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Summary

People working together can be very successful problem-solvers. Many real-life exam-
ples, from Wikipedia to citizen science projects, show that, under the right conditions,
crowds can find remarkable solutions to complex problems. Yet, joining the capabilities
of many people can be challenging. What factors make some groups more successful than
others? How does the nature of the problem and the structure of the environment influ-
ence the group’s performance? To answer these questions, I consider problem-solving as
a search process – a situation in which individuals are searching for a good solution. I
describe and compare three different methods for structuring groups: (1) non-interacting
groups, where individuals search independently without exchanging any information, (2)
social groups, where individuals freely exchange information during their search, and (3)
solution-influenced groups, where individuals repeatedly contribute to a shared collective
solution.

First, I introduce the idea of transmission chains – a specific type of solution-influenced
group where individuals tackle the problem one after another, each one starting from the
solution of its predecessor. I apply this method to binary choice problems and compare
it to majority voting rules in non-interacting groups. The results show that transmission
chains are superior in environments where individual accuracy is low and confidence is a
reliable indicator of performance. This type of environment, however, is rarely observed
in two experimental datasets.

Then, I evaluate the performance of transmission chains for problems that have a com-
plex structure, such as multidimensional optimization tasks. Again, I use non-interacting
groups as a comparison, this time by selecting the best out of multiple independent
solutions. Simulations and experimental data show that transmission chains outperform
independent groups under two environmental conditions: either when problems are rather
easy, or when group members are relatively unskilled.

Next, I focus on social groups, where individuals influence each other during the
search. To understand the social dynamics that operate in such groups, I conduct two
studies: I first examine how people search for a solution independently from others, and
then study how this individual process is impacted by social influence. The first study
presents experimental data to show that the individual search behavior can be described
by a take-the-best heuristic, that is, a simple rule-of-thumb that ignores all but one cue
at a time. This heuristic reproduces a variety of behavioral patterns observed in different
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environments. Then, I extend this heuristic to include social interactions where multiple
individuals exchange information during their search. My results show that, in this case,
individuals tend to converge towards similar solutions. This induces a collective search
dilemma: compared to non-interacting groups, the quality of the average individual’s
solution is improved at the expense of the best solution of the group. Nevertheless,
further analyses show that this dilemma disappears for more difficult problems.

Overall, this thesis shows that no collective problem-solving method is superior to the
others in all environments and for all problems. Instead, the performance of each method
depends on numerous factors, such as the nature of the task, the problem difficulty, the
group composition, and the skill levels of the individuals. My work helps understanding
the role of these different factors and their influence on collective problem-solving.
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Zusammenfassung

Menschen, die zusammenarbeiten, sind in der Lage, Probleme erfolgreich zu lösen. Viele
Beispiele aus der Praxis, von Wikipedia bis hin zu bürgerwissenschaftlichen Projekten,
zeigen, dass Menschenmengen unter den richtigen Bedingungen bemerkenswerte Lösun-
gen für komplexe Probleme finden können. Dennoch kann es eine Herausforderung sein,
die Fähigkeiten vieler Menschen zu kombinieren. Welche Faktoren machen einige Grup-
pen erfolgreicher als andere? Wie beeinflusst die Art des Problems und die Struktur des
Umfelds die Leistung der Gruppe? Um diese Fragen zu beantworten, betrachte ich die
Problemlösung als einen Suchprozess - eine Situation, in der Einzelpersonen nach einer
guten Lösung suchen. Ich beschreibe und vergleiche in dieser Doktorarbeit drei verschiede-
ne Verfahren zur Strukturierung von Gruppen: (1) nicht interagierende Gruppen, in denen
Einzelpersonen unabhängig voneinander suchen, ohne Informationen auszutauschen, (2)
soziale Gruppen, in denen Einzelpersonen während ihrer Suche frei miteinander kommu-
nizieren und Informationen austauschen und (3) lösungsbeeinflusste Gruppen, in denen
Einzelpersonen mit ihrer Lösung zu einer gemeinsamen kollektiven Lösung beitragen.

In dieser Doktorarbeit stelle ich zunächst die Übertragungskette vor. Es handelt sich
dabei um eine spezifische Art einer lösungsbeeinflussten Gruppe, in der Einzelpersonen
das Problem nacheinander angehen, jede ausgehend von der Lösung ihres Vorgängers. An-
schließend wende ich die Übertragungskette auf binäre Entscheidungsfragen an und ver-
gleiche sie mit Mehrheitsregeln in nicht-interagierenden Gruppen. Die Ergebnisse zeigen,
dass Übertragungsketten in Umgebungen mit geringer individueller Genauigkeit überle-
gen sind, wenn die Antwortsicherheit ein zuverlässiger Indikator für die Genauigkeit ist.
Zwei experimentelle Datensätze zeigen, dass diese Art von Umgebungen selten gegeben
ist.

Ferner bewerte ich die Leistung von Übertragungsketten für Probleme, die eine kom-
plexe Struktur haben, wie z.B. mehrdimensionale Optimierungsaufgaben. Auch hier be-
nutze ich nicht-interagierende Gruppen als Vergleich. In diesem Fall wähle ich die bes-
te Lösung aus den allen, unabhängig voneinander, gefunden Lösungen der Einzelperso-
nen aus. Simulationen und experimentelle Daten zeigen, dass Übertragungsketten nicht-
interagierende Gruppen in zwei Umgebungen übertreffen, zum einen, wenn die Probleme
relativ einfach sind und zum anderen, wenn es den Gruppenmitgliedern an Fähigkeiten
zur Lösung des Problems mangelt.

Anschließend konzentriere ich mich auf soziale Gruppen, das heißt Gruppen, in de-
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nen sich Einzelpersonen bei der Suche gegenseitig beeinflussen können. Um die soziale
Dynamik zu verstehen, die in solchen Gruppen entstehen, führe ich zwei Studien durch:
Erstens untersuche ich, wie Menschen unabhängig von anderen nach einer Lösung suchen.
Zweitens teste ich, wie diese individuelle Suche durch soziale Einflüsse verändert wird.
Die erste Studie umfasst ein Experiment, welches aufzeigt, dass das individuelle Such-
verhalten durch eine Take-the-best Heuristik beschrieben werden kann. Bei einer solchen
Heuristik handelt es sich um eine einfache Faustregel, die jeweils alle bis auf einen Hinweis
ignoriert. Diese Heuristik reproduziert die Art und Weise der Suche der Versuchspersonen
in verschiedenen Umgebungen.

Zusätzlich erweitere ich diese Heuristik, um soziale Interaktionen abzubilden, bei de-
nen Personen während ihrer Suche Informationen austauschen. Meine Ergebnisse zeigen,
dass durch den Einfluss solcher sozialen Informationen die Lösungen der verschiedenen
Personen ähnlicher werden. Dies führt zu einem kollektiven Suchdilemma: Im Vergleich
zu nicht-interagierenden Gruppen wird die durchschnittliche Qualität der Lösung der
Einzelpersonen verbessert, während sich die Qualität der besten Lösung der Gruppe ver-
schlechtert. Meine weiteren Analysen zeigen, dass dieses Dilemma bei sehr schwierigen
Problemen verschwindet.

Insgesamt verdeutlicht meine Arbeit, dass kein kollektiver Problemlösungsprozess allen
anderen Prozessen in allen Umgebungen und für alle Probleme überlegen ist. Stattdessen
hängt die Leistung jedes Prozesses von zahlreichen Faktoren ab wie beispielsweise von der
Art der Aufgabe, der Schwierigkeit des Problems, der Gruppenzusammensetzung und den
Fähigkeiten der einzelnen Personen. Meine Arbeit trägt zu einem besseren Verständnis
über die Rolle dieser verschiedenen Faktoren sowie deren Auswirkungen auf das kollektive
Lösen von Problemen bei.
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Chapter 1

General Introduction

All Life is Problem Solving

Karl Popper

In 1990, the then 21-year old student Linus Torvalds decided to develop his own
computer operating system. Initially started as a hobby for himself, he soon made a
momentous decision: He released the source code of the operating system – Linux – and
asked people over the Internet to contribute to it (Torvalds, 1993). In 2017, over 15,000
programmers had participated in the development of the operating system, which is today
used on countless computers, from small embedded devices to the largest supercomputers
(The Linux Foundation, 2017).

Nine years later, Garry Kasparov, the then reigning Chess World Champion, played
an unusual game against over 50,000 ordinary players located all over the world. These
people, supported by five experienced players, decided each of their moves by majority
vote. After a four-month long match with 62 moves, Kasparov eventually won the game.
The champion later claimed that this was the most challenging game in his career and
recognized the deep tactical skills of his many-headed opponent (Kasparov and King,
2000).

As these two prominent examples illustrate, groups of people working together have the
potential to generate remarkable outcomes and solve problems that any single individual
could not solve on its own (see figure 1.1). Yet, efficiently merging the capabilities of many
people is not an easy task. Numerous examples have highlighted that a crowd can also
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1.1. A brief history of collective intelligence

make bad decisions, give wrong predictions, or produce flawed outcomes. On the last day
before the 2016 US election, all polls and the majority of forecasters believed that Hillary
Clinton was about to become the next president of the United States of America (Silver,
2016). Only a very small minority of the forecasters predicted otherwise (e.g. Lichtman,
2016). Surprisingly the minority was right and Clinton’s challenger Donald Trump won
the general election.

How do people solve problems together? Why are some groups more successful than
others? How does the nature of the problem shapes the performance of a group? This
thesis aims at providing answers to these questions.

The remainder of this chapter is structured as follows. First I provide a historical
perspective on the broad concept of collective intelligence. Then, I focus on the more
specific area of collective problem-solving, and express it as a search process (Newell et
al., 1958; Newell and Simon, 1971; Newell and Simon, 1972). Subsequently, I suggest a
classification of different collective problem-solving methods based on the nature of the
interaction between individuals. Finally, I use this classification to identify important
gaps in the scientific literature and conclude by outlining how this thesis aims at filling
them.

1.1 A brief history of collective intelligence

Collective intelligence has been investigated in a variety of scientific disciplines, includ-
ing biology, psychology, sociology, and economics (Malone and M. S. Bernstein, 2015;
Surowiecki, 2004; Krause et al., 2010). However, perhaps unsurprisingly, one of the first
concepts related to collective intelligence was described by a mathematician and philoso-
pher: Nicolas de Condorcet. In his jury theorem formalized in 1785, the “Marquis” (the
French word for marquess, nobleman) states that the accuracy of a majority vote increases
with the number of voters, provided that the average individual accuracy is above 50%
(Ladha, 1992; Boland, 1989). Hence, increasing the size of a jury usually increases the
likelihood of correct verdict. Condorcet, a firm believer in the ideal of equal rights for
everyone, built upon his theorem to argue in favor of a democratic system.

Yet, despite Condorcet’s efforts, the crowd had a bad reputation in the 19th century:
Charles McKay describes “the madness of crowds” in 1841 (McKay, 1841), and the French
polymath Gustave Le Bon highlights the crowd’s “incapacity to reason” in 1895 (Le Bon,
1895). The British statistician Francis Galton, founder of eugenics, shared similar ideas.
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1.1. A brief history of collective intelligence

Figure 1.1. Illustrative examples of different instances of collective intelligence. (A) The French
philosopher Nicolas de Condorcet, who first described the jury theorem stating that the quality
of a majority judgment usually increases with the group size. From Portrait of Marquis de
Condorcet, by Anonymous, circa 1789, https://commons.wikimedia.org/wiki/File:Nicolas_de_
Condorcet.png, 20-08-2019. (B) Example of a program code used for the operating system Linux.
It results from the cumulative efforts of myriads of programmers who improved it repeatedly.
(C) Structure of a protein folding configuration discovered by anonymous citizen scientists using
Fold.it. The scientific community has not been able to solve this specific protein folding problem
after fifteen years of research. Retrieved from https://fold.it/portal/info/about, 20-08-2019. (D)
Sailfish hunting a school of sardines organized in a defensive bait ball pattern. Photo from Krause
and Seebacher (2018) by Rodrigo Friscione Wyssmann. (E) The final position of the chess game
opposing Garry Kasparov (whites) to a crowd of 50,000 ordinary players (blacks). Retrieved from
https://en.wikipedia.org/wiki/Kasparov_versus_the_World, 20-08-2019.
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1.1. A brief history of collective intelligence

In an attempt to demonstrate the inaccuracy of collective judgments, Galton unintention-
ally discovered the so-called wisdom of crowds effect in 1907: When facing an estimation
task, the average of all judgments given by many independent individuals falls close to the
true value (Galton, 1907). For instance, Galton noticed that when estimating the weight
of an ox, the average guess of many people was more accurate than the estimation of a
randomly selected individual. In both the jury theorem and the wisdom of crowds, the
collective achievement results from statistical properties and not from individual behavior.
Hence, these kinds of groups are often called statistical groups.

In 1932, Marjorie E. Shaw investigated another type of collective system: the inter-
acting groups. She was one of the first to systematically compare the performance of
single individuals and groups of interacting people (Shaw, 1932). Using six problems that
required “real thinking”, she found that groups were more likely than individuals to find
the correct solution, but also needed more time in total. She assumed that this improve-
ment was due to the groups being more effective in eliminating wrong solutions. Based
on these experiments and Steiner’s later classification of group tasks (Steiner, 1966), the
study of small group decision-making developed rapidly, investigating when commu-
nication and social interactions can be beneficial in human groups (Kerr and Tindale,
2004). These examples showcase an important division in collective intelligence research:
the distinction between interacting and non-interacting, statistical groups. In the wisdom
of crowds and the jury theorem, individuals do not exchange any information. In fact,
group members do not even need to be aware of each other. In contrast, in Shaw’s ex-
periment, individuals communicated and shared ideas and suggestions with each other –
a necessary condition for the success of the group in her experiment (Laughlin, 2011).

Research on collective intelligence took a new dimension in the late 1980s, when biolo-
gists started to describe and understand the collective behavior of eusocial insects, such as
ants and bees, and group-living vertebrates, such as fish and birds (Rogers, 1988; Couzin
and Krause, 2003; Bonabeau et al., 1997). The field of swarm intelligence brought im-
portant insights to understand how animal groups, in the absence of any central organizer,
perform complex cognitive tasks collectively, such as foraging for food, building a nest,
and coordinating activities (Camazine et al., 2003). Biologists classified the underlying
processes of swarm intelligence into two main classes (Moussaïd et al., 2009; Bonabeau
et al., 1999; Theraulaz and Bonabeau, 1999): (1) those where individuals interact directly
with one another by means of acoustic or visual cues, such as fish in a school or birds
in a flock, and (2) those where coordination is achieved by indirect interactions, that is,
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1.1. A brief history of collective intelligence

when individuals leave traces in the environment, such as ants dropping pheromone trails
behind them to indicate the route to a food source. Over time, research has revealed
numerous common principles between the collective dynamics driving human groups and
animal swarms, such that the term swarm intelligence is often broadened to include human
groups as well (Moussaïd et al., 2009; Krause et al., 2010).

These insights from biology combined with the rise of new technologies in the early
21th century, opened several new lines of research. With the emergence of the Web 2.0,
easy communication and coordination over the internet enabled collective projects that
involved very large human crowds. The English version of Wikipedia, for instance, results
from the joint effort of nearly 40 millions contributors, and has a quality level comparable
to traditional encyclopedia written by experts (Giles, 2005). Likewise, crowdsourcing,
a term introduced by Jeff Howe in 2006 (Howe, 2006), has been studied in business and
organizational science and describes the act of outsourcing tasks to the public that were
traditionally performed inside a company (Malone et al., 2010; Geiger et al., 2011). At
the same time, human computation was introduced by the computer scientist Luis
von Ahn in 2005 (Von Ahn, 2008; Von Ahn and Dabbish, 2008; von Ahn, 2005). Here,
complex problems are divided into smaller sub-tasks that are distributed to a large number
of people and later reassembled to form the full solution. For example, the language
learning program Duolingo invites people to translate short sentences, which together form
a completely translated document. The sub-tasks, such as translating one sentence, are
often presented as simple entertaining games. This idea of gamification is also the root of
another recent development of collective intelligence, called citizen science (Silvertown,
2009; Bonney et al., 2014). In citizen science, the public helps solving complex scientific
problems presented in a simplified way. In a short time, this approach has achieved
impressive results and long-standing problems in mathematics, biology, or physics were
successfully solved by the public within a few weeks or months (Cooper et al., 2010;
Sørensen et al., 2016; Gowers and Nielsen, 2009).

This overview reveals that collective intelligence research is composed of multiple
coexisting concepts and terminologies that partly overlap. As a result, existing formal
definitions of collective intelligence are usually very broad and rather unspecific. For
example Francis Heylighen defines collective intelligence as a situation where a group
“can find more or better solutions [. . . ] than would be found by its members working
individually” (Heylighen, 1999, p. 1). Anita Woolley and colleagues describe collective
intelligence as “the general ability of the group to perform a wide variety of tasks” (Woolley
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1.2. Searching for solutions: alone and together

et al., 2010, p. 2). Thomas Malone and colleagues propose to define collective intelligence
as a “groups of individuals acting collectively in ways that seem intelligent” (Malone and
M. S. Bernstein, 2015, p. 3). While these general definitions are useful for unifying
the diverse aspects of collective intelligence, one may argue that they lack a meaningful
boundary (for an attempt to define such boundaries, see Krause et al., 2010). That is, it
becomes difficult to find (even very trivial) instances of collective behaviors that are not
covered by these definitions.

To avoid these issues and to narrow down the subject of this thesis, I will focus on
one particular well-defined domain of collective intelligence, namely collective problem-
solving (Stasser and Dietz-Uhler, 2001). In contrast to the broader notion of collective
intelligence, collective problem-solving is restricted to situations where groups of individ-
uals are trying to find the best possible solution to a well-specified problem.

Using McGrath’s terminology (1984), collective problem solving concentrates on rather
cooperative tasks (i.e. high agreement between individuals goals), that are rather concep-
tual (i.e. more cognitive than physical), and that have an objectively evaluable solution.
Therefore, collective problem-solving does not consider tasks (1) where individuals try to
resolve a conflict (such as bargaining), (2) that are primarily physical (such as moving a
heavy piece of furniture together), (3) where individuals are simply executing a sequence
of predetermined instructions (such as when only following orders), or (4) where the qual-
ity of a solution cannot be measured objectively (such as rating a movie – a matter of
taste).

In the next section, I first describe how people solve problems individually, and then
how these individual processes can be combined to produce a collective solution.

1.2 Searching for solutions: alone and together

Individual-level processes

Research on individual problem-solving largely rests on the influential work of Allen Newell
and Herbert Simon. In their book “Human Problem Solving”, they describe individual
problem-solvers as information processing systems that collect, store, and retrieve infor-
mation related to a problem, and process that information by means of cognitive operators
(Newell and Simon, 1972). Solving a problem is therefore described as a search process:
The individual searches the problem space – the space of all possible states of the problem

7



1.2. Searching for solutions: alone and together

– by means of operators that transform one state into another. Eventually, the individual
reaches a goal state, corresponding to one solution of the problem. The search process
can then be characterized by the path through the problem space connecting the initial
state to the goal state.

Consider, for instance, the problem of solving a Rubik’s Cube. The initial state is an
arbitrary configuration of the small colored pieces, and the goal state is the configuration
where the six faces of the cube are uniformly colored. In this problem, applying an
operator comes down to moving one of the smaller pieces around the Rubik’s Cube. Each
application of the operator changes one state of the Rubik’s Cube to another. The goal
of the search is to find a sequence of operators that transforms the initial configuration
into the goal state.

For most problems, the number of potential paths connecting the initial state to a
solution can be enormous. Hence solving a problem requires the usage of search strategies.
These strategies can be either specific to a particular problem (e.g. using the grid method
for multiplication) or take the form of heuristic approaches that are applicable to a wide
range of problems. Heuristics are simple rules-of-thumb that guide the search towards
a reasonably good solution. For instance, one of the most common search heuristics is
hill-climbing. It simply consists in repeatedly selecting and applying the operator that
offers the highest immediate payoff. By doing so, an individual will eventually reach a
local optimum of the problem space.

Another important aspect of search heuristics concerns the decision to stop the search.
In fact, how to search and when to stop are two essential building blocks of search heuris-
tics (Gigerenzer et al., 1999). The stopping rule can take the form of a simple aspiration
level, as proposed in Simon’s satisficing heuristic (Simon, 1955; Simon, 1956): The search
ends as soon as the individual reaches a solution that exceeds a certain acceptability
threshold.

Problem spaces have been described by means of so-called solution landscapes (Gold-
stone et al., 2008; Mason and Watts, 2012; Lazer and Friedman, 2007; Barkoczi and
Galesic, 2016; Wu et al., 2018). A landscape is a conceptual representation of the so-
lution space in which solutions are connected to one another based on their similarity
(see figure 1.2). This description allows for a quantitative analysis of the individual’s
search pattern. Landscapes also reflect the structure of the problem. For instance, easier
problems can be described by smooth landscapes: they have a single optimum that can
often be reached by a hill-climbing strategy. In contrast, rugged landscapes tend to por-
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1.2. Searching for solutions: alone and together
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Figure 1.2. Two examples of landscapes. Each dot represents one solution and the links between
the dots connect neighboring solutions. The color-coding indicates the payoff associated with each
solution. The landscape on the left is smooth and has one single local (and hence global) optima.
The landscape to the right is rugged. It has numerous local optima.

tray more difficult problems in which the presence of many local optima necessitate more
sophisticated search strategies.

Anticipating on collective problem-solving, it is important to note that different indi-
viduals might use different search strategies and can picture the problem space differently
(e.g., due to different interpretation of the problem, of the operators, when missing a so-
lution, or using a different heuristic) (Mayer, 1992; Neisser, 2014). For these reasons, two
problem solvers often find different solutions to the same problem. Garry Kasparov, for
instance, certainly searched the problem space of next moves more efficiently than any of
the regular players composing the crowd he was playing against. Similarly, the minority
of forecasters who predicted the electoral success of Donald Trump had probably a dif-
ferent perspective on the problem space or a different search strategy than the majority
of other forecasters. One central question is therefore: How to combine these multiple
perspectives on the same problem to produce a collective benefit?

Collective-level methods

A very diverse set of methods can be involved in collective problem-solving. Here I
classify them according to the nature of the interaction between the individuals. More
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specifically, I look at when, during the search process, information is exchanged between
the group members. For this, three categories are defined: (1) non-interacting groups,
where no information is exchanged, (2) social groups, where individuals freely exchange
information during the search, and (3) solution-influenced groups, where individuals
only share their solution at the end of their individual search process.

Non-interacting groups

The first category includes all situations where the group members do not exchange any in-
formation. In these non-interacting groups, individuals solve problems independently
from one another. Their individual search processes are thus not impacted by the search
of the others. This is typically achieved by collecting the individual solutions first, and
then combining them or selecting one of them. The latter step is commonly performed
by an external entity that is not part of the group (e.g., a person, a statistical method,
or an algorithm).

The most famous example of non-interacting groups is the aforementioned wisdom
of crowds (Herzog et al., 2019). In its most basic form, individuals are first asked to
provide an independent solution to an estimation task and these individual estimations
are averaged to form the collective solution. Since its first description by Francis Galton,
this idea gave rise to a variety of more sophisticated aggregation techniques. For instance,
one may take the previous performance of individuals into account to only consider high
performing individuals (Mannes et al., 2014) or incorporate the confidence level as a
possible proxy for accuracy (Hertwig et al., 2004). In choice tasks, Condorcet’s majority
rule has been expanded in similar ways. In recent research, Dražen Prelec and colleagues
proposed a variation of the majority rule that can be successful even when most of the
individuals are wrong (Prelec et al., 2017). It consists in asking individuals what they
think others will answer, and measuring how much the actual answers deviate from the
crowd’s prediction. A “surprisingly popular” solution is indicative of a correct answer,
even if only a minority of individuals have chosen it. The wisdom of crowds has numerous
applied perspectives such as helping doctors to make better medical decisions (Kurvers
et al., 2016) or economists to predict market fluctuations (Chen et al., 2014).

As the above examples illustrate, the wisdom of crowds has been mostly applied to
problems that have a simple solution structure, such as estimation or choice tasks. How
about problems with a complex and multidimensional solution structure? One way con-

10



1.2. Searching for solutions: alone and together

sists in dividing the problem into a multitude of sub-tasks, distributing them to different
individuals, and eventually recombining them to form the collective solution. For ex-
ample, a large audio transcription task could be split into a multitude of small parts.
The collective solution would then be the complete transcription resulting from the union
of all individual’s sub-solutions. Problems on crowdsourcing marketplaces like Amazon
Mechanical Turk are typically presented in this way (Mason and Suri, 2012).

However, not all problems with a complex solution structure are easily divisible. For
example, when searching for a protein folding configuration (Cooper et al., 2010; Romero
et al., 2013), or when improving quantum transport (Sørensen et al., 2016), individual
solutions can neither easily be aggregated nor combined. In this case, the most common
practice simply consists in collecting a large number of independent solutions and choosing
the best one at the end (Cooper et al., 2010; Sørensen et al., 2016).

Social groups

The second category concerns methods for which individuals are structured in directly in-
teracting social groups. Here, group members can exchange any kind of information during
their search process, including final and intermediate solutions, or ideas and strategies to
reach a solution. The collective solution is then obtained either when a consensus solution
is reached or when an external decision-maker applies one of the approaches introduced
for non-interacting groups (e.g., by averaging the judgment of the group members at the
end of the discussion). This category of methods has been extensively studied in the
literature (see the above historical overview and Steiner, 1972; McGrath, 1984; Woolley
et al., 2015a; Woolley et al., 2015b) and is often considered as the most elementary form
of collective problem solving, as it allows for beneficial synergistic effects between group
members (Laughlin, 2011).

Social groups are often small in size, enabling everyone to communicate with everyone
else, such as in group discussions (Stasser and Stewart, 1992; Stasser, 1985). Group dis-
cussions constitute a powerful tool for solving problems together, allowing group members
to consider different perspectives on a problem, learn from each other and pool different
skills (Laughlin, 2011; Woolley et al., 2015b). A group of students trying to solve an
algebra problem together or a team of physicians discussing a medical diagnostic in an
examination are examples falling in this category. In 2010, Woolley and colleagues found
evidence for a collective intelligence factor that predicts the performances of social groups
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across a wide variety of tasks (Woolley et al., 2010). This factor is uncorrelated with
the average intelligence of the group members. Instead, it is partly determined by the
individuals’ social sensitivity – a measure of how much people listen and integrate the
judgment of others. This major discovery shows that the collective performance of a social
group lies less in the intelligence of its group members than in the way they interact with
one another.

As the size of the group increases, it becomes increasingly more difficult for the indi-
viduals to communicate efficiently in a group discussion setting (Fay et al., 2000). Larger
social groups are thus best described as networks, where each individual interacts only
with a subset of the group members. Depending on how the individuals are connected
to each other (i.e. the network topology), information can spread rapidly or inefficiently
through the group, which in turn has major implications for the collective performance
(Mason and Watts, 2012; Lazer and Friedman, 2007; Barkoczi and Galesic, 2016).

Despite its benefits, the direct influence in social groups can also cause numerous detri-
mental dynamics. Examples include the hidden profile effect (i.e. when group members
fail to share important information with others) (Stasser, 1985; Stasser and Stewart, 1992),
groupthink (i.e. when group members ignore important facts to reach a non-contentious
consensus) (Janis, 1972), or opinion herding (i.e., when solutions become more alike due
to conformity) (Moussaïd et al., 2013). To overcome some of these limitations, techniques
have been developed to mitigate the loss of diversity in social groups without impairing the
synergistic effects. The Delphi method, for instance, interweaves phases of independent
thinking with phases of controlled social influence (Ven and Delbecq, 1974). Likewise,
imposing momentary breaks of social interactions in networked groups can have a similar
beneficial effect (E. Bernstein et al., 2018).

Solution-influenced groups

The third category concerns what I coin solution-influenced groups. In these groups,
individuals are not directly in contact with one another, but influence each other by con-
tributing to a shared collective solution. Information is therefore exchanged indirectly, via
the collective solution, with no need for direct communication between individuals. Over
time, a collective solution that aggregates the contributions of all individuals emerges.

This type of methods is typically at play in eusocial insects like ants or termites (Hey-
lighen, 2016; Theraulaz and Bonabeau, 1999). When ants engage in the construction of
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a nest, individuals work separately on a common structure. Individuals do not exchange
information directly, but the current state of the collective construction guides the con-
struction process. At any moment of time, the collective solution reflects the cumulative
actions of all the group members (Khuong et al., 2016).

As highlighted by Francis Heylighen (2016) the principles of solution-influenced groups
can be applied human problem-solving as well. Many long-lasting collaborative endeav-
ors lie in this category. A Wikipedia article, for example, emerges mostly as the result
of indirect interactions between multiple contributors (Malone et al., 2010): an individ-
ual’s solution (i.e. the article that is being written) serves as a starting point of another
person’s work, who will in turn provide an updated version for a third person, and so
forth. Likewise, numerous open-source projects for developing software – such as Linux –
involve solution-influenced groups. An individual proposes a first solution to the problem
(taking the form of a programming code) and transfers it to another individual who can
improve on it in turn, and so forth. Despite its applicability to a wide range of different
domains, this methods has gathered relatively little attention in the human collective
problem-solving literature. Implementations of solution-influenced groups in large-scale
collaborative project like Wikipedia can be rather sophisticated. In their simplest struc-
ture, however, solution-influenced groups take the form of transmission chains (see figure
1.3C and Mesoudi, 2007). Here individuals solve problems strictly sequentially, one after
another, and one’s initial state corresponds to the goal state of the predecessor. The
collective solution is then the last individual’s solution.

In recent years, transmission chains have received a lot of attention in a specific sub-
domain of anthropology, namely, cumulative cultural evolution. This field was originally
developed by Boyd & Richerson (1996), and Tomasello (1999) to describe the develop-
ment of human culture and technologies. The process leading to cultural innovations,
as described by Michael Tomasello, clearly matches our definition of solution-influenced
groups:

some individual [. . . ] invented a primitive version of [an] artifact or practice,
and then some later user [. . . ] made a modification, an ‘improvement’, [. . . ]
at which point some other individual [. . . ] made another modification, [. . . ]
and so on over historical time.
(Tomasello, 1999a, p. 5)

Recent research has elaborated specific experimental designs to show that transmission
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Figure 1.3. Schematic illustrations of the three categories of collective problem-solving methods
transforming initial to goal states. (A) In this non-interacting group, each of the three individuals
searches independently and one of their solutions is later chosen as the collective solution. No
information is exchanged during the search process. (B) In social groups, individuals exchange
information during the search process. In this example, the three individuals gradually converge to
a consensual solution. (C) In this transmission chain (an instance of solution-influenced groups),
three individuals search one after the other, each one taking the goal state of its predecessor as
an initial state. The last individual’s solution serves as a collective solution.

chains can indeed promote the emergence of sophisticated cultural artifacts, which can
be seen as collective solutions to a given problem (Kempe and Mesoudi, 2014; Caldwell
et al., 2016; Caldwell and Millen, 2008; Mesoudi and Whiten, 2008).

Thesis overview

This thesis takes the form of a cumulative dissertation. Each chapter consists of an
independent publication – either accepted, submitted, or in preparation – that can stand
on its own.

The aim of the thesis is twofold: (1) establish the less-known solution-influenced groups
as a useful method of collective problem-solving, and (2) compare different methods and
identify environmental factors that impact their relative performances. In chapters 2 and
3, I will compare the performance of transmission chains with those of non-interacting
groups for problems of different complexity levels (that is, comparing the structures pre-
sented in figures 1.3A and 1.3C). In chapter 4 and 5, I will focus on the comparison
between social groups and non-interacting groups (i.e, the structure presented in figures
1.3A and 1.3B).

More specifically, chapter 2 evaluates the efficiency of transmission chains for binary
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choice problems. By means of numerical simulations, we explored the impact of various
factors on the performance of the transmission chain, such as the group size and the
structure of the population. We then compared this approach to two common wisdom of
crowd techniques, namely the majority rule and the confidence-weighted majority. The
chapter finally relies on two experimental datasets (namely, physicians evaluating whether
a skin lesion is cancerous, and participants assessing which of two cities has a larger
population) to compare the performances of the three techniques empirically. The results
indicate that the parameter space where transmission chains have the best performance
rarely appears in the real datasets.

After showing that transmission chains are, most of the time, not suited for binary
decision tasks, the chapter 3 raises the question of whether it could be relevant for more
complex problems. For that, we model problem-solving as a search in a landscape. We first
introduce NK-landscapes – multidimensional tunably-rugged problem spaces – and study
two problem-solving methods: transmission chains and groups of independent solvers.
The latter is commonly used for addressing complex problems (e.g., in citizen science
projects) and consists in collecting a large number of independent solutions and choosing
the best one at the end. We compare the performance of these methods in numerical
simulations and in a behavioral experiment, while manipulating the problem difficulty and
the skill of the individuals. Our results indicate that that transmission chains outperform
independent groups either when problems are rather easy or when the group members are
rather unskilled.

Next, chapters 4 and chapter 5 focus on the collective dynamics that take place in
social groups. For this, I divided my research in two distinct steps: (1) understanding
how people solve problems alone (chapter 4), and (2) understanding how this individual
process is impacted by the presence of others (chapter 5).

In chapter 4, we investigate how individuals search in landscapes, independently from
one another. By means of a dedicated experiment, we show that the search behavior can
be described by a simple heuristic model. Both in rich and poor landscapes, a take-the-
best procedure that ignores all but one cue at a time is capable of reproducing a diversity
of observed behavioral patterns. Chapter 5 then extends the take-the-best model to
include the social influence of other simultaneous problem-solvers. Our results highlight
the existence of a collective search dilemma: When people are influenced by others, they
tend to improve the quality of their own individual solution, but this comes at the expense
of the collective performance. We show that this dilemma is affected by the structure of
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the landscape, as its negative effects are mitigated in more difficult environments.
Lastly, chapter 6 provides a concluding discussion about my work and proposes pos-

sible lines of future research.
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Chapter 2

Can Simple Transmission Chains
Foster Collective Intelligence in
Binary-Choice Tasks?

Moussaïd, Mehdi, and Yahosseini, Kyanoush S. (2016). PloS One, 11.11, e0167223.

Abstract

In many social systems, groups of individuals can find remarkably efficient solutions to
complex cognitive problems, sometimes even outperforming a single expert. The success
of the group, however, crucially depends on how the judgments of the group members are
aggregated to produce the collective answer. A large variety of such aggregation methods
have been described in the literature, such as averaging the independent judgments, rely-
ing on the majority or setting up a group discussion. In the present work, we introduce
a novel approach for aggregating judgments – the transmission chain – which has not
yet been consistently evaluated in the context of collective intelligence. In a transmission
chain, all group members have access to a unique collective solution and can improve it
sequentially. Over repeated improvements, the collective solution that emerges reflects
the judgments of every group member. We address the question of whether such a trans-
mission chain can foster collective intelligence for binary-choice problems. In a series of
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numerical simulations, we explore the impact of various factors on the performance of the
transmission chain, such as the group size, the model parameters, and the structure of
the population. The performance of this method is compared to those of the majority
rule and the confidence-weighted majority. Finally, we rely on two existing datasets of
individuals performing a series of binary decisions to evaluate the expected performance
of the three methods empirically. We find the parameter space where the transmission
chain has the best performance rarely appears in real datasets. We conclude that the
transmission chain is best-suited for other types of problems, such as those that have
cumulative properties.
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2.1. Introduction

2.1 Introduction

Collective intelligence refers to the ability of groups of individuals to find solutions to com-
plex problems. The term “collective intelligence” – also referred to as “swarm intelligence”
or “collective problem-solving” – is used in a surprisingly large diversity of interdisci-
plinary domains. These include the collective behaviour of animal swarms (Camazine et
al., 2003; Sumpter, 2010; Couzin, 2007), the processes underlying group discussions and
brainstorming in business and industry (Woolley et al., 2010; Kerr and Tindale, 2004), the
wisdom-of-the-crowds and other methods for combining judgments (Galton, 1907; Lorenz
et al., 2011; Koriat, 2012; Soll and Larrick, 2009; Moussaïd et al., 2013), the design of ar-
tificial multi-agents systems in robotics and biomimetics (Garnier et al., 2007; Bonabeau
et al., 1999), the behaviour of pedestrian crowds (Moussaïd et al., 2009; Moussaïd et al.,
2011), networked experiments in social computing (Kearns et al., 2006; Kearns et al., 2009;
Mason et al., 2008), citizen science (Gowers and Nielsen, 2009; Sørensen et al., 2016), and
numerous online collaborative projects such as Wikipedia and Threadless (Malone et al.,
2010). All these seemingly disparate domains share the same overarching principle: The
collective solution that is produced by the group results from the aggregation of every in-
dividual’s judgment. The central question is therefore: What is the best way to aggregate
a multitude of individual solutions? A very large number of such aggregation methods
exist in the literature. These can be classified into three major families, depending on the
nature of the interactions between the group members.

The first family of aggregation methods concerns situations where group members
do not interact with each other. In this case, a third-party decision-maker collects the
independent solutions of each individual and aggregates them to produce the collective
solution (Koriat, 2012; Kurvers et al., 2016; Bahrami et al., 2010). Various aggregation
methods have been proposed, such as a simple average, a majority rule, a quorum-based
decision, or aggregation rules taking into account the confidence level of the individu-
als, such as the maximum-confidence slating or the confidence-weighted majority (Koriat,
2012; Kurvers et al., 2016; Bahrami et al., 2010; Boland, 1989). For instance, the wisdom-
of-the-crowds is a prominent method that consists in computing the mean or the median
value of all individuals’ judgments (Galton, 1907). More sophisticated aggregation meth-
ods can successfully combine individual solutions even for complex, multi-dimensional
problems, such as the traveling salesman problem (Yi et al., 2012), or ranking problems
(Steyvers et al., 2009). In any case, all individual solutions must be independent from
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one another, since direct or indirect sources of social influence often tend to undermine
the power of aggregation (Lorenz et al., 2011).

The above family of aggregation methods has been studied for more than a century
(Galton, 1907). More recently, the understanding of self-organized social systems has
demonstrated that groups of people and swarms of animals are also capable to solve com-
plex problems collectively without the intervention of a third-party decision-maker. In
this case, the aggregation of the information is supported by the interactions among the
individuals (Moussaïd et al., 2009). In the 90s, biologists studying animal swarms have
classified these interactions in two types: direct and indirect interactions (Garnier et al.,
2007; Bonabeau et al., 1999; Heylighen, 2016; Theraulaz and Bonabeau, 1999), which
turned out to be applicable to human groups as well. Formally, direct interaction refers
to situation where individuals collect information directly from other individuals. In con-
trast, indirect interaction describes situations where individuals collect information from
the collective solution that is emerging, which indirectly reflects what other individuals
have done. In the following paragraphs, we describe and illustrate these two processes.

Direct interactions constitute the second family of aggregation methods, and refer
to groups in which the individuals collect information directly from other individuals,
through visual, acoustic, or electronic signals. Over repeated interactions, the information
that each group member possesses flows from individual to individual, and eventually
gives rise to an adaptive collective response. In biological systems, fish schools and bird
flocks are typical examples of systems that address complex problems through direct
interactions. Animals perceive visual and acoustic cues from their neighbors and adapt
their behavior accordingly. The propagation of information from individual to individual
gives rise to collective patterns, for instance, when detecting and avoiding predators (Ward
et al., 2008; Couzin et al., 2005; Couzin, 2009).

In humans, situations where people directly interact with each other are typically
group discussions. During group discussions, all members can freely exchange ideas,
suggestions and information, and try to come up with a joint solution to a given prob-
lem. Depending on the structure and the composition of the group, the discussion can
constitutes a powerful mean to aggregate judgments (Woolley et al., 2010; Clément et
al., 2013), but this method is also subject to various undesirable effects such as opinion
herding, groupthink, and the hidden profile effect (Kerr and Tindale, 2004; Stasser and
Stewart, 1992; Stasser, 1985). Direct interactions can also take place in social networks.
In networked experiments, for instance, all group members can observe the behavior and
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solution of their neighbours and adapt to it. Over successive rounds of interactions, the
group often converges to a collective solution (Kearns et al., 2006; Kearns et al., 2009).
This method has been successfully applied to the graph-colouring problem (Kearns et al.,
2006), and other collective exploration problems (Mason et al., 2008; Mason and Watts,
2012).

Finally, the third family of aggregation methods contains situations where the group
members indirectly interact with one another. That is, individuals do not directly collect
information from each other, but from the current state of the collective solution. In
these situations, individuals typically work simultaneously or sequentially on a common
collective solution. At any moment, the current state of the collective solution drives the
subsequent actions of the individuals.

In biological systems, this type of interaction is best illustrated by the nest construc-
tion in social insects (Khuong et al., 2016; Theraulaz et al., 2003; Tschinkel, 2004): Each
piece of construction material that an insect deposits on the collective construction mo-
tivates the other insects to add another piece to the structure. Each individual collects
information from the current state of the structure, which reflects the cumulative actions of
previous workers. Over time, this process gives rise to small heaps, which become columns
and eventually form the complex structure of the nest. In human groups, Wikipedia is
one of the most studied examples of such indirect interactions structure. Each article
in Wikipedia constitutes a collective solution that results from the repeated updates of
different individuals.

Indirect interaction methods are usually applied to more complex problems, where
the individual contributions accumulate over time to give rise to the collective solution.
For instance, in the crisis-mapping task, a group of participants is instructed to annotate
a map to indicate the zones of emergency in a particular area after a natural disaster
has occurred (Mao et al., 2016). Every group member is facing the same map, can see
every modification made by the other group members, and is free to update it at any
moment. Over time, the map converges to an accurate collective solution that aggregates
every group member’s knowledge about the situation. Group members may also work on
the collective solution sequentially rather than simultaneously. In a transmission chain
(also called diffusion chain), each group member updates the collective solution only once
before passing it to the next individual who can update it in turn, and so forth until
the last individual of the group (e.g. Moussaïd et al., 2015). Transmission chains have
been widely used in the domain of cultural evolution (Caldwell and Millen, 2008; Kempe
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and Mesoudi, 2014b; Kempe and Mesoudi, 2014a), in which evolutionary anthropologists
study human’s ability to produce increasingly complex cultural artifacts by improving
them sequentially, generation after generation. In fact, cultural evolution can be seen as
a process relying, at least in part, on the principles of indirect interactions.

To illustrate these three families of aggregation methods, imagine a group of ten
individuals trying to solve a jigsaw puzzle, such as the one studied by Kempe and Mesoudi
(2014b). The task consists in assembling together a large number of small pieces to
produce a complete picture. In the no-interaction case, each group member proposes an
independent, possibly-incomplete solution to the problem. The individual solutions are
later combined by a decision-maker to produce the collective solution. The decision-maker
could, for example, follow a majority rule and fill each position of the puzzle with the
piece that has been used by the majority of the group members. In the direct interaction
case, all ten group members would sit around the puzzle and try to solve it together
by exchanging ideas and suggestions about where to put each piece and what the final
picture could look like. Finally, in the indirect interaction case, every group member
could sequentially look at the current state of the puzzle, try to improve it by adding new
pieces or moving those that are already positioned, and transmit the updated version of
the puzzle to the next group member who can update it in turn. This process repeats
until the tenth individual.

To date, most of the research on human collective intelligence focuses on aggregation
methods that are based on direct interactions (e.g., group discussion and networked ex-
periments), and on those where interaction is absent (e.g. the wisdom-of-the-crowd). In
comparison, the mechanisms of indirect interaction methods are much less understood.
Such methods are usually studied in very sophisticated forms and applied to very complex
problems, which renders the basic processes of indirect interactions difficult to understand.
Here, we address the question of whether indirect interactions could constitute an effi-
cient approach for solving elementary problems. For this, we present a series of numerical
simulations describing the expected performance of a transmission chain in the case of
binary-choice tasks. We deliberately chose a simple aggregation method (i.e. the trans-
mission chain, for which individuals sequentially update a collective solution) and a simple
class of problems (i.e., binary-choice tasks, for which any solution is a uni-dimensional,
binary object). We compared the performance of the transmission chain to two other
aggregation methods: the majority rule and the confidence-weighted majority rule — two
methods assuming the absence of interactions. By varying systematically the structure
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of the environment and the size of the group, we show that the best method depends on
the structure of the environment. Furthermore, the analysis of two real datasets reveals
which environmental structure is more likely to be found in the real world.

2.2 Methods

In the present work, we will examine the expected performance of the transmission chain
as an aggregation method, and compare it to two other methods: The majority rule, which
is commonly used for aggregating judgments in discrete choice problems, and confidence-
weighted majority (hereafter, weighted-majority) that extends the majority rule by taking
the confidence of the individuals into account. For this, we restrain our investigations to
binary-choice tasks, where only two options are possible: a correct one and a wrong one.

Sample population

As a starting point, we assume a large sample population in which a proportion q1 of
individuals would independently choose the correct solution to the problem in the absence
of any interaction or social influence. Reversely, a proportion q0 � 1 − q1 of individuals
in the sample population would independently choose the wrong solution. In addition,
every individual’s answer is associated with a confidence level c describing how confident
the individual is about his or her answer. We define the confidence level as a continuous
value ranging from 0 to 1, where c � 0 refers to individuals who are very uncertain
about their answer, and c � 1 refers to individuals who are very certain about their
answer. In the simulations, we describe the confidence levels of the individuals who give
the correct answer with a beta distribution Ω1 that has shape parameters α1 and β1, and
the confidence levels of the individuals who give a wrong answer with a beta distribution
Ω0 that has shape parameters α0 and β0. That is, the confidence levels follow different
distributions depending on whether the associated answer is correct or wrong. For many
problems, confidence can be a good proxy for accuracy, but this tendency is not systematic
and often non-linear (Koriat, 2012; Moussaïd et al., 2013). In fact, the shape of these
two distributions depends on the nature and the statement of the problem. To begin
with, we assume the two distributions Ω1 and Ω0 represented in 2.1, for which correct
answers are on average associated with higher confidence levels than wrong answers, but a
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Figure 2.1. Description of the environment. Assumed distributions of confidence among the
individuals who provide the correct answer to the problem (in blue), and among those who provide
a wrong answer to the problem (in red). The interval of confidence values ranges from c � 0 (very
uncertain) to c � 1 (very certain). The blue and red distributions are beta distributions with
shape parameters α1 � 8 and β1 � 2 (mean value: 0.8), and α0 � 3 and β0 � 3 (mean value:
0.5), respectively. In the simulations, a proportion q1 of the sample population gives the correct
answer and have confidence levels drawn from the blue distribution, and a proportion q0 � 1− q1
of the sample population gives a wrong answer and have confidence levels drawn from the red
distribution. In empirical data, the shape parameters of the blue and red distributions depend
on the nature of the task.

considerable overlap exists between the two distributions (i.e. an individual with a wrong
answer can possibly be more confident than an individual with the correct answer).

Constitution of the group

In this environment, we compare the performances of the three aggregation methods for
groups of N individuals randomly selected from the sample population. Therefore, each
of the N individuals of one group g has a probability q1 to give the correct answer and
a probability q0 to give the wrong answer. We call xp the independent solution of one
specific individual p in the group, and cp the confidence level of that specific individual.
We have xp � 1 if the individual p independently provides a correct answer, and xp � 0

if that individual independently provides a wrong answer. The confidence cp of that
individual is then randomly drawn from the distribution Ω1 if xp � 1 (i.e. the blue
distribution in figure 2.1), and from the distribution Ω2 if xp � 0 (i.e. the red distribution
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in figure 2.1).

Aggregation methods

The outcome of each aggregation method can be computed for any given group g com-
posed of N individuals. We call Mg, Wg, and Cg the outcomes (0 or 1) of the majority
rule, the weighted-majority rule, and the transmission chain for that particular group g,
respectively. Furthermore, we call M, W , and C the success chance of the three methods
for any group g of size N.

For a given group g, the outcome of the majority is Mg � 1 if n1 > n0 and Mg � 0

if n0 > n1, where n1 and n0 correspond to the number of group members independently
choosing the correct answer (i.e. those with xp � 1) and the wrong answer (i.e. those
with xp � 0), respectively. If n1 � n0 we choose randomly. For computing the outcome
of the weighted-majority, we first measure m1 corresponding to the sum of the confidence
levels cp of all the group members who chose the correct answer, and m0 corresponding
to the sum of the confidence levels cp of all the group members who chose the wrong
answer. We then have Wg � 1 if m1 > m0 and Wg � 0 if m0 > m1. If m1 � m0 we
choose randomly. For the transmission chain, we first assign each group member to the
chain position p. We call Xp the current collective solution in the chain at position p.
The first individual located at position 1 initiates the collective solution with his or her
independent solution, leading to X1 � x1. For all subsequent chain positions, we assume
that the individuals whose confidence level is too low are not confident enough and do not
modify the collective solution. In contrary, the individuals whose confidence is sufficiently
high replace the collective solution by their own independent solution if they disagree with
it. Formally, we define a contribution threshold τ, and have Xp � xp, if cp ≤ τ (i.e. the
collective solution is replaced by the individual solution if the confidence is high enough)
and Xp � Xp−1, if cp < τ (i.e. the collective solution remains unchanged if the confidence
is not high enough). The outcome of the transmission chain for that particular group is
then Cg � XN , corresponding to the collective solution that is present in the chain after
the update of the last individual.

Unlike the majority and the weighted-majority rules, the definition of the chain method
requires a parameter τ. This parameter represents the confidence threshold above which
individuals are sufficiently confident to contribute to the collective solution rather than
solely forwarding it to the next person. For that reason, we call τ the contribution thresh-
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old. The individual p is considered to be a contributor when cp ≤ τ. More specifically, we
call positive contributors the group members who bring in the correct answer (i.e., those
with cp ≤ τ and xp � 1), and negative contributors those who bring in the wrong answer
(i.e., cp ≤ τ and xp � 0).

Example

We illustrate the outcome of each aggregation method in a simple example where q1 � 0.6

and N � 10. That is, we constitute a group g with 10 individuals randomly drawn from a
sample population that contains 60% of correct answers. The confidence levels are drawn
from the distributions shown in figure 2.1. In this example, we assume a contribution
threshold τ � 0.6. The independent answers of each group member and their confidence
are represented in figure 2.2A. In that particular group, five individuals independently
provide a correct answer, and five others provide a wrong answer. The majority rule
results in a tie and has, therefore, 50% chance to yield a correct answer Mg � 1 and 50%

chance to yield a wrong one Mg � 0. In that particular group, the sum of confidence levels
among all individuals who provide a correct answer is m1 � 2.39 and the sum of confidence
levels among those who provide a wrong answer is m0 � 2.19. The weighted majority
rule, therefore, yields a correct answer Wg � 1. In the transmission chain, the first
individual initializes the collective solution X1 with a correct answer. At chain position 2,
the individual has a wrong answer but is not confident enough (cp < τ) and thus leaves
the collective solution unchanged. The first contributor with a confidence level higher
than τ appears at the chain position 4. That individual replaces the collective solution
by a wrong answer. The individual at position 6 is also a contributor and replaces the
collective solution by the correct answer. All subsequent individuals have confidence levels
lower than the contribution threshold τ and thus do not impact the collective solution.
The correct answer set by the individual at position 6 remains unchanged until the end
of the chain, leading to Cg � 1 for this particular example.

2.3 Results

Order effect

As compared to the two majority rules, one specificity of the transmission chain is the
spatial structure of the group, that is, the fact that group members are organized in a
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Figure 2.2. Illustration of a transmission chain. For this case study, we assume a group
size of N � 10, and a proportion of correct answers q1 � 0.6. (A) The N individuals are randomly
drawn from the sample population and assigned to a random position in the chain (the red and
blue dots). Among them, five individuals have the correct answer (i.e., the blue dots at chain
positions 1, 3, 5, 6, and 10), and five individuals have a wrong answer (i.e., the red dots at
chain position 2, 4, 7, 8, and 9). The black dashed line represents the activity threshold τ � 0.6
indicating the confidence level above which individuals contribute to the collective solution. The
contributors replace the current collective solution by their own solution. Individuals who do not
contribute (i.e., those with a confidence level lower than ) leave the collective solution unchanged.
(B) The resulting collective solution in the chain at each position. The blue open circles indicate
a correct answer, and the red open circles indicate a wrong one. In this example, the individual
at chain position 1 initializes the collective solution with a correct answer. The collective solution
remains unchanged until the contributor at chain position 4 replaces it by a wrong answer. The
individual at position 6 is also a contributor and restores the correct answer. All other individuals
have no impact on the collective solution. In this example, the chain generates a correct solution.
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linear chain. Yet, a large number of different chains can be produced from a unique group
of N individuals (precisely, N! different chains), depending on how the group members are
ordered. What is the impact of the order in which the group members are positioned? In
the example shown in figure 2.2, only two group members are contributors (those located
at chain position 4 and 6). One of them is a positive contributor whereas the other one is
a negative contributor. If the positive contributor is positioned after the negative contrib-
utor, the chain yields a correct answer (because all subsequent individuals are neutral).
Reversely, if the positive contributor is positioned before the negative contributor, the
chain yields a wrong answer because the wrong answer overrides the correct one. In the
end, this particular group of individuals has a 50% chance to produce a correct answer and
50% chance to produce a wrong one, depending on the ordering of the two contributors,
and irrespective of the position of the eight other group members. The ordering, therefore,
has a strong impact on the expected outcome of the chain in this example. More generally,
for a given group of individuals, the probability that the chain produces a correct answer
is the probability that at least one positive contributor appears after the last negative
contributor. This probability equals to N1/(N1+N0), where N1 is the number of positive
contributors and N0 is the number of negative contributors. The smaller the difference
between N1 and N0 the more the outcome of the chain is sensitive to the ordering of the
group members. Therefore, a given group of N individuals does not always produce a
unique outcome with the transmission chain. Instead, the outcome of the chain depends,
to some extent, on the order in which the group members are positioned.

Contribution threshold

The second specificity of the chain is the presence of social influence. Unlike the two
other methods, the chain does not aggregate the independent answers of every group
member. Instead, it filters out the answers of those who are confident enough to change
the collective solution (Johnson and Goldstein, 2003). The contribution threshold τ is
thus an important parameter that determines which individuals are confident enough to
contribute to the final solution. What is the impact of the contribution threshold τ?
To address this question, we explored the performances of the transmission chain while
varying the contribution threshold from τ � 0 to τ � 1. For each value of τ, we generated
1000 groups of size N � 10 with q1 � 0.6 and the confidence distributions shown in
figure 2.1, and measured the success chance C of the chain (i.e., how often it produced
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a correct answer). The result is shown in 2.3. When the contribution threshold is small
and approaches τ � 0, every group member is confident enough to contribute. In this
case, everyone overrides the previous person’s solution and the outcome of the chain is
simply the answer of the last individual of the chain. Because every individual has a
probability q1 � 0.6 of being correct, the success chance of the chain is also C � 0.6.
Likewise, when the activity threshold approaches τ � 1, none of the group members are
confident enough to contribute. In this case, the answer of the first individual of the
chain remains unchanged until the end of the chain. Because the first individual has a
probability q1 � 0.6 of providing a correct answer, success chance of the chain is also
C � 0.6. Between these two extreme values, the performance of the chain reaches a peak
for τ � 0.83. At this point, the success chance of the chain is C � 0.93 (i.e. the chain
yields a correct answer 93% of the time). In fact, the optimal threshold value maximizes
the probability to pick a positive contributor, while at the same time minimizes the
probability to pick a negative contributor. Note that this performance measure takes into
account the order effect because groups are randomly ordered in each replication. For
comparison, the success chance of the majority rule is M � 0.73 under these conditions,
and the success chance of the weighted-majority is W � 0.90.

Group size

The weakness of the majority rule in the previous case study was the relatively small group
size (N � 10). In fact, the majority of the individuals in the entire sample population
do actually provide the correct answer. Yet, the majority of the N � 10 group members
has only 73% chance to produce a correct answer because the majority within the group
often points toward the wrong answer (Boland, 1989). Hence, group size matters for the
majority rule. How does it impact the outcome of the transmission chain? To address this
question, we run an additional series of simulations, this time varying the contribution
threshold τ as well as the group size N. We generate again 1000 groups of size N with
q1 � 0.6 and the confidence distributions shown in figure 2.1, and measure the frequency
of correct answers produced by the chain for different values of τ and N. As figure 2.4A
shows, group size has relatively little influence on the chain performances, which increase
rapidly until N � 10 and plateaus for larger group sizes. This result is consistent with the
previous result showing that the ratio between positive and negative contributors is more
important than the total number of contributors. In addition, the optimal contribution
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Figure 2.3. Impact of the contribution threshold τ. The red line indicates the probability
that the chain generates a correct solution for different values of the contribution threshold τ,
assuming a group size of N � 10, a proportion of correct answers q1 � 0.6 and the confidence
distributions shown in figure 2.1. In these conditions, the optimal value for the contribution
threshold is τ � 0.83, for which the chain produces the correct solution 93% of the time. The
grey and blue lines indicate the success chances of the majority and the weighted-majority rules,
respectively.

threshold only marginally varies between τ � 0.8 and τ � 0.9 with increasing group
size. Figure 2.4B compares the evolution of the majority, the weighted-majority and the
chain with τ � 0.85 for increasing values of N. While the performance of the majority
increases slowly with N, the weighted majority and the transmission chain reach higher
performances for smaller group size. This weak dependency on N for these two methods
results from the fact that they also rely on the individuals’ confidence and can thus
extract the correct answer from a smaller number of individuals. The weighted-majority
and the transmission chain have relatively similar performances in this environment, with
the chain converging slightly faster to its best performance, and the weighted majority
converging slower but reaching a slightly higher performance level.

Structure of the environment

In order to generalize our findings, we explored the performances of the three methods
for different proportions of correct answers q1 in the sample population, and different
confidence distributions. It is difficult, however, to vary systematically the confidence
distributions, because these distributions depend on a total of four parameters (i.e., the
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Figure 2.4. Impact of the group size N. (A) The color-coding indicates the probability of
success of the chain method as a function of the group size N and the contribution threshold τ.
The column of values at N � 10 corresponds to the red curve shown in figure 2.3. (B) Comparison
of the performance of the chain method with the contribution threshold set to τ � 0.85 (in red),
the majority rule (in grey), and the weighted-majority rule (in blue). These results are computed
assuming a proportion of correct answer q1 � 0.6 and the confidence distributions shown in figure
2.1

shape parameters α1, β1 and α0, β0). Therefore, we computed a single confidence indicator
from the two distributions Ω1 and Ω0, that we called the confidence utility u. The
confidence utility measures the probability that an individual with the correct answer has
a higher confidence level than an individual with the wrong answer. In other words, u is
the probability that a value drawn from Ω1 (the confidence associated to correct answers)
is higher than another value drawn from Ω0 (the confidence associated to wrong answers).
For the simulations, we systematically varied the mean values of Ω1 and Ω0 from 0.1 to
0.9 and computed each time the corresponding confidence utility u. In addition, we also
varied the proportion of correct answers q1 from 0 to 1. For each combination of u and
q1, we generated 1000 groups of size N � 10 and measured the performance of the three
aggregation methods. For the sake of simplicity, we chose the contribution threshold τ
that maximises the success chance of the chain for each combination of u and q1, such
that our results represent the best-case scenario for the chain. The results are shown in
figure 2.5. Clearly, the majority rule does not depend on u and has success chances that
approach M � 1 when q1 > 0.5 and M � 0 when q1 < 0.5. The majority rule amplifies
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the dominant view in the population. The weighted-majority has a similar pattern but
also relies on the group members’ confidence. Therefore, the weighted-majority can yield
a correct answer even when the population accuracy q1 is slightly lower than 0.5, but
only when the confidence is a useful cue (i.e., when u approaches 1). Reversely, if the
confidence is misleading (i.e. when u approaches 0), even a population accuracy higher
than 0.5 is not always sufficient to yield a correct collective answer. The performance
of the transmission chain exhibits a similar tendency: When confidence is a useful cue
(u > 0.5), the chain performs well, even for extremely low values of q1. When confidence
is less reliable (u < 0.5), the chain performance equals the population accuracy. This is
due to the fact that, when confidence is misleading, the best contribution threshold is such
that nobody contributes to the collective solution (i.e. very high value of τ ), and the final
solution is simply the first individual’s solution. Hence the chain performs relatively well
where the majority performs very good, and relatively bad where the majority performs
very bad. The best aggregation method, therefore, depends on the values of q1 and
u. Roughly speaking, the majority is a better method in the upper-left quarter of the
parameter spaces (q1 > 0.5 and u < 0.5), the weighted-majority is better in the upper-
right quarter (q1 > 0.5 and u > 0.5), and the chain is better in the lower-right quarter
(q1 < 0.5 and u > 0.5). The lower-left quarter (q1 < 0.5 and u < 0.5) is the most difficult
environment because the population accuracy and the confidence both point to the wrong
answer. In this case, the chain is the least bad method because it preserves a small chance
of success where the majority and the weighted-majority tend to be systematically wrong.

Empirical data

An important question that arises from these simulations is what do real environments
look like? Knowing the values of q1 and u for a given class of problems would help finding
out what is the most efficient aggregation method to use. To address this question, we
reanalyzed two datasets of previously published experiments in which people were facing
a series of binary-choice tasks. In the first dataset (Yu et al., 2015), 109 participants were
instructed to indicate which of two cities has a larger population, across 1000 pairs of
cities. For each pair of cities, the participants indicated their answer and their confidence
level on a continuous scale between 0.5 and 1. In the second dataset (Argenziano et al.,
2003; Kurvers et al., 2016) a total of 40 physicians evaluated 108 cases of skin lesions
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Figure 2.5. Impact of population structure. Expected performance of the majority, the
weighted-majority, and the transmission chain as a function of the proportion of correct answers
q1 in the sample population and the confidence utility u. The confidence utility is the probability
that an individual with a correct answer reports a higher confidence level than another individual
with a wrong answer. The group size is N � 10.

and were instructed to evaluate whether the lesion is cancerous or not-cancerous, and
to indicate their confidence level on a Likert scale from 1 to 4. For each of the 1000

instances of the cities dataset and for each of the 108 instances of the doctors dataset,
we estimated the population accuracy q1 by measuring the proportion of correct answers
among the respondents, and the confidence utility u by measuring the probability that
an individual who gave a correct answer reported a higher confidence than an individual
who gave a wrong answer. For this, we randomly sampled (1000 times, with replacement)
one individual among those who gave a correct answer and one among those who gave
a wrong answer, and looked at the frequency at which the first has a higher confidence
than the second. In addition, we computed the success chance of the three aggregation
method, with groups of size N � 10. The results are presented in figure 2.6. The
first interesting element is the striking diversity of environmental structures. Within
each domain, the observed values of u and q1 vary almost uniformly between 0 and 1.
Nevertheless, a correlation is visible between these two variables: confidence is a relevant
cue when most people give the correct answer, and a misleading cue when most people
give the wrong answer. In other words, confidence tends to be indicative of consensuality
rather than accuracy – an important result that has been already suggested in previous
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research (Koriat, 2012; Pleskac and Busemeyer, 2010). Consequently, confidence adds
little information to what is already available by just looking at the individuals’ answers.
Most cases, therefore, lie in the upper-right and lower-left quarter of the parameter space.
As expected from our previous simulations, the majority and weighted-majority perform
best in the upper-right quarter, because both the number of individuals and the confidence
levels indicate the correct answer. The chain also performs relatively well in this area of
the parameter space (see figure 2.5 and in the supplementary material figure A1 and figure
A2), but not as good as the two majority rules. In the lower-left quarter, however, all
methods exhibit poor performances, because all available information is misleading. In
this area, the chain does not amplify the misleading information as the two majority rules
do and, thus, preserves a small chance to yield the correct answer.

When using a single method for all the instances of a task, very little difference of
performance exist between the three methods. The strengths and weaknesses of each
method compensate each other at the aggregate scale, leading to similar overall perfor-
mances (For the “cities dataset”: M � 74%, W � 75%, and C � 75%; for the “doctors
dataset”: M � 65%, W � 65%, and C � 67%). Ideally, one would adaptively choose the
most efficient aggregation method for each new instance of the task, depending on the
expected values of q1 and u for that instance, but the diversity of observed structures
makes it difficult, if not impossible, to anticipate the nature of an upcoming instance of
the problem.

2.4 Discussion

We have defined and studied the performance of a new aggregation method – the trans-
mission chain – as a tool to improve collective decision-making in binary choice tasks.
The transmission chain relies on processes of indirect interactions, for which group mem-
bers sequentially try to improve a common collective solution without directly interacting
with one another. The chain exploits the default heuristic – a common bias in people’s
decision-making: When given a decision to make and a default option, people tend to
choose the default option unless they have good reasons not to do so (Johnson and Gold-
stein, 2003; Gigerenzer et al., 1999). In the chain, the “default option” is the current state
of the collective solution that has been produced by the preceding group members. Thus,
most people choose the default option unless they strongly disagree with it. In the end,
the chain functions as a confidence-based filter: the group members who are the most
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Figure 2.6. Population structure and corresponding best method for two binary-
choice task studies. Experimental participants evaluating which of two cities has a larger
population. The task is repeated across 1000 different pairs of cities. Each point in the graph
corresponds to one instance of the task (i.e., one pair of cities). (B) Dermoscopists evaluating
108 cases of skin lesions and evaluating whether the lesion is cancerous or not-cancerous. Each
point in the graph corresponds to one medical case. In (A) and (B) the position of each point
indicates the proportion of respondents (i.e., participants or doctors) who provided the correct
answer (y-axis), and the confidence utility (x-axis) for that case. The border colour of each point
indicates the aggregation method that performs best in this particular case (the majority in blue,
the weighted-majority in red, and the chain in green). Cases for which several methods perform
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majority is one of them. In addition, the grey-scale colour inside each point indicates the success
chance of the best performing method, ranging from 0 (in black) to 1 (in white). These results
are calculated assuming 1000 groups of N � 10 individuals randomly sampled from the pool of
available respondents.
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confident contribute to the collective solution whereas those who are unsure have no im-
pact on the collective outcome. When comparing the transmission chain to the majority
and the weighted-majority rules, we have found that the chain only outperforms the two
other methods for problems of a specific nature, namely, when confidence is a reliable
indicator and when the most people give a wrong answer. In the two datasets that we
have analyzed, however, instances of such nature are rare.

It is important to note that many behavioural components of our simulations remain
uncertain. For instance, we have always studied the best-case scenario in our simulations,
where the contribution threshold τ is set to the optimal value for each instance of the
problem. However, the contribution threshold is not a parameter but a behavioural vari-
able, for which the experimenter has little control. The exact value of the threshold and
whether it is well calibrate is an issue that needs to be addressed experimentally. In the
supplementary materials figure A1 and figure A2, we compared the chain performances
when is adjusted for every instance of the problem and when τ is fixed for all instances
of the problem. Overall, the difference is minor.

A multitude of implementations can be imagined for the transmission chain. Group
members can act simultaneously rather than sequentially (i.e., all group members can see
the current state of the collective solution at the same time and update it at any moment),
which should mitigate the order effect. Beside, the collective solution can take various
forms. Instead of considering only the solution of the predecessor, group members could
be exposed to the k previous solutions, or an aggregated form of the k previous solutions.
This variation should create a “memory” in the chain. This memory could allow the
collective solution to resist to the detrimental influence of a few outliers, but at the same
time, increase the risk of opinion herding and groupthink (Kerr and Tindale, 2004; Stasser,
1985; Yasseri et al., 2012). Finally, participants could be informed about their position in
the chain and about the number of other group members who have previously contributed
to the collective solution. This would strengthen the weight of the collective solution at
the end of the chain, equivalent to gradually increasing the contribution threshold with
chain position in simulations.

With regard to the existing literature and to the present results, the transmission
chain seems to be more suited to cumulative, multidimensional problems than simple
binary choice tasks. In fact, in complex tasks like writing a Wikipedia article, the group
members’ contributions can take various forms and apply to many different components
of the collective solution. The contributions to a Wikipedia article, for example, can range
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from correcting a minor typographical error to changing the entire structure of the article
or adding new content to an existing article. As such, the contributions of the group
members accumulate over time but rarely override each other (except, e.g. in the case of
“edit wars” (Yasseri et al., 2012)). The same applies to problems addressed in cultural
evolution (Kempe and Mesoudi, 2014a). In contrast, binary choice tasks are limited to a
single possible action of the group members: switch the collective solution to the other
answer or not. Thus, every new contribution necessarily overrides the previous ones. The
cumulative property is therefore absent. Furthermore, the uncertainty surrounding the
contribution threshold is important. If the contribution threshold is well calibrated, the
chain is a good candidate for certain types of binary choice tasks. Otherwise, the chain
will arguably not outperform a simple majority. The next step, therefore, is to examine
the value of the threshold experimentally, explore more sophisticated implementations of
the design, and extend the methodology to more complex problems.
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Chapter 3

Transmission Chains or Independent
Solvers? A Comparative Study of
Two Collective Problem-Solving
Methods

Yahosseini, Kyanoush S. and Moussaïd, Mehdi. In Prep.

Abstract

Groups can be very successful problem-solvers. This collective achievement crucially de-
pends on how the group is structured, that is, how information flows between members
and how individual contributions are merged. Numerous methods have been proposed,
which can be divided into two major categories: those that involve an exchange of in-
formation between the group members, and those that do not. Here we compare two
instances of such methods for solving complex problems: (1) transmission chains, where
individuals tackle the problem one after the other, each one building on the solution of the
predecessor and (2) groups of independent solvers, where individuals tackle the problem
independently, and the best solution found in the group is selected afterwards.
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By means of numerical simulations and experimental observations, we show that the
best performing method is determined by the interplay between two key factors: the skills
of the individuals and the difficulty of the problem. We find that transmission chains
are superior either when the problem is rather easy, or when the group is composed of
rather unskilled individuals. On the contrary, groups of independent solvers are preferable
for harder problems or for groups of rather skillful individuals. Finally, we deepen the
comparison by studying the impact of the group size and diversity. Our research stresses
that efficient collective problem-solving requires a good matching between the nature of
the problem and the structure of the group.

Author Contributions: Conceptualization: KSY MM. Experimental Materials: KSY. Data Analysis:
KSY. Writing – original draft: KSY. Writing – review & editing: KSY MM.
Acknowledgments: We like to thank Charley M. Wu and Alan N. Tump for valuable feedback.
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3.1 Introduction

Collective problem-solving and the related concepts of swarm intelligence and collective
intelligence have been studied in a wide variety of domains. In biological systems, exam-
ples include the nest construction in eusocial insects (Seeley and Visscher, 2004; Khuong
et al., 2016) or collective foraging in group-living species (Couzin, 2009). In robotics and
artificial intelligence, swarms of relatively simple agents can explore and solve optimiza-
tion problems efficiently (Garnier et al., 2007; Rendell et al., 2010). Likewise, humans
can solve problems in groups during discussions (Kerr and Tindale, 2004), by means of
wisdom of crowds procedures (Herzog et al., 2019), or when creating Wikipedia articles
(Yasseri et al., 2012; Malone et al., 2010). Despite this considerable diversity of exam-
ples and application domains, all instances of collective problem-solving come down to
one central challenge: How should the group be structured to produce the best possible
collective output?

Numerous procedures have been proposed to that end. These can be divided into
two major categories (Koriat, 2015; Moussaïd et al., 2009): (1) those that involve an
exchange of information between the group members, and (2) those that do not. In the
first category, direct or indirect interactions among individuals can lead to the emergence
of a collective solution (Woolley et al., 2010; Malone and M. S. Bernstein, 2015; Heylighen,
2016). With direct interactions group members exchange information directly via physical
signals. Group-living animals, for example, communicate by means of acoustic and visual
cues to detect and avoid predators (Domenici et al., 2014; Couzin et al., 2005; Ward et al.,
2008). In human groups, the most common case of direct interaction for solving problems
takes the form of group discussions (Stasser and Stewart, 1992; Stasser, 1985), where all
group members can freely share ideas and strategies to tackle a problem. This approach
can produce good results (Toyokawa et al., 2019; Woolley et al., 2015; Trouche et al.,
2014; Baron, 2005), but is also subject to numerous detrimental effects such as opinion
herding, groupthink, and the hidden profile effect (Janis, 1972; Stasser, 1985; Stasser and
Stewart, 1992). Also, direct interaction in humans becomes difficult to apply when groups
are too large, when members do not work at the same time, or when they have no easy
means of communication (e.g., interactions between algorithms and humans (Crandall
et al., 2018)).

Some of these limitations can be overcome by indirect interaction (Moussaïd and
Yahosseini, 2016). In this case, individuals are not directly in contact with one another,

49



3.1. Introduction

but work separately on a common shared group solution. This type of interaction (also
known as stigmergy in biological systems) has been heavily investigated in social insects
(Heylighen, 2016; Theraulaz and Bonabeau, 1999). For example, when ants engage in
the construction of a nest, individuals adapt their behaviour to the current state of the
collective construction, which reflects the cumulative actions of all other ants (Khuong
et al., 2016). Information is therefore exchanged indirectly, via the collective solution,
with no need for direct communication between individuals. This principle can also be
applied human groups; a Wikipedia article, for example, emerges mostly as the result of
indirect interactions between multiple contributors (Malone et al., 2010; Heylighen, 2016).
In the simplest case, indirect interaction takes the form of a transmission chain, where
group members work on a problem sequentially, one after another (Mesoudi and Whiten,
2008). Each individual starts from the final solution of her predecessor and try to improve
it, hence gradually giving rise to a collective solution that accumulates the contributions
of all group members. Transmission chains have traditionally been investigated in the
context of cultural evolution (Mesoudi and Whiten, 2008; Henrich and Boyd, 1998; Kirby
et al., 2008; Tomasello et al., 1993) and have more recently been applied to other domains
(Moussaïd et al., 2015; Moussaïd and Yahosseini, 2016; Derex and Boyd, 2015).

Beside all these methods, there exists a second class of approaches that do not involve
any form of information transfer between individuals. In these cases, individuals first
solve the same problem independently and in isolation, and their solutions are eventually
combined by an external entity to produce the collective outcome (Koriat, 2015). The
most prominent example of such procedures is the wisdom of crowds, in which individual
solutions are merged by means of statistical aggregation function, such as the mean or
the median of all solutions (Herzog et al., 2019). Wisdom of crowds methods are easily
scalable as they allow for arbitrarily large group sizes and can yield to accurate solutions
(Mannes et al., 2014; Herzog et al., 2019; Surowiecki, 2004). One drawback, however, is
that most statistical aggregation techniques cannot be easily applied to complex, multi-
dimensional solutions, such as when optimizing a protein folding configuration (Cooper
et al., 2010; Romero et al., 2013), improving quantum transport techniques (Sørensen
et al., 2016), or trying to solve a jigsaw puzzle (Kempe and Mesoudi, 2014). Thus for
problems that have a complex solution structure, the most common practice consists in
collecting a large number of independent and hence diverse solutions and choosing the
best one at the end (Cooper et al., 2010; Sørensen et al., 2016).

In this work, we specifically focus on problems that have such a multidimensional
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solution structures. How should a group be structured in this case? In particular, we
compare two types of methods: groups that work on the collective solution sequentially,
such as transmission chains, or groups that work on independent solutions in parallel?
Consider, for instance, the traveling salesman problem – an optimisation task where one
has to find the shortest path connecting all cities on a map exactly once (Ochoa and
Veerapen, 2018). In a transmission chain, the first individual proposes her solution and
transfers it to the next person, who will try to optimize it and pass it in turn to the third
one, and so forth. This process continues until all individuals of the group have worked
on the collective solution. Would the emerging collective solution be better or worse than
when letting all group members search independently and choosing the best one at the
end?

In the present paper, we compare the performances of these two methods by means
of a behavioural model and a dedicated experiment. In particular, we study how the
performances of both methods are influenced by (1) the difficulty of the problem, (2) the
skills of the individuals, (3) the group size, and (4) the group’s diversity.

To address these questions, we model problem-solving as a search task (Newell and
Simon, 1972; Lazer and Friedman, 2007). We assume that individuals are searching for the
best possible solution in a multi-dimensional NK-landscape representing the solution space
(see figure 3.1 and Kauffman and Levin, 1987). For the transmission chains, individuals
search sequentially, one after another, each one starting from the last position of her
predecessor. The collective solution is then given by the last person’s final position in the
landscape. For independent solvers, all individuals start at the same initial position and
search in parallel without interactions. The collective solution is then given by the best
final solution of all individuals.

Furthermore, we manipulate two variables: the individual skill S and the ruggedness
of the landscape K. We define S as the number of dimensions a given individual is
able to manipulate (with S ≤ N, N being the total number of dimensions of the NK-
landscape), assuming that more skilled individuals are capable of manipulating more
dimensions during their search. For instance, an individual with S � 2 searching in a
NK-landscape with N � 10 can only manipulate two out of the ten dimensions in the
landscape. The value of S can thus be interpreted as the individual’s ability to solve that
specific problem.

The parameter K represents the ruggedness of the landscape, i.e. the number of local
optima, and is used as a measure of the problem difficulty (see the methods section for
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payoff

     

low high

A Bsmooth rugged

Figure 3.1. Two examples of four-dimensional NK-landscapes (N � 4). Each dot represents
one solution and the links between the dots indicate a change along one dimension, illustrating
that one can directly move from one solution to another. The color-coding indicates the payoff
associated with each solution. In (A), the landscape is smooth (K � 1) and has one single locally
and globally optimal solution (in yellow). The search trajectory (in red) illustrates how a searcher
could reach the optimal solution by gradually moving to the highest neighboring solution. In (B),
the landscape is rugged (K � 3). It has numerous local optima (i.e. solutions where all neighboring
solutions give a worse payoff) and a simple exploration strategy based on gradual improvements
is likely gets stuck on a sub-optimal solution.

more details). Smooth landscapes (with low values of K) are reminiscent of problems
that are well understood and as such can be easily solved with gradual optimization. In
contrast, rugged landscapes (with high values of K) have a noisier structure, and can
be interpreted as unstructured problems where gradual optimization is usually not an
efficient strategy.

3.2 Results

Numerical simulation

We first propose a heuristic model to describe how individuals search in multidimensional
landscapes. For this, we assume that individuals randomly manipulate one dimension of
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Figure 3.2. Performance for transmission chains and independent solvers as obtained by numer-
ical simulation, for a group size of 8 individuals and N � 10 dimensions. (A) Average collective
performance of the two methods for varying degrees of difficulty K and individual skill S. (B)
Difference in performance between the two methods. Positive values, in blue, indicate that inde-
pendent solvers outperform the transmission chains and vice versa, in red.

their current solution and switch to that new solution if it produces a better payoff than
the current one (Gigerenzer et al., 1999; Barkoczi and Galesic, 2016). We use this model
to simulate transmission chains and independent solvers, while systematically varying the
difficulty of the problem K, and the individuals’ skill S. As shown in Figure 3.1A, both
methods are influenced by K and S. As intuitively expected, performances decrease with
increasing problem difficulty, and increase with increasing individual skill. However, the
transmission chains are less sensitive to the individual skill than the independent solvers,
giving rise to two zones of interest as shown in figure 3.2B: (1) In the lower left corner
– for rather easy problems and unskilled individuals – transmission chains outperform
independent solvers, (2) in the upper right corner – for rather difficult problems and
skilled individuals – groups of independent solvers perform better. Between these two
zones, the performances of both methods become increasingly similar.
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Experimental data

Our simulations suggest that the difficulty of the problem and the individual skills deter-
mine which of the two methods performs better. We verify this prediction by means of
a controlled experiment. In the experiment, participants searched for the best possible
solution either in smooth or rugged landscapes (K � 1 or K � 8, respectively), and with
low or high individual’s skill (S � 3 or S � 6, respectively). Participants were either part
of a transmission chains or in a group of independent solvers (see the Methods section
for the detailed procedure). As shown in figure 3.3, our experimental data confirms the
model predictions. In smooth environments, transmission chains outperform independent
solvers (t(338) � −6.56, p ≤ 0.005, 95ci: −258.17− 139.09, BF > 100), and this difference
is larger for low skills (t(166) � −7.07, p ≤ 0.005, 95ci: −361.92 − 203.90, BF > 100)
than for high skills (t(172) � −2.89, p ≤ 0.005, 95ci: −191.24 − −36.11, BF= 15.03). In
rugged environments, the opposite is true: Independent solvers outperform transmission
chains (t(336) � 4.02, p ≤ 0.005, 95ci: 51.00 − 148.43, BF > 100). However, contrary to
the predictions, the difference of performance is not larger for high skills (t(168) � 2.86,
p ≤ 0.005, 95ci: 32.44− 176.53, BF = 13.98) than for low skills (t(168) � 2.93, p ≤ 0.005,
95ci: 30.56 − 156.87, BF = 16.48). In other words, our simulations predicted that the
transmission chains would perform better for difficult problems than they actually do.
Why is that so?

In transmission chains, performances are considerably affected by the decisions of the
last individuals (Moussaïd and Yahosseini, 2016). For instance, the last person of the
chain could make the risky decision to leave the good solution found by her predecessors
and search for a better one. A failure to do so would impair the collective performance
of the entire group.

This behavior is not captured by our search model, in which individuals only leave a
solution for a better one (see figure 3.4). To account for such risky decisions, we extend
our model with a parameter r reflecting the probability that an individual would not
immediately return to the previous solution after sampling a worse one. A positive value
of r confers some flexibility to the behavior of the agents, preventing them to get stuck
at only locally optimal solution, but at the same time increases the risk to lose track
of the previous solution. We fit r to our experimental data by measuring the frequency
of risky decisions in the experimental data (r � 0.11). The new simulations match the
observed performance very closely (see figure 3.3, and 3.4). That is, r > 0 decreases
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Figure 3.3. Observed and simulated performances for the transmission chains (in green) and
the independent solvers (in orange), for smooth and rugged landscapes (as columns, K � 1 and
K � 8) and for low and high individual skill (as rows, S � 3 and S � 6). The box plots
indicate the interquartile range (box), the median (horizontal line) and 1.5-times interquartile
range (whiskers). Outliers are shown as a single dot. For the simulations, the parameter r
indicates the probability of risky decisions (i.e. the probability to leave a solution for a worse
one). The group size is limited to eight individuals.

the performance of transmission chains for high difficulty and low skills, while slightly
improving the performance of groups of independent solvers.

Group size and diversity

Finally, we investigate the influence of the group size for the two methods. To account for
smaller groups in the experimental data, we simply excluded later individuals to match
the desired size and recalculated the group’s performances. Overall, simulations and
experimental data exhibit very similar tendencies (see figure 3.5). In either case, our
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Figure 3.4. Group performance as a function of total search steps for S � 6 and K � 1 or 8.
Total search steps are the sum of all search steps at the disposal of the entire group. For the
transmission chain, a dashed vertical lines indicates that a new individual has started.

previous findings are robust to group size variations: with at least three group members,
transmission chains outperform independent solvers in smooth environments and are out-
performed in rugged ones. In general, group performance increases with group size while
the difference between the two procedures remains about the same. The only exception
concerns smooth landscapes with high skilled individuals, where both strategies lead a
nearly optimal performance.

Overall, we find a diminishing returns for larger groups. In other words, performance
does not improve linearly with group size, but eventually plateaus. For example, over all
conditions an increase in group size from two to five members improves performance by
an average of 0.1 in the experimental data, whereas the same change from five to eight
members only improves performance by 0.07. In transmission chains, too many members
can even decrease the collective performance, because longer chains increase the risk of
losing a good solution due to a risky decision (as described by the parameter r).

Finally, we study how the collective performance is impacted by the group diversity –
a factor that is known to be critical for collective intelligence (Derex et al., 2018; Jönsson
et al., 2015; Tump et al., 2018; Surowiecki, 2004). For this, we define a group’s diversity
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Figure 3.5. Influence of group size on performance for the two procedures (color-coded), as
observed in the experiment data and obtained in simulations.

as the dissimilarity between the dimensions that the group members can manipulate. Put
differently, a diverse group is made of individuals that have different perspectives on the
same problem. Formally, diversity is measured as the average number of dimensions that
only one individual can manipulate in all possible pairs of individuals in the group.

As shown in figure 3.6, our results reveal very strong evidence for a positive influence
of diversity on the performance of independent solvers (F(1, 346) � 39.15, BF > 100,
adj. r2 � .10) and a moderate one for transmission chains (F(1, 343) � 5.47, BF � 3.14,
adj. r2 � .01). In short, diversity is indeed a positive factor, and more diverse groups
outperform less diverse ones, irrespective of the chosen method.

57



3.3. Discussion

0.00

0.25

0.50

0.75

1.00

3.0 3.5 4.0 4.5
diversity

gr
ou

p 
pe

rf
or

m
an

ce

independent solvers
transmission chains

Figure 3.6. Influence of diversity on the collective performance, as observed in our experimental
data. Diversity is defined as the dissimilarity between the dimensions that the group members
can manipulate. Each point corresponds to one landscape in one condition. The straight lines
indicate the best fitted linear models and the standard error to the two methods (color-coded).

3.3 Discussion

How should a group be structured for solving multidimensional problems? Here we com-
pared two approaches: (1) transmission chains, where individuals tackle the problem
sequentially, one after the other, each one building on the solution of its predecessor, and
(2) groups of independent solvers, where individuals tackle the problem in parallel with-
out influence and the best solution found in the group is selected afterwards. Our results
suggest that the performances of the two methods depend on the interplay between two
factors: the problem difficulty (i.e., the ruggedness of the landscape) and the skills of
the individuals. Transmission chains outperform groups of independent solvers for easier
problems or when the individuals are rather unskilled. In opposition, independent solvers
have better performances for difficult problems or when the group members are rather
skilled. To put it differently, when trying to continuously improve a solution to a well
understood problem or when dealing with rather unskilled individuals, reliance on pre-
vious solutions is beneficial. When trying to come up with solutions to an unstructured
or ill defined problem in a group of experts one should rather select amongst multiple
independent suggestions.

The intuition underlying these results is the following. In smooth landscapes (i.e.,
easier problems), the global maximum can be found by means of a simple hill-climbing
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strategy that operates on all the problem’s dimensions. However, low-skilled individuals
have only access to a subset of these dimensions. For that reason, independent solvers
performs poorly in this case (corresponding to the lower-left corner of the map, figure
3.2B). Transmission chains, in contrary, combine the skills of the group members. The
different dimensions of the problem can therefore be optimized sequentially, explaining
the better performance of this method here. As the group members become more skilled
(i.e., moving towards the upper-left corner of the map, figure 3.2B), the difference between
the two methods decreases. The collective outcome becomes naturally less sensitive to
the chosen method when easy problems are addressed by skillful individuals.

As the problem becomes more difficult, the performances of both methods decline, but
the decrease is less pronounced for groups of independent solvers. The challenge of such
rugged environments, is that the hill-climbing strategy gets easily stuck at a local opti-
mum. To overcome this issue, individuals need to temporarily reduce their payoff in order
to leave the local optimum and explore another region of the landscape. Participants,
however, are reluctant to do so (as indicated by the relatively low rate of risky decisions
r � 0.11). In this situation, independent searchers exhibit better performances because
individuals in such groups try different trajectories and arrive at different solutions – thus
maximizing the likelihood that at least one of them reaches a good solution. Along these
lines, citizen science projects, where people try to solve extremely complex optimization
problems, have shown that high-performing participants are less efficient when first ex-
posed to example solutions than when they work independently (Sørensen et al., 2016;
Cooper et al., 2010).

Two behavioral factors are driving our results. The first one is the reluctance of
individuals to temporarily decrease their payoff, although this is often the only way to
find the global optimum. This behavior can be interpreted as risk aversion (Frey et al.,
2017), because abandoning a reasonably good solution to search for a better one has
considerable chances to fail (Boyd and Richerson, 1996; Miu et al., 2018). Furthermore,
research has shown that the willingness to take risks tends to decreases when the problem
space becomes vaster and more complex (Yahosseini and Moussaïd, 2019; Mehlhorn et
al., 2015), which prevents individuals from “getting lost” in very large problem spaces. In
situations where the individuals search is not predominantly guided by payoff (e.g., when
individuals are more likely to take risky decisions and move away from a local optimum, or
when the payoff information is not immediately available), additional simulations indicate
that transmission chains would outperform independent searchers (as shown in figure B2
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in the appendix).
The second important behavioural factor is related to the payoff structure. In our

setup, individuals are only rewarded for their personal payoff, but not for the group’s
performance. This incites individuals to follow rather conservative search strategies and
avoid the risk of losing a good solution. Adding a “safety net” – for instance by rewarding
the collective performance – could possibly increase the frequency of riskier search be-
haviors, favoring the discovery of leaps – truly novel and substantially improved solutions
(Miu et al., 2018).

In our simple implementation of transmission chains, the collective performance de-
pends substantially on the last individuals of the chain. In other words, the system has
no memory of the past solutions, which can result in losing track of a very good solution
(Moussaïd and Yahosseini, 2016). This leads to very volatile collective performances over
time, as observed in our experimental data and when introducing risky decisions in the
simulations (see figure 3.4). This is along the lines of previous research showing that less
inclusive strategies, i.e. strategies that depend on a smaller number of individuals, are
more prone to wrong judgments, outliers and noise (Herzog et al., 2019; Mannes et al.,
2014). Nevertheless, research in cultural evolution – studying how an innovation can
emerge as solutions are passed from person to person, across generations – has shown
that more sophisticated forms of transmission chains can retain memory of past events
and yield more stable collective results.

Future research will consider mixtures and variations of these collective problem-
solving methods, such as alternating phases of influenced and independent search (E.
Bernstein et al., 2018), or mixing direct and indirect interactions in more elaborated
chain structures (Mesoudi and Thornton, 2018).

3.4 Methods

Search environment

The search environments used in our simulations and the experiment were produced by
means of the NK-model, which generates multi-dimensional tunably rugged landscapes
(Barkoczi and Galesic, 2016; Lazer and Friedman, 2007). The structure of these land-
scapes is determined by the two eponymous parameters: N is the number of binary
dimensions and K controls the ruggedness by varying the number of interdependencies
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between each dimension. Low values of K generate smooth landscapes with few or no
local maxima, which are easy to solve by means of a local optimization procedure (i.e.
hill climbing). In contrast, high values of K create rugged landscapes with many local
maxima, where local optimization is not an efficient search strategy (see figure 3.1 for a
visualization of two NK-landscapes and (Kauffman and Levin, 1987) for a more detailed
description of the underlying model).

The NK-landscapes used in our study were generated by fixing N � 10 (i.e. our
landscapes have 10 binary dimensions, corresponding to 210 � 1024 different solutions)
and with various values of K. Following several authors, we normalized the payoffs in each
landscape by dividing them by the maximal achievable payoff and using a monotonic
transformation to raise each payoff to the power of eight (Lazer and Friedman, 2007;
Barkoczi and Galesic, 2016). This process causes most solutions to be mediocre and only
few to be very good.

Simulation procedure

Following Barkoczi and Galesic (2016), we use a minimalistic heuristic model of individual
search (which nevertheless captures experimental data surprisingly well). The model
assumes that each agent manipulates one randomly selected dimension at a time, and
moves to the new solution if it offers a better payoff than the current one. The agent
repeats this search behaviour until the end of the search time. We vary the individual’s
skill S by allowing only S randomly selected dimensions to be manipulated by the agent.
That is for S � 2 the agent can only manipulate two dimensions of the search environment.

The duration of the search is set to 16 consecutive decisions (but our results seem
robust to variations of this number) and all results are averaged over 1000 repetitions.

Experimental treatment

Participants were instructed to search for the best possible solution in a NK-landscape.
To facilitate the visual representation, all payoffs were multiplied by 1000, and the 10

dimensions of the landscape were represented as 10 light bulbs that could be either on
or off (representing the binary values ‘0’ or ‘1’, see the supplementary figure B1). Not
all light bulbs could be manipulated, due to the restrictions imposed by S (those were
visually marked by a cross). In each round participant could change the state of one light
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bulb. After their decision, they were informed about their new payoff and where allowed
to return to their previous solution before a new round started.

The eight experimental conditions where selected based on preliminary simulation
results, and where matched to the four corners of the figure 3.2B. The eight conditions
consisted of smooth and rugged landscapes (K � 1 or K � 8, respectively), low or high
individuals skill (S � 3 or S � 6, respectively) and transmission chain or independent
group. The order of the experimental conditions was randomized. Each participant
played a total of 128 levels, that is, 16 landscapes per experimental condition. To prevent
participants from searching all possible solutions, the duration of the search was limited
to 2 × S rounds for all experimental conditions. Groups of eight individuals were formed
searching the same landscape in the same condition.

Experimental procedure and participants

Participants were recruited from the Max Planck Institute for Human Development’s
pool and gave informed consent to the experiment. The experimental procedure was
approved by the Ethics Committee of the Max Planck Institute for Human Development.
Participants were first familiarized with the experiment and informed about their goal,
the incentives, and the rules of search in the experiment. Figure B1 in the appendix shows
the experimental interface.

We invited 50 participants to the behavioural laboratory of the Max Planck Institute
for Human Development. Data of two participants had to be excluded due to technical
issues. There were 25 females among the remaining 48 participants (mean age � 27.9,
SD � 5.13). Participants received a flat fee of 8e plus a monetary bonus based on their
total performance (0.16e per 1000 points, mean bonus � 6.65e, SD � 1.11e). The
average completion time was 33.64 minutes (SD � 10.67 minutes).

Statistical tests

All reported t-tests are one sided. We also report Bayes factors (BF), quantifying the
likelihood of the data under H1 relative to the likelihood of the data under H0. For para-
metric tests, the data distribution was assumed to be normal, but this was not formally
tested (Wu et al., 2018). Our hypotheses also hold for non-parametric wilcoxon ranked
sum tests.
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Chapter 4

Search as a Simple Take-the-Best
Heuristic

Yahosseini, Kyanoush S. and Moussaïd, Mehdi. Under Review.

Abstract

Humans commonly engage in a variety of search behaviours, for example when looking
for an object, a partner, information, or a solution to a complex problem. The success
or failure of a search strategy crucially depends on the structure of the environment
and the constraints it imposes on the individuals. Here we focus on environments in
which individuals have to explore the solution space gradually and where their reward
is determined by one unique solution they choose to exploit. This type of environment
has been relatively overlooked in the past despite being relevant to numerous real-life
situations, such as spatial search and various problem-solving tasks.
By means of a dedicated experimental design, we show that the search behaviour of
experimental participants can be well described by a simple heuristic model. Both in rich
and poor solution spaces, a take-the-best procedure that ignores all but one cue at a time
is capable of reproducing a diversity of observed behavioural patterns. Our approach,
therefore, sheds lights on the possible cognitive mechanisms involved in human search.
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4.1. Introduction

4.1 Introduction

Many aspects of life can be seen as search for rewarding outcomes (Hills et al., 2015;
Mehlhorn et al., 2015). Animals forage for food or mates (Cook et al., 2013; Todd, 1997),
people search for information in the Internet or for a smart move during a chess game (Fu
and Pirolli, 2007), and organisations search for new market opportunities (March, 1991).
Search involves at least two main components: 1) sampling solutions by exploring the
environment, and 2) collecting rewards by exploiting the discovered solutions (Hills et al.,
2015; Mehlhorn et al., 2015; March, 1991). For example, a hungry tourist searching for a
place to eat in a foreign city will first examine the surrounding streets and evaluate the
quality of several restaurants (exploration), before eventually deciding which one to have
dinner at (exploitation).

Exploration and exploitation are not always mutually exclusive (Hills and Dukas,
2012; Mehlhorn et al., 2015). In fact, numerous search problems exhibit a structure
where the payoff of every explored solution is immediately earned and accumulates over
time. This situation typically induces a dilemma between exploring new solutions and
exploiting known ones (Bubeck and Cesa-Bianchi, 2012). For example, in multi-armed
bandit problems (MAB) a gambler needs to decide which of many slot machines to play
next, while simultaneously collecting the reward of each decision (Gittins, 1979; Bubeck
and Cesa-Bianchi, 2012). Similarly, foraging hummingbirds combine feeding on nectar
with the pursuit of finding new flowers (Mehlhorn et al., 2015). In other types of search
problems, however, exploration and exploitation are temporally separated. In these cases,
as in the hungry tourist example, the reward is based on one single solution that the
individual chooses by stopping the exploration process and transitioning from exploration
to exploitation. This type of search problems has been studied for example in the sampling
paradigm (Hertwig et al., 2004) or in the secretary problem (Ferguson, 1989).

Another dimension along which search problems differ is how the environment can
be explored (Srivastava et al., 2013). In some situations, individuals can directly move
between two distant solutions, irrespective of their location. That is, they can jump
between remote regions of the solution space, without the necessity to move through
all the intermediate solutions. Examples include search for information in the Internet,
where individuals are free to switch from one website to any other, or Mason and Watts’
network experiment where participants harvest resources in a virtual landscape (Mason
et al., 2008). In other search problems, however, jumps between distant solutions are not
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possible. In such problems, the exploration is gradual, that is, it is constrained to the
neighbourhood of the current solution. Our hungry tourist, for example, can only evaluate
the quality of the adjacent restaurants. Likewise, people searching for a good solution to
the travelling salesman problem in the experiment performed by Dry and colleagues can
only add or remove one connection at a time, exploring the solution space gradually (Dry
et al., 2006).

These two features of the search problem (i.e. the separation of exploration and
exploitation and the gradual exploration) can have a strong impact on the way individuals
deal with search problems. Yet, research has mostly focused on search problems where
exploration and exploitation happen simultaneously (e.g. MAB: Lee et al. (2011); abstract
search: Goldstone et al. (2008); Lévy processes: Namboodiri et al. (2016); comparison of
different paradigms: von Helversen et al. (2018)) and/or where jumps in the solution space
are allowed (e.g., correlated MAB: Wu et al. (2018); sampling paradigm: Hertwig et al.
(2004); secretary problem: Seale and Rapoport (1997); random sampling: Yahosseini et al.
(2018)). Nevertheless, many search problems are characterised by separated exploration
and exploitation phases and gradual exploration; examples include animals deciding where
to hunt prey (Stephens and Krebs, 1986; Kolling et al., 2012), algorithms maximising their
reward in a reinforcement learning settings (Kaelbling et al., 1996), and humans visually
searching for a lost item (Wolfe et al., 2005), or solving a complex problem (Dry et al.,
2006; Fu and Pirolli, 2007). How do people solve such search tasks?

In the present work, we focus on such type of problems by addressing two research
questions:

1. How do people explore their environment when only gradual movements are possible
(i.e. jumps are not feasible)?

2. When do people decide to terminate the exploration and start exploiting one solution
when these two phases are temporally separated?

We address these two questions separately, by means of a dedicated experimental
design. In a first experimental phase, we study specifically how people explore a two-
dimensional solution space when only gradual movements are allowed. In a second exper-
imental phase, we study the decision to exploit a solution, when exploration and exploita-
tion are separated. We show that these two behavioural components are well described
by a simple model based on the take-the-best heuristic (Gigerenzer and Goldstein, 1996;
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Gigerenzer and Goldstein, 1999). A third experimental phase, combining exploration and
exploitation, confirms that the full model has captured the participants search strategies,
both in rich and poor solution spaces. We conclude by comparing the model to alternative
approaches proposed in the literature.

4.2 Methods

We conducted an experiment in which participants were instructed to search for the best
possible solution in a landscape – a conceptual euclidean representation of a solution space
(Alexander et al., 2015; Mason et al., 2008; Lazer and Friedman, 2007). In a landscape,
each field represented one solution and was associated to one fixed payoff. Participants
were given 30 rounds of search. In each round, they could move to one of the neighbouring
solutions or stay at their current one. Participants indicated their decision by clicking
on the solution they wanted to move to (see figure A1 in the supplementary materials
for the experimental interface). Movements to distant solutions that were not adjacent
to the currently occupied one were not allowed (gradual exploration). Participants saw
the payoffs associated to their current solution and to the eight adjacent ones. We call
trajectory the sequence of solutions a participant moved through during the 30 rounds of
the experiment. The experiment was divided in three phases (see also table 4.1):

1. The exploration phase. In the first phase, participants were positioned in the
centre of a squared landscape containing 63 × 63 fields. The landscape was large
enough to ensure that participants could not reach its border within the allocated
time. Participants were instructed to search for the best possible solution and were
rewarded based on the highest payoff they found after 30 rounds of exploration.
In such a way, we could focus solely on the exploration pattern, leaving out the
exploitation decision.

2. The exploitation phase. In the second stage, participants were placed at one end
of a uni-dimensional landscape, that is, a vector containing 63 solutions. They were
rewarded according to the payoff of the field they occupied in the last round. With
this design, we focus on how and when the participants decide to stop exploring the
solution space and start exploiting one solution.
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Phase Landscape Size Start Reward
Exploration Two-dimensional 63 × 63 (32, 32) Highest payoff
Exploitation Uni-dimensional 1 × 63 (1) Payoff in last round
Combined Two-dimensional 63 × 63 (32, 32) Payoff in last round

Table 4.1. Description of the three experimental phases. Every phase consisted of 20 landscapes
(divided in 10 rich and 10 poor landscapes) played for 30 rounds each.

3. The combined phase. In the third phase, participants were positioned in the
middle of a quadratic landscape containing 63 × 63 (as in the exploration phase)
and rewarded according to the payoff of the position they occupied in the last round
(as in the exploitation phase).

In each phase, participants played a total of 10 rich landscapes containing a high number
of peaks, and 10 poor landscapes containing a low number of peaks. Rich and poor
landscapes were presented to the participants in a random order.

Landscapes. The two-dimensional landscapes used in the exploration and combined
phase were produced according to the following procedure:

1. We first generated n sub-landscapes. Each sub-landscape consisted of a 63 × 63

matrix filled with zeros, except for one randomly selected field that contained a ran-
dom value drawn from a normal distribution with mean zero and standard deviation
one. We call this non-zero field a peak. We then squared the peak value to avoid
negative payoffs.

2. We then applied a Gaussian filter with a standard deviation of one on each sub-
landscape to create a local gradient around the peak.

3. We finally merged the n sub-landscapes into a single one by selecting the highest
payoff across all sub-landscapes at each coordinate.

We used n � 32 and n � 512 to create poor and rich landscapes, respectively. The
uni-dimensional landscapes used for the exploitation phase were generated by randomly
selecting one horizontal line from a two-dimensional landscape of the same type.

Finally,the payoffs were rounded to the closest integer and linearly scaled between zero
and a random value between 30 and 80. This procedure generates landscapes similar to
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those shown in figure 4.1. We call the normalised payoff of a solution its actual payoff
divided by the highest payoff of the landscape.

Procedure and participants. Participants were recruited from the Max Planck Insti-
tute for Human Development’s participant pool and gave informed consent to the exper-
iment. The experimental procedure was approved by the Ethics Committee of the Max
Planck Institute for Human Development.

At the beginning of each phase, participants received information about the goal of
the search, the size of the landscape, the moving rules, and completed a practice search.
We recruited 50 participants (28 female, mean age � 26.1, SD � 4.4). They received a
flat fee of 12 e plus a monetary bonus based on their aggregated performance (0.15 e
per 100 points, mean bonus � 2.46 e, SD � 0.48 e). The average completion time was
35.31 minutes (SD � 10.67 minutes).

4.3 Results

Exploration phase. In the first phase of the experiment, we focused on how people
explore their environment when jumps are not permitted. For this, participants were
instructed to search in a two-dimensional landscape of size 63×63 and rewarded based on
the highest payoff they found during 30 rounds of search. Figure 4.1 shows two illustrative
trajectories of participants in a poor and a rich landscape.

Overall, participants performed better in rich than in poor landscapes (the average
normalised payoff was 0.33 with SD � 0.21 in rich landscapes and 0.17 with SD � 0.26

in poor landscapes), but explored a similar number of unique solutions (on average 26.1

and 27.2 fields visited in rich and poor landscapes respectively, with an SD of 6.64 and
5.39 respectively). In both environments, participants avoided revisiting a previously
visited solutions. On average, the fraction of solutions visited more than once was 0.14

(SD � 0.20). As a comparison, this fraction goes up to 0.57 (SD � 0.10) for a completely
random exploration process, suggesting that participants are actively avoiding previously
visited solutions.

To better understand the exploration mechanisms at play, we aggregated all trajec-
tories (in poor and rich landscapes separately) to generate the corresponding density
maps. These maps indicate how often each field has been visited relative to the others,
irrespective of the peaks positions.
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Figure 4.1. Two examples of exploration trajectories (in red) in a poor (left) and a rich (right)
landscape. The red dots indicate the participant’s trajectory, i.e. the spatial position at each
round. The colour-coding of the landscape indicates the normalised payoff associated to each
position (x , y). Participants always started in the middle of the landscape, at position (32, 32).

As shown in figure 4.2, the density map for the poor landscapes reveals a surprising
X-shaped exploration pattern, suggesting that participants have a preference for diagonal
movements. This pattern, however, is not visible in the rich landscapes.

Why do participants tend to explore along diagonal lines when peaks are rare but not
when they are abundant? Diagonal movements uncover up to five new solutions because it
enables participants to move simultaneously along the x- and y- dimensions. By contrast,
vertical or horizontal moves can only reveal up to three new solutions. Therefore, moving
diagonally constitutes an efficient strategy to extend one’s exploration range. The absence
of the X-shaped exploration pattern in rich landscapes suggests that participants might
rely on another cue when peaks are frequent: the surrounding payoff values. In this
case, participants are most likely using a hill-climbing process consisting in moving to
the most rewarding adjacent solution (Marshall and Neumann, 2012). Overall, our data
suggests that three rules are guiding the exploration: 1) not returning to previously visited
solutions (using the non-visited cue), 2) maximising the immediate payoff by moving
to the most-rewarding neighbouring solution (using the payoff cue), and 3) maximising
the number of new solutions revealed (using the novelty cue). Figure 4.3 confirms the
important role played by these three components. We formalise these three rules in a
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Figure 4.2. Density maps for poor (upper line) and rich (lower line) landscapes in the exploration
phase, as observed in the experimental data (left) and obtained from numerical simulations (right).
The colour coding indicates how often a given position (x , y) has been visited at the aggregate
level, represented in logarithmic scale. The starting point of the search is located in the middle
of the map, at coordinates (32, 32). For the simulations, we randomly selected the same number
of trajectories as in the behavioural data to ensure comparable density scales.

simple lexicographic model based on the take-the-best heuristic (TTB) (Gigerenzer and
Goldstein, 1996; Gigerenzer and Goldstein, 1999). TTB assumes that decisions between
multiple options are made by ranking cues and then looking at only one cue at a time. If
a cue discriminates, a decision is made for the best option, and only otherwise the next
cue is evaluated.

In our experiment, participants need to decide between nine different options in every
round (that is, moving to one of the eight neighbouring solutions or staying at the current
one). To make that decision, we assume that participants first look at the not-visited cue
and stop if the cue discriminates (i.e. if only one option has not been visited, that partic-
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Figure 4.3. Frequency of decisions based on the three rules as observed in the experimental data
and in numerical simulations (for poor and rich landscapes). Box plots indicating the interquartile
range (box), the median (horizontal line) and 1.5-times interquartile range (whiskers). Outliers
are shown as a single dot. A) Non-visited cue. Proportion of movements towards a non-visited
solution. B) Payoff cue. Proportion of movements towards a non-visited solution with the highest
payoff. C) Novelty cue. Proportions of movements maximising the number of new solutions
revealed, when the non-visited cue and the payoff cue do not discriminate. In C, the decisions
based on the novelty cue in poor landscapes are less frequent than predicted by the model, but
remain nevertheless higher than what a random search model predicts (40%). Overall, the three
cues presented in A, B, and C account for 68.8 % of all the decisions made by the participants.

ular option is chosen and a decision is made). If the not-visited cue does not discriminate,
they consider the payoff cue of the remaining options (if exactly one option has a higher
payoff than all other options, that option is chosen and a decision is made). If the payoff
cue still does not discriminate, they finally consider the novelty cue (that is the option
that reveals the largest number of new solutions is chosen). If two or more equivalent
options remain at the end of the process, a random decision is made between them. Fi-
nally, we add an uniform noise parameter ε to the model, defined as a low probability
to make a random choice between all available options. Table 4.2 shows an example of
how decisions are made according to our model. The model has one unique parameter,
namely, the noise level ε. We fitted ε by systematically varying it between zero and
one and comparing the highest payoff per round to the experimental data (averaged over
8, 000 simulated trajectories). The value ε � 0.17 minimises the squared difference to the
experimental observations (figure 4.4). We keep ε constant in the remainder of the study.

Once fitted to the payoff curves, the resulting model also produces consistent patterns
on other aspects of the search behaviour, such as the X-shaped exploration pattern (figure
4.2), and the influence of the three cues (figure 4.3). In the next section, we will extend
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Cues
Options ∅ N NE E SE S SW W NW

Non-visited 0 0 1 1 1 1 1 1 1
Payoff 0 45 5 25 10 5 0 0 0
Novelty 0 0 2 3 5 3 5 3 2

Table 4.2. Example of the take-the-best heuristic. The decision-maker can choose between nine
options (as columns: the eight cardinal directions and staying (∅)) knowing the three cue values
for each option (as rows: non-visited, payoff and novelty). In this example, the decision-maker
would first look at the non-visited cue for all options. This stage leaves seven possible non-visited
options that are then compared based on the payoff cue. At this stage, one option scores better
than the others (the “East” option marked in bold letters) and a decision is made in favour of
it. The novelty cue is not examined. Green cells (resp. red cells) indicate cue values that are
considered (resp. ignored) during the decision.
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Figure 4.4. Performance in the exploration phase. The highest normalised payoff found as a
function of time averaged over all participants (plain line) or produced in simulations (dashed
line). Error bars for the experimental data indicate the standard error of the mean.
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this model to include the decision to exploit.

Exploitation phase. In the second phase of the experiment, we examine how people
decide to stop their search and exploit a previously discovered solution. For this, partici-
pants are positioned at one end of an uni-dimensional landscape, and are rewarded based
on the payoff of the field they occupy at the last round. Unlike the exploration phase,
participants can only navigate along a line (i.e., by moving left or right). Furthermore,
they face a tradeoff between the benefits of exploring as far as possible and the need to
be positioned at a sufficiently good solution after 30 rounds. Figure 4.5 illustrates this
experiment.

The type of landscape directly impacted the participants’ performances (average final
payoff 0.60 in rich landscapes and 0.47 in poor landscapes, with a SD of 0.36 and 0.46

respectively). On average participants moved 20.6 fields (SD � 9.93) and 13.2 fields
(SD � 8.71) away from their starting point in poor and rich landscapes, respectively.

The trajectory shown in figure 4.5-B illustrates that, after discovering a new best
solution, participants tend to continue searching for a more advantageous one before
eventually returning back to it if no better solution is found.

At any moment of time, we call Xbest the best payoff that the participant has discov-
ered so far, and Pbest the position of that best payoff. We first ask the following question:
how far do participants continue their exploration after discovering Pbest , before coming
back to it if no better one is found? From a normative point of view, participants should
start returning to Pbest as late as possible, such that their chance to discover a better solu-
tion is maximised. This optimal exploration range simply equals to Doptimal � bTle f t/2c,
where Tle f t is the remaining number of rounds. In such a way, the participant would
arrive back at Pbest exactly at the last round while having maximised her exploration
range.

Looking into the behavioural data, however, it seems that participants only use a
certain fraction of the optimal exploration range (see, e.g., the example in figure 4.5-
B). That is, they start returning to their best option too early with respect to Doptimal.
Some participants even stop their exploration immediately when a new Pbest is discovered,
without using any of the remaining rounds for further exploration. In contrary, it also
happens that participants continue searching longer than Doptimal and hence do not return
to Pbest at all.
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Figure 4.5. Exploitation phase. A) Example of a rich landscape used in the experiment.
Participants always started at position x � 1 and could see the payoffs associated to their current
position and to the two neighbouring ones. In the first round, they could only move to the
right. Participants were rewarded based on the payoff of their final position. B) Trajectory of a
participant navigating in the landscape shown in A). The red markers indicate the position in each
round and the colour coding shows the normalised payoff of each position. In this example, the
participant discovered a first peak at round 5 (at position x � 5) but continued her exploration.
At round 15, a better solution is found (at position x � 15). The participant continued her
exploration for 3 rounds before returning to her best solution and settling there until the end of
the 30 rounds. Triangles indicate that the current solution is the best that has been discovered
so far (named Xbest in the main text).

To study this process, we measured the safety level S of our participants, defined as
the fraction of the optimal exploration range they used before returning to Pbest . That is,
S � R/Doptimal, where R is the distance a participant has actually moved away from Pbest

before returning to it. With this definition, S � 1 indicates that all remaining rounds
were used efficiently, S � 0 indicates that the exploration has stopped immediately after
the discovery of the peak, and S > 1 indicates that the participant did not return to Pbest

at all. Figure 4.6 shows the values of the safety levels S observed in our experiment, as a
function of the payoff value Xbest .

Figure 4.6-A reveals multiple zones of interest: 1) On the upper part of the figure, the
stronger density of data points around S � 0.9 indicates that participants often continued
their search up to about 90% of the optimal exploration range. 2) On the lower part
of the figure, however, the stronger density of data points along S � 0 indicates that
participants often decided to stop their search immediately after discovering a new peak.
In this case, the probability to stop seems to be linearly increasing with the payoff value
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Figure 4.6. Safety level S as a function of the payoff Xbest , A) as observed in the experimental
data. B) and obtained from numerical simulations. All incidents where Doptimal ≤ 2 or S > 1
were excluded, as these cases neither show return nor staying behaviour. In total the removed
incidents account for 26% of the data, of which 75% are cases where no payoff bigger than zero is
found at all. To generate the heatmap, we first determined the safety level S for all trajectories
where the participants returned to a previously visited Pbest . We then calculated the relative
frequency for S given a certain Xbest , which are indicated by the colour coding.

Xbest . The cases where S > 1 is most frequent when the value of Xbest is low (mean
payoff for S > 1 � 9.38, sd � 9.05). In sum, participants tend to stop immediately if
a sufficiently good peak is found and otherwise continue their exploration before coming
back to it with a certain safety time. If the payoff of the discovered peak is too low,
however, they do not return to it.

Formally, the exploration range R around a newly discovered best solution Pbest can
therefore be defined as R � 1 with a probability of k ×Xbest , R � ∞ with a probability of
1 − l × Xbest , and R � S0 × Doptimal otherwise, where Doptimal � bTle f t/2c as previously
defined. The parameter k describes the linear influence of Xbest on the stopping probability
(fitted value k � 0.0051, SE � 0.0003 using a linear model applied to cases where S � 0).
The parameter l describes the linear influence of Xbest on the probability to ignore a
peak (fitted value l � −0.027, SE � 0.005 using a linear model applied to cases where
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S > 1). The parameter S0 is the safety level that a person adopts and is sampled from
a truncated normal distribution N(µ, σ2) bounded between zero and one (fitted values
µ � 0.806, SE � 0.04 and σ2 � 0.364, SE � 0.03 using a maximum likelihood estimator
applied to all observations with S > 0 and S ≤ 1).

How can the exploration model described in the previous section be extended to ac-
count for this stopping process? Remarkably, only one additional cue in the TTB heuristic
is sufficient to do so: the exploration-radius cue, indicating whether a given option lies
within the exploration radius R or not. The general model is therefore composed of four
cues — exploration-radius, not-visited, payoff, and novelty — that are considered one at
a time and in this order. In other words, the model simply ensures that only options that
are not too far from the current best payoff are considered. Interestingly, the returning
behaviour does not need to be explicitly implemented in the model. Instead, it emerges
naturally. In fact, the exploration range R shrinks towards the current best solution
Pbest as the end of the allocated time is approaching (due to the dependency of R on the
remaining time Tle f t). Therefore, after a certain time, only decisions towards Pbest are
considered, gradually driving the individual back to its best solution.

The model reproduces the trends observed in the experimental data, in terms of payoffs
and individual behaviours (figure 4.7) and shows a similar relationship between the payoff
Xbest and the safety level S (figure 4.6).

Combined phase. In the third experimental phase, participants performed the search
task in two-dimensional landscapes (as in the exploration phase) but were rewarded based
on the payoff of the field they occupy at the last round (as in the exploitation phase).
This phase, therefore, combines the exploration and the exploitation processes that we
previously studied separately, and allows us to evaluate the full model that we have
elaborated.

The average payoff in the rich landscapes is higher than in the poor landscapes (average
final payoff 0.36, with a SD � 0.20 and 0.24 with a SD � 0.29 in the rich and poor
landscapes, respectively). When looking at the density maps, the X-shaped exploration
pattern is visible in the poor landscapes but not in the rich landscape, similar to the
exploration phase (figure 4.8).

Does our full model reproduce these patterns? The same fitting procedure as in
the exploitation phase yields the parameter values k � 0.011 (SE � 0.003), l � −0.022
(SE � 0.012), µ � 0.386 (SE � 0.02), and σ2 � 0.275 (SE � 0.01). Interestingly, these
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Figure 4.7. Performance and behaviour in the exploitation phase. A) Observed and simulated
average normalised payoff as a function of time. B) Frequency of exploration (moving away from
Pbest) and exploitation (moving towards or staying at Pbest) as a function of time. Error bars for
the experimental data indicate the standard error of the mean.

values are different from those fitted in the exploitation phase. The decrease of k (the
influence of Xbest on the stopping probability) and µ (the mean safety level) reflect the
fact that participants were satisfied with a lower payoff and adopted a lower safety level
than in the exploitation phase. This can be explained by the greater complexity of the
task, which reduced the participants willingness to move away from a discovered solution
(Mehlhorn et al., 2015). Despite this overall decrease of µ, we find a strong correlation
between the participants’ safety level in this phase and in the exploitation phase (Pearson’s
correlation = .42, df=47, p < 0.003, see also figure A6 in the supplementary materials),
suggesting that the difference between the individual safety levels remained somewhat
stable.

The model predicts the emerging X-shaped exploration pattern (figure 4.8) as well
as the evolution of the average payoffs (figure 4.9). Overall, this confirms that the full
model has captured some of the key mechanisms involved in the search process of the
participants.

Model comparison. How well does our full model perform compared to alternative
modelling approaches? Because most models in the literature either focus on the explo-
ration (e.g., Wu et al. (2018), Gittins (1979), and Gershman (2018)) or the exploitation
mechanism (e.g., Hertwig et al. (2004), Ferguson (1989), and Seale and Rapoport (1997)),
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Figure 4.8. Density maps for poor (upper line) and rich (bottom line) landscapes in the combined
phase, as observed in the experimental data (left) and obtained from numerical simulations (right).
The colour coding indicates how often a given position (x , y) has been visited at the aggregate
level, represented in logarithmic scale. The starting position is located in the middle of the map,
at coordinates (32, 32). For the simulations, we randomly selected the same number of trajectories
as in the behavioural data to ensure comparable density scales.

we tested these two main components separately. For this, we first kept the exploitation
mechanism unchanged, and tested five different models for the exploration phase: 1) our
take-the-best model, 2) a probabilistic variation of that model in which the individual
chooses to rely on the payoff cue or the visibility cue based on the most rewarding neigh-
bouring solution (Wilson et al., 2014; Cogliati Dezza et al., 2017), 3) a typical hill-climbing
model where exploration is always directed towards the most-rewarding adjacent position
(Barkoczi and Galesic, 2016), 4) a “blind search” model in which the exploration is only
guided by novelty, and 5) a random search model in which the next position is randomly
chosen among the adjacent solutions. For the probabilistic model, we fit a logistic regres-
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Figure 4.9. Performances in the combined phase. Evolution of the average normalised pay-
off, aggregated over all participants, as a function of time in the experimental data and model
simulations. Error bars for the experimental data indicate the standard error of the mean.

sion to predict the probability of using the payoff cue over the novelty cue, depending
on the most-rewarding neighbouring solution. The probability to rely on the payoff cue
is 1 − 1/e−1.509+0.301pnmax , where pnmax is the payoff of the most-rewarding neighbouring
solution (see figure A7 in the supplementary materials).

The results are presented in table 4.3. It appears that take-the-best predicts the
experimental data best, in terms of both the payoff and the density map. Specifically,
the three models that use the payoff cue (take-the-best, probabilistic, and hill-climbing)
are in good agreement with the observed payoffs pattern. However, the X-shaped pattern
observed in the experimental density maps can only be predicted when using the novelty
cue (see also the figures A2 and A3 in the supplementary materials ).

We then evaluated the exploitation mechanism analogously, by keeping the exploration
mechanism unchanged, and tested four possible models for the exploitation phase: 1) a
normative model in which the individuals return the their best solution with no safety
time, 2) an early-stop model in which the individuals stop exploring whenever the first
peak is found (Alexander et al., 2015) 3) our returning model, and 4) simple returning,
a variation of our model where individuals do not ignore peaks with low payoff (Simon,
1990). The results are shown in table 4.4. The normative model strongly deviates from the
observed payoff pattern, as participants tend to stop exploration and return to their best
solution much earlier than the simulated agents. Likewise, the early-stop model produces
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Name distpayoff distdensity parameters cues
Take-the-best 2.83 0.68 1 3
Probabilistic 3.34 0.77 2 3
Hill-climbing 5.07 0.79 0 2
Blind search 69.6 1.06 0 2
Random search 82.0 0.934 0 0

Table 4.3. Comparison of different exploration mechanisms. The first column indicates how
much the model predictions deviates from the observations with regard to the payoff pattern shown
in figure 9. Formally, distpayoff measures the squared difference between the observed and the
predicted payoff curves. The second column indicates the deviation of the predictions with regard
to the density map (figure 8). Here, distdensity measures the absolute average difference between
each position of the observed and the predicted density maps. To assess the prediction accuracy
we used a k-fold cross-validation (k=5) and out-of-sample predictions for calculating distpayoff

and distdensity (Daw, 2011). The last two columns indicate the number of free parameters of the
model and the number of cues used in the exploration mechanism. All five exploration models
are tested in combination with the returning model for exploitation (see table 4.4).

Name distpayoff distdensity parameters cues
Returning 2.83 0.68 4 1
Simple returning 3.48 0.73 3 1
Early-stop 17.7 0.75 0 0
Normative 39.4 0.85 0 1

Table 4.4. Comparison of different exploitation mechanisms. The values of distpayoff and
distdensity measure the difference between observations and model’s predictions, in terms of payoff
patterns and density maps, respectively (see table 4.3 for formal definitions). All four exploitation
models are tested in combination with the take-the-best model for exploration (see table 4.3)

payoff patterns that are inconsistent with the observations (see figures A4 and A5 in
the supplementary materials). The two remaining models have similar performances:
the returning model predicts the experimental data slightly better whereas the simple
returning model has one less free parameter (Daw, 2011). Remaining deviations from
observed data in the TTB model can be attributed to some of the model’s simplifications,
such as ignoring a possible time-dependency of the safety level S (see figure A8 in the
supplementary materials)
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4.4 Discussion

Search problems can vary on many different dimensions. We investigated how people
search for a rewarding outcome in problems characterised by gradual exploration (i.e.
when jumps between distant solutions are not allowed) and a temporal separation be-
tween exploration and exploitation. This type of search is relevant for numerous real-life
situations, such as visual search, spatial search and most problem-solving situations (Wolfe
et al., 2005; Dry et al., 2006; Kaelbling et al., 1996; Fu and Pirolli, 2007). On that account,
we have developed a dedicated experimental design enabling us to isolate the exploration
from the exploitation mechanisms. We then modelled these two components separately,
before merging them in a full and comprehensive model of search.

We described the participants behaviour by means of the TTB heuristic. With that
approach, four cues can describe the exploration and exploitation behaviour of the par-
ticipants: the exploration-radius cue, the non-visited cue, the payoff cue, and the novelty
cue. While TTB constitutes a valid model to describe how people make decisions between
two options (Bröder, 2000), we have shown that it can also be used to describe search
behaviours.

Recent research on human search behaviours distinguishes between directed and undi-
rected exploration (Wilson et al., 2014; Gershman, 2018; Wu et al., 2018). In multi-armed
bandit tasks undirected exploration refers to the stochasticity of the search process caus-
ing random exploration decisions. In contrast directed exploration seeks out solutions
that are informative about the underlying reward distribution (Wilson et al., 2014). Both
components play a important role in solving exploration exploitation dilemma and are of-
ten considered as “two core components of exploration” (Gershman, 2018). Our full model
stands along the same lines: the noise parameter ε accounts for undirected exploration,
whereas the novelty cue guides the exploration towards unknown regions of the solution
space and hence accounts for directed exploration.

Our experimental data revealed that the decision to stop exploration and start ex-
ploiting a solution relies on a satisficing behaviour (Simon, 1990). That is, participants
exhibited a tendency to terminate their exploration immediately when a good enough
solution is found, even though more time was still available. In this context, the idea
of satisficing seems inefficient as individuals overlooked an opportunity to explore new
solutions and come back to their best solution only when time was running out. Research
has shown that satisficing – and thus deliberately reducing the exploration range – can be
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adaptive when the number of solutions is much larger than the individual’s search horizon
(Simon, 1990) and when exploration is too difficult compared to its expected reward gain
(Gigerenzer et al., 2012). In our design, continuing the exploration after the discovery
of a sufficiently good solution creates a risk of not finding it again when returning to it.
This uncertainty should grow as the size of the solution space increases. In agreement
with this idea, we observed that participants were satisficed earlier in two-dimensional
landscapes than in uni-dimensional ones.

We also observed a correlation between the participants’ safety levels across the differ-
ent phases of the experiment. That is, participants who exhibited a higher safety level in
the exploitation phase were also more likely to show a higher safety level in the combined
phase (and respectively, for a lower safety level). Interestingly, the safety level reflects
the participant’s propensity to take risks: the longer individuals continue to explore after
finding a peak, the higher their risk of not finding the peak again. The consistency of the
observed safety levels across phases thus agrees with risk research showing that people’s
risk preferences tend to be stable over time and tasks (Frey et al., 2017).

In our experiments and simulations, we systematically compared two specific types
of search environments: rich and poor landscapes, which differ in the number of peaks
that are present. Nevertheless, other structural aspects of the search environment could
be varied as well, such as the peaks widths, heights, or locations. This last feature is
particularly useful to create “patchy” landscapes in which peaks tend to be clustered in
specific regions of the search space (Pacheco-Cobos et al., 2019). Additional simulations
presented in figures A2, A3 and A4 in the supplementary materials show that our heuristic
model seems to behave realistically in this new type of environments, although these
predictions still need to be tested experimentally. Future work will investigate if heuristic
models similar to our TTB approach could be generalised to describe people’s search
behaviour in different types of environments, including such patchy landscapes.
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Chapter 5

The Social Dynamics of Collective
Problem-Solving

Yahosseini, Kyanoush S. and Moussaïd, Mehdi. In Prep.

Abstract

When searching for solutions to a problem, people often rely on the observation of their
peers. How does this process of social learning impact the individual and the group’s
performance? On the one hand, research has shown that individuals benefit from social
learning in numerous situations and across many domains. Through social learning, indi-
viduals can access good solutions found by others, improve them, and share them in turn.
On the other hand, this individual benefit may come at a cost: An excessive tendency
to copy others often decreases the overall exploration volume of the group, thus reducing
the diversity of discovered solutions, and eventually impairing the collective performance.
Here we investigate the conditions under which social learning can be beneficial or detri-
mental to individuals and to the group. For that, we model problem-solving as a search
task and simulate various amounts of social learning. We avoid model specific considera-
tions by relying on a simple framework whereby individuals gradually explore the search
environment – a two-dimensional landscape of solutions – while being attracted to the
best solution of the group.
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Our results highlight a collective search dilemma: When group members learn from one
another, they tend to improve their own individual performance at the expense of the
collective performance. How is this dilemma affected by the structure of the search envi-
ronment? By varying two structural aspects of the search environment, our results reveal
that the negative effect of the dilemma is mitigated in more difficult environments.
Finally, we show that single individuals can profit from a high propensity of social learning,
which in turn is damaging for the other group members. As a consequence, if individuals
continually adapt their behavior to maximize their own payoff, groups converge to a
sub-optimal level of social learning. Unraveling these intricate social dynamics helps to
understand the complex picture of collective problem-solving.

Author Contributions: Conceptualization: KSY MM. Data Analysis: KSY MM. Writing – original
draft: KSY. Writing – review & editing: KSY MM.
Acknowledgments: We like to thank the Adaptive Rationality research group for valuable feedback.
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5.1 Introduction

Humans and other social animals seldom solve problems in isolation. When searching for a
solution, individuals often rely on the observation of their peers to decide where to explore,
and when to exploit a previously discovered solution (Laland, 2004; Danchin et al., 2004;
Goldstone et al., 2013). Social learning, or the act of learning by observing the solutions
of others, has been shown to be beneficial to individuals in numerous situations and across
many species (Rendell et al., 2010; McGrath, 1984; Galef and Laland, 2005; Boyd et al.,
2011). Social learning enables good solutions to spread between individuals (Mason et al.,
2008), who can further improve them and share their refined solutions with others (Mason
and Watts, 2012). Recent studies have demonstrated that collective search can succeed in
solving highly complex optimization problems, such as reconstituting protein structures
(Cooper et al., 2010), mapping neurons connectivity (Kim et al., 2014), or improving
quantum transport (Sørensen et al., 2016).

However, research has also shown that under certain conditions, relying on social
learning can have negative consequences at the collective level (Giraldeau et al., 2002;
Laland, 2004). An excessive tendency to copy others can decrease the overall exploration
volume, reduce the diversity of discovered solutions and thus impair the group’s perfor-
mance (Lazer and Friedman, 2007; Lorenz et al., 2011). In particular, in “rugged” search
environments characterized by numerous local optima, the risk that the group converges
to a suboptimal solution is increased (Barkoczi and Galesic, 2016) – a phenomenon la-
beled maladaptive herding (Toyokawa et al., 2019), premature convergence (Pandey et al.,
2014), or negative information cascades (Bikhchandani et al., 1998).

These two opposed effects of social learning have sparked rich interdisciplinary re-
search between cognitive sciences, biology, and economics (Lamberson, 2010; Bernstein
et al., 2018; Hills et al., 2015; Berdahl et al., 2013). Most research agrees that a high
collective performance requires a delicate balance between social learning and indepen-
dent individual search (Bernstein et al., 2018; Rendell et al., 2010; Toyokawa et al., 2019;
Derex et al., 2018). Yet, it remains unclear what social dynamics drives this phenomenon,
how the structure of the search environment influences it, and what would be the optimal
strategy to adopt – for the group and for the individuals.

For instance, one inconsistent aspect in extant research concerns the measurement
of performance: whereas some studies rely on the average payoff of the group members
(Mason et al., 2008; Lazer and Friedman, 2007; Barkoczi and Galesic, 2016), others focus
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on the best solution found by the group (Cooper et al., 2010; Kempe and Mesoudi, 2014;
Derex et al., 2018). In fact, these two measurements assess different aspects of the group
dynamics: the average performance indicates how much group members can individually
benefit from social learning, while the best solution is an indicator of the group’s collec-
tive performance. Here, we rely on numerical simulations to address two specific research
questions: (1) How does the amount of social learning impact the individual and the col-
lective performances, and (2) how do the search environment and the social environment
influence what is best for the individual and what is best for the group?

We model problem-solving as a search task in which individuals explore a vast, two-
dimensional landscape of solutions, while assuming that each group member is trying to
maximize its personal payoff (Barkoczi and Galesic, 2016; Lazer and Friedman, 2007). In
order to avoid model-specific considerations, we use a generic model where individuals
rely on a simple hill-climbing exploration strategy, while being attracted by the best
solution of the group (Yahosseini and Moussaïd, 2019; Barkoczi and Galesic, 2016). We
first study how the amount of social learning impacts the individual and the collective
performance of the group, and highlight the existence of a strong tension between the
two measurements. Second, we study the influence of the search environment, that is,
the structure of the solution space, on both performance measurements. Third, we take
a prescriptive viewpoint and investigate how much an individual should rely on social
learning to maximize its own payoff, considering the behavior of its peers. Finally, we
propose an approach to explain how a certain level of social learning could have developed
through repeated social interactions.

5.2 Results

The collective search dilemma

The performance of a group can be assessed in two ways: (1) By evaluating the average
payoff of each group member, the individual performance, and (2) by evaluating the payoff
of the best solution that has been discovered by the whole group, the collective perfor-
mance. We first investigate how individual and collective performances depend on the
amount of social learning. For that, we introduce a social learning parameter S describ-
ing the degree to which an individual’s exploration is influenced by social information.
Formally, S expresses the fraction of a simulation run where the individual is influenced
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by the solution of its peers rather than searching independently (see the model description
in the method section). For instance, a social learning level of S � 0.8 indicates that the
individual searches independently during the first 20% of the simulation run and relies on
social learning for the remaining 80%.

As shown in figure 5.1A, an increase of social learning causes opposed effects on the two
performance measurements: It increases the individual performance (up to a maximum
for Sopt � 0.733), while at the same time decreases the collective performance. This con-
flicting effect reflects the collective search dilemma (Bernstein et al., 2018): When group
members are influenced by each other, they improve their own individual performance at
the expense of the collective performance.

We use the simulation results to better understand the dynamics of this dilemma.
First, why is social learning improving individual performances? Having access to social
information allows all individuals to profit from the best solution discovered by any of
the other group members (figure 5.1B) (Bernstein et al., 2018; Mesoudi, 2011). Second,
why is social learning hindering collective performance? An increase in social learning
reduces the total number of explored solutions (figure 5.1B). As individuals are attracted
by each other, they inevitably tend to explore the same region of the environment. Hence
the group explores less and is thus less likely to find a good solution than when searching
independently.

Figure 5.1A additionally highlights an optimal social learning level Sopt � 0.733 at
which the individual performance is maximized. Excessive social learning (for S > Sopt)
causes a premature convergence effect whereby the agents explore too little and converge
too early on the first discovered solutions – missing out potentially better ones. This
effect lowers both the individual and collective performances (the individual and collective
performances of a group of fully social agents with S � 1 are reduced by 11.7% and 16.5%

compared to a group with social learning Sopt).

Impact of the search environment

For now, we have assumed that the size and distribution of the peaks in the landscape
(i.e., the local optima) are unstructured. In such a search environment, all peaks are
evenly distributed and their payoffs are uncorrelated with their width. We introduce two
continuous dimensions to study the effects of structural changes of the search environ-
ments: the kindness k and the dispersion d (see figure 5.2A). Kindness k manipulates the
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Figure 5.1. The collective search dilemma. (A) Impact of social learning on the individual
(orange) and the collective (green) performance, relative to a group of independent searchers.
Social learning yields an increase in individual performance at the expense of the collective per-
formance. Individual performance is maximized for a learning level Sopt � 0.73 (dashed line).
(B) The dilemma results from a drop in exploration (in blue; measured as the ratio of explored
solutions relative to a group of independent searchers) and a boost of group consensus (in red;
measured as the ratio of solutions shared by all agents). The best individual performance is
achieved when exploration and group consensus are well-balanced.

correlation between a peak’s width and payoff. For a negative correlation, higher peaks
tend to have a smaller width (the environment is low in kindness) whereas for a positive
correlation higher peaks tend to have a wider width (the environment is high in kindness).
Dispersion d determines the structure of the locations of the peaks. For low d, peaks are
more concentrated in one area (the environment is low in dispersion), while for high d
they are more evenly distributed over the search environment (the environment is high in
dispersion).

How does the structure of the search environment impacts the performances of a
group? We find that the social search dilemma and the premature convergence persist
across different physical environments, but change in amplitude (figure 5.2B). Overall,
the beneficial effect of social learning on individual performances is larger in less kind
environments, because social learning facilitates the discovery of hidden good peaks by the
entire group (figure 5.3A). In addition, the negative effect of social learning on collective
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Figure 5.2. The structure of the search environment. (A) Illustrative examples of environments
with low and high levels of kindness k (as columns), and low and high levels of dispersion d
(as rows). Kindness refers to the correlation between the height and the width of the peaks.
Dispersion determines the extent to which the peaks are clustered in the same area or scattered
across the environment. (B) Corresponding patterns of individual and collective performances for
different search environments. The search environments are of the same type as those illustrated
in (A). Performances are relative to groups of independent searchers. The dashed vertical lines
indicate the social learning levels Sopt that maximize the individual performance for each type of
environment.

performance is smaller in when dispersion is lower (figure 5.3B). If no agent has found a
satisfying peak at all, which is common when dispersion is low, social learning does not
impair exploration and, thus, the collective performance.

Further manipulations of kindness and dispersion reveal a correlation between the
difficulty of the environment, i.e. how well individual searchers solve it, and the ben-
eficial influence of social sensitivity (see figure 5.3C). We find that, for more difficult
environments, social learning leads to a bigger increase in individual performance and
a smaller decrease in collective performance. Consequently in the most difficult search
environments, the social search dilemma is mitigated.
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Figure 5.3. (A) Individual performances and (B) collective performances as the search envi-
ronment varies in kindness (from low kindness k � −1 to high kindness k � 1) and dispersion
(low dispersion d � 21 to high dispersion d � 26). See the method section for more details. The
color-coding indicates the performances at the optimal social learning levels Sopt (see dashed lines
in figure 5.2B). (C) Individual and collective performances as a function of the difficulty level.
Difficulty is measured as the inverse average individual performance of a group of independent
searchers (higher is more difficult). Each dot represents the performances for a given combination
of kindness and dispersion, taken at the optimal social learning level Sopt . The dashed line indi-
cates the performance of a group of independent searchers in that environment. Individual and
collective performances increase with difficulty (linear model r2 � 0.93 and 0.25 for individual
and collective performances, respectively).

Impact of the social environment

The environment is not limited to the search environment, but also concerns the social
environment. How much should an individual rely on its peers, given the peer’s own social
learning level? To answer this question, we systematically varied the social learning level
for one individual in the group and for the rest of the group independently. That is, all
agents except one are homogenous and share the same social learning level.

We find that the payoff of an individual highly depends on its social environment
(figure 5.4A). From the perspective of an individual, the best performance is reached
when all peers are independent searchers. In this case, the agent will be able to learn
from others without undergoing the risk of premature convergence. On the contrary, social
environments where other people have a high social sensitivity are the worst because the
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Figure 5.4. Influence of the social environment, measured as the level of social learning of one’s
peers. (A) Impact of one agent’s social learning level on its payoff in different social environments
(all other agents share the same social sensitivity, color coded). Dashed line indicates the optimal
social learning for the group Sopt . Points mark the curves maxima. (B) The social learning
level maximizing an individual’s payoff in different social environments. These learning levels are
consistently above the optimal group level Sopt (dashed line). Colored points indicate the social
environments shown in A.

peers copying each other will reveal few solutions.
Our results also reveal that, in order to maximize its own payoff, an individual should

rely on more social learning than the optimal level Sopt highlighted in figure 5.3B. Hence,
what is optimal for an individual is different from what is optimal for the group, which
might further increase the risk of premature convergence.

To study this hypothesis, we set up a simple model in which agents gradually adapt
their individual social learning level S to maximize their own payoff (see figure 5.5 and
method section). As expected, the average level of social learning increases slightly above
Sopt . That is, each individual is better off copying others more than what is optimal for
the group, which leads to a decrease of performance when everybody does so. Hence, this
model can explain why individuals often over rely on social information and account for
the behavioral origins of premature convergence in some natural systems (Pandey et al.,
2014).
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Figure 5.5. Simulation of a model in which the agents gradually update their propensity for
social learning to maximize their own individual payoff (see methods for more details). The figure
shows the development of the group’s average social learning level (black line, gray band shows
variance) and the individual and collective performances over 150 learning rounds. Values are
shown relative to a group of agents with optimal social learning Sopt � 0.73 (negative is lower
and positive is higher than Sopt). The group converges to a learning level slightly higher than the
optimal value, causing a decay in individual performances.

5.3 Discussion

In our study, we used generic model of collective search (Gigerenzer et al., 1999; Barkoczi
and Galesic, 2016; Yahosseini and Moussaïd, 2019) to address two questions. First, how
does the amount of social learning impact the individual and collective performances?
We find that social learning introduces a collective search dilemma. When individuals
rely on social learning, their individual performances increase, whereas the collective per-
formances decrease. We find that this dilemma can be explained by a reduction of the
overall exploration volume and an increase in the ratio of consensual solutions. Social
learning, therefore, is beneficial to the individual but can cause maladaptive premature
convergence when individuals excessively rely on it.

Second, how does the environment moderate what is best for the individual and what
is best for the group? By varying some features of the search environments, we find
that social learning is a more profitable to individuals in difficult environments than in
easy ones. In addition, we show that social learning is less detrimental to collective
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performances when all peaks are clustered in the same area.
We also studied the social environment, that is, how the features of one’s peers impact

an individual’s performance. We show that any single individual can profit from a high
level of social learning, but only when others are not doing so. Simulations show that this
dynamics can generate a group in which individuals trying to maximize their personal
payoffs by copying others end up breaking down their collective potential.

Overall, our study shows that, depending on the chosen measure of performance, the
impact of social learning can change dramatically. Social learning has different effects,
depending on whether one is interested in the collective performance (e.g., the group comes
up with a unique collective solution (Kempe and Mesoudi, 2014) or develops a new cultural
innovation (Derex and Boyd, 2016; Derex and Boyd, 2015), or in the average individual
performance (see, e.g., Lazer and Friedman, 2007; Mason and Watts, 2012; Barkoczi and
Galesic, 2016). Here, it is interesting to point out that the measures of performance are
not limited to the two instances that we have studied in this work. Other research has,
for instance, considered the group’s ability to find the problem’s global optimal solution
(Cooper et al., 2010; Derex and Boyd, 2016). In this case, any solution that is not the
optimal one is not taken into account in the calculation of success, which comes down to
considering landscapes with very low dispersion. The results of our study suggests that
social learning would then have little negative effect on collective performance in that
case.

Our results outline the importance of correctly balancing independent exploration
and social learning (Bernstein et al., 2018; Rogers, 1988). This fact connects to a current
debate about whether sparse networks that spread information slowly between individuals
yield better performances than dense networks that support a rapid dissemination of
information within the group.

We argue that the role of the network structure can only be understood when put in
perspective with the individuals’ behavior (Barkoczi and Galesic, 2016). Sparse networks,
for instance, can be beneficial when individuals tend to rely too much on each other, by
regulating the flow of social information within the group (as in, Lazer and Friedman,
2007). On the contrary, dense networks are favorable when individuals have a propensity
to explore independently, by supporting the rapid dissemination of a few good solutions
(as in, Mason and Watts, 2012; Derex et al., 2018). In other words, the network structure
and the behavior of the individuals are two forces that can modulate the flow of social
information. A good match between them supports an efficient social dynamics during
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collective problem-solving.
More generally, our work helps understanding the complex dynamics that operate

within interacting groups of problem-solvers and contributes to current research on col-
lective intelligence. Future work will expand our findings to more complex problems such
as NK-landscapes (Kauffman and Levin, 1987), to concrete tasks such as the traveling
salesman problem (Yi et al., 2012), or to other fields that require a tradeoff between
individual and collective search (March, 1991).

5.4 Methods

We model problem-solving as a search in a landscape – a conceptual representation of a
solution space (Wu et al., 2018; Yahosseini and Moussaïd, 2019). In such a landscape, each
field represents one solution and is associated to one payoff. We develop a model describing
how individuals search in such a landscape when trying to maximize their own payoff
while at the same time observing other people’s solutions. This model extends previously
validated approaches for independent (Yahosseini and Moussaïd, 2019; Gigerenzer et al.,
1999) and social search (Laland, 2004).

Search model

The individual search behavior is composed of (1) a social search rule, and (2) an in-
dependent search rule. We assume that the agent relies on the independent search rule
during a certain number of simulation rounds at the beginning of the search process, and
then switches to the social search rule. The fraction of rounds during which the social
search rule is applied is given by the social learning parameter S. For example, a value of
S � 0.8 indicates that the agent applies the independent search rule during the first 20%
of the rounds, and applies the social search rule for the remaining 80%.
The independent and the social search rule are defined as follows:

1. Independent search rule: In every round, the agent maximizes its immediate payoff
by moving to the neighboring solution that offers the highest payoff. If more than
one solution fit this criteria, the agent maximizes the number of explored solutions
by moving away from visited areas of the landscape. If multiple solutions are still
equivalent, the agent chooses among them at random. If all neighboring solutions
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offer a lower payoff than the current solution (i.e. if the agent is occupying a local
optimum), then the search stops.

2. Social search rule: In every round, the agent first looks at the current solutions of
all its peers. The solutions that cannot be reached within the remaining time are
ignored. If one of these solutions offers a higher payoff than the agent’s current solu-
tion, it moves one step towards that solution, following the shortest path. If multiple
solutions are on the shortest path the individual rule is applied to those. If none
of one’s peers’ solutions meet these criteria, the agent resorts to the independent
search rule.

Search environment

We implement the search environments as a landscape with multiple local optima (also de-
noted as “peak”). We use the following procedure to generate these landscapes (Yahosseini
and Moussaïd, 2019; Wu et al., 2018):

1. We first generate 32 sub-landscapes. Each sub-landscape consists of a 99×99 matrix
filled with zeros and will serve as layers for each of the 32 peaks. We select one
random coordinate P around which all the peaks will be clustered.

2. For each of the 32 sub-landscapes, we draw one coordinate from a normal distribu-
tion with mean � P and SD � d that will serve as a location for the peak p. The
parameter d determines how much the 32 peaks are clustered around P.

3. The height of the peak p (i.e., the payoff of that solution) is drawn from a normal
distribution with mean � 0 and SD � 1, and is subsequently squared to avoid
negative payoffs.

4. To create a local gradient around the peak p, we apply a Gaussian filter with
SD � f (w) on each sub-landscape. Here w controls how much the width of the
peak p and the payoff correlate.
The function f (w) is defined as f (w) � (1 − w) × random + w × payoff (p), where
random is a random number between 1 and payoff (p). That is the width of a peak
p is determined by a combination of its payoff and a random factor controlled by
w. f (w) is linearly scaled between 1 and 4 over all peaks in the 32 sub-landscapes,
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resulting in a width (controlled by the Gaussian filter’s SD) of all peaks between 1

and 4.

5. The 32 sub-landscapes are merged into a single one by selecting the highest payoff
across all sub-landscapes at each coordinate.

6. Finally, all payoffs are linearly scaled between 0 and 100.

This procedure generates landscapes similar to those shown in figure 5.2A.

Simulation procedure

For each simulation run, we randomly position ten agents in the landscape within an
area of size 10 × 10 solutions. Each simulation run lasts 30 rounds. In each round, the
agents behave according to the previously described model. The size of the landscape,
the starting solution and the total number of rounds are balanced in such a way that the
“borders” of the landscape can never be reached. At the end of each run, the payoff of each
individual agent is the payoff associated to the current occupied solution. We report the
individual performance as the groups mean payoff and the collective performance as the
highest payoff found by any member of the group. For better comparison, we generally
report performance measures relative to the performance of a group of non-interacting
agents, that is, a group of agents with no social learning (S � 0). Hence, a performance
higher than one indicates a better performance compared to groups of non-interacting
agents.

Simulating changing social learning levels

In the simulations presented in figure 5.5, we describe how a specific social learning level
could develop. For that, we assign an individual social learning level Si and a direction
parameter Di to each agent. The direction parameter Di describes the direction in which
the social learning level of that agent is changed after each learning round (i.e., whether
it increases or decreases). In each learning round, all agents search 50 landscapes as
described in the simulation procedure. At the end of this process, each agent compares
its average payoff to the payoff obtained in the previous learning round. If the payoff has
decreased, the agent switches the direction Di (i.e., from increase to decrease and vice
versa). Afterwards, all agents change their social learning level by one round according
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to Di and a new learning round starts (i.e., depending on Di agents either rely more or
less on the social search rule). Here, we assume that all agents start from a non-social
state (S � 0) and initially increase their social learning level. The results are robust to
different parameter values.
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Chapter 6

General Discussion

When people work together, they are able to solve problems that no single individual
can solve on its own. Yet, efficiently merging the capabilities of many people is often
not an easy task. Indeed, numerous examples have highlighted that not all groups are
effective in problem-solving. What makes some groups more successful than others? How
does the nature of the problem and the structure of the environment influence the group’s
performance? Following Newell and Simons definition, I considered problem-solving as
a search for solutions (Newell and Simon, 1972). Many different methods for collective
problem-solving have been identified. For easier comparison, I classified them according to
information exchange among individuals: (1) non-interacting groups, which do not share
information, (2) social groups, where individuals freely exchange information during their
search, and (3) solution-influenced groups, where individuals only share their solution at
the end of their individual search process. In this thesis, I described and studied solution-
influenced groups, which have received relatively little attention in current research. The
findings of my thesis indicate that solution-influenced groups can be an effective method
for structuring groups in collective problem-solving (chapter 2 and 3). Furthermore, I
investigated how numerous features of the environment, such as the nature of the problem,
the difficulty of the task, the measure of success, the group composition, and the behavior
of the individuals can impact the performance of the three classes of methods (chapter 2
to chapter 5).

In chapter 2, I described the performance of the transmission chain, a particular type
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of solution-influenced groups. I applied this method to binary choice problems and com-
pared it to the majority rule (and to the confidence-weighted majority) in non-interacting
groups. By means of numerical simulations, I found that transmission chains excel in
environments where the individual accuracy is low and where confidence is a reliable in-
dicator of performance. Why is that so? In binary choice tasks, individuals are limited
to one possible action: switching the collective solution from one answer to the other.
Individuals only do so when they strongly believe that the current answer is wrong, which
translates into having a high confidence level. Therefore, a strong consistency between
confidence and accuracy is a necessary condition for the success of transmission chains in
binary choice tasks. In addition, majority rules are typically very effective if the average
individual accuracy is high. As a result, transmission chains outperform the majority only
when two conditions are met: (1) individual accuracy is low, and (2) confidence is indica-
tive of accuracy. However, two experimental datasets indicate that these environments
are rare.

My initial study suggested that transmission chains might be better suited for prob-
lems where the contributions of individuals can accumulate – each one adding to the
solution of the predecessors. This is typically the case for problems that have a complex
solution structure, which led me to my second project.

In chapter 3, I therefore evaluated transmission chains for problems that have such
a complex solution structure. For that, I modeled problem-solving as a search in a mul-
tidimensional landscape. As in chapter 2, I compared transmission chains with non-
interacting groups. I measured the performance of both methods in numerical simulations
and in experimental data, while manipulating the problem difficulty and the skills of the
individuals. My results indicate that transmission chains can indeed outperform inde-
pendent groups in two specific environments: either (1) when problems are easy to solve,
or (2) when the group members have a low skill-level. These environments are ideal for
transmission chains as the poor skills of the individuals can sum up, gradually improving
the collective solution.

I then focused on the dynamics of social groups, that is, when individuals influence
each other during the search. I used a bottom-up approach to investigate these dynamics:
First I described the individual search process (chapter 4), and second I figured out how
this process is affected by social information (chapter 5). In chapter 4, I first investigated
how lone participants search for solutions. The findings indicate that the individual search
behavior can be described by a take-the-best heuristic guided by the immediate payoff or
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by the novelty of a solution. This simple model can reproduce a diversity of behavioral
search patterns observed experimentally.

Chapter 5 raises the question of how this individual search process is affected by
the presence of other problem-solvers in a social group. In simulations, I showed that
attraction between group members leads individuals to search in similar areas of the
landscape, and hence reduces the overall diversity of solutions. This induced a collec-
tive search dilemma: compared to non-interacting groups, social influence improves the
quality of the average individual’s solution, but this comes at the expense of the collec-
tive performance (here measured as the best solution found by the group). Nevertheless,
this dilemma disappeared for very difficult problems where acceptable solutions are so
rare that individuals can benefit from other peoples search without impairing the overall
diversity of discovered solutions.

6.1 Major contributions

Solution-influenced groups in collective problem-solving

Indirect interactions – interaction through a shared collective solution – are ubiquitous
in natural and artificial systems (Heylighen, 2016). They structure the contributions
of thousands of volunteers editing a Wikipedia article, enable the cultural evolution of
primitive artifacts into extremely sophisticated ones, and guide the “invisible hand” when
sellers and buyers interact via the price for a product (Parunak, 2005). Despite this
wide diversity of applications, indirect interaction methods have gathered relatively little
attention in the domain of collective problem-solving (Moussaïd and Yahosseini, 2016;
Heylighen, 2016). In fact, only two categories of collective problem-solving methods are
commonly suggested: social groups, such as group discussions, and non-interacting groups,
such as the wisdom of the crowds (Koriat, 2015). One contribution of this thesis is the
addition of a third category, namely, solution-influenced groups, where individuals work
separately on a shared collective solution.

In this context, I introduced and studied transmission chains – a simple form of
solution-influenced groups (Kempe and Mesoudi, 2014; Tomasello et al., 1993) – as a
means of problem-solving. My findings indicate that transmission chains have several
beneficial properties. In contrast to non-interacting groups, transmission chains combine
the skills of group members, allowing each one to optimize a specific part of the prob-
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lem. In contrast to social groups, they enable collaborative projects for large human
crowds, even when no easy means of communication are present. Yet, solution-influenced
groups also have drawbacks, such as decreasing the individuals willingness to search by
initially exposing them to another person’s “good enough” solution (Yahosseini et al.,
2018). Transmission chains also suffer from an order effect. Late individuals in the chain
have, in principle, the capacity to undermine the contributions of all the predecessors
causing the “loss” of good solutions. To prevent these effects, more sophisticated imple-
mentations of transmission chains that retain a “collective memory” of past solutions have
been suggested (Mesoudi, 2007; Mesoudi and Whiten, 2008). These more complex im-
plementations are closer to what is typically observed in practical projects or in cultural
evolution processes. Wikipedia articles or open-source software projects, for instance,
keep a history of changes. Thus, any previous version can be easily recovered whenever
deemed necessary. Likewise, transmission chains in cultural evolution consist of groups –
and not individuals – at each chain position, reducing the likelihood that a discovery is
“forgotten” (Kempe and Mesoudi, 2014; Derex et al., 2013). By examining transmission
chains in detail, my thesis paves the way for more complex implementations of solution-
influences groups in collective problem-solving.

No free lunch in collective problem solving

My results highlights that the no free lunch in search theorem delineated in optimization
research (Wolpert and Macready, 1997; Wolpert and Macready, 1995) also holds true for
collective problem-solving. The theorem states that no problem-solving strategy works
best on all problems or, translated to my research, that no collective problem-solving
method works best in all environments. In fact, my results underline that the success of
a group depends on whether its organization suits the features of the environment. These
features can be the structure and the difficulty of the problem, the individuals skills, the
diversity of competences, and their motivations.

Specifically, chapter 2 shows that the relationship between confidence and accuracy
determines whether transmission chains will perform better or worse than a majority
rule. Transmission chains are efficient in environments where the average accuracy is
low, as long as the correlation between confidence and accuracy is positive. In contrast,
the success of a majority rule requires environments where the individual’s accuracy is
sufficiently good (i.e. better than chance). Along the same lines, chapter 3 demonstrates
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that the skills of the individuals and the problem difficulty dictates whether transmission
chains will outperform non-interacting groups. While transmission chains are preferable
for easier problems or in groups of less skilled individuals, non-interacting groups are
superior for more difficult problems or when individuals are highly skilled.

My findings complement the growing body of research pointing to similar conclusions.
For instance, Barkoczi and Galesic (2016) found that collective performance depends on
the nature of interactions between individuals, the group’s structure, and the problem
difficulty. Similarly, Toyokawa and colleagues (2019) find that the group’s performance
greatly depends on the interplay between the uncertainty of the environment and the
behavior of the individuals.

Another determinant of success relates to the way performance is measured. As dis-
cussed in chapter 5, altering the definition of performance can drastically change which
group structure is best suited for the problem. Whether one is interested in the best
solution of the group (Kempe and Mesoudi, 2014; Derex and Boyd, 2015), the number of
times the optimal solution has been found (Cooper et al., 2010; Derex and Boyd, 2016), or
the performance of an average individual (Lazer and Friedman, 2007; Mason and Watts,
2012) causes the “best” collective problem-solving method to change.

More generally, it is essential to better understand how each component of the envi-
ronment favors or undermines a given method, and how to pick the right tool in the right
circumstances. My work contributes to that.

6.2 Outlook

Combining collective methods

In this thesis, I studied three strictly separated categories of collective problem-solving
methods. For instance, in my implementations of non-interacting groups or transmission
chains, not a single information is directly exchanged between group members (which is
exclusive to social groups). In more realistic conditions, however, the methods at play are
not so strictly separated. When predicting the weight of an ox, as in Galton’s seminal
study, members of the non-interacting crowd might have, at least to some extent, discussed
their estimates before giving their final judgment. Likewise, contributors in Wikipedia,
a typical instance of solution-influenced groups, can indeed interact directly through the
“discussions” page of each article.
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The open question, therefore, is the extent to which such “mixed” methods could
further enhance the collective performances. As I argued earlier, no collective problem-
solving method performs best for all situations. The same conclusion seems to apply to
mixed methods, which opens numerous interesting lines of investigation. For instance,
research has shown that injecting direct interactions in conventional wisdom of crowds
techniques can sometimes be detrimental (Lorenz et al., 2011) and sometimes beneficial
to the group’s accuracy (Farrell, 2011; Jayles et al., 2017). These conflicting results
suggest that other unknown factors could promote or undermine these mixed methods.

Similarly, chapter 5 and related research consistently point to the fact that balanc-
ing independent and social search is beneficial to the group’s performance under most
conditions (Barkoczi and Galesic, 2016; Bernstein et al., 2018).

Mixed methods can also be considered for solution-influenced groups. For instance,
members of transmission chains could work in small groups at each chain position. Indeed,
research on cumulative cultural evolution has proposed such a combination of methods by
organizing group discussions in which the most experienced person is regularly replaced
by a new individual (Caldwell and Millen, 2008). Future research should continue to
investigate how to best combine these different methods.

Combining men and machines

One implication of Newell and Simon’s vision of problem-solving as a search process is
that humans and computer programs can be described within the same framework. This
connection could allow us to build groups where men and machines work together, poten-
tially compensating each other’s shortcomings. Humans are (for now) better at finding
“leaps” – truly novel and substantially improved solutions (Miu et al., 2018) – and have
a better ability to generalize when learning from few examples (Wu et al., 2018). In con-
trast, algorithms excel in local optimization tasks, at a speed far beyond what humans
can achieve. Solution-influenced groups – by sidestepping the issue of communication
(Suchman, 1987) – constitute a good candidate method for combining the strength of
human and algorithmic search. In fact, most citizen science projects have already imple-
mented such a combination of cognitive systems: novel and innovative solutions are found
by human crowds, which are further improved by local optimization algorithms (Cooper
et al., 2010; Sørensen et al., 2016).

Another perspective on this topic consists in letting a computer program choose how
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to aggregate the contributions of multiple individuals (Laan et al., 2017). For instance,
in an ongoing project, I am investigating how machine learning techniques – such as
deep neural networks or random forests (LeCun et al., 2015) – could assemble the most
efficient non-interacting groups. Such an approach, for instance, could dynamically select
the best individuals for a specific task, based on how they previously performed on similar
problems.

A landscape of collective intelligence

Collective intelligence is a wide and diverse field of research. It incorporates concepts
from psychology, biology, computer science, and economy. As a result, existing work on
collective intelligence typically focuses on one specific subdomain. While in some parts
of the literature, a very broad definition of collective intelligence is used, others concen-
trate on distinct aspects of it. Here, I have adopted the latter approach by focusing
specifically on collective problem-solving. In the long run, however, scholars should aim
at building a broader, more comprehensive taxonomy unifying existing concepts of col-
lective intelligence. Such a framework can promote the scientific exchange between the
numerous communities involved in this research by introducing shared definitions and a
common working ground, and ultimately reveal explanatory laws connecting the different
perspectives of collective intelligence.
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Figure A1. Performance of different aggregation method for groups of size N � 3, 10, 20 in
the cities dataset. Each line corresponds to one aggregation method. The fixed chain has the
contribution threshold fixed to τ � 0.8 for all instances of the task (in contrast to the chain
for which the contribution threshold is adjusted between instances of the task). Each point in
the graphs corresponds to one city comparison task. The position of each point indicates the
proportion of participants who provided the correct answer (y-axis), and the confidence utility
(x-axis) for that task. The colour of each point indicates the success chance of each method for
that particular task.
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Figure A2. Performance of different aggregation methods for groups of size N � 3, 10, 20 in
the doctors dataset. Each line corresponds to one aggregation method. The fixed chain has the
contribution threshold fixed to τ � 3 for all instances of the task (in contrast to the chain method
for which the contribution threshold is adjusted between instances of the task). Each point in the
graphs corresponds to one medical case. The position of each point indicates the proportion of
doctors who provided the correct answer (y-axis), and the confidence utility (x-axis) for that case
. The colour of each point indicates the success chance of each method for that particular case.
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Figure B1. Experimental interface (translated from German to English). The ten light bulbs
correspond to the ten dimensions of the the NK-landscape, and the state of each light bubble
(‘on’ or ‘off’) represents the values 1 and 0. Grey crosses indicate dimensions that cannot be
manipulated due to the restrictions imposed by the individual’s skill S (S � 3 in this example).
Information about the experiment, such as total number of points and remaining number of
landscapes (‘level’) are provided in the grey box at the bottom. The blue box at the top shows
information related to the previous decision. In each round, participants could either change the
state of one light bulb (by clicking on the desired one), skip the remainder of a level if satisfied
(by clicking the ‘next level’ button), or return to their previous solution (by clicking the ‘back’
button).
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Figure B2. Performance of the transmission chains and groups of independent solvers with a
rate of risky decisions r � 0.8 and reporting the best solution found. (A) Group performance
for varying degrees of difficulty K and individual skill S. (B) Difference in performance between
the two methods. Positive values indicate that independent groups outperforms the transmission
chain, and vice versa.
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Experimental paradigm

Figure B1. Experimental interface. The current position of the participant is indicated by the
magenta square. The nine possible moving options and their respective payoffs are represented by
the green cells. The grey text box on the right-hand side shows the number of remaining rounds
(Zug) and landscape number (Level).

Patchy landscapes generation

In addition to the number of peaks in the landscape (i.e., rich vs. poor), we also varied
the spatial distribution of the peaks to create patchy landscapes. Patchy landscapes are
generated by the same procedure as the other landscapes, with the exception that the
peaks positions are sampled from a normal distribution with mean � P and a standard

130



deviation sd � d, where P is a random location in the landscape and d � 6 determines
the peak’s dispersion range.
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Figure B2. Payoff curves for different exploration mechanisms. Evolution of the average nor-
malised payoff as a function of time as observed in the experimental data (plain line) and in
simulations. Continuous landscapes (left) are those used in the experiment, whereas in patchy
landscapes (right) peaks are clustered in one specific region of the landscape.
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Figure B3. Density maps obtained for different exploration mechanisms (columns) and types of
landscapes (rows) Experimental data are shown in the extreme left column. The colour coding
indicates how often a given position (x,y) has been visited at the aggregate level, represented in
logarithmic scale.
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Figure B4. Payoff curves for different exploitation mechanisms. Evolution of the average nor-
malised payoff as a function of time as observed in the experimental data (plain line) and in
simulations. Continuous landscapes (left) are those used in the experiment, whereas in patchy
landscapes (right) peaks are clustered in one location of the landscape.
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Figure B5. Density maps obtained for different exploitation mechanisms (column) and type of
landscapes (row). Experimental data are shown in the extreme left column. The colour coding
indicates how often a given position (x,y) has been visited at the aggregate level, represented in
logarithmic scale.
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Individual differences
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Figure B6. Safety levels displayed by the participants during the exploitation phase (x-axis)
and the combined phase (y-axis). Each point indicates the average safety level of one participant.
The error bars indicate the standard errors in the corresponding phase.
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Figure B7. Relationship between the payoff of the most-rewarding neighbouring solution and
the probability to rely on the payoff cue instead of the visibility cue. Each dot corresponds to one
landscape. Each black line is the best fitted logistic function describing an individual’s behaviour
(mixed effect model with participants as a random effect, BIC � 28949). The red line indicates
the best fitted logistic regression for the whole group, that is, not using the individual participant
as a random effect (BIC � 29261).

135



early intermediate late

0 25 50 75 0 25 50 75 0 25 50 75

0.25

0.50

0.75

1.00

payoff Pbest

sa
fe

ty
 le

ve
l S

0.1
0.2
0.3
0.4
0.5

frequency

A

early intermediate late

0 25 50 75 0 25 50 75 0 25 50 75

0.25

0.50

0.75

1.00

payoff Pbest

sa
fe

ty
 le

ve
l S

0.2

0.4

0.6
frequency

B

Figure B8. Safety level S as a function of the payoff Pbest A) as observed in the experimental
data, and B) as obtained from numerical simulations. Early, intermediate and late refer to the
round where Pbest is discovered, that is, round 1 − 10, 11 − 20, and 21 − 30 respectively. The
influence of remaining time on the safety level S is not captured by the numerical simulations.
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