.

Rose et al. (2010) suggested to employ a manifest missing data model, since, due
to the monotone missing pattern resulting from NRIs, considering the number of
reached items is sufficient to account for NRIs. Within manifest NRI approaches,
information on the number of reached items k¢, is included as a manifest variable
in the background model. This can be achieved by either regressing ability 6; on
Kiot; OF by applying multi-group IRT models where stratification on k., serves as
a grouping variable (Rose et al., 2010). Manifest approaches are computationally
less intensive compared to latent variable approaches for NRIs and since 2015 are
considered in the population model in the Programme for International Student
Assessment (PISA) for the generation of plausible values (OECD, 2017).

Within latent variable approaches for nonignorable missing values due to NRIs,
the information on NRlIs is included in form of a second dimension describing the
propensity to reach the end of the test (Glas & Pimentel, 2008; List et al., 2019).
Missingness indicators d;;, being defined as 1 if uy; is observed, 0 if w; is the first
NRI, and coded as missing otherwise, constitute the measurement model for this
propensity. p(diy = 1) is then modeled as a function of examinee i's propensity
to reach the end of the test and item j’s response difficulty. Linear restrictions are
imposed on the response difficulty parameters implying a monotonously decreasing

probability of observing a response.

In both latent and manifest variable approaches for modeling the onset of NRIs,
correlations different from zero between ability and the number of reached items/ the
propensity to reach the end of the test indicate that the onset of NRlIs is related to the
construct being measured and thus nonignorability of the missingness mechanism.
Including information about nonignorable NRIs has been shown to yield less biased
and more accurate parameter estimates as compared to ignoring or scoring missing
values as wrong (Glas & Pimentel, 2008; Rose et al., 2017; Rose et al., 2010).
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3.1.2 Using Response Times to Model Not-Reached Items

If NRIs occur due to lack of speed, examinees reach the time limit before managing
to reach the end of the test. For this case it has been shown that the missing data
process underlying NRIs can be described by examinee speed (Pohl et al., 2019). With
the widespread availability of RT data retrieved from computerized testing, a direct
measure of speed becomes available (van der Linden, 2006). Pohl et al. (2019) were the
first to suggest utilizing this information on the missingness process by employing
van der Linden’s (2007) hierarchical speed-accuracy (SA) framework to model the
occurrence of NRIs in low-stakes assessments. They showed that the SA model a)
can successfully model NRIs due to time limits, b) provides a closer description of
the missing data processes than model-based approaches for nonignorable missing
values, and c) can also deal with varying enforcement of time limits — given, that
NRIs are the result of lack of speed.

In the SA model, first-level models are specified separately for the responses and
associated RTs. For the response indicators uj; van der Linden has recommended
employing customary IRT models. For the RTs t;;, denoting the time examinee i
required to generate an answer to item j, a lognormal model with separate person
and item parameters is chosen. That is, logarithmized RTs are assumed to follow a
normal distribution. In the lognormal model, logarithmized RTs are considered to be

a function of the examinee’s speed T; and the item’s time intensity f;:

In(ty) = Bj — Ti + €y,
with

3.2
eij ~ N(O, O(]._Z). ( )

«; represents the inverse of the RTs” standard deviation and can be interpreted as a
time discrimination parameter. That is, the larger o, the larger the proportion of the
RT variance that stems from differences in speed across examinees. On a second level,

joint multivariate normal distributions of person and item parameters are specified.

Pohl et al. (2019) delineated that approaches that consider the number of NRIs
and the SA model are closely related. First, both approaches include an additional
variable that represents the missingness mechanism in the model. While the SA
model includes a direct measure of speed, model-based approaches for nonignorable
missing values include the tendency to reach the end of the test, as measured by
the number of NRIs. If the number of NRIs is a result of lack of speed under
testing conditions with time limits, the propensity to reach the end of the test can be
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understood as a proxy of working speed. In this case, the SA model presents a better
and finer-grained description of the missingness process (Pohl et al., 2019).

Second, both approaches assume a single mechanism underlying NRIs. Obvi-
ously, when the SA model is applied to account for NRIs, it is assumed that NRIs
occurred due to lack of speed. Although model-based approaches that consider
the number of NRIs do not explicitly rely on this assumption, they still assume
the same missingness mechanism for all NRIs. When mechanisms leading to NRIs
differ across examinees, that is, when multiple mechanisms are underlying NRIs
such as lack of speed and quitting, this assumption is violated. Hence, in the case
that missingness at the end of a test occurs not only due to speed, but also due to
motivational reasons, neither controlling for speed nor for the tendency to reach the

end of the test is sufficient to properly model NRIs.

3.2 Objective

We propose a new framework that takes into account that multiple mechanisms
can underlie NRIs. Doing so requires a) distinguishing examinees who quit the
assessment from those who did not work with sufficient speed and reached the time

limit and b) to establish a model that considers both mechanisms simultaneously.

The remainder of this article is organized as follows: First, we present an approach
that distinguishes between and simultaneously models two different types of NRIs.
Second, parameter recovery of the proposed model is investigated using a simulation
study. Third, the relevance of the model for understanding the missingness processes

is illustrated in an empirical example.

3.3 Speed-Accuracy+Quitting Model

The proposed speed-accuracy+quitting (SA+Q) framework, depicted in Figure 3.1, is
an extension of the hierarchical SA model that also accounts for quitting. Following
Pohl et al. (2019), NRIs due to lack of speed are modeled by considering examinee
speed. For simplicity, we model ability 8 employing a Rasch model as given by
Equation 5.1. This is in accordance with the analysis frameworks of major LSAs
(e.g. NEPS, Pohl & Carstensen, 2012). Note that the model can be extended to
other measurement models (see Ulitzsch, von Davier, & Pohl, 2019¢c). For speed,
we employ the lognormal model suggested by van der Linden (2006) as given by
Equation 3.2. We model the quitting process by considering the number of items
reached before quitting. These are determined by employing RTs to distinguish
between examinees displaying NRIs due to lack of speed or due to quitting and
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Item Domain
Bop, Zop

Population

Level 2
ve Worc, Zote

Level 1

Data Uy; Tij Kq,

Item Responses Response Times Reached Items
Before Quitting

Figure 3.1. Hierarchical framework for the joint modeling of speed, accuracy,
and test endurance.

constitute the measurement model for a newly introduced variable giving examinee
test endurance. If the end of the test or the time limit was reached, the number of
items reached before quitting is set to be missing, as no information about quitting is

available in this case.

3.3.1 Identifying Quitting

In the present study, we assume that examinee i has quit the assessment when a) he
or she did not reach the end of the test (that is, k¢, is smaller than the number of
items administered K) and b) his or her total RT t, falls below the time limit (that
is, tiot; is smaller than Ty;y,). Based on this information, an indicator c; of observed

quitting behavior can be constructed as follows

1 if Kor, < Kand tor, < Ty
¢ = tot; tot; lim (33)

0 otherwise.
By construction, ¢ distinguishes between examinees who quit the assessment (c; = 1)

and those who reached the time limit or finished the test before quitting (c; = 0).

3.3.2 Modeling Quitting

To model the quitting process, we utilize the information contained in the number of
reached items up to the point where the assessment has been quit kg,. When quitting
behavior has been observed, thatis, when c; = 1, kg, is given by the observed number
of reached items kiot;. We suggest to employ a Poisson lognormal model for kq,.
These are common for count data on the test or task level (Doebler & Holling, 2016;
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Jansen, 1994, 1995), such as the number of correct items in a task or — as mentioned in
passing by Jansen (1995) — the number of completed items in a test. More specifically,
we model the probability that examinee i quits the assessment after attempting k
items as a Poisson process with mean A;, where In(A;) corresponds to the person

parameter (;:

e*)‘iﬂi‘
p(le = k') = Kl
with (3.4)
In(Ay) = G.

(i denotes examinee i’s test endurance and thus governs the item position at which
examinee i is most likely to quit the assessment — given that the assessment has
not been quit before. As such, ¢; can be understood as a survival parameter. In the
context of NRIs, the onset of NRIs poses the event of interest occurring within a
sequence of item positions (List et al., 2019). The survival function S(k) depends on
the Poisson lognormal model for kg, and gives the probability that examinee i will

continue the assessment beyond k items, as follows:

“Ainl
Y
i’

S(k) =plkg, > k) =T1—Fk)=1-)_ (3.5)

1=0
with F(k) denoting the Poisson cumulative distribution function.

The presented model incorporates the assumption that examinees will continue
the assessment only for a definite number of items and thus will quit the assessment
at some point. Note, however, that quitting behavior is not fully observable since
some examinees either manage to complete the test or reach the time limit before
quitting. Hence, under ¢; = 0, kg, is exposed to right censoring. That is, the observed
number of reached items ki, corresponds to the number of reached items before
quitting only under c; = 1. Otherwise, ko, marks the item position k¢, at which
kq, has been right-censored. The relationship between kio;, kg,, and the censoring

variable k¢, is given by

ktoti = min(in, kCi)~ (36)

Table 3.1 illustrates this relationship for three examinees administered a test of
length K = 20 with a a time limit of Ty;;;, =1,800 seconds. Examinee 1 reached the end
of the test within the allocated time without showing quitting behavior. Hence, kq, is
censored due to reaching the end of the test at k¢, = kiot; = K = 20. Examinee 2 did
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not reach the end of the test due to lack of speed. Hence, ko, gives the item position
kc, at which quitting behavior has been censored due to lack of speed. Examinee
3 did reach neither the end of the test nor the time limit and is thus assumed to
have quit the assessment. Thus, ko, corresponds to the item position at which the
assessment has been quit kq,.

Table 3.1. Illustration of the relationship between kiot;, kg,, and k¢,

Kiot;  toty, € ko, K¢
1 20 1450s 0 NA 20
2 16 1800s 0 NA 16
3 16 1450s 1 16 NA

Note: kiot,: Observed number of
reached items, tio,: total response
time, kg,: number of reached items
before quitting, kc,: censoring
item position, ci: quitting indica-
tor.

Note that usually in LSAs only a few examinees show quitting behavior. That
is, there are few observations with ¢; = 1. This results in sparse data with respect
to the number of reached items before quitting kg, on the one hand and a large
portion of kq, to be assumed to have been censored on the other. If speed is related
to test endurance and there is censoring of kg, due to reaching the time limit, speed
is informative with respect to the censoring of kg,. Under such conditions, speed is
related to both the parameter governing the distribution of kg, and the probability
that kq, is censored. Modeling test endurance and speed jointly accounts for the infor-
mative censoring of kq, (Baker, Fitzmaurice, Freedman, & Kramer, 2005). Likewise,
modeling ability and speed jointly with test endurance accounts for nonignorable

missingness due to quitting on response as well as on RT indicators.

3.3.3 Second Level Models

In analogy to the SA model, on the second level, the joint distributions of the first-
level person and item parameters are modeled. Following van der Linden (2007),

person parameters are assumed to be multivariate normal with mean vector

Hp = (H’G/ M, HC) (37)

and covariance matrix
2
O 0 Ogr O (t14
Zp=|0gr 0F o |- (3.8)

0'9( GTC 0%
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Assessing the joint distribution of person parameters provides valuable insights
into the processes underlying NRIs, their relationship to ability as well as to each
other. Non-zero correlations with test endurance indicate nonignorability of the

associated missingness process.

For the sake of simplicity, for the measurement model of RTs, time discrimination

parameters «; are constrained to be equal across items, that is
o = o for all j (3.9)

This constraint can be understood as an analogue to the Rasch model in IRT (van der
Linden, 2006) and thus mirrors the Rasch parameterization implemented for item
responses in major LSAs (see, e.g., Pohl & Carstensen, 2012).

The joint distribution of item parameters is, in accordance with van der Linden

(2007), assumed to be multivariate normal with mean vector

1y = (Ko, Kp) (3.10)
and covariance matrix
2
- <Gb "?) . (3.11)
Obp 0'[5

When a Rasch model is employed for response indicators, the model can be

identified by setting the expectations of 6 and 7 to zero.

Assuming joint distributions for person and item parameters yields the following
likelihood

N Ktot;

1

L= H H p(wijlbs, 0:)F(ti51B5, T, 0)p(kq,|G) S (ke,[g:) '
i1 e

g(6i, i, Gilup, Zp)h(b;, Bslug, Zg). (3.12)

The first four terms incorporate the assumption of conditional independence of re-
sponses, RTs, and number of reached items before quitting given the second-order
variables in the model. The third and fourth term take the right censoring of quitting
behavior into account: For examinees who quit the assessment (c; = 1), the proba-
bility that examinee i quits the assessment after attempting kg, items as given by
Equation 3.4 contributes to the likelihood function. For examinees with unobserved
quitting behavior (c; = 0), the likelihood function considers the probability that
examinee i will continue the assessment beyond the censoring position k¢, as given
by the survival function in Equation 3.5. g(8;, T, Cilup, Zp) and h(bj, B;/uy, £y) denote
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the multivariate normal densities of the person and item parameters, respectively. To

facilitate estimation of the SA+Q model, we employ Bayesian estimation techniques.

3.4 Parameter Recovery

We conducted a simulation study to investigate whether true parameter values can
satisfactorily be recovered in estimation under realistic conditions. The SA model
and extensions thereof have been shown to yield good parameter recovery under
realistic conditions (e.g., Fox & Marianti, 2016; Molenaar et al., 2015; Pohl et al., 2019).
We therefore focused especially on possible challenges for estimation imposed by

censoring of quitting behavior and the resulting data sparseness on kg, .

3.4.1 Data Generation

Data were generated using R version 3.5.1 (R Development Core Team, 2017). We
employed the SA+Q model as the data-generating model. Using the mvrnorm func-
tion from the MASS package (Venables & Ripley, 2002), person and item parameters
were randomly drawn from multivariate normal distributions with variances and
covariances set to values similar to those of the data application reported below. Pop-
ulation values of the data-generating model are reported in Table 3.2. We employed
a Rasch model for the item responses and set time discrimination parameter for all
items to o = 1.75 (van der Linden, 2007).

Missing values were induced based on a) cumulative RTs across item positions
and b) the number of reached items before quitting. Cumulative RTs give the time
passed when the respective item is responded to. The number of reached items
before quitting was generated for each examinee according to the Poisson lognormal
model for the quitting process. All items with either a cumulative RT exceeding the
time limit or whose position exceeded the number of reached items before quitting

were assumed to be not reached and coded as missing.

To evaluate the effects of censoring of quitting behavior, we considered multiple

censoring mechanisms and varied four factors that are relevant for data sparseness:

(a) the sample size (N = 350; N = 700), representing low and medium sample sizes
per item encountered in LSAs with balanced incomplete block designs (see
Gonzalez & Rutkowski, 2010).

(b) the test length (K = 20 with Tyy;, = 1,800s; K = 40 with Tyi,,, = 6,600s).

(c) the rate of NRIs (2.5%; 5%; 10%), reflecting the upper three quarters of a typical
range of percentages of NRIs. For instance, in the PISA 2012 computer-based
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assessment, percentages of NRIs across booklets ranged from 0.42% to 11.19%
(OECD, 2014).

(d) the missingness mechanisms underlying NRIs (NRIs caused solely by quitting;
half of the NRIs resulting from quitting and half from lack of speed)!. While
the former represents a testing condition without or a very generous time limit
(e.g., as in PIAAC), the latter represents a more speeded testing situation where
some examinees run out of time before reaching the end of the test or quitting
(e.g., as in PISA). We included these conditions in order to a) assess whether
the proposed model yields unbiased and efficient parameter estimates under
various testing situations and b) to disentangle possible effects of different
censoring mechanisms on estimation accuracy and efficiency. Under the first
condition, the number of reached items kq is censored due to test length.
Under the second condition, censoring occurs due to both, test length and lack
of speed.

Under this design, conditions with 5% (2.5%) missing values and no censoring due to
speed display the same missingness rates due to quitting as conditions with 10% (5%)
missing values with half of it going back to quitting. This allows to assess whether
the model performs differently when — for the same amount of information available
on test endurance — the overall missingness rate increases and kg, is exposed to
different censoring mechanisms. We controlled the amount and types of NRIs by
varying the expectations of test endurance i and speed .. (see Table 3.2). Note that
low rates of missingness due to quitting might go back to relatively high proportions
of examinees exhibiting such behavior. This becomes evident in Table 3.2, displaying
the corresponding average proportions of simulated examinees exhibiting quitting
behavior across all cells of the simulation design. In total, the simulation design led
to 2 x 2 x 3 x 2 = 24 conditions. For each cell of the simulation design, we generated
100 data sets.

3.4.2 Estimation Procedure

We employed Bayesian estimation with Gibbs sampling. All analyses were conducted
in JAGS version 4.3.0. (Plummer, 2003) using the rjags package (Plummer, 2016) for
R version 3.5.1 (R Development Core Team, 2017). Settings for noninformative priors
were chosen following recommendations provided by Fox (2010) and Gelman and
Hill (2007).

INote that in the case of NRIs going back entirely to lack of speed, there is no need to model
quitting behavior and the SA model is sufficient for modeling the mechanism underlying NRIs.
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Table 3.2. Population parameters of the data-generating model

Person Parameters Item Parameters
0 T ¢ pp ; b B Ky
o 1.00 0.00 b 1.50 0.00
T -40 10 I B 0.40 25 0.00
¢ -15 25 0.65 e !
Missingness Mechanisms
quitting speed & quitting
K % NR  %Q L He ' % Q Ly e
2.5% 8.15%  -2.50 415 1 4.28% -3.75 4.40
20 5% 15.08% -2.50 385 1750% -3.85 4.15

10% 26.49% -2.50 3.50 1 12.75%  -4.00 3.85

40 5% 14.50% -2.50 4.55 ' 7.20%  -3.85 4.85
10% 28.44% -2.50 415  112.60% -4.00 4.55

Note: N: number of examinees; K: number of items; % NR: overall missingness rate due
to not-reached items; % Q: percentage of examinees quitting; 6: ability; t: speed; (: test
endurance; b: item difficulty; 3: time intensity; up and pj give mean vectors of person and
item parameters, respectively. Mean speed 1, and the mean test endurance p; are varied
in the simulation design to control the amount of mechanisms underlying not-reached
items.

ATAAOOHTY YHLHNVIVd
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For person and item parameter variances and covariances, we employed inverse
Wishart priors with

Ly ~IW3,4(I5) (3.13)

and
Iy~ W24 (Ih), (3.14)

where I3 and I, represent identity matrices of dimension 3 and 2, respectively. These
are default prior settings for inverse Wishart priors implemented in statistical soft-
ware for Bayesian analyses (van Erp, Mulder, & Oberski, 2018). Note that inverse
Wishart priors tend to be informative about variances when these are close to zero
and the sample size is small (Alvarez, Niemi, & Simpson, 2014; Schuurman, Grasman,
& Hamaker, 2016). Since usually the number of items is small, for item parameter

variances and covariances, prior settings will have a larger impact.

We set pg and i, to zero for model identification. For the remaining item and
person parameter means, we chose noninformative normal priors with mean zero
and variance 1000%. A noninformative gamma prior with shape 0.5 and rate # was
employed for squared time discrimination o?. JAGS code for the SA+Q model is
provided in Appendix B.1.

Each generated data set was analyzed running three MCMC chains with 100,000
iterations each. We employed a thinning factor of 5 and discarded the first 40,000
iterations as burn-in, saving 36,000 iterations as a sample of the posterior distribution.
We determined the number of iterations in pre-analyses, inspecting potential scale
reduction factor (PSRF) values, trace plots, and effective sample sizes. In the case
of nonconvergence (i.e., PSRF values higher than 1.10, Gelman & Shirley, 2011), we
increased the number of iterations by 50,000 per chain out of which 30,000 were
discarded as burn-in. This procedure was repeated up to 250,000 iterations per chain
in total.

3.4.3 Evaluation Criteria

We evaluated statistical performance in terms of convergence, bias in and efficiency of
parameter estimates, as well as coverage of the true parameter values by 95% highest
density intervals. Convergence was assessed on the basis of PSRF values, with PSRF
values below 1.10 being considered acceptable (Gelman & Rubin, 1992; Gelman
& Shirley, 2011). Coverage between .91 and .98 was considered good (Muthén &
Muthén, 2002).
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3.4.4 Results

CONVERGENCE Table 5.1 gives the proportions of replications converging after
100,000 up to 250,000 iterations across all cells of the simulation design. Reaching
convergence was more challenging under conditions with low quitting rates. This
effect was more pronounced in conditions with larger number of items. Accordingly,
conditions with K = 40 and an overall missingness rate of 2.5% out of which half went
back to quitting were most challenging with respect to convergence, with up to 58%
of the replications not converging after 250,000 iterations. The number of iterations
needed to reach convergence decreased rapidly with higher quitting rates, such that
under conditions with 10% missingness solely due to quitting, at least 95% of the
replications converged after 250,000 iterations at most. No considerable differences
concerning convergence could be observed for the same amount of missing values

due to quitting when either missing values due to speed were present or not.

Parameters typically yielding high PSRF values were test endurance mean and
variance estimates. This is due to the censoring of quitting behavior, with the dis-
tribution of test endurance needing to be extrapolated based on information from
examinees assumed to belong to the lower quartiles of the distribution. When quit-
ting behavior is observable only for few examinees, information on the distribution of
test endurance is sparse, impacting convergence. Replications that did not converge

were excluded from further analyses.

COVERAGE Coverage values for all parameter types and conditions are available
in Appendix B.2. For item parameter variances, covariances, and means coverage
was satisfactory across all conditions. Coverage values falling below .91 occurred
rarely and the lowest coverage value was still as high as .82. For person parameters,
when either the number of examinees or items was sufficiently high (K = 40 or
N = 700), coverage fell below .91 only for test endurance variance var(¢) and mean
p; estimates under conditions with missingness rates due to quitting below 5% (that
is, under conditions with less than 10% NRIs due to speed and quitting as well as
under conditions with an overall missingness rate below 5% only due to quitting).
Under these conditions, for var((), the lowest observed coverage values were .88 and
.67 for conditions with K = 20 and K = 40, respectively. For (1, the lowest observed
coverage values were .76 and .75 for conditions with K = 20 and K = 40, respectively,

under conditions with less than 5% missingness caused by quitting.

PARAMETER ESTIMATION To evaluate bias in and efficiency of parameter estimates,
we assessed the median along with 90% ranges of the means of the posterior dis-

tribution. Figures 3.2 and 3.3 depict results for person parameter variances and

65



A MULTI-PROCESS ITEM RESPONSE MODEL FOR NOT-REACHED ITEMS DUE TO TIME
LIMITS AND QUITTING

Table 3.3. Proportion of replications converging after 100,000 to 250,000 iterations

[terations
K N % NR  Mechanisms
100,000 150,000 200,000 250,000

2 59 quitting 13 31 52 .64
77 _speed&quitting 07 26 38 46
0 quitting 28 .55 73 .85
B0 speed&equiting 13 31 4 60
10 quitting 46 78 91 96
o " __speed &quitting 25 50 66 81
9 59, quitting .08 32 .53 .64
77 _speed &quitting .08 22 35 48
: quitting 29 50 67 77
0 speed & quitting 12 26 44 51
10° quitting .59 87 97 99
" speed&gquitting 17 35 54 75
2 59, quitting .07 23 41 57
77 _speed&quitting 03 11 29 42
o quitting 20 43 .62 74
B0 speed&equiting 10 20 41 55
10% quitting .55 79 95 98
0 " __speed &quitting 13 28 51 64
2 59 quitting .05 25 40 57
77 _speed &quitting 10 23 38 47
o quitting 19 37 .62 77
0% speed & quitting 10 24 35 45
oo, quitting 57 84 92 97
°  speed & quitting .14 34 59 71

Note: % NR: overall missingness rate due to not-reached items; quitting and
speed & quitting denote conditions under which all not-reached items go back to
quitting and not-reached items occurred due to both lack of speed and quitting,
respectively; K: number of items; N: number of examinees.

covariances as well as mean test endurance posterior means.? Across all conditions,
median person parameter variance and covariance estimates were close to the true
data-generating values. The only exception were parameters concerning the distribu-
tion of test endurance (u; and var(()), which were sensitive to bias under conditions
with missingness rates due to quitting below 5% as well as under conditions with
few items. Under conditions with K = 20, median parameter estimates of var(()
ranged from 0.53 up to 0.71 as compared to the true value of 0.65. Bias for y; under
conditions with K = 20 was less severe. Under conditions with N = 350 and 10%,

ZNote that plots for parameter recovery of mean test endurance p; (Figure 3.3) are organized
according to the data-generating values employed to achieve missingness rates due to quitting ranging
from 1.25% (speed & quitting, 2.5%) to 10% (quitting, 10%).
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Figure 3.2. Medians and 90% ranges of person parameter variance and
covariance estimates over all 100 replications per condition. The dashed hor-
izontal line indicates the respective true parameter. Note that y-axes differ
in scale. 6: ability; T: speed; (: test endurance; N: number of examinees; K:
number of items; NRlIs: not-reached items; quitting and speed & quitting
denote conditions under which all not-reached items go back to quitting
and not-reached items occurred due to both lack of speed and quitting.

67



A MULTI-PROCESS ITEM RESPONSE MODEL FOR NOT-REACHED ITEMS DUE TO TIME
LIMITS AND QUITTING

respectively, 1.25% missingness due to quitting, median parameter estimates of 3.55
and 4.19 as compared to the data-generating value of 3.50 and 4.40, respectively, were
observed. Under conditions with K = 40 and a missingness rate due to quitting of
at least 5%, median estimates of var(¢) and p; were well recovered. Median bias in
parameter estimates did not vary largely across the sample sizes under consideration.
Nevertheless, variability of parameter estimates decreased with increasing sample

size.

Results for bias and efficiency of item parameter means, variances, and covari-
ances are given in Appendix B.3. Due to the small number of items, estimates were
shrunken towards the prior mean of the inverse Wishart prior (see Alvarez et al.,
2014; Daniels & Kass, 1999).
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Figure 3.3. Medians and 90% ranges of mean test endurance p; over all 100
replications per condition. The dashed horizontal line indicates the respec-
tive true parameter. Plots are organized according to the data-generating
values employed to achieve missingness rates due to quitting ranging from
1.25% (speed & quitting, 2.5%) to 10% (quitting, 10%). Note that y-axes
differ in scale. N: number of examinees; K: number of items; % NR: overall
missingness rate due to not-reached items; quitting and speed & quitting
denote conditions under which all not-reached items go back to quitting
and not-reached items occurred due to both lack of speed and quitting,
respectively.
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SUBSEQUENT ANALYSES In subsequent analyses we aimed at investigating whether
the recovery of var(() under conditions with few items (K = 20) improves with an
increasing amount of NRIs. To do so, we increased the missingness rate under the
condition with K = 20, N = 350 and missingness solely caused by quitting to 20%
by setting p; to 3. We employed 100 replications and analyzed all generated data
sets employing three chains with 250,000 iterations each. No convergence issues
occurred. Indeed, the additional condition yielded a median estimate of var({) of
0.67 as compared to the true value of 0.65, thereby supporting the conclusion of the
simulation study that test endurance variances can better be recovered when data

sparseness on kg, is less severe.

3.5 Empirical Example

We used data from the Spanish sample of the PISA 2015 assessment to illustrate
the use of the SA+Q model for the understanding of the occurrence of NRIs. We
analyzed data from examinees who were administered science cluster number 7
at the second position out of four 30 minute blocks. For reasons of simplicity, we
eliminated examinees who showed item omissions from further analyses. The final
sample consisted of 326 examinees responding to 17 items. The data set under
consideration displayed a missingness rate of 7.13%, going back to those 21.47% of
examinees who did not reach the end of the cluster. The majority of examinees with
NRIs (58.57%) reached all but 4 items at most.

3.5.1 Total Response Time Distributions

In a first step, to get a better understanding of possible mechanisms, we followed
Pohl et al. (2019), and examined distributions of total RT t.,. Figure 3.4 displays
tiot, @s a function of the number of NRIs. The time limit Ty, of 1,800 seconds is
marked with a dashed horizontal line. The results suggest that the time limit was
enforced with varying rigor by test administrators, since for some examinees tio¢,
exceeded the time limit. More importantly, tio, varied largely across examinees with
NRIs. Such variation was not to be expected under conditions where NRIs occurred
entirely due to lack of speed, where all t,, associated with NRIs should be close to
Tiim. Instead, the fact that t(,, associated with NRIs was close to Tj;, only for some
examinees, while it was considerably below Tj;,, for others can be understood as
evidence that different mechanisms —i.e., lack of speed and premature quitting — are
underlying NRIs.
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Figure 3.4. Total response time distributions for PISA science cluster number
7 administered in Spain, by number of not-reached items. The dashed
horizontal line marks the time limit Ty;,,, of 1,800 seconds.

3.5.2 Investigating the Occurrence of Not-Reached Items

For simplicity, when classifying examinees as quitters, we ignored that in PISA
time limits were enforced with varying rigor. To deal with the fact that RT was not
recorded for the last item seen when no response has been generated, we employed
a heuristic approach and adjusted the decision boundary for t,, associated with
NRIs by a typical item-level RT. We classified NRIs as due to quitting when tq¢,
fell below the time limit by less than the 90th percentile of RTs across all items and
examinees, that is, 1,800s — 66.97s = 1,733.03s.3 Doing so led to classifying 68 out of
70 examinees who did not reach the end of the test as quitters. We employed the
SA+Q model to analyze the data. With 250,000 iterations per chain, no PSRF values
below 1.10 were encountered.

Results are displayed in Table 3.4. The negative correlation between ability 6
and speed T as well as between ability 8 and test endurance ( indicates that more
able examinees tended to display lower general working speed and showed lower
test endurance. That is, more able examinees were more likely to display NRIs due
to both reaching the time limit and quitting. Note that the highest density interval
for the correlation between 0 and ( includes zero which means that the correlation

was not credibly different from zero. The positive correlation between speed T and

3Note that other approaches may also be taken for classifying NRIs as due to quitting. Especially
when more detailed information is available for each item, it might be possible to even better classify
quitting. Since currently publicly available databases containing RT information do not provide RTs
for the last item seen when no response has been generated, the heuristic decision rule employed here
might serve as a first guideline for applying the SA+Q framework to such data.
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test endurance ¢ indicates that examinees who worked faster had the tendency to
generate answers to more items before quitting the assessment. Furthermore, the
fact that T and ¢ are not highly correlated underlines that missingness due to speed
and missingness due to quitting should be seen as different processes. ; gives the
expectation of the mean logarithmized number of items reached before quitting. The

value of 3.52 corresponds to 33.78 items.

Table 3.4. Variances and means of as well as correlations among person and
item parameters

Person Parameters

0 T ¢ S5

0 1.13 0
[0.87; 1.39]

T -37 .07 0
[-.50; -.24] [0.06; 0.09]

C -16 .30 0.62 3.52

[-.35; .03] [.12; .47] [0.34;0.94] [3.31; 3.74]
Item Parameters

b B Mg
b 1.41 -0.36

[0.59; 2.47] [-0.99; 0.18]
B 0.41 0.21 4.14

[.02; .76] [0.09; 0.37]  [3.94; 4.39]

Note: Highest density intervals are given in squared brackets.
0: ability; T: speed; (: test endurance; b: item difficulty; f:
time intensity; up and py give mean vectors of person and item
parameters, respectively.

3.6 Discussion

The speed-accuracy+quitting model proposed in this article allows to disentangle and
simultaneously model different missing data mechanisms underlying NRIs. Namely,
the SA+Q model distinguishes between NRIs stemming from lack of speed and NRIs
due to quitting and thereby allows to substantively meaningful describe different
processes underlying NRIs. This is achieved by further integrating research on
missing data and research on RTs (see Pohl et al., 2019). The SA+Q model considers
RT data to handle NRIs by a) utilizing the additional information contained in RTs to
distinguish between examinees displaying NRIs due to lack of speed and those who
quit and b) extending van der Linden’s SA model by a Poisson lognormal survival
model describing the quitting process in terms of examinee test endurance. The
SA+Q model can be employed to model the occurrence of NRIs under conditions
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where all NRIs go back to quitting as well as the occurrence of NRIs occuring due to
both lack of speed and quitting.

The SA+Q model represents a refined model-based approach for dealing with
nonignorable missing data. As delineated above, previously suggested model-based
approaches for NRIs (Glas & Pimentel, 2008; Rose et al., 2010; van der Linden,
2007) rely on the assumption of a single missingness mechanism. The SA+Q model
complements model-based approaches for NRIs in that it considers that multiple
mechanisms can underlie their occurrence. As such, the SA+Q model overcomes

limitations of current state-of-the-art approaches for NRIs.

We employed data from PISA 2015 to illustrate how the approach can provide
insights into the processes underlying NRIs. We showed that there is strong evidence
that NRIs in LSAs indeed can be attributed to different missingness processes. In this
context the SA+Q model supports a finer-grained understanding of the occurrence
of NRIs by further assessing examinee characteristics associated with test endurance.
As such, the SA+Q model can be used to evaluate and inform substantive theories
on test-taking behavior and strategies.

The model gives reasonable estimates under conditions with a missingness rate
of at least 5% due to quitting (or approximately 15% of examinees exhibiting quitting
behavior) and a higher number of items (K = 40). Since the SA+Q model estimates
test endurance based on information on the number of reached items before quitting,
the number of examinees quitting the assessment might be of greater importance for
retrieving unbiased estimates than the missingness rate due to quitting. Generally, a
higher number of iterations is needed when little information on quitting behavior
is available. Note that model-based approaches yield ability estimates considerably
different from those retrieved when ignoring nonignorable missing values only under
high missingness rates (Pohl et al., 2014; Rose, 2013; Rose et al., 2010), such that the
application of the SA+Q might be useful mainly under conditions with higher rates
of NRIs.

Due to the model’s complexity, we recommend keeping measurement models
as simple as possible, e.g., by employing a Rasch model for item responses and/or
fixing time discrimination parameters in the measurement model of RTs to be equal
across items. More complex measurement models that might better fit the data at
hand can be incorporated in the SA+Q framework. For RTs, for instance, alternative
parameterizations have been suggested assuming distributions of RTs different than
lognormal (Klein Entink, van der Linden, & Fox, 2009) or introducing additional
parameters that reflect the way an item distinguishes between examinees of different
speed levels (Klein Entink, Kuhn, Hornke, & Fox, 2009). Note, however, that adding
additional model complexity by choosing more complex measurement models for
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responses and/or RTs might further challenge estimation of the SA+Q model and
increase the number of items or examinees needed to achieve convergence as well as

unbiased and efficient parameter estimation.

3.6.1 Limitations and Future Research

While the SA+Q model allows to incorporate different missingness mechanisms, it
heavily relies on extrapolation of the distribution of the number of reached items
before quitting and the underlying test endurance variable. When the majority of
examinees manages to reach the end of the test, the number of reached items before
quitting is strongly affected by right censoring. Thus, as it is the case with previously
developed latent model-based approaches for NRIs (e.g., Glas & Pimentel, 2008),
the distribution of reached items before quitting is extrapolated from observations
assumed to belong to lower quartiles of the distribution. This renders it difficult
to assess whether distributional assumptions are met. In the simulation study for
evaluating estimability, rather low missingness rates due to quitting went back to a
relatively high proportion of examinees exhibiting such behavior. For instance, under
conditions with a missingness rate of 10% due to quitting, quitting behavior was
observable for roughly a quarter of examinees. This, however, must not be the case
in real data. It might well be that high NRI rates can be attributed to few examinees
quitting the assessment at early stages. The capability of the SA+Q model to yield
an accurate description of the quitting process under such conditions remains to be
evaluated. Likewise, it still remains to be assessed whether statistical performance
of the SA+Q model can be improved under conditions with large sample sizes, as
often encountered on the country level in LSAs. It might well be that the SA+Q
model performs well under conditions with a low proportion of examinees exhibiting
quitting behavior when the absolute number of examinees is sufficiently high. Until
then, the requirements concerning missingness rates due to quitting established
on the basis of the simulation study may serve as lower boundaries. In addition,
for count data on the test level, distributions different from lognormal, such as a
gamma distribution, have been suggested for the random, person-specific mean of
the Poisson distribution (Doebler & Holling, 2016; Jansen, 1994). Further research
and possibly also experimental studies are needed to evaluate the appropriateness of
different distributional assumptions for test endurance.

Furthermore, it remains to reason whether the quitting process can sufficiently be
described by only considering item positions. First, it might well be that rather than
the number of attempted items, passed test time better measures test endurance. As

long as time intensities do not show large differences across items, item positions
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might serve as a proxy for passed test time (Fox & Marianti, 2016). Otherwise, the
SA+Q model might not be able to sufficiently capture the quitting process. Second,
subpopulations with different quitting strategies might exist. For instance, while
some examinees might quit due to lack of motivation, others might quit when they
consider the test too difficult or even out of frustration when noticing that the time
remaining is not sufficient to complete the assessment. Likewise, there might be
qualitative differences in quitting mechanisms between examinees who quit at earlier
and later stages of the assessment. To meaningfully incorporate different forms of
quitting behavior into the model, further substantive research is needed to describe

and understand these mechanismes.

Moreover, the SA+Q model assumes stationarity of speed. This assumption
is reasonable when tests are administered with generous time limits, such that
examinees are unlikely to run out of time (van der Linden, 2007). However, the
presence of NRIs due to lack of speed indicates that the allocated time might not have
been sufficient for all examinees. When examinees perceive their current speed level
as being insufficient to reach the end of the test, they might try to adjust their pace
(Yamamoto & Everson, 1997), rendering the stationarity assumption implausible. In
future studies it seems therefore necessary to allow for within-person variation of
speed in the SA+Q model (see Fox & Marianti, 2016, for an extended model).

In general, estimation of the SA+Q model was found to be rather challenging.
Severe convergence issues were encountered under conditions with less than 10%
missingness due to quitting. When convergence was reached, this oftentimes was
only the case with high numbers of iterations. Future research should therefore

address facilitating the estimation procedure of the SA+Q model.

In the empirical example, we encountered conditions that pose further challenges
to adequate modeling of NRIs and provided heuristic solutions to address these
issues. Future research is needed on how to better deal with a) the fact that oftentimes
no RT information is available for the last item seen when no response has been
generated as well as b) varying enforcement of time limits when applying the SA+Q
framework. In addition, in order for the SA+Q model to be readily applicable to
empirical data, it needs to be considered that NRIs are often not the only source
of missingness going back to examinee behavior. In most LSAs, both NRIs as well
as item omissions can be encountered (Pohl et al., 2014). In order to additionally
handle (nonignorable) omission processes, the SA+Q model could be combined with
model-based approaches for item omissions (e.g., O’Muircheartaigh & Moustaki,
1999; Rose, 2013; Ulitzsch et al., 2019c¢).
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Using Response Times for Joint Modeling
of Response and Omission Behavior

This chapter is published as Ulitzsch, E., von Davier, M., & Pohl, S. (2019¢). Using
response times for joint modeling of response and omission behavior. Multivariate
Behavioral Research. doi:10.1080/00273171.2019.1643699.

For adequate modeling of missing responses, a thorough understanding of
the nonresponse mechanisms is vital. As a large number of major testing
programs are in the process or already have been moving to computer-
based assessment, a rich body of additional data on examinee behavior
becomes easily accessible. These additional data may contain valuable
information on the processes associated with nonresponse. Bringing to-
gether research on item omissions with approaches for modeling response
time data, we propose a framework for simultaneously modeling response
behavior and omission behavior utilizing timing information for both. As
such, the proposed model allows a) to gain a deeper understanding of
response and nonresponse behavior in general and, in particular, of the
processes underlying item omissions in LSAs, b) to model the processes
determining the time examinees require to generate a response or to omit
an item, and c) to account for nonignorable item omissions. Parameter
recovery of the proposed model is studied within a simulation study.
An illustration of the model by means of an application to real data is
provided.
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5
A Hierarchical Latent Response Model

for Inferences about Examinee
Engagement in Terms of Guessing and

Item-Level Nonresponse

This chapter is published as Ulitzsch, E., von Davier, M., & Pohl, S. (2019a). A
hierarchical latent response model for inferences about examinee engagement in
terms of guessing and item-level nonresponse. British Journal of Mathematical and

Statistical Psychology. doi:10.1111/bmsp.12188.

In low-stakes assessments, test performance comes with little or no con-
sequences for examinees themselves, so that examinees may not be fully
engaged when answering the items: Instead of engaging in solution behav-
ior, disengaged examinees might randomly guess or generate no response
at all. When ignored, examinee disengagement poses a severe threat to
the validity of results obtained from low-stakes assessments. Statistical
modeling approaches in educational measurement have been proposed
that account for nonresponse or for guessing, but do not consider both
types of disengaged behavior simultaneously. We bring together research
on modeling examinee engagement and research on missing values and
present a hierarchical latent response model for identifying and modeling
the processes associated with examinee disengagement jointly with the
processes associated with engaged responses. To that end, we employ a
mixture model that identifies disengagement on the item-by-examinee
level by assuming different data-generating processes underlying item
responses and omissions, respectively, as well as response times asso-
ciated with engaged and disengaged behavior. By modeling examinee
engagement with a latent response framework, the model allows assess-
ing how examinee engagement relates to ability and speed as well as
identifying items that are likely to evoke disengaged test-taking behavior.
An illustration of the model by means of an application to real data is
presented.
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6

Discussion

Understanding the occurrence of missing responses is of utmost importance through-
out the whole process of LSA operations, ranging from test construction through
administration to the analysis and interpretation of results. The current work de-
veloped, evaluated, and applied model-based frameworks that utilize RTs for a)
facilitating a better understanding of whether and how examinees differ when inter-
acting with a test in general and the mechanisms underlying missing responses in
particular, b) considering these differences when analyzing LSA data, and c) better
handling missing values due to examinee behavior by modeling the mechanisms un-
derlying their occurrence. For doing so, the present work brought together research
on modeling item omissions and NRIs with research utilizing RTs when modeling
observed responses.

Four approaches were presented that focus on different aspects and mechanisms
underlying missing responses. Chapters 2 and 3 focused on modeling the processes
underlying NRIs. While Chapter 2 delineated and evaluated the capability of van der
Linden’s (2007) SA framework for modeling the mechanism underlying NRIs due to
lack of speed, Chapter 3 built on that work and aimed at disentangling and jointly
modeling multiple mechanisms underlying NRIs, namely lack of speed and quitting.
In Chapters 4 and 5, model-based approaches for modeling omission behavior were
provided. Chapter 4 focused on jointly modeling omission behavior and response
behavior, thus providing a better understanding of how these two types of behavior
differ. Chapter 5 built on previous theoretical work relating item omissions to
examinee disengagement and provided a model-based approach that allows for
identifying and modeling examinee disengagement in terms of both omission and

guessing behavior.

In the following, a holistic view on the presented approaches is taken and ad-
vantages of considering RTs for modeling and understanding missing responses in
LSAs as well as limitations along with directions for future research are discussed.
Recommendations for practitioners aiming at applying the presented frameworks
are given. Last, placing the present work in a broader perspective, it is further
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discussed how its approaches contribute to “unpacking” and better understanding
examinee performance. Based on these considerations, implications for analyzing

and reporting LSA data are derived.

6.1 Advantages of Using Response Times for Modeling Missing Responses

In the present work, it has repeatedly been shown that utilizing RTs for modeling
missingness mechanisms comes with strong advantages. First and foremost, consid-
ering the additional information contained in RTs when modeling missing responses
supports a more nuanced way of modeling and assessing missingness mechanisms.
Second, understanding the occurrence of missing responses provides a better under-
standing of examinee test-taking behavior in general. Third, from a measurement
perspective, considering additional information on how examinees interacted with
the assessment provides less biased and more reliable parameter estimates. These
advantages are evident from all models presented and shall be reviewed more closely
in the following.

6.1.1 Modeling and Understanding Missingness Mechanisms

All frameworks presented aim at modeling and thus understanding missingness
mechanisms. By leveraging and modeling the additional information on test-taking
behavior contained in RTs, the presented frameworks allow for a more nuanced mod-
eling of missingness mechanisms as compared to previous approaches for handling
NRIs and item omissions. In contrast to the manifest model-based approach for NRIs
by Rose et al. (2010), the frameworks for modeling NRIs presented in Chapters 2 and
3 allow considering differences in test-taking behavior (i.e., speed and test endurance)
for all examinees —not just for those who did not reach the end of the test. In addition,
the speed-accuracy+quitting (SA+Q) framework presented in Chapter 3 allows for
disentangling and modeling NRIs due to speed and quitting simultaneously.

As compared to rather heuristic RT-based scoring approaches as well as ap-
proaches for modeling omissions based on information retrievable from paper-
and-pencil-based assessment, the speed-accuracy+omission (SA+O) and speed-
accuracy+engagement (SA+E) frameworks for modeling omission and/or guessing
behavior presented in Chapters 4 and 5 provide richer, more nuanced models of
the mechanisms underlying omissions and/or guessing. In addition, the SA+E
framework presented in Chapter 5 allows considering and assessing omission and

guessing behavior simultaneously.
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6.1.2 Investigating Ditferences in Test-1aking Behavior

Above and beyond modeling and assessing mechanisms underlying missing re-
sponses, an important aspect of all frameworks presented is the opportunity to
provide a general understanding of how examinees interact with assessments. This
is achieved by embracing the potential of missing responses as a rich source of in-
formation on how examinees interact with the assessment instead of considering

missing responses as a mere nuisance need to be dealt with.

The insights into test-taking behavior that can be gained based on the frameworks
presented throughout Chapters 2 to 5 have been illustrated using data from two
major LSAs — PIAAC and PISA. From the empirical examples it became evident that
all types of test-taking behavior considered in the present work can be encountered
to a considerable degree in LSAs and that, at the same time, examinees with different
levels of ability differ in the tendency to show such behavior. Employing data
from the Canadian and Spanish sample from PISA 2015, both Chapter 2 and 3
could illustrate that within the same data set, both lack of speed and quitting pose
potential mechanisms underlying NRIs. In the empirical example in Chapter 3,
examinees with higher ability showed both lower levels of general working speed
and lower test endurance, indicating that these examinees were more likely to
run out of time or to quit the assessment at earlier stages. The empirical example
in Chapter 4 illustrated that examinees operate on different speed levels when
generating responses and omitting items, indicating different underlying processes.
This conclusion could be drawn based on findings for the Chilean sample from
PIAAC 2012, where the two speed levels associated with responses and omissions,
respectively, did not reveal a perfect linear relationship to each other and yielded
different correlations with ability and omission propensity. In data from the Austrian
sample from PISA 2015 examined in Chapter 5, only approximately four fifth of
responses were classified as engaged, while the remaining responses were either
omitted or guessed. Disengaged examinees were found to display lower levels of
effective ability. These results suggest that less able examinees are highly at risk to
show disengaged behavior is LSA. In addition, the models presented in Chapters
4 and 5 allow assessing item characteristics associated with omission and guessing
behavior. In the empirical examples, difficulty, time intensity, and open-response
formats were item characteristics associated with items more likely to evoke omission

and guessing behavior.

By providing insights into how examinees interact with assessments, the pre-
sented approaches provide tools for informing and evaluating substantive theories
on examinee test-taking behavior. It should, however, be noted that in the empirical
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examples only subsets of items and examinees were considered. Since the empirical
examples served illustrative purposes, subsets with high incidence of item omissions
and NRIs were chosen. For the sake of simplicity, analyses were based on single item
blocks or testlets rather than the whole assessment. As such, the empirical examples
should be seen as illustrations of the insights that can be gained on the basis of
the presented frameworks as well as providing guidance on how to interpret the
frameworks” model parameters. For evaluating and informing theories on test-taking
behavior, more thorough investigations of LSA data are needed.

6.1.3 Enhancing Ability and Item Parameter Estimation

Even under conditions where, from a substantive perspective, investigating test-
taking behavior is not of major interest in itself, the presented frameworks bear great
advantages from a measurement perspective. By considering additional information
on how examinees interacted with the assessment, all frameworks presented in this
work support retrieving less biased and more efficient person and item parameter
estimates. This has been illustrated by showing the impact of considering additional
information about examinee test-taking behavior on ability and item parameter
estimation. For doing so, the presented frameworks were compared to models that
either do not consider or make stronger assumptions concerning the specific behavior
under consideration. It could be shown that a) not considering the types of test-taking
behavior under consideration as well as b) ignoring that examinees with different
levels of ability differ in test-taking behavior can induce bias to ability and/or item
parameter estimates. In addition, it has been illustrated how considering additional
information on test-taking behavior yields more reliable ability estimates — especially

for examinees with higher rates of missing responses.

6.2 Limitations and Directions for Future Research

Although the presented approaches pose advanced methods for modeling the mech-
anisms underlying missing responses in LSAs, multiple issues need to be addressed
before the presented approaches are readily applicable under real-life LSA conditions.
First, there is a strong need for an integrated approach, considering both omissions
and NRIs simultaneously. Second, all frameworks come with assumptions on ex-
aminee test-taking behavior that might not always be met by empirical data. Out of
the assumptions inherent to all frameworks presented, the neglect of a) qualitative
differences in test-taking behavior across examinees as well as b) varying behavior
across the test pose the most pertinent ones to be addressed. Third, future research

should aim at validating and getting a better understanding of the constructs being

145



DISCUSSION

captured by the presented approaches. Fourth, for the frameworks to be applicable
under real-life LSA conditions, challenges for model application encountered under
such conditions need to be addressed. In addition, the presented frameworks opened
up avenues for a myriad of future directions. Among the most promising extensions
of the scope of application of the presented frameworks are a) considering additional
data on test-taking behavior as well as b) adjusting the presented frameworks for
modeling missing responses in noncognitive assessments. In the following, possible
points of departure and opportunities for addressing these issues in future research
will be discussed.

6.2.1 Modeling Omissions and Not-Reached Items Jointly

For providing model-based approaches for modeling missing responses, different
missingness mechanisms were considered separately in this work. In data stemming
from LSAs, however, it is likely that different types of missing responses occur within
the same data set. Hence, there is strong need for an integrated framework allowing

for considering mechanisms underlying omitted items and NRIs simultaneously.

At present, the approach by Rose (2013) is the only model-based approach that
allows simultaneously modeling nonignorable item omissions and NRIs. Yet, this
approach relies solely on information retrievable from paper-and-pencil-based as-
sessment, and does, as such, not consider examinee time allocation strategies and
quitting behavior. By considering RTs, the presented approaches pose more so-
phisticated methods for modeling item omissions and NRIs, although, so far, these
frameworks only allow considering item omissions and NRIs separately. Building
on the presented approaches with the objective of modeling mechanisms underlying
omissions and NRIs simultaneously is therefore a fruitful topic for future research.

Challenges for such an integrated framework are a) modeling NRIs due to lack of
speed in the context of different pacing behavior associated with omission and/or
guessing behavior and engaged responses as well as b) increased model complexity

when jointly modeling omission and/or guessing behavior and quitting.

As has been shown in the empirical examples in Chapters 4 and 5, examinees
tend to require different amounts of time to generate engaged responses and to omit
and/or rapidly guess. Hence, in the presence of omission and guessing behavior, the
mechanism underlying NRIs due to unfavorable time allocation strategies is rather
complex and poses a combination of different aspects of test-taking behavior. The
SA+O and SA+E frameworks presented in Chapters 4 and 5 consider different time
allocation strategies associated with engaged and disengaged responses as well as
omissions along with the probability of showing omission or guessing behavior. It
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therefore should be possible to employ these frameworks to model the processes
underlying unfavorable time allocation strategies that lead examinees to not reach

the end of the test. A systematic investigation, however, is still pending.

Considering quitting, omission, and/or guessing behavior simultaneously could
be achieved by combining the SA+Q model with either the SA+O or the SA+E model.
Such model combinations should be based on assumptions concerning omission
and response processes: In the case that all responses are assumed to reflect the
level of examinee ability, it is recommended to extend the SA+Q model by examinee
omission propensity and omission speed as defined in the SA+O model for the
purpose of modeling omission and quitting behavior simultaneously. In the case that
guessing behavior is likely to have occurred and given that researchers have reason
to assume that omission and guessing behavior stem from similar processes, it is
recommended to combine the SA+Q framework with the SA+E model. Although
combining the approaches presented in this work is technically straightforward, this
results in rather complex, high-dimensional models. Assessing conditions under
which such models perform well is still open for investigation.

6.2.2 Identitying Subpopulations Differing in Test-Taking Behavior

All frameworks presented in this work aim at modeling differences in how examinees
interact with the assessment. When doing so, such differences are assumed to stem
from quantitative differences in speed, omission propensity, engagement, and test
endurance. It might, however, well be that examinees stem from subpopulations
that qualitatively differ in their test-taking strategies. For further model develop-
ments, this implies that rather than locating examinees on latent continua, distinct
subpopulations qualitatively differing in how they approach the test need to be
identified.

Concerning item omissions (and guessing behavior), such subpopulations might
be examinees omitting items (and/or guessing) due to being disengaged and exami-
nees showing such behavior for, e.g., test-strategic reasons to maximize their score.
Mixture extensions of the SA+O or the SA+E model would allow for detecting such
subpopulations. In addition, when asked for explaining their motives for omitting
items, examinees oftentimes name different reasons for item omissions, such as lack
of confidence in the correct answer, fatigue, or lack of motivation (Jakwerth et al.,
2003; OECD, 2013; van Barneveld et al., 2013). It is thus possible that in the course of
the assessment, the same examinee might omit items for different reasons. Extending

the SA+E model by allowing for different types of omissions, i.e., jointly considering

147



DISCUSSION

disengaged and engaged omissions, might support detecting and modeling such
processes.

Concerning quitting behavior, rather than locating all examinees on a single
test endurance continuum and extrapolating the level of test endurance for those
who did not quit the assessment, it might be fruitful to conceptualize quitters as
a subpopulation of examinees qualitatively differing in how they approach the
assessment from examinees willing to complete the assessment. In addition, different
reasons might underlie quitting behavior, demanding a finer-grained analysis of
the group of quitters. Indeed, when asked about their motives to quit, examinees
state different reasons, ranging from feeling overtaxed with the assessment to lack of
motivation to complete it (OECD, 2013).

6.2.3 Allowing for Varying Test-Taking Behavior Across the Test

All frameworks assume stationarity of the test-taking behavior considered. That is,
it is assumed that examinees operate with constant ability, speed, omission speed,
and engagement throughout the assessment. This assumption might not hold under
the test conditions considered in this work: When faced with time limits, examinees
might adjust their pace to reach the end of the test, e.g., by increasing their speed at
the expense of lower accuracy or omitting more items and taking less time for their
decision to do so. Likewise, in low-stakes settings, fatigue effects might result in
lower engagement towards the end of the test. While recent extensions of the SA
model allow accounting for varying working speed across the test (Fox & Marianti,
2016), these do not incorporate a model component for adjustments in the level of
effective ability accompanying varying levels of speed. Still, the approach presented
by Fox and Marianti (2016) is a possible point of departure for tackling the stationarity

assumptions incorporated in the frameworks presented in this work.

6.2.4 Model Validation

The frameworks presented in this work introduce additional person variables as-
sumed to underlie the occurrence of NRIs, item omissions as well as rapid guesses
and aim at providing a depiction of how examinees interact with assessments. In this
context, two issues are of pertinent importance: First, there is strong need to validate
the newly introduced person variables. Second, it needs to be addressed whether
the frameworks considered in this work capture constructs that are of relevance for

real-life behavior.

148



LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH

All frameworks presented in this work entail interpretations of the constructs
being captured by newly introduced person variables. This is especially evident in
the SA+E and the SA+Q frameworks in which the newly introduced person variables
are interpreted as representing examinee engagement and test endurance. However,
whether or not such interpretation is justified might be highly context-dependent
and is still open for investigation. For validating the newly introduced person
variables, self-reports on test-taking behavior and motivation can be of great use. For
instance, while in the SA+E framework guessing and omission behavior are assumed
to represent disengaged test-taking behavior, the model might also capture processes
different from disengagement such as test-taking strategies aimed at maximizing test
scores by guessing or omitting. Assessing how examinee disengagement as identified
by the model relates to self-reports on effort and/or test-taking motivation might
therefore provide further insight into the construct being measured by the SA+E
model (Ulitzsch, Penk, von Davier, & Pohl, manuscript in preparation). Likewise,
relating test endurance to self-reports on why the assessment has been quit might
provide further insight into how to interpret the test endurance variable introduced
in the SA+Q framework.

Once sound knowledge on the constructs being captured by the presented frame-
works is established, these may be of great value for addressing the objectives of
LSAs: Major LSAs such as PISA or PIAAC aim at assessing competencies necessary
for professional, social, and civic life (OECD, 2013). Usually, (effective) ability is
employed as a predictor of such external criteria. Yet, research has recently started to
also consider test-taking behavior as an additional predictor, with the rationale being
that test-taking behavior provides a measure of noncognitive skills based on real-life
behavior (Balart, Oosterveen, & Webbink, 2018; Hitt, Trivitt, & Cheng, 2016; Zamarro,
Cheng, Shakeel, & Hitt, 2018; Zamarro, Hitt, & Mendez, 2016). However, although
such studies could show that test-taking behavior predicts important real-life out-
comes both on the individual as well as on the country level, they also pointed out
that a closer investigation of the noncognitive skills captured in test-taking behavior
is needed. Addressing both the specific noncognitive skill captured by the presented
frameworks as well as how the aspects of test-taking behavior considered in this

work relate to real-life outcomes therefore pose important topics for future research.

6.2.5 Dealing with Operational Challenges of Large-Scale Assessments

Currently, the presented frameworks might not always be feasible for application
under operational LSA settings. First, estimation of all frameworks presented was

rather time consuming. The computational burden would certainly be exacerbated in
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operational practice in LSAs due to a) substantially larger data sets than considered
in the present work (e.g., some 500,000 examinees in PISA 2015, OECD, 2017) as well
as b) even higher model complexity due to additionally considering background
variables. Further research in Bayesian estimation algorithms as well as technical

advances could bring relief concerning said computational burden.

Second, estimation of the presented frameworks was conducted employing
Bayesian estimation. Currently, the frameworks of analysis implemented and soft-
ware employed in major LSAs rely on maximum likelihood estimation. While
estimating the presented approaches with maximum likelihood might reduce compu-
tational burden to some degree, the high-dimensionality of the presented models as
well as data sparseness on missingness and quitting indicators might pose challenges

for estimation that still need to be evaluated.

Third, research objectives employing LSA data oftentimes involve multiple
groups or trajectories of competencies over time. To address such research questions
adequately, measurement invariance needs to be established. For the proposed ap-
proaches, this assumption is not trivial since tests are usually not designed in order
to similarly evoke omission, guessing, or quitting behavior as well as to be equally

time intense across groups and time.

6.2.6 Considering Additional Data on Test-1aking Behavior

All frameworks presented in this work leverage the rich information on examinee be-
havior provided by RTs. While these allow researchers to get a better understanding
of examinee behavior by providing information on how long examinees interacted
with an item until generating a response or deciding to omit it, computer-based LSAs
also provide log data containing information on how examinees interacted with items.
In its public database, for instance, PISA provides information on the number of
actions (that is, clicks, double clicks, key presses and drag/drop events) for each
item-by-examinee interaction. Furthermore, in addition to the total RT per item, the
first time to action, defined as the time between the first showing of the item and the
tirst action recorded for the item, is provided (OECD, 2017). Oftentimes, for more
complex tasks, e.g. simulations as implemented in PIAAC or tasks on collaborative
problem solving as implemented in PISA, action sequences are available. Analyzing
such data in addition to observed final responses may facilitate understanding how
examinees arrive at a certain response by understanding “how individuals plan,
evaluate, and select operations” (He & von Davier, 2016, p. 72). This can be achieved
by, e.g., assessing whether examinees interact systemically and efficiently with items
(Zhu, Shu, & von Davier, 2016) or by identifying subpopulations that differ in how
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they arrive at a response (Greiff, Molnar, Martin, Zimmermann, & Csap¢, 2018; Greiff,
Wiistenberg, & Avvisati, 2015).

Combining approaches considering additional information on the number of
actions (e.g., De Boeck & Scalise, 2019) as well as action sequences (e.g., Greiff et al.,
2018; He & von Davier, 2016; Zhu et al., 2016) with frameworks utilizing RTs for
modeling missing responses is a highly promising topic for future research. Consid-
ering this additional information has high potential for further, in-depth insight into
omission mechanisms. A possible research direction could be to disentangle different
omission processes by identifying different patterns of examinee-by-item interactions.
For instance, while omissions with short RTs and no interactions might point towards
disengaged omission behavior, omissions with longer RTs and interaction patterns
resembling those encountered on (incorrect) observed responses might indicate that
examinees tried to solve the item but due to, e.g., lack of confidence in the correct
answer decided to omit it. Likewise, for disentangling different mechanisms under-
lying quitting behavior, subgroups of examinees could be identified that differ in
how they interact with the items they respond to and, as such, might also differ in
whether, when, and for what reason they quit the assessment.

6.2.7 Modeling Missingness Mechanisms in Noncognitive Assessments

In LSAs, missing values due to examinee behavior do not only occur in the cognitive
assessment but are also encountered on the noncognitive background questionnaires.
In PIAAC 2012 Cyprus, for instance, item-level missingness rates on the background
questionnaire were as high as 18% (OECD, 2013). Adjusting the models presented in
this work to suit the characteristics of noncognitive assessments can be a powerful
tool for understanding examinees’ interaction with questionnaires and the occurrence

of missing responses in particular.

A possible starting point for adjustments is, for instance, the fact that in the
literature, RTs on questionnaire items are perceived as representing the difficulty
of endorsing an item. That is, in addition to the examinee’s speed of responding
and the item’s time intensity, RTs are assumed to be governed by the distance
between the examinee’s trait level and the item location. This corresponds to the
assumption that examinees who either strongly agree or disagree with a statement
can express this belief rather quickly, while examinees for whom it is difficult to
decide whether or not to endorse a statement need more time for their decision
(distance-difficulty hypothesis, see, e.g., Ferrando & Lorenzo-Seva, 2007; Kuncel
& Fiske, 1974). Building on van der Linden’s SA model, Ferrando and Lorenzo-

Seva (2007) provided a framework integrating these theoretical considerations when
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modeling RTs from noncognitive assessments that could be combined with the

frameworks presented in this work.

Once such adjusted frameworks are available, relating behavior in the cognitive
assessment to behavior on the noncognitive assessment poses a highly promising
topic for future research. For instance, theoretical work on examinee engagement
has emphasized the possibility that it might well be that examinees approaching the
cognitive assessment disengagedly might also be more prone to interact carelessly
with the subsequent noncognitive questionnnaires (Wise, 2015). As such, it has been
suggested to employ omission rates on background questionnaires as indicators of
disengaged behavior on both the background questionnaire as well as the preceding
cognitive assessment (Boe et al., 2002; Zamarro et al., 2016). Assessing disengagement
in noncognitive assessments employing adjusted versions of the SA+E model and
relating disengaged behavior on cognitive and noncognitive assessments would
provide the basis for further elaborating on that hypothesis as well as provide further

insights in the stability of examinee behavior across different types of assessments.

6.3 Recommendations for Model Application

To ensure that the presented models give reasonable estimates under conditions
typically encountered in LSAs, the statistical performance of the presented models
has been evaluated in comprehensive simulation studies. From these simulation
studies, the following recommendations can be derived: With sample sizes of at
least N > 500 and a test length of at least K > 10, the SA+O and SA+E models give
reasonable estimates under conditions with at least 5% omissions and disengagement
rates of 10%, respectively. The SA+Q model needs longer tests of at least K >
40 items and missingness rates due to quitting of 5% (or approximately 15% of
examinees exhibiting quitting behavior) to give reasonable estimates. However, since
the SA+Q model heavily relies on extrapolating the distribution of test endurance,
the model’s assumptions might only be justified when the majority of examinees quit
the assessment. For conditions with few examinees and/or items, higher missingness
rates are needed to estimate the models presented in Chapters 3 to 5. Chapters 4
and 5 provided guidelines for model checking that can easily be applied to the other
frameworks presented in this work.

Concerning the choice between the two approaches for NRIs and omissions,
respectively, the following recommendations are given: In the presence of NRIs,
it is recommended to assess NRIs jointly with cumulative RTs and check whether
examinees exhibited quitting behavior. If so, application of the SA+Q for consider-

ing quitting behavior is recommended. Otherwise, the SA model is sufficient for
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modeling NRIs. For modeling omissions, choosing between the SA+O and SA+E
model can be based on theoretical considerations concerning possible mechanisms

underlying omissions and observed responses as well as model comparisons.

Note that all presented frameworks are extensions of the SA model and, as
such, retain its flexibility. This means that different “plug-ins” for the component
models can be implemented, such as different measurement models for item re-
sponses, models with different distributional assumptions for RTs (e.g. Klein Entink,
van der Linden, & Fox, 2009), or different theoretical considerations on item pa-
rameters, i.e., perceiving these as either fixed or random effects (De Boeck, 2008).
Likewise, further developments of the SA model as well as model-based approaches
for missing responses can be integrated with the presented frameworks, such as
hypotheses on varying speed (Fox & Marianti, 2016) or multidimensional omission
processes (Kohler et al., 2015b). When doing so, it should be kept in mind that the
presented frameworks are rather complex and adding further model components

might challenge estimation.

6.4 Implications

The approaches proposed in this work allow modeling, assessing, and explicating
differences in important aspects of examinee test-taking behavior and support in-
sights into examinee and item characteristics associated with the occurrence of item
omissions, disengaged guessing behavior, and NRIs. In the following, the potential
of these properties for improving LSA operations will be discussed. It is argued
that the approaches proposed in this work can be of great utility across all stages of
LSA operations, ranging from test construction and administration to analysis and

reporting.

6.4.1 Implications for Test Construction

The proposed approaches can be of great value in test construction as they provide
the opportunity for diagnosing the appropriateness of time limits as well as for
identifying possible issues with items associated with an increased incidence of
omissions, rapid guesses, or quitting behavior. First, as noted by van der Linden
(2011b), knowledge gained on the basis of the SA framework (and extensions thereof)
can be utilized to exercise control over the probability of examinees running out of
time and, as such, on the probability of observing NRIs due to lack of speed. In the
case of undesirably high rates of NRIs due to lack of speed, knowledge on the items’

time intensities of a given assessment on the one hand along with knowledge on the
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level of speed examinees operate on the other can be utilized for adjusting the time
limit or shortening the test (see van der Linden, 2011b).

Second, while reasons for aberrant behavior such as omitting items, guessing, or
quitting the assessment altogether are manifold, such behavior might point towards
problems with the specific task or wording of items associated with an increased
incidence of such behavior. For instance, in the empirical example in Chapter 5,
one item was especially prone to evoke disengaged test-taking behavior, with an
omission rate of approximately 35% and an additional 15% of item-by-examinee
interactions being classified as perfunctory answers. Likewise, in the data application
in Chapter 3, some items were much stronger associated with quitting behavior
than the preceding or subsequent items. Such results do not necessarily imply
problems with the respective items and might very well go back to examinee test-
taking strategies, motivation, or “aversion” to, e.g., items with specific formats or
contents. Yet, such results might yield test constructors to re-evaluate the respective
items and check whether these are hard to understand or too complex, with the
consequence being that examinees interact with these items differently as intended
by test constructors. Likewise, pre-field studies can be conducted to identify test
conditions and features preventing quitting and disengaged test-taking behavior for
both the target population or subgroups such as examinees with special needs. The
assessment may then be adjusted accordingly. For examinees with special needs, such
pre-field studies can be of great utility for identifying test conditions and features
posing an undue burden and evoking quitting or disengaged test-taking behavior.
Such studies can then facilitate choosing suitable accommodations for examinees

with special needs.

6.4.2 Implications for Test Administration

Above and beyond improving items and testing conditions prior to test adminis-
tration, the presented frameworks may also be employed to influence change of
unwanted test-taking behavior during the assessment. This could be achieved by
monitoring test-taking behavior by means of real-time estimation of, e.g., omission
propensity, and/or engagement and issuing warnings to examinees once pre-defined
thresholds of acceptable aberrances in test-taking behavior are exceeded. Such warn-
ings could encourage examinees to give their best or further clarify test instructions.
Likewise, examinees could be encouraged to re-engage with the test directly after
quitting. Wise, Bhola, and Yang (2006) have provided an example for monitoring
systems employing heuristic RT-based scoring methods for identifying disengaged

guesses. Their results are highly promising, showing that issuing warnings indeed
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supports reducing disengaged guessing behavior and increases the validity of test

Scores.

6.4.3 Implications for Analysis of Large-Scale Assessment Data

Missing responses due to omitted items or NRIs force researchers to explicate their
beliefs a) on the nature of the test-taking behavior underlying omitted items and
NRIs as well as b) on how differences in that behavior should be considered when
assessing differences in examinee performance. These beliefs become evident in
researchers’ decision on how to deal with missing responses in data analysis. In
Chapter 1, assumptions and limitations of approaches currently implemented in
operational LSA settings were thoroughly discussed. Chapters 2 to 5 provided
frameworks for overcoming these limitations and thus improving the handling of

missing responses in data analysis.

Currently, in most LSAs missing responses are either ignored or scored as (par-
tially) incorrect. Ignoring missing responses due to item omissions and NRIs entails
the assumption that missing responses are not informative in the sense that the
processes underlying such missing responses are not related to ability. In the present
work, it has repeatedly been shown that this assumption is highly likely to be vio-
lated and that violations of this assumption heavily impact ability estimation. In
addition, as delineated in Chapter 2, estimating ability solely based on responses
given to reached items without considering speed and ignoring missing responses
occurring due to lack of speed disadvantages examinees who, on the expense of
lower accuracy, worked with a speed level sufficient to reach the end of the test.
Conversely, this practice advantages examinees who, by working with a slower pace,
did not reach the end of the test and had more time available for the items they

succeeded to attempt in the given time.

Scoring NRIs as incorrect penalizes examinees who did not allocate their time
such that they could reach the end of the test or who were not persistent enough to
complete all items administered (Rohwer, 2013). However, as delineated in Chapter
2, this confounds differences in test-taking behavior and effective ability since low
test scores might stem from rather different scenarios. For instance, examinees might
either have shown low ability but worked sufficiently fast to finish the test on time,
or they might not have reached the end of the test due to working too slowly or
quitting but displayed higher levels of ability on approached items. When scoring
omissions as incorrect, it is assumed that examinees omitted items because they did
not know the answer (Rohwer, 2013). If this is not the case and examinees omitted
items for different reasons, e.g., lack of motivation, fatigue, or refusal to participate,
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scoring omitted items as incorrect, too, confounds differences in test-taking behavior

and the achieved level of effective ability.

The presented frameworks overcome these limitations as they allow for consid-
ering differences in test-taking behavior in general and behavior underlying the
occurrence of missing responses in particular when estimating ability. As such, the
presented frameworks can critically improve the handling of missing responses in
LSA data analysis.

6.4.4 Implications for Reporting on Results of Large-Scale Assessments

When examinees differ in test-taking behavior, it is highly possible that observed
differences in performance do not only stem from differences in competencies but
also from differences in how examinees approached the assessment. Based on data
from major LSAs, it could be shown a) that in general, examinees indeed differ in
the way they approach the assessment as well as b) that examinees with different
levels of ability show different test-taking behavior. The results of the empirical
illustrations of this work thus imply that observed examinee performance indeed
results from the effective ability achieved at levels of effective speed, test endurance,
omission propensity and/or engagement that differ across examinees.! In the present
work, differences in test-taking behavior were assessed on the within-country level
only. In addition, in LSAs there is strong variation in missingness rates and omission
propensity as well as time spent on the assessment also on the country level (OECD,
2017; Sachse et al., 2019). This suggests that on the country level, too, levels of
effective ability are achieved under test-taking behavior that systematically varies

across countries.

Currently, such differences are left unconsidered in the reporting of LSA results.
Rather, LSAs report results as rank tables consisting of single scores that confound
differences in the level of competency with differences in test-taking behavior. In this
work it is argued for taking a different, multidimensional perspective on performance
when reporting on LSA results and explicitly considering behavioral aspects con-
tributing to differences in observed performance. One way of such multidimensional
reporting on test performance could be to report on a profile of different aspects of
performance rather than merely on accuracy, as suggested by Pohl (March 2019) and

Pohl, Ulitzsch, and von Davier (manuscript in preparation).

1 As it is the case for differences in effective speed, it is plausible that the level of ability displayed
by an examinee is related to the level of test endurance, omission propensity and/or engagement
with which he or she approaches the assessment. For instance, examinees that approach the test
disengagedly in the sense that they tend to omit and guess also might not display their best possible
levels of ability on those items they answer according to their level of effective ability. The same might
be true for examinees quitting the assessment.
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Figure 6.1. Schematic representation of profile-based reporting on effec-
tive ability, effective speed, and omission propensity for three hypothetical
countries.

Following Pohl et al. (manuscript in preparation), Figure 6.1 illustrates this
schematically by giving profiles of country-level effective ability, effective speed,
and omission propensity, as defined in Chapter 4 for three hypothetic countries.?
While, on average, examinees from Country A and B showed the same effective
ability and interacted with the assessments with equal levels of omission propensity,
examinees from Country B achieved the displayed level of effective ability at a higher
speed level. That is, examinees from Country B were able to achieve the same level
of accuracy in their responses faster and have as such showed better performance.
Examinees from Country C showed a somewhat lower ability, however, achieved at
much higher speed levels and omitted less items than examinees from Countries A
and B. Depending on how researchers and policy-makers weigh the importance of ef-
fective ability, effective speed, and omission propensity when assessing performance,
different conclusions might be drawn on Country C’s overall performance: For in-
stance, if the level of displayed ability is considered to be most important, regardless
how fast responses were generated, examinees from Country C would be considered
as performing worse than examinees from Countries A and B. However, if speed
is considered to be an important aspect of performance, performance of examinees
from Country C might be considered as equally well or even better as compared to
the performance of examinees from Countries A and B. Similar considerations hold
concerning whether and how omission behavior should be “punished” when assess-
ing performance. Although such profile-based reporting does not allow to determine
the level of effective ability that would have been displayed if examinees would have

2This figure is created based on preliminary findings from Pohl et al. (manuscript in preparation).

157



DISCUSSION

interacted with the assessment in the same manner, it disentangles different aspects
contributing to examinee performance. As such, profile-based reporting informs
consumers of LSA reports on differences in test-taking behavior as an important
contributor to differences in test scores, allows explicating these differences, and
thereby might encourage more cautious interpretations of LSA results.

For consumers of LSA reports, e.g., policy makers or the public, such a multi-
dimensional perspective on performance provides the opportunity to get a more
nuanced understanding of LSA results. First, a multidimensional perspective on
performance supports investigating whether differences between groups as well as
changes in performance across time go back to differences/changes in proficiencies

or differences/changes in test-taking behavior (see Sachse et al., 2019).

Second, the more nuanced way of reporting entailed in profile-based reports
would follow the demands on improving communication of LSA results of recent
policy papers. Singer and Braun (2018, p. 39), for instance, have argued that as long
as LSA results “are primarily reported as league tables, a mix of nationalism, fears
about global competitiveness, and human nature inevitably lead policy-makers in
countries with poor or declining performance toward unitary ‘silver bullet” solutions
based on highly aggregated data.” A multidimensional perspective on performance
that explicates differences in test-taking behavior related to observed differences in
country-level performance would offer an alternative to reports based on rank tables
that might foster more careful interpretations of LSA results, and as a consequence,

more prudent derivations of policy measures.

Third, treating test-taking behavior as an additional aspect of performance rather
than neglecting its pivotal importance for observing performance differences might
be of great utility when assessing the predictive validity of performance on LSAs for
real-world outcomes (see Pohl & von Davier, 2018). Differences in how examinees
interact with the assessment might mirror important aspects of differences in real-life
behavior. In fact, previous research suggests that test-taking behavior on low-stakes
cognitive assessments and questionnaires such as omission behavior or careless
answering on noncognitive items captures important noncognitive skills and predicts
real-life outcomes. On the individual level, Hitt et al. (2016) have reported omission
behavior on questionnaires to predict future educational attainment and income
above and beyond cognitive ability. Likewise, based on data from PISA, Balart et al.
(2018) have reported performance decline throughout the cognitive assessment to be
negatively related to economic growth on the country level, even when controlling
for performance at the beginning of the cognitive assessment. These results are
highly promising as they evidence that taking a multidimensional perspective on
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performance might be accompanied with an increased predictive validity of LSA

results.

Fourth, once sound knowledge on the noncognitive skills captured by test-taking
behavior is established, multidimensional reporting might support deriving more
targeted policy measures based on LSA results. By providing the possibility to assess
cognitive (as indicated by the displayed level of effective ability) and noncognitive
aspects of performance (as indicated by different characteristics of test-taking be-
havior), profile-based reporting can support diagnosing whether low performance
is a result of low competency or unfavorable test-taking behavior and thus allows
policy makers to derive measures targeted at either the improvement of cognitive or
noncognitive skills. In addition, further insight into the noncognitive skills captured
by test-taking behavior may also inform the decision on which aspects of test-taking
behavior are most relevant to be considered in profile-based reporting.

It should be noted that, since LSAs typically assess multiple countries on multiple
competency domains, profile-based reports might be rather overwhelming for policy
makers and consumers of LSA reports outside the scientific community. A simpler
alternative might be to cluster countries into groups with similar profiles and report
on group membership, or to develop a composite score weighing different aspects
of test performance according to considerations on their importance (Pohl et al.,

manuscript in preparation).

6.5 Conclusion

Examinees differ in how they interact with assessments. In low-stakes LSAs, missing
responses pose an evident kind of such differences. Understanding the underlying
mechanisms is paramount for making appropriate decisions on how to deal with
missing responses and drawing valid inferences on examinee proficiencies. This
work brought together research on modeling missing responses with research on
modeling RTs for the purpose of providing tools that allow for a nuanced modeling
and understanding of test-taking behavior associated with the occurrence of missing
responses in LSAs. The frameworks presented provide the opportunity a) to assess
and account for the occurrence of missing responses as well as b) to explicate differ-
ences in examinee behavior that contribute to differences in performance in general
and differences in the occurrence of missing responses in particular. Against this
background, this work argues for a multidimensional perspective that explicates the
different aspects contributing to examinee performance when analyzing, reporting,

and communicating results from LSAs.
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A
Appendix to Chapter 2

A.1 JAGS Code and Prior Settings

Table A.1. Prior Settings

Speed-accuracy model Yo ~IWy (1)
Ly~ Wy (1)
w, ~ N(1,1000%)
e ~ N(1,1000%)
o ~T(0.01,0.001)
Manifest missing response model 03 ~1G(0.01,0.001)
v ~ N(0,10002)
g ~ N(1,1000%)
0%3 ~1G(0.01,0.001)

Note: IW,41(.): inverse Wishart prior with 2+1 degrees of freedom;
N(., .): normal prior; IG(.,.): inverse gamma prior; I'(.,.): gamma

prior; I, represents an identity matrix of size 2.
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A.1.1 JAGS Code: Speed-Accuracy Model

model {
for (i in 1:N){
for (j in 1:K){
# item responses
Uli,j] ~ dbern(prob[i, j1)
logit(prob[i,j]) <- PersPar[i,1] - ItemPar[j,1]
# response times
RT[i,j] ~ dlnorm(muOfLogX[i,j] , alpha.sqr )
muOfLogX[i,j] <- ItemPar[j,2]- PersPar[i,2]
}
# prior for person parameter
PersPar[i,1:2] ~ dmnorm(muP, invSigmaP)
}
# hyperprior for person parameter
muP <- ¢(0,0)
invSigmaP ~ dwish(M,3)
SigmaP <- inverse(invSigmaP)
correlP <- SigmaP[1,2]/(sqrt(SigmaP[1,1])x*sqrt(SigmaP[2,2]))
# prior for item parameter
# prior for alpha
alpha.sqr ~ dgamma(0.01, 0.001)
alpha<-sqrt(alpha.sqr)
for (j in 1:K){
ItemPar[j,1:2] ~ dmnorm(mul, omegal)

# hyperprior for item parameter

muI[l] ~ dnorm(0, 0.000001)

muI[2] ~ dnorm(1l, 0.000001)

invSigmal ~ dwish(M,3)

Sigmal <- inverse(invSigmaI)

correll <- SigmaI[l,2]/(sqrt(SigmaI[l,1])x*sqrt(SigmaIl[2,2]))

Figure A.1. N: number of persons, K: number of items. M represents an
identity matrix of size 2. U is an N by K matrix containing the item responses
and RT is an N by K matrix containing the associated response times.
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A.1.2 JAGS Code: Manifest Missing Data Model

model {
for (j in 1:N){
for (i in 1:K){
Uli, j1 ~ dbern(probli, jI)
logit(prob[i, j]) <- theta[i]l - b[j]

# prior for person parameter
theta[i] ~ dnorm(muP[i], invSigmaP)
muP[i] <- gamma[l] + gamma[2]*Z[i]
}
# prior for item difficulties
for (j in 1:K) {
b[j] ~ dnorm(muIl, invSigmaI)

# identification and prior for beta
gamma[l] <- 0

gamma[2] ~ dnorm(0,0.000001)

# hyperprior for person parameter
invSigmaP  ~ dgamma(0.01, 0.001)
SigmaP <- 1/invSigmaP

# hyperprior for item parameter

mul ~ dnorm(0, 0.000001)

invSigmal ~ dgamma(0.01, 0.001)
Sigmal <- 1/invSigmal

Figure A.2. N: number of persons, K: number of items. U is an N by K matrix
containing the item responses. Z is a vector of length n representing the
number of not-reached items.
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A.2 Differences in Speed Estimates
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Figure A.3. Difference in speed estimates using the SA model for complete
data compared to the true speed values as a function of true ability. White
circles represent simulees without missing values and filled circles persons
with missing values. The number of missing values is given by the circles’
color, with darker colors denoting a higher number of not-reached items.

cor(8, 1) =-0.5 cor(8,1)=0 cor(,1)=0.5

0.2
0.1

oo '...é-q‘ .:_m . ..‘““

-0.1

cor(b,B) =0

-0.2
0.2

Tsacomp = TTrue

0.1 Seed © pus v esents
00| Tk e i cor(b, B) = 0.6

-0.1

-0.2

-45 35 25 -15 -45 35 25 -15 -45 35 25 -15
True
Figure A.4. Difference in speed estimates using the SA model for complete
data compared to the true speed values as a function of true speed. White
circles represent simulees without missing values and filled circles persons
with missing values. The number of missing values is given by the circles’
color, with darker colors denoting a higher number of not-reached items.
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Figure A.5. Difference in speed estimates between the SA model for in-
complete data (SAinc) and the SA model for complete data (SAcomp) as a
function of true ability. White circles represent simulees without missing
values and filled circles persons with missing values. The number of missing
values is given by the circles’ color, with darker colors denoting a higher
number of not-reached items.
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Figure A.6. Difference in speed estimates between the SA model for in-
complete data (SAinc) and the SA model for complete data (SAcomp) as a
function of true speed. White circles represent simulees without missing
values and filled circles persons with missing values. The number of missing
values is given by the circles’ color, with darker colors denoting a higher
number of not-reached items.
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Figure A.7. Difference in ability estimates using the SA model for complete
data (SAcomp) compared to the true ability values as a function of true
ability. White circles represent simulees without missing values and filled
circles persons with missing values. The number of missing values is given
by the circles’ color, with darker colors denoting a higher number of not-
reached items.
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Figure A.8. Difference in ability estimates between using the SA model
for incomplete data (SAinc) and using the SA model for complete data
(SAcomp) as a function of true ability. White circles represent simulees
without missing values and filled circles persons with missing values. The
number of missing values is given by the circles” color with darker colors
denoting a higher number of not-reached items.
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model {
for (i in 1:N){
for (j in 1:K){
# item responses
Uli, j1 ~ dbern(prob[i, jl)
logit(prob[i, j]) <- PersPar[i,1] - ItemPar[j,1]
# response times
RT[i,j] ~ dlnorm(muOfLogRT[i,j] , alpha.sqr )
muOfLogRT[i,j] <- ItemPar([j,2]-PersPar[i,2]
}
# number of reached items before quitting
isCensored[i] ~ dinterval(kQ[i]l, c(0,kC[i]))
kQ[i]~ dpois(exp(PersPar[i,3]))
# prior for person parameter
PersPar[i,1:3] ~ dmnorm(muP, invSigmaP)
}

# hyperprior for person parameter
muP[1:2]<-¢c(0,0)
muP[3]~ dnorm(0, 0.00001)
invSigmaP ~ dwish(MP,4)
SigmaP <- inverse(invSigmaP)
for(i in 1:3){
for(j in 1:3){
correlP[i,jl<-SigmaP[i,j]/(sqrt(SigmaP[i,i])*sqrt(SigmaP[j,j]))
}
}
# prior for item parameter
for (j in 1:K){
ItemPar[j,1:2] ~ dmnorm(mul, omegal)

# hyperprior for itemparameter
muI[l] ~ dnorm(0, 0.000001)
muI[2] ~ dnorm(0, 0.000001)
omegal ~ dwish(MI,3)
Sigmal <- inverse(omegal)
for(i in 1:2){
for(j in 1:2){
correlI[i,jl<-Sigmalli,jl/(sqrt(Sigmal[i,i])*sqrt(Sigmallj,jl))
}
}
alpha.sqr~dgamma (0.5, 0.001)
alpha<-sqrt(alpha.sqr)

Figure B.1. JAGS code for the speed-accuracy+quitting model. N: number
of persons, K: number of items. U and RT are N by K matrices containing
the item responses and associated response times, kQ and kC are vectors
of length N containing the number of reached items before quitting and
the censoring item position. isCensored contains information on observed
quitting behavior for each examinee i and takes the values 1 and 2 for ¢; =1
and c; = 0. MP and MI represent identity matrices of size 3 and 2.
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B.2 Coverage

Table B.1. Coverage of item parameter means, variances, and covariances

K N %NR Mechanisms var(b) wvar(p) cov(b,p) Wp Hp

5 50 quitting 89 1.00 99 96 98
7 speed&quiting 89 98 94 89 96
quitting 95 97 92 94 .98
350 5% s
. speed&quitting 95 94 96 93 96
10 quitting 96 99 .98 1.00 .97
20 ° speed & quitting 95 1.00 98 93 97
5 50 quitting 96  1.00 99 90 .97
o speed & quitting 95 98 95 96 95
quitting 93 .98 99 90 94
700 5% .
. speed&quitting 90 98 96 97 97
10% quitting .86 97 92 98 96
AR | speed&quitting 96 98 95 9% 97
5 50 quitting 94 96 93 99 .97
% speed & quitting .92 97 95 9% 92
quitting 95 98 95 96 .97
350 5% o
______speed&gquitting 91 .97 100 94 95
100, quitting 90 96 1.00 82 .97
40 ° speed & quitting 96 95 90 .95 92
5 50 quitting 93 94 93 93 .95
" speed & quitting .95 97 95 94 98
quitting 94 .95 97 99 .98
700 5% >
______speed&quitting 94 96 96 97 97
100, quitting 96 99 98 97 .99
° speed & quitting 98 94 94 99 .98

Note: % NR: overall missingness rate; quitting and speed & quitting denote condi-
tions under which all not-reached items go back to quitting and not-reached items
occurred to both lack of speed and quitting, respectively; K: number of items; N:
number of examinees; b: item difficulty; B: time intensity; py: mean item difficulty;

1g: mean time intensity.

185



981

Table B.2. Coverage of person parameter means, variances, and covariances

K N %NR Mechanisms var(0) wvar(t) wvar(¢) cov(0,T) cov(D,l) cov(,) e

2 59 quitting 1.00 1.00 .98 1.00 97 96 98
7 _speed&quitting 99 100 87 100 .97 98 98
350 59 quitting 96 1.00 1.00 1.00 99 97 .95
_____speed&gquitting 99 100 97 100 98 100 .98
109 quitting 1.00 1.00 84 1.00 97 1.00 79
20 - " __speed & quitting 100 100 .9 100 Lo 97 98
2 59 quitting 99 1.00 97 1.00 95 94 96
7 _speed &quitting 100 100 88 100 .95 97 96
700 5% quitting .98 1.00 96 1.00 93 97 92
____speed&aquitting 99 100 100 100 .97 .94 100
109 quitting 1.00 1.00 92 1.00 1.00 95 76
A __speed&quitting 98 96 97 .99 Lo 98 9
2 59 quitting 1.00 1.00 91 1.00 97 96 .98
7 _speed &quitting 100 100 80 100 .95 91 83
350 59 quitting 1.00 1.00 97 1.00 1.00 99 98
_____speed&quitting 100 100 _ 87 100 .93 9% 91
109 quitting 1.00 1.00 99 1.00 96 1.00 99
40 - " __speed &quitting .99 100 96 100 99 oo 97
2 59 quitting 1.00 1.00 .95 1.00 98 99 97
7 _speed &quitting 100 100 .67 100 91 90 .75
700 5% quitting 1.00 1.00 97 1.00 99 99 96
_______speed&aquitting 100 100 8 _ 100 .99 98 .85
109 quitting 1.00 1.00 .98 1.00 99 1.00 93
®  speed & quitting  1.00 1.00 99 1.00 96 97 99

Note: % NR: overall missingness rate; quitting and speed & quitting denote conditions under which
all not-reached items go back to quitting and not-reached items occurred due to both lack of speed and
quitting, respectively; K: number of items; N: number of examinees; 0: ability; T: speed; (: test endurance;
e: mean test endurance.
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B.3 Parameter Recovery

Parameter Estimates

Parameter Estimates
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Figure B.2. Medians and 90% ranges of item parameter variance and covari-
ance estimates over all 100 replications per condition. The dashed horizontal
line indicates the respective true parameter. Note that y-axes differ in scale.
b: item difficulty; 3: time intensity; N: number of examinees; K: number of
items; NRIs: not-reached items; quitting and speed & quitting denote condi-
tions under which all not-reached items go back to quitting and not-reached
items occurred due to both lack of speed and quitting, respectively.
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Figure B.3. Medians and 90% ranges of item parameter means over all 100
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replications per condition. The dashed horizontal line indicates the respec-

tive true parameter. Plots are organized according to the data-generating
values employed to achieve missingness rates due to lack of speed ranging
from 0% (missingness due to quitting) to 5% (speed & quitting, 10%). Note

that y-axes differ in scale. py,: mean item difficulty; pg: mean time intensity;

N: number of examinees; K: number of items; % NR: overall missingness

rate due to not-reached items; quitting and speed & quitting denote condi-

tions under which all not-reached items go back to quitting and not-reached

items occurred due to both lack of speed and quitting, respectively.
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