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1 Abstract 

The adaptive immune system has the unique ability to remember and rapidly mount 

protective response against previously encountered pathogen. This feature of the 

immune system is termed immunological memory and the functional duty is carried out 

by differentiated T and B cells.  The maintenance of memory cells is important to confer 

long-lasting protection for the organism. Also, strategic positioning of these memory 

cells throughout the organism in crucial to ensure timely response against recurrent 

antigenic stimulation. While the tissue distribution and maintenance of memory T and 

plasma cells has been described, the lifestyle of memory B cells (Bmem) has not been 

well studied so far. In my doctoral thesis I investigated the tissue organization and 

lifestyle of memory B cells in mice, which would serve as the starting point for further 

translational studies in humans. To determine the tissue distribution, isotype-switched Bmem of 

spleen, bone marrow (BM), peripheral blood, and lymph nodes were enumerated under 

different immunization and infection protocols. The majority of isotype-switched Bmem 

were localized in the spleen, but a significant population was also contained within the 

BM. Comparison of the repertoire of B cell receptor (BCR), a unique identifier of each 

individual B cell, the repertoires of isotype-switched Bmem of spleen and BM revealed 

limited overlap of B cells with same BCR (clonotypes) generated during a specific 

immune response. The majority of Bmem clonotypes are expressed exclusively in either 

organ, demonstrating that isotype-switched Bmem of the two organs represent distinct 

resident populations with minimal exchange between them via blood circulation. 

Phenotypically, isotype-switched Bmem of the two organs differ in surface protein 

expression of CD21 (complement receptor) and CD62L (L-selectin) with subsets of 

CD21low and CD21high populations in the BM but not in spleen, also, isotype-switched 

Bmem of BM express higher levels of CD62L compared to those in spleen. Isotype-

switched Bmem of BM and spleen are resting in the G0 of cell cycle as determined by the 

expression of the proliferative marker Ki67, and are refractory to in vivo treatment with 

cyclophosphamide (a DNA alkylating agent which kills proliferating cells). In the BM, 

isotype-switched Bmem are located in close proximity to reticular stromal cells expressing 

VCAM-1. To further understand the role of BM stromal cells in organization of survival 

niches for memory cells, the biology and functional properties of VCAM-1+ stromal cells 

were analyzed. Next generation sequencing single cell mRNA transcriptomes profiling 

of directly ex vivo isolated BM VCAM-1+ stromal cells revealed distinct subpopulation of 

stromal cells defined by the expression of cytokines and chemokines which have been 

described to be important for the maintenance and survival of subsets of hematopoietic 

and immune cells subsets. Altogether, the findings of this thesis demonstrate that 

murine Bmem are residing in the BM as distinct population of B cell memory and that 
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distinct subsets of BM stromal cells organize survival niches for different hematopoietic 

cells, including memory cells.  

 

 

Abstract (German) 

Das adaptive Immunsystem hat die einzigartige Fähigkeit sich an zuvor vorgefundene 

Krankheitserreger zu erinnern und schnell gegen diese schützend zu reagieren. Diese 

Fähigkeit des Immunsystems heißt immunologisches Gedächtnis und wird von 

differenzierten T- und B-Zellen ausgeübt. Die Aufrechterhaltung der Gedächtniszellen 

ist wichtig um dem Organismus einen dauerhaften Schutz zu verleihen. Weiterhin ist 

eine strategische Positionierung dieser Gedächtniszellen im gesamten Organismus 

entscheidend um eine zeitnahe Reaktion gegen wiederkehrende antigenische 

Stimulierungen sicherzustellen. Während die Gewebeverteilung und -erhaltung von 

Gedächtnis T-Zellen und Plasma Zellen bereits gut beschrieben wurde, wurde der 

Lebensstil von Gedächtnis-B-Zellen (Bmem) bislang nicht weiter untersucht. In meiner 

Doktorarbeit habe ich die Gewebeorganisation und den Lebensstil von Gedächtnis B-

Zellen in Mäusen untersucht, welche als Ausgangspunkt für weitere translationale 

Studien am Menschen dient. Um die Gewebeverteilung zu untersuchen, wurden Isotyp-

veränderte Bmem der Milz, des Knochenmarks, von peripherem Blut und von 

Lymphknoten unter verschiedenen Immunisierungs- und Infektionsprotokollen 

ausgezählt. Die Mehrheit der Isotyp-veränderten Bmem wurden in der Milz lokalisiert, es 

ist aber auch eine signifikante Population im Knochenmark enthalten. Der Vergleich des 

Repertoires des B-Zell-Rezeptors (BCR), einer einzigartigen Bezeichnung jeder 

individuellen B-Zelle, des Repertoires der Isotyp-veränderten Bmem der Milz und des 

Knochenmarks hat gezeigt, dass B-Zellen mit derselben BCR (Klonotypen), welche 

während einer spezifischen Immunreaktion generiert wurden, sich kaum überlappen. 

Die Mehrheit der Bmem Klonotypen wird ausschließlich in einem der beiden Organe 

exprimiert, was beweist, dass Isotyp-veränderte Bmem zweier Organe verschiedene 

Populationen mit nur minimalen Austausch über den Blutkreislauf repräsentieren. 

Phänotypisch, Isotyp-veränderte Bmem der beiden Organe unterscheiden sich in der 

Oberflächenproteinexpression von CD21 (Komplementrezeptor) und CD62L (L-

Selektin) mit Untergruppen von CD21low und CD21high Populationen im Knochenmark, 

aber nicht in der Milz. Weiterhin beinhalten Isotyp-veränderte Bmem des Knochenmarks 

einen höheren Spiegel von CD62L im Vergleich zur Milz. Isotyp-veränderte Bmem des 

Knochenmarks und der Milz ruhen im G0 des Zellzyklus, wie durch die Expression des 

proliferativen Markers Ki67 bestimmt wurde, und sind widerstandsfähig gegen in vivo 

Behandlungen mit Cyclophosphamid (einem DNA alkylierenden Wirkstoff, der 
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wuchernde Zellen tötet). Im Knochenmark befinden sich Isotyp-veränderte Bmem in 

unmittelbarer Nähe zu retikulären Stromazellen, die VCAM-1 exprimieren. Um die Rolle 

der Knochenmark Stromazellen bei der Organisation von Überlebensnischen für 

Gedächtniszellen genauer zu verstehen, wurden die Biologie und die funktionellen 

Eigenschaften von VCAM-1+ Stromazellen analysiert. Die Sequenzierung von 

Einzelzell-mRNA-Transkriptomen von direkt ex vivo isolierten Knochenmark VCAM-1+ 

Stromazellen ergab eindeutige Subpopulationen von Stromazellen, die durch die 

Expression von Cytokinen und Chemokinen definiert wurden, welche als wichtig für die 

Aufrechterhaltung und das Überleben von Subpopulationen von hämatopoetischen 

Zellen und Immunzellen beschrieben wurden. 

Zusammenfassend beschreiben die Ergebnisse der Dissertation, dass murine Bmem im 

Knochenmark als ausgeprägte ansässige Population des B-Zell-Gedächtnisses 

vorkommen und das Subpopulationen von Knochenmark Stromazellen 

Überlebensnischen für verschiedene hämatopoetische Zellen, inklusive den 

Gedächtniszellen des Immunsystems, organisieren. 
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2 Introduction 

2.1 Immunological memory  

The adaptive immune system has the unique ability to remember and mount protective 

response against previously encountered pathogen in a more rapid and efficient 

manner. This ability of the immune system to confer protection against a previously 

encountered pathogen was already described in 430 BC by the  ancient Greek historian 

Thucydides [1]. This feature of the immune system is termed immunological memory 

and the functional duty is carried out by well differentiated T and B cells [2]. The 

generation of protective immunological memory is also the underlying principle of 

immune protection acquired from immunization or vaccination.  

 

2.2 Memory B cells  

Antigen-experienced memory B cells (Bmem) are an essential component of 

immunological memory. They are functionally superior compared to naïve cells and 

have a lower activation threshold when re-encountering pathogens [3]. Isotype-switched 

Bmem (IgG or IgA) produce antibodies with higher affinity and specificity  needed to  clear 

foreign antigen or pathogen during immune response [3]. The organization of B cell 

memory remains however unclear in the scientific community. Both non-switched IgM+ 

and isotype-switched Bmem have been described to be present in spleen, blood and 

bone marrow (BM) [4–6]. In humans, the spleen has been described as a major 

reservoir for Vaccinia-specific Bmem [7] and splenectomy leads to gradual loss of 

circulating Bmem [7,8]. This is however not the situation for tetanus toxoid (TT) infection 

as splenectomy does not lead to a loss of TT-specific Bmem [4], indicating that TT-

specific memory B cells do not require the spleen for maintenance. These contrasting 

observations suggest that memory B cells which confer protective immunity against 

specific pathogens are also located in organs other than blood and spleen [9].    

 

2.3 Tissue maintenance of memory lymphocytes 

Subsets of long-lived memory lymphocytes (CD4+, CD8+ and plasma cells) have been 

shown to be maintained in different tissues including the BM. In the BM, dedicated 

niches provide the needed molecular signals to ensure the long term survival of these 

cells [10–14]. In contrast, knowledge about the role of BM in the maintenance of 
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memory B cells remains scarce. As with most hematopoietic and immune cells, the 

maintenance of Bmem is likely to be dependent on both intrinsic factors and external 

signals from their immediate microenvironment. 

 

2.4 BM stromal niches in maintenance of memory lymphocytes 

BM stromal cells are integral component of survival niches for different immune cells 

like memory CD4+, CD8+ and plasma cells [10–14]. In vivo, BM stromal cells express 

vascular cell-adhesion molecule 1 (VCAM1; CD106) [15], CXCL12 and IL7, collagen II 

and XI [10–14] among other factors necessary for the survival, maintenance and 

development of various cells of the hematopoietic and immune system [10–14]. 

Although eosinophils were initially reported as integral component of survival niches for 

plasma cells [12,16], recent research findings published in 2018 showed that 

eosinophils are redundant for maintenance of long-lived plasma cells [17,18]. Long-lived 

CD4+ and CD8+ memory cells contact IL-7 expressing BM stromal cells [10,19]. The 

functional organization of BM stromal cells is however not well addressed. For example, 

it is not known if distinct subpopulations of BM stromal cells are specialized for 

organization of niches for particular subsets of memory cells. Also, knowledge about 

other factors expressed by stromal cells which might play a role in the maintenance of 

memory cells is lacking. 

3 Materials and Methods 

3.1 Mice 

All mice were housed under specific pathogen-free conditions at the Deutsches 

Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ). C57BL/6J mice were 

purchased from Charles River (Sulzfeld, Germany). Mice expressing GFP under the 

control of the Prdm1 promoter (Blimp1-GFP)[20] were bred at the DRFZ animal facility. 

All animal experiments were performed according to institutional guidelines and 

licensed under German animal protection regulations. 

3.2 Immunizations and infections  

• 100μg NP-KLH (4-Hydroxy-3-nitrophenylacetyl (NP)) hapten conjugated to KLH 

(Keyhole Limpet Hemocyanin) with 10 μg LPS (E. coli, InvivoGen), subcutaneous 

(SC). For boost immunizations 10 μg NP-KLH without adjuvant was used.  

• 100μg NP-CGG (NP hapten conjugated to Chicken Gamma Globulin (CGG)) in 

Incomplete Freund’s adjuvant (IFA), three times (3X) at 21 days interval, 

intraperitoneal (IP) or subcutaneous.  
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• 2x105 plaque-forming units of the Armstrong strain of lymphocytic 

choriomeningitis virus (LCMV), intraperitoneal.  

• 106 colony-forming units of attenuated Salmonella enterica serovar typhimurium 

strain SL7207, intravenous.  

3.3 Cyclophosphamide administration 

C57BL/6J mice immunized three times (3x) IP with NP-CGG/IFA-immunized (at 21 days 

interval) to establish long-lived Bmem were treated twice (2X) with 50mg/kg 

cyclophosphamide (CyP), intravenous at 2 days interval and sacrificed on day 3 after 

the last treatment. Control mice were injected with Phosphate Buffered Saline (PBS) 

instead of cyclophosphamide.   

3.4 Flow cytometric analysis and cell sorting (FACS) 

Flow cytometric measurements and cell sorting were done according to standards 

defined in the guidelines to flow cytometry and cell sorting in immunological studies [21]. 

Antibodies were purchased from Miltenyi Biotec, Biolegend, eBioscience, or produced in 

DRFZ. All FACS data were acquired on MACSQuant (Miltenyi Biotech), BD FACSCanto 

II or BD FACSFortessa (BD Bioscience). BD Influx cell sorter (BD Bioscience) was used 

for cell sorting. Flow cytometric data were analyzed with FlowJo v10(Tree Star, Inc.). 

Total BM cell numbers were calculated based on cell numbers in a single femur of a 

mouse which is estimated to harbor 6.3% of total BM leading to a conversion factor of 

7.9 for two femurs for total mouse BM [11]. 

3.4.1 Memory B cells  

Antibodies directed against the following murine antigens were used for analysis of 

memory B cells: Ki-67 (B56, BD Biosciences), CD11c (N418), CD19 (1D3), CD38 (90), 

CD138 (281-2), GL7 (GL7), IgA (C10-3), IgD (11.26c), IgG1 (A85-1), IgG2a/b (R2-40), 

IgG2b (A95-1 and MRG2b-85), IgM (M41), CD93 (AA4.1), CD5 (19-3), B220 (RA3.6B2), 

CD21/35 (7G6), CD29 (HMß1-1), CD39 (Duha59), CD62L (MEL-14).  

3.4.2 Bone marrow stromal cells 

The following antibodies were used in analysis of BM stromal cells: anti-CD45 (30F11), 

anti-VCAM-1 (429), anti-CD31 (390) and anti-Ter119 (Ter119).  

3.5 B cell receptor sequencing  

Bmem from BM (tibiae, femurs, pelvics) and spleen of immunized mice (3x NP-CGG) 

were magnetically enriched using the Memory B cell Isolation Kit (130-095-838 

Miltenyi). Bmem cells were FACSorted by gating on CD19+CD38+CD138-CD11c-GL7-IgM-

IgD- small lymphocytes. Sorted cells per organ per mouse were split into equal halves to 
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give biological (cellular) replicates [22]. Biological replicates were processed 

independently from this point on. Total RNA was extracted from samples using the ZR 

RNA Miniprep Kit (Zymo Research) according to the manufacturer’s protocol (Catalog 

nos. R1064 & R1065). Isolated RNA was splitted into equal halves and library 

preparation was performed to give technical duplicates. First-strand cDNA was 

synthesized with SMARTScribe Reverse Transcriptase (Clontech) using total RNA, a 

cDNA synthesis primer mix (mIgG12ab_r1(KKACAGTCACTGAGCTGCT), mIgG3_r 

(GTACAGTCACCAAGCTGCT), mIgA_r (CCAGGTCACATTCATCGTG) by metabion 

international AG) and a 5’ – template-switch adaptor with unique molecular identifiers 

(UMI) (SmartNNNa 

(AAGCAGUGGTAUCAACGCAGAGUNNNNUNNNNUNNNNUCTT(rG)4)) according to 

the protocol “high-quality full length immunoglobulin profiling with unique molecular 

barcoding” by the Chudakov lab [23]. cDNA was purified with MinElute PCR purification 

Kit (Qiagen) and eluted in 10 µL 70°C nuclease-free H2O (Qiagen). The first and 

second PCR were performed according to the protocol by the Chudakov lab [23]. PCR 1 

products were purified with MinElute PCR purification Kit (Qiagen) and eluted in 25 µL 

70°C nuclease-free H2O (Qiagen). The products were also gel-purified from 2% 

agarose gels (extraction with MinElute gel extraction Kit (Qiagen); elution in 15 µL 70°C 

nuclease-free H2O (Qiagen). Adapter ligation was performed using the TruSeq® DNA 

PCR-Free Library Prep protocol (Illumina). The products were gel-purified from 2% 

agarose gels instead of bead purification as mentioned in the protocol (extraction with 

MinElute gel extraction Kit (Qiagen); elution in 10 µL 70°C nuclease-free H2O 

(Qiagen)). The quality of amplified libraries was verified by using an Agilent 2100 

Bioanalyzer (2100 expert High Sensitivity DNA Assay). According to the fragment size, 

the libraries were quantified by qPCR using the KAPA Library Quantification Kit for 

Illumina platforms (KAPA Biosystems). Based on the result of the qPCR a final library 

pool with a concentration of 2 pM was used for sequencing with NextSeq 500 (Illumina) 

using the NextSeq 500/550 Mid Output Kit and 300 cycles (2x150bp).  

3.6 BCR repertoire analysis 

B Cell Receptor (BCR) repertoire analysis was performed using MIGEC-1.2.4a [24] in 

default parameter settings while adding a demultiplexing step for identification of 

IgG1/2, IgG3 and IgA heavy chains. After the MIGEC pipeline’s “checkout” step isotypes 

were classified according to presence of mIgG12_r2, mIgG3_r2 and mIgA_r2 primer 

sequences: AGTGGATAGACMGATG, AAGGGATAGACAGATG and 

TCAGTGGGTAGATGGTG, allowing for one mismatch against the primer sequence. 

Data were then processed independently for each isotype. The MIGEC segments file 

was adjusted to include only C57BL/6-specific V genes for mapping. MIGEC performs a 

UMI-guided correction to remove PCR as well as sequencing bias and errors. Each 

resulting consensus sequence was treated as one clone. Clones with identical V, D, and 
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J gene compositions and CDR3 nucleotide sequences were grouped together to define 

clonotypes. Solely clonotypes consistently found in both technical replicates of a given 

sample were considered in downstream analyses. Statistics on the overlap of 

repertoires between different samples were performed based on the presence of 

clonotypes. The degree of similarity between samples accounting for the abundance of 

clonotypes is represented by the cosine similarity [25].  

3.7 Histology 

3.7.1 Preparation of histological sections  

Femoral bones were fixed in 4% PFA (Electron Microscopy Sciences) for 4 hours at 

4°C, equilibrated in 30% sucrose/PBS, then frozen and stored at -80°C. 6µm 

cryosections of tissues were prepared. Tissue samples were first blocked with 1X PBS 

containing 10% FCS (Fetal Calf Serum) for 1h. Samples were then stained with 

antibodies in 0.1% Tween-20 (Sigma-Aldrich)/ 10% FCS/ 1XPBS for 1h. Antibodies 

towards following murine antigens were used: IgG2b (RMG2b-1), GFP (rabbit 

polyclonal), fibronectin (rabbit polyclonal), Ki67 (Sol-15), VCAM-1 (429), cadherin 17 

(rabbit polyclonal), laminin (rabbit polyclonal, Sigma Aldrich), IgD (11.26c), Thy1 (T24, 

DRFZ), B220 (RA3.6B4), CD11c (N418), donkey anti-rabbit polyclonal IgG-AF488/647, 

strepatavidin-AF594/647, donkey anti-goat polyclonal AF488. For nuclear staining, 

sections were stained with 1 μg/ml DAPI in PBS. Sections were mounted in Fluorescent 

Mounting Medium (DAKO).  

3.7.2 Confocal microscopy 

For confocal microscopy, a Zeiss LSM710 with a 20×/0.8 numerical aperture objective 

lens was used. Images were generated by tile-scans and maximum intensity projection 

of 3-5 Z-stacks each with 1μm thickness. Image acquisition was performed using Zen 

2010 Version 6.0 and images were analyzed by Zen 2012 Light Edition software (Carl 

Zeiss MicroImaging).  

3.7.3 Manual image analysis 

To determine the nearest neighbors of Bmem, cells in direct cell-cell contact or a position 

within a 10µm radius of cell boundaries of Bmem were enumerated manually using 

resolution images of immunofluorescence staining acquired by confocal microscopy.  

3.7.4 Modelling random co-localization 

To determine the probability of co-localization of BM Bmem to reticular stromal cells, cell-

cell neighboring was modelled by random cell positioning [12]. Images of isotype-

switched Bmem were positioned on histological images of VCAM-1 stained BM at random 

(1000 times), and the frequencies of co-localizing Bmem and stromal cells were then 
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determined. The modelled frequencies were then compared to the frequencies of the 

original histological images.  

 

3.8 Single cell suspension of bone marrow 

BM flush-out and the empty bones (tibia and femur) were digested using an optimized 

protocol with 0.5 mg/ml Collagenase IV (Sigma-Aldrich), 1mg/ml DNase I (Sigma-

Aldrich), 0.25 mg/ml Dispase II (Roche), with or without 5μg/ml Latrunculin B (Sigma-

Aldrich), for 30 min at 37°C. 

3.9 Single cell RNA-sequencing 

3.9.1 Single cell library preparation and RNA-sequencing 

Ex vivo FACSorted VCAM-1+CD45-Ter119-CD31- BM stromal cells (IL‐7-GFP knock‐in 

mice) were applied to the 10x Genomics platform using the Single Cell 3’ Reagent Kit 

V2 (10x Genomics) and following the manufacturer’s instructions. Upon adapter ligation 

and index PCR the quality of the obtained cDNA library was assessed by Qubit 

quantification, Bioanalyzer fragment analysis (HS DNA Kit, Agilent) and KAPA library 

quantification qPCR (Roche). The sequencing was performed on a NextSeq500 device 

(Illumina) using a High Output v2 Kit (150 cycles) with the recommended sequencing 

conditions (read1: 26nt, read2: 98nt, index1: 8 nt, index2: n.a.).  

3.9.2 BM stromal cells single cell RNA-seq analysis 

Illumina output was demultiplex and mapped to the mm10 reference genome by 

cellranger-2.0.2 (10x Genomics Inc.) using refdata-cellranger-mm10-1.2.0 in default 

parameter setting and 3000 expected cells. Raw counts were further analyzed using R 

3.5.1 with Seurat package (Seurat_2.3.4,) [26]. Potential lymphocyte and erythrocyte 

contamination cells expressing Ptprc (CD45) or hemoglobin subunits (Hba) respectively 

were detected and excluded prior the analysis, resulting in 1035 stromal cells. T-

distributed Stochastic Neighbor Embedding (tSNE) and the underlying Principle 

Component Analysis was performed on 30 dimensions using variable genes as set by 

default (Fig. 4-15) or on a subset of 108 genes (Fig. 4-16), which are known for their 

role in mediating the communication between stromal cells and hematopoietic cells. 

Similarity of gene expression (co-expression) was estimated by the Jaccard similarity 

coefficient (Fig. 4-17). Heatmaps (Fig. 4-18) show the log2-transformed fold change of 

mean expression of positive and negative cells, displayed are the top 10 genes with the 

highest fold change. DiffExpTest-method was used for the statistical analysis of 

differential expressed genes [27] . 
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4 Results 

4.1 Isotype-switched Bmem are abundant in spleen and BM  

In order to investigate the tissue distribution of murine Bmem, single cell suspension of 

spleen, BM, peripheral lymph nodes (pLN), mesenteric lymph nodes (mLN), and 

Peyer’s patches (PP) were analyzed by flow cytometry. Surface expression of 

immunoglobulin isotype (IgG1, IgG2b, or IgA) was used to identify isotype-switched Bmem 

by gating on CD19+CD38+CD138-GL7-small lymphocytes (Fig. 4-1). Mice were 

immunized with different experimental antigens (LCMV, NP-KLH, NP-CGG, 

S. typhimurium) via different routes of administration (sub-cutaneous, intravenous and 

intraperitoneal) and Bmem enumerated in the memory phase of immune response. 

Different routes of administration were used to investigate how the route of pathogen 

entry influences the distribution of Bmem. 

 

Figure 4-1 Gating for isotype-switched Bmem of BM and spleen. 
Switched Bmem of BM (A) and spleen (B) were identified by expression of surface IgG2b, IgG1, or 

IgA and CD19, CD38 and lack of IgD, IgM, CD138, GL7 marker. Staining shown for IgG 2b 

exemplarily. 

 

The quantification analysis revealed that besides the spleen, the BM hosts significant 

proportion of Bmem. Following the different immunization protocols, 32-60% of all isotype-

switched Bmem were detected in the spleen, 18-41% of isotype-switched Bmem were 

located in the BM and 9-14% in peripheral lymph nodes (Fig. 4-2). The frequencies of 

memory B cells in peripheral lymph nodes (pLN) mesenteric lymph nodes (mLN), 

Peyers Patches (PP) and blood were consistently lower compared to BM and spleen 

(Fig. 4-2). The observed distribution of memory B cells was independent of either the 

antigen used or the route of administration of the antigen.  
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Figure 4-2 Spleen and BM harbor major populations of isotype-switched Bmem. 
Cell numbers of isotype-switched Bmem per organ in C57BL/6 laboratory mice. Absolute cell 

numbers per organ calculated from flow cytometric counts (gated for IgG1
+, IgG2b

+, or IgA+ 

CD19+CD38+CD138-GL7-CD11c-IgM-IgD-PI- small lymphocytes); n=42, data pooled from 8 

experiments with five different immunizations performed in mice aged 4-20 months and held 

under SPF conditions, colors indicate immunization.NP- 4-Hydroxy-3-nitrophenylacetyl; KHL- 

Keyhole Limpet Hemocyanin; CGG- Chicken Gamma Globulin; LPS-Lipopolysaccharide; LCMV- 

lymphocytic choriomeningitis virus 

 

4.2 Exclusive antigen-receptor clonotypes identify distinct Bmem 

repertoire of BM and spleen 

 

Figure 4-3 Experimental setup for the comparison of BCR repertoire of switched Bmem of 
BM and spleen: 
After isolation, cells of the same organ were divided into equal proportions and processed as 

biological replicates. After RNA isolation, samples were split and processed as technical 

replicates. 

 

Every B cell carries a unique membrane bound immunoglobulin (Ig) which is also known 

as the B Cell Receptor (BCR) [28]. BCRs are assembled during the B-cell development 

that involves random somatic recombination of V, D, J gene segments of the heavy 

chain locus  and V, J gene segments of the light chain locus resulting in a huge diversity 

of BCRs [29].  Each single BCR (B cell clone) can be identified by its unique 

complementarity-determining region 3 (CDR3), part of the variable chain in BCR that 

bind to a specific antigen. The unique V, D, J gene segments rearrangement process 

makes it highly unlikely that any two naïve B cells express the same BCR although all 

progeny of a particular B cell keep the BCR with some additional mutations  to the 

parent’s BCR [28]. In this way B cell clones (progeny) of a particular initial B cell 

generated during an immune response can be traced and identified by their BCR.  This 

unique property of BCR is valuable in the analysis of repertoire of Bmem generated in an 

immune response. BCR repertoire comparison of Bmem of different organs helps to 
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determine tissue exclusive (resident) populations and also to address the extent of 

exchange (via circulation) of Bmem populations between the different tissues.  

High-throughput BCR RNA sequencing of IgG1
+ and IgG2

+ (IgG1/2
+), IgG3

+, and IgA+ 

isotype-switched Bmem was performed using cells isolated from spleen and BM of three 

individual C57BL/6J mice, which had been immunized three times with NP-CGG 

minimum 73 days prior to analysis (Fig. 4-3). For all repertoire analyses, unique B cell 

clones were defined by 100% amino acid sequence identity of CDR3 regions. All clones 

with single counts were excluded to minimize confounding effects of sequencing errors 

and sequencing depth. Clonotypes (clonally related B cells generated from same single 

same naive B cell) were defined as clones with a common unique CDR3 sequence and, 

shared V, D, and J gene segment usage. 

Determination of VH gene family usage showed that IgG1/2
+, IgG3

+, and IgA+ isotype-

switched Bmem of BM and spleen per mouse are highly divergent in the distribution of VH 

gene family usage (Fig. 4-4).  

To determine repertoire overlap, the distribution of clonotypes between Bmem of BM and 

spleen was also analyzed. To minimize confounding effects of sequencing errors and 

sequencing depth, only those clonotypes consistently found in technical replicates were 

considered for repertoire comparison [30,31]. Isotype-switched Bmem of spleen and BM 

expressing IgG1/2, IgG3, and IgA, respectively, showed a considerable fraction of 

exclusive organ clonotypes: IgG1/2=46.1%-89.8%, IgG3=43.7%-93.7%, IgA=49.9%-

90.8% (Fig. 4-5). The proportion of clonotypes shared between IgG1/2
+, IgG3

+, and IgA+ 

Bmem of spleen and BM of individual mice was consistently significantly lower= 

IgG1/2
+=9.8%-29.4%, IgG3

+=6.5%-29.8%, IgA+=6.3%-34.5% (Fig. 4-5). 
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Figure 4-4 VH gene recruitment to spleen and BM switched Bmem, represented as 
frequency of a particular VH gene among total CDR3s per isotype per organ sample. 
Bars show relative abundance of the 10 most frequent VH genes, error bars indicate SEM. 

Significance of difference in VH gene distribution to Spleen and BM assessed by multivariate 

ANOVA, p values corrected for multiple testing (Benjamini-Hochberg), * indicates significant 

difference in means for a particular VH gene (Welch’s test). M1-M3: 3 replicates  

 

 

Figure 4-5 Overlap of the BCR (heavy chain CDR3) repertoire of switched Bmem from 
spleen and BM 
Venn diagrams represent clonotype presence for IgG1/2, IgG3 and IgA Bmem in a given sample: 

numbers indicate clonotypes present in one organ exclusively or in both (overlap). M1-M3: 3 

replicates  

 

Due to the huge diversity of the BCR repertoire, sample size is a crucial factor in the 

comparison of the repertoire any two organs. To confirm that the sample sizes analyzed 

were sufficient to represent the repertoire of the different organs, clonotype repertoires 

of biological (cellular) replicates of isotype-switched Bmem isolated from spleen of each 

mouse were compared (Fig. 4-6). In those biological replicates (each containing half of 
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spleen Bmem), the cosine similarity which measures the correlation of frequency of 

clonotypes in the samples was consistently higher: mean cosine similarity of 0.83-0.92 

for IgG1/2, 0.83-0.96 for IgG3, 0.78-0.99 for IgA. This means that sampling half of spleen 

Bmem is enough to identify true clonotype and confirms that the size of the spleen and 

BM Bmem samples was enough to make meaningful conclusion of the BCR repertoire 

comparison. This high correlation of biological replicates is comparable to that of the 

RNA-technical replicates. On the contrary, the cosine similarity analysis of shared 

clonotypes between BM and spleen (IgG1/2= 0.5-0.54, IgG3= 0.54-0.55, IgA= 0.26-0.55) 

was significantly lower compared to that of organ replicates (biological and technical) 

(Fig. 4-6). The cosine similarity between BM and spleen Bmem is significantly minimal 

and suggests distinct subpopulations. 

 

Figure 4-6 Cosine similarity comparison of BCR (heavy chain CDR3) repertoires of 
switched Bmem 
Cosine similarity comparison (accounting for clonotype frequencies) within technical replicates 

of IgG1/2, IgG3 and IgA Bmem of spleen and BM (blue), within cellular replicates from spleens 

(red), and between spleen and BM (BM-Spleen, purple) of three individual mice. p values 

(Welch’s test for difference of means of cosine similarity within shared IgH repertoire (spleen 

cellular replicates) and between spleen and BM replicates are indicated. 

 

4.3 Bmem of BM and spleen differ in their expression of CD21 

and CD62L 
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To determine whether Bmem of BM and spleen differed in their surface protein 

expression, the  expression of more than 200 different surface markers comprising CDs 

and other cell surface markers (LegendScreen Mouse Cell Screen (PE) (# 700005 

Biolegend) on CD19+CD138-CD38+CD11c-GL7-IgM-IgD-IgG2b
+ Bmem of BM and spleen 

was analyzed using flow cytometry. Gating was performed analogously to the strategy 

displayed in Fig. 4-1. 

The surface markers screen analysis showed that IgG2b
+ Bmem of BM and spleen differ in 

their expression pattern for CD21/35 and CD62L (Fig. 4-7). Expression levels of several 

surface molecules, such as CD20, TACI (CD267), and MHC class II was similar for 

IgG2b
+ Bmem of BM and spleen. The expression of CD62L (L-selectin) was higher on 

IgG2b
+ Bmem of BM compared to spleen. Expression of CD21/35 (CR2/1), the 

complement receptor [32,33] was reduced in BM IgG2b
+ Bmem with about half of the cells 

expressing lower levels compared to those of spleen. The differences in expression of 

CD21/CD35 and CD62L identified from the high throughput screen were confirmed in 

independent experiments. The functional implication of these differences in protein 

expression is currently not clear and remains to be investigated. 

 

Figure 4-7 Differential marker expression between spleen and BM IgG2b
+ Bmem 

Mean fluorescence intensity (MFI) or frequency of cells positive for a marker for paired bone 

marrow and spleen IgG2b
+ Bmem is shown next to corresponding representative histogram. Gated 

for IgG2b
+CD19+CD38+CD138-GL7-CD11c-IgM-IgD-PI- small lymphocytes, histogram plots are 

representative for five or more biological replicates from 3 independent experiments FMO PE: 

PE-channel fluorescence minus one control, FSC-A: forward-scatter area. (15 aged and 

immunized C57BL/6J mice)  

 

4.4 Memory B cells are quiescent and resting in G0 of cell cycle 

Long-lived memory lymphocytes (CD4+, CD8+ and plasma cells) have been described 

to be maintained in tissues in a state of quiescence (in terms of activation and 

proliferation) [10,34,35]. To investigate whether this is also the case for Bmem, the 

proliferative state of isotype-switched Bmem of BM and spleen was determined by 

intranuclear expression of the proliferative marker Ki67 using flow cytometry. Ki67 is 

expressed in all phases of the cell cycle, except G0 [36]. Ki-67 was expressed by as 

many as 9.3% (median: 8.0%) of switched IgG2b
+ Bmem cells in spleen, and by no more 

than 4% (median: 2.6%) of isotype-switched Bmem of BM, showing that more than 90% 

of cells in the spleen and more than 95% in the BM were in the G0 phase of cell cycle, 

i.e. resting in terms of proliferation (Fig. 4-8). 
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Figure 4-8 IgG2b
+ Bmem of BM and spleen rest in G0 of cell cycle 

(A) Flow-cytometric quantification of Ki-67expression in IgG2b
+ Bmem,(IgG2b

+CD19+CD38+CD138-

GL7-CD11c-IgM-IgD-PI- small) splenic naïve (IgM+IgD+IgG2b
-CD19+CD38+CD138-GL7-CD11c- PI- 

small lymphocytes) and germinal center (GC) (CD19+CD38loGL7+CD11c--PI- lymphocytes) B 

cells. (B) frequencies of Ki-67+ cells within the population indicated. Data is representative of 2 

independent experiments. 

 

To confirm in vivo quiescence (non-proliferative) of Bmem as observed with the Ki67 

staining, we treated immunized mice (in the memory phase) with cyclophosphamide. 

Cyclophosphamide is  a DNA alkylating agent which kills proliferating cells [37]. Bmem of 

both spleen and BM were refractory to treatment with cyclophosphamide. The number 

of isotype-switched Bmem (IgG2b, IgG1, IgA) was not affected by the cyclophosphamide 

compared to the control treatment with PBS, whereas, overall CD19+ B cell populations 

of both organs were significantly reduced (Fig. 4-9).  

 

Figure 4-9 Switched Bmem are refractory to cyclophosphamide treatment 
Flow-cytometric quantification of CD19+ B cells and IgG2b

+ Bmem in mice treated with 

Cyclophosphamide (CyP) or untreated controls (PBS) after immunization with 3x NP-CGG/IFA. 

Analysis was performed after 7 days of CyP. p value (Welch’s test indicated). Representative 

data shown for one out of two independent experiments. 

 

4.5 Bmem co-localize with VCAM-1+ cells in the bone marrow 
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Figure 4-10 IgG2b
+ Bmem of BM localize next to cells expressing VCAM-1, laminin and 

fibronectin 
A) Identification of BM IgG2b

+ Bmem. naive B cells and plasma cells were excluded by IgD and 

Blimp1-GFP, respectively. Cell nucleus was identified with DAPI (blue). Scale bar: 10µm. B) 

IgG2b
+ Bmem (Ki-67- IgD- Blimp1-GFP-) are dispersed as single cells throughout the BM. Arrows 

indicate IgG2b
+-staining DAPI+ cells. Scale bar: 20µm. C) Co-localization of IgG2b

+GFP-IgD-

IgG2b
+ cells (arrows) with mesenchymal stromal cells (VCAM-1, fibronectin, laminin). Arrows 

indicate IgG2b
+ staining DAPI+ cells. Representative micrograph. Scale bars: 10µm. 

 

The BM is an important organ in the tissue maintenance of long-lived memory 

lymphocytes (CD4+, CD8+, plasma cells). In the BM, plasma cells, memory CD4+ and 

CD8+ are localized in niches organized by reticular stromal cells [10,34,35]. BM niches 

for memory B cells have not been described.  To investigate how the BM survival niches 

of Bmem is organized; histology sections of BM (Blimp1-GFP mice) were analyzed by 

immunofluorescence. Switched IgG2b+ Bmem were identified as IgG2b
+IgD-Ki-67- 

nucleated cells. GFP+IgG2b+ plasma cells [20] were excluded from analysis  (Fig. 4-

10A). Switched IgG2b
+ memory B cells were dispersed as single cells throughout the BM 

(Fig. 4-10B). 75% of IgG2b
+ memory B cells were in direct contact with reticular cells 

expressing VCAM-1 and fibronectin, and another 15 to 20% within 10µm vicinity of such 

cells (Fig. 4-10C, Fig. 4-11A). 53% of IgG2b
+ Bmem were directly contacting laminin-

expressing stromal cells, and another 26% were in the 10µm vicinity of such cells (Fig. 

4-10C, Fig. 4-11A). 

 

Figure 4-11 Colocalization of Bmem with stromal cells is deterministic  
(A) Co-localization of with mesenchymal stromal cells. Graph shows frequency of IgG 2b

+ cells in 

direct contact (black) or within 10m (grey) of a cell stained for the molecule indicated. (C) 

Graphs represent direct co-localization of than 12000 simulated (random) cells (images from 7 

BM slides) versus co-localization observed per slide for 28 slides from 4 mice with two or more 

analyzed Bmem per slide (mean=5.66 cells per slide), p-value (Welch’s test) indicated on graph. 
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4.6 Bmem - stromal co-localization is deterministic 

The analysis of BM sections showed that the majority of Bmem co-localize with VCAM-1+ 

reticular stromal cells. To determine whether the contact of Bmem  to VCAM-1 expressing 

stromal cells is not a mere random association between the two cell types,  co-

localization of these cells types was simulated by randomization modelling [12]. The 

randomization modelling confirmed that the co-localization between Bmem and reticular 

stromal cells was deterministic and cannot be attributed to mere randomness. The 

observed frequencies of co-localization (recorded at microscope) were significantly 

higher than in the randomly simulated co-localization (Fig. 4-11B). The co-localization of 

BM Bmem and stromal cells is in line with expression of VLA4 (CD49d/CD29), a receptor 

for fibronectin and VCAM-1, and VLA6 (CD49f/CD29), a receptor for laminin [38], by 

IgG2b
+ Bmem (Fig. 4-12). 

 

Figure 4-12 Bmem express receptors to VCAM-1, laminin and fibronectin 
surface expression of VLA-4 and VLA-6 components CD29, CD49d, CD49f in spleen and bone 

marrow IgG2b
+ Bmem. Gated for IgG2b

+CD19+CD38+CD138-GL7-CD11c-IgM-IgD-PI- small 

lymphocytes; histogram plots are representative for three biological replicates.  

  

4.7 BM stromal cells exhibit enormous heterogeneity  

 

Figure 4-13 Schematic overview of isolation of BM stromal cells. 
(A) Enzymatic digestion of BM. 

(B) Cytometric isolation of VCAM-1+CD45-Ter119-CD31- BM stromal cells. 

 

BM VCAM-1+ stromal cells express cytokines and chemokines which attract and help in 

the maintenance of different subsets of memory T and long-lived plasma cells [39]. 

Although much is known about the organization of memory lymphocytes, corresponding 

research on the organization of BM stromal cells is scarce. Taking advantage of the 

latest single cell RNA sequencing high throughput technology, the phenotype and 

functional organization of BM stromal cells was addressed at the single cell resolution. 

BM cells (tibia and femur) were isolated by enzymatic digestion to generate single cell 

suspension (Fig. 4-13A). Ex vivo VCAM-1+CD45-Ter119-CD31- BM cells were then 
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sorted by FACS to 97% purity (Fig. 4-13B) and transcriptomes of individual cells were 

determined using 10X genomics-based droplet sequencing (Fig. 4-14). Transcriptomes 

of 1,167 individual stromal cells were analyzed with a mean of 398,739 reads per cell 

(Fig. 4-14A) resulting in a saturation rate of 95.6%, i.e. more than 95% of the total 

transcriptome was captured (Fig. 4-14B). 16,142 genes were detected in total, with a 

median of 1,538 genes per cell (Fig. 4-14A, C). Transcriptomes of individual cells were 

projected on a t-distributed stochastic neighbor embedding (t-SNE) analysis [40] to 

visualize the basic heterogeneity of the stromal cells (Fig. 4-15).  

 

Figure 4-14 Single cell RNA sequencing (sc RNA-seq) of BM stromal cells 
(A) Quality control (QC) summary of single cells sequencing output.  (B) 10X genomics-based 

plot showing the mean read per cells, against the sequencing saturation. (C) Plot of the median 

number of genes detected per cell in relation to total reads per cell  

 

Factors like Vcam1, Cxcl12, and Kitl important in the maintenance and development of 

different hematopoietic cells were expressed by more than 90% of the BM stromal cells. 

Pdgfrb, Cadherin 11(Cdh11), genes encoding for  mesenchymal surface proteins were 

expressed by majority of cells, qualifying these genes as genuine stroma cells markers 

[41] (Fig. 4-15). On the level of single cell transcriptomes, cells expressing the various 

CD genes are dispersed within the t-SNE plots. Genes encoding cell surface molecules 

like Lamp1 (CD107a), Ox2 (CD200), Cd1d1, Eng (CD105), and Cd44 were expressed 

individually by the stromal cells without defining unique subpopulations of stromal bone 

marrow (Fig. 4-15).  

 

Figure 4-15 t-SNE plots highlighting the expression (red) of individual genes 
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4.8 Distinct subpopulations of BM stromal cells for the 

maintenance of immune and hematopoietic cell subsets 

In the interaction between stromal cells and hematopoietic cells, the expression of 

chemokines and cytokines by stromal cells is essential for them to attract and control 

hematopoietic cells. The transcriptomes of individual BM stromal cells were analyzed for 

the expression of genes which encode for secreted proteins (cytokines and 

chemokines).  A total of 108 genes were selected for further analysis, based on their 

established role in the communication of stromal cells with cells of the hematopoietic 

system.  

 

Figure 4-16 t-SNE plots highlighting the expression (red) of individual genes 

 

Supervised clustering analysis of expression of these genes identified 14 non-

overlapping subsets of stromal cells (Fig. 4-16). Genes like Cxcl12, Kitl, Colony 

Stimulating Factor 1 (Csf1) and Laminin B1 (Lamb1), were expressed by most stromal 

cells, hence they do not define distinct subpopulations of stromal cells (Fig. 4-16). Cells 

expressing the cytokines Il7, Il15, Il12a, Il17d, Clec14a, Igf2, Lgals4, Tnfsf13b, Il4, 

Wnt5a and Tgfbi formed unique subsets (Fig. 4-16). IL17D is a novel cytokine which 

inhibits the development of myeloid progenitor cells [42]. CLEC14A is a type I 

transmembrane involved in cell-to-cell adhesion, and thus shaping immune response 

[43]. IL12A has multiple effects on T and natural killer cells [44]. Expression of the 

chemokines Ccl9, Cxcl9 and Cxcl16 was restricted to distinct subsets, too. CXCL16 

attracts memory T cells which express CXCR6 [45]. CCL9 and CCL7 attract subsets of 

dendritic [46] and T cells [47] respectively.  

Expression of genes encoding for any of these chemokine/cytokines was exclusive to 

distinct subset of stromal cells, with less than 10% of cells co-expressing any two of 

these genes (Fig. 4-17). Stromal cells expressing these cytokines and chemokines 

expressed defined gene signatures, based on their entire transcriptomes, qualifying 

them as distinct subpopulations of stromal cells (Fig. 4-18). 
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The non-overlap expression of key cytokines and chemokines demonstrates that 

different subsets of BM stromal cells potentially attract and organize survival niches for 

the different memory lymphocytes. This demonstrates for the first time, existence of 

potential specialized stromal niches for the support and long-term maintenance of 

immune cells and other cells of the hematopoietic system  

 

Figure 4-17 Co-expression matrix showing the correlation of two genes. 
The similarity of gene expression (co-expression) of gene A and gene B was computed by 

Jaccard similarity coefficient ((A!=0 && B!=0) / (A!=0 || B!=0) where A and B refers to expression 

of genes A and B respectively) 
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Figure 4-18 Heatmap comparison of the gene expression profile of cells which express or 
do not express a single gene. 
Fold change (FC) shows the log2(Average Expression positive cells) - log2(Average Expression 

negative cells), displayed are the top 10 genes with the highest fold change. DiffExpTest -

method was used for the statistical analysis of differential  expressed genes 

 

 

 

5 Discussion  

The findings of this doctoral thesis demonstrate that B cell memory is 

compartmentalized similarly to T and plasma cells with significant populations of 

isotype-switched Bmem in BM and spleen. Isotype-switched Bmem of BM and spleen differ 

in BCR repertoires, suggesting that they might constitute separate compartments of B 

cell memory. It remains unclear whether (sub-) populations of these tissue resident 

isotype-switched Bmem contribute to the pool of circulating B cell memory. Also, memory 

B cells of the two organs show differences in their phenotype. The majority of Bmem of 

BM and spleen are quiescent and refractory to therapeutic targets which kill proliferative 

cells. In the BM, Bmem co-localize to reticular stromal cells in a deterministic manner 

guided by receptor-ligand interactions. BM stromal cells exhibit structural and functional 

organization with distinct sub-populations of BM stromal expressing factors important in 

the maintenance of subsets of memory lymphocytes. Subset of BM stromal cells 

(approximately 10%) express BAFF (B-cell Activating Factor) which is crucial for B and 
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plasma cells survival is also evident for the single cell RNA-sequencing transcriptome 

analysis.  

5.1 Tissue distribution of memory B cells  

These findings provide evidence for the existence of a resting population of Bmem in the 

murine BM. Overall, in mice the BM contains a significant number of isotype-switched 

Bmem. Isotype-switched Bmem in spleen and BM differ in presence and frequency of BCR 

repertoire. A significant proportion of 40% to 80% of the BCR clonotypes are expressed 

exclusively in either spleen or BM. Exclusive clonotypes indicate tissue residency and 

minimal exchange of the repertoire between the two organs. For those shared Bmem 

clonotypes (10-35%) between BM and spleen, the situation is less clear, they could be 

resident or constantly exchanged between the two organs. Although this doctoral thesis 

addressed the tissue distribution of isotype-switched memory B cells, it is likely that 

non-switched Bmem exhibit similar distribution pattern. Studies on tissue distribution of B 

cell memory in human has mostly being restricted to peripheral blood partly due to the 

difficult of access to tissues like BM and spleen. Human studies in this direction are 

needed to translate and better understand the tissue distribution of Bmem in humans. 

Strategic positioning and functional specialization of subsets of Bmem would ensure 

rapid, effective local and systemic protection during immune challenge.  

 

 

 

5.2 Lifestyle of memory B cells 

Switched memory B cells of BM and spleen are resting in terms of proliferation (G0 

phase of the cell cycle) as shown by expression of the cell cycle marker Ki-67. In vivo, 

Bmem of BM and spleen are refractory to treatment with cyclophosphamide, a therapeutic 

agent which kills proliferating cells. This finding points to the longterm survival and 

resistance of memory B cells to therapeutic agents which eliminate other subsets of 

hematopoietic and immune cells. The finding on CD21 expression adds an additional 

level of complexity and heterogeneity of B cell memory. The functional implication of 

these phenotypic differences remains a matter of investigation. CD21low B cells  have 

been described as atypical, characterized by functional exhaustion and with a potential 

role in infection or autoimmunity [48,49].  

5.3 Bone marrow niches for memory cells  
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In the BM, switched Bmem localize individually to VCAM-1+ reticular stromal cells, similar 

to those maintaining memory T and plasma cells. The multiple receptor-ligand (survival 

factors) interactions between memory cells and stromal cells construe the importance of 

BM stromal cells in maintenance and organization of the immunological memory. The 

single cells transcriptome analysis shows for the first time that distinct subsets of BM 

stromal cells express the factors IL7, IL15, and Tnfsf13b (BAFF) which are important in 

the maintenance of memory CD4+, CD8+, B and plasma cells respectively via signaling 

through corresponding receptors expressed on the memory cells. It has long been 

shown that T cell support and antigenic stimulation of BCR are dispensable for the long-

term maintenance of Bmem. Stromal cells express several factors important for the 

survival of Bmem in a receptor-ligand manner. Thus, stromal cells of the BM are also 

potentially autonomous in providing niches for the long-term maintenance of immune 

memory cells without the need for accessory cells in the niche. The findings of this 

thesis suggest the existence of specialized stromal niches for different subsets of 

immune memory cells. The exact survival signaling pathways induced in Bmem by 

stromal cells should be investigated to help devise ways to boost protective 

immunological memory or deplete pathological memory cells in autoimmunity, chronic 

inflammation and cancer.  

In conclusion, my doctoral thesis described the bone marrow as a major organ in the 

maintenance of long-lived quiescent memory B cells and that memory B cells of bone 

marrow differ from those in spleen in terms of BCR repertoire and surface protein 

expression. In the bone marrow, a subpopulation of reticular mesenchymal stromal cells 

organizes survival niches for the maintenance of memory B cells through the expression 

of important cytokines and chemokines.  
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Single-cell transcriptomes of murine bone marrow
stromal cells reveal niche-associated heterogeneity
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Bone marrow (BM) stromal cells are important in the development and maintenance of
cells of the immune system. Using single cell RNA sequencing, we here explore the func-
tional and phenotypic heterogeneity of individual transcriptomes of 1167 murine BM mes-
enchymal stromal cells. These cells exhibit a tremendous heterogeneity of gene expres-
sion, which precludes the identification of defined subpopulations. However, according
to the expression of 108 genes involved in the communication of stromal cells with
hematopoietic cells, we have identified 14 non-overlapping subpopulations, with distinct
cytokine or chemokine gene expression signatures. With respect to the maintenance of
subsets of immune memory cells by stromal cells, we identified distinct subpopulations
expressing Il7, Il15 and Tnfsf13b. Together, this study provides a comprehensive dissec-
tion of the BM stromal heterogeneity at the single cell transcriptome level and provides a
basis to understand their lifestyle and their role as organizers of niches for the long-term
maintenance of immune cells.

Keywords: bone marrow � cytokines � hematopoietic cells � single cell sequencing � stromal
cells

� Additional supporting information may be found online in the Supporting Information section
at the end of the article.

Introduction

Bone marrow (BM) stromal cells provide distinct niches for the
maintenance and development of hematopoietic cells, including

Correspondence: Dr. Mir-Farzin Mashreghi and Dr. Pawel Durek
e-mail: mashregi@drfz.de; pawel.durek@drfz.de

various cells of the immune system [1–5], but how the diversity
of hematopoietic cells is matched by the diversity of mesenchymal
stromal cells organizing their niches is poorly understood [6, 7].
In vivo, BM stromal cells have been shown to express vascular
cell-adhesion molecule 1 (VCAM1; CD106) [8], CXCL12 and IL7,
collagen II and XI [1–5], PDGFRB (platelet-derived growth factor
receptor B), CDH11 (Cadherin 11), LepR (Leptin receptor), Nestin
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and other genes [9, 10], but a comprehensive analysis of their
individual gene expression profiles has been missing.

In the present study, we describe a novel protocol for the
isolation of BM stromal cells ex vivo by fluorescence-activated
cell sorting, yielding more than 95% purity and more than 60%
recovery. We have determined and describe here the individual,
complete transcriptomes of more than 1000 individual BM stro-
mal cells by single cell RNA sequencing (scRNA-seq). These cells
show a remarkable heterogeneity, in particular with respect to the
expression of genes encoding cell-bound and secreted molecules
involved in the communication of stromal cells with cells of the
hematopoietic system. We have identified distinct stromal sub-
populations, which qualify to organize specific niches for distinct
immune memory as well as hematopoietic cells.

Results and discussion

Isolation of individual BM stromal cells

In order to estimate the size of the stromal compartment in the
BM, we have determined the frequency of radiation-resistant retic-
ular cells in Ubiquitin:GFP chimeric mice [1], by fluorescence
microscopy. The GFP+VCAM-1+CD31- reticular cell compart-
ment constituted about 2% (1.945% ± 0.1007 SEM) or �5 ×
106 of all BM cells in situ (Fig. 1A) [2]. Since BM stromal cells
form a tight reticular network, their isolation as individual cells
provides a challenge. Conventional single cell preparation meth-
ods use mechanical disruption and enzymes targeting adhesive
extracellular matrix (collagenase, DNAse and dispase) [11]. To
break and prevent re-adhesion of stromal cells, we here describe
the usage of Latrunculin B, a drug interfering with the polymer-
ization of actin [12]. Addition of Latrunculin B to the digestion
cocktail significantly doubled, as compared to isolation without
Latrunculin B (Fig. 1B and1C), the recovery of ex vivo isolated BM
stroma cells. This cell recovery is about 60% of the cell numbers
estimated in situ (Fig. 1C and1D). More important, the addition of
Latrunculin B did not affect the viability of the cells (Fig. 1E). Con-
sequently, isolation of stromal cells was always performed with the
addition to Latrunculin B to the digestion cocktail.

Single cell transcriptomes of BM stromal cells

Ex vivo VCAM-1+CD45-Ter119-CD31- BM cells were sorted by
FACS to 97% purity (Fig. 1F) and transcriptomes of individual cells
were determined using 10X genomics-based droplet sequencing.
Transcriptomes of 1167 individual stromal cells were analyzed
with a mean of 398,739 reads per cell resulting in a saturation rate
of 95.6% (Fig. 1G), i.e., more than 95% of each transcriptome was
captured. A total of 16,142 genes were detected in total, with a
median of 1,538 genes per cell (Fig. 1H and 1I). We used the entire
transcriptomes of each cell to perform a t-distributed stochastic
neighbor embedding (t-SNE) analysis [13] and visualize the basic

heterogeneity of the cells. Within the t-SNE plots, genes of interest
expressed by cells are highlighted in red.

More than 90% of the BM stromal cells expressed the genes
Vcam1, Pdgfrb, LepR, Cadherin 11(Cdh11), qualifying these genes
as genuine stroma cells markers, but also confirming the quality
of the cells [14] (Fig. 1J). The stromal cells did not express the
pericyte marker nestin (Nes), [15] (Fig. 1J).

Most of the cells were resting in terms of proliferation, since
they did not express the proliferation marker Mki67 [16] (Fig.
1K), confirming earlier results obtained with EdU pulse chase
labelling [3]. Nearly all cells expressed at least one of the Isoc-
itrate dehydrogenases isoforms (Igh1, Idh2 or Idh3), the rate lim-
iting enzyme of the TCA [17] (Fig. 1K). With respect to the energy
source of metabolism, stromal cells were heterogeneous, some
expressing rate limiting enzymes Pfkm and Pfkl of the glycolytic
pathway [18], or Crat for fatty acid oxidation [19] or Hmgcs1 for
ketogenesis [20].

Genes encoding cell surface molecules were often expressed
individually by the stromal cells, as exemplified here for Lamp1
(Cd107a), Lamp2 (Cd107b), Ox2 (Cd200), Bst2 (Cd317), Cd1d1,
Cd63, Cd105, Cd24a, Cd44 and Cd47 (Fig. 2A). At the level of
single cell transcriptomes, cells expressing the various cluster of
differentiation (CD) genes (Fig. 2A) are dispersed over the t-SNE
plots. This observation suggests that stromal cells expressing or
not a respective CD marker are closely related and do not neces-
sarily represent distinct subpopulation. However, subpopulations
expressing distinct combinations of CD markers can readily be
identified by contrasting their expression as found by sequencing
(Fig. 2B) and the proportion of cells expressing two or at least one
of the genes encoding for surface proteins (Fig. 2C).

Cytokine and chemokine expression is restricted to
distinct subsets of stromal cells

In the interaction between stromal cells and hematopoietic cells,
the expression of chemokines and cytokines by stromal cells is
essential for them to attract and control hematopoietic cells. Thus,
we analyzed the stromal cell transcriptomes for the expression of
genes which encode for secreted proteins. We selected 108 genes
(Supporting Information 1A) for further analysis, based on their
established role in the communication of stromal cells with cells
of the hematopoietic system. 37 of 108 selected genes were dif-
ferentially regulated and were used for a supervised clustering
analysis (Materials & methods section for detailed description).
14 non-overlapping cytokine/chemokine subsets of stromal cells
were identified by the clustering analysis (Fig. 3A). In contrast,
genes like Cxcl12, Kitl, colony stimulating factor 1 (Csf1) and
Laminin B1 (Lamb1), were expressed by most stromal cells, hence
they do not define distinct subpopulations of stromal cells based
on positive and negative expression (Fig. 3A). Although Cxcl12
is expressed in almost all stromal cells, we identified three sub-
populations of stromal cells according to the expression level. 126
cells (�12%) expressed low amounts (Cxcl12lo; < 4 ln normal-
ized unique molecular identifier (lnUMI) counts per cell; average

C© 2019 The Authors. European Journal of Immunology published by
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Figure 1. Isolation and single cell sequencing of ex vivo VCAM+CD45-CD31-Ter119- BM stromal cells. (A). In situ quantification of BM reticular stromal
cells: DAPI+GFP+(VCAM-1+CD31-) reticular cells constituted 1.945% ± 0.1007 SEM of BM cells. Representative image of analysis of 30 histology
sections from 5 different mice in 3 independent experiments. Scale bars: 100 and 50 μm,20x magnification (B) Schematic overview of isolation
of BM stromal cells. (C) Representative dot plots of VCAM-1 against CD45 gated on CD31-Ter119-Dapi- comparing isolation with or without
Latrunculin B. (D) Frequencies of ex vivo BM VCAM-1+ stromal cells isolated with or without addition of Latrunculin B compared to those
determined in situ. (E) Frequencies of DAPI- (live) BM cells isolated with or without addition of Latrunculin B. (F) Representative plot of cytometric
sorting of ex-vivo BM VCAM-1+CD45-CD31-Ter119- cells (G-I) Quality assessment of the 10x genomic sequencing, showing sequencing saturation
(G) and median genes per cell (H) against the mean reads per cell and the summary of the sequencing (I). (J) t-SNE plots highlighting the expression
(red) of individual BM stromal markers. (K) t-SNE plots showing the expression (red) of genes associated with cellular function of proliferation
(cell cycle) and metabolism in individual cells. Data from (C and E) represent pooled results from 4 independent experiments each with 3–5 mice
per group. Data from E is extracted from results of experiments described in (A and C). The t-SNE analyses shown in Fig. 1J and 1K are based on
n = 1035 individual stromal cells.

of 3.06 lnUMI counts), 80 cells (�8%) with intermediate expres-
sion level (Cxcl12int; �4 and �5 ln UMIs; average of 4.59 lnUMIs
per cell) and 829 cells (80%) expressing high levels of Cxcl12
(Cxcl12high; >5 lnUMIs; average of 5.74 lnUMIs per cell) (Sup-

porting Information Fig. 2A). The three Cxcl12 subpopulations
differ in their molecular signatures and could potentially have dif-
ferent functions within the bone marrow (Supporting Information
Fig. 2B).

C© 2019 The Authors. European Journal of Immunology published by
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Figure 2. Expression of genes encoding CD markers. The experimental procedure is the same as described in the legend of Fig. 1. (A) t-SNE plots
highlighting the distribution and expression (red) of genes encoding for surface markers. (B) Scatterplots; Co-expression of CD genes as found
by normalized unique molecular identifier-counts (UMI-counts) from sequencing. Co-expression of genes were arcsinh-transformed for flow
cytometric-like visualization, an artificial noise was subtracted to 0 counts .(C) Co-expression of selected CD-marker genes as defined by Jaccard
similarity coefficient (Proportion of cells expressing two or at least one marker). The t-SNE analysis shown in Fig. 2 is based on n = 1035 individual
stromal cells.

In order to test the stability of the identified clusters, we applied
Consensus Clustering based on random t-SNEs as well as Consen-
sus Clustering as described by Kiselev et al. [21]. Both methods
verified the stability of most of the identified clusters except the
cluster for Cxcl9. The clusters for Cxcl16 and Il15 expressing stro-
mal cells could be verified by the random t-SNE approach but not
by the Consensus Clustering method from Kiselev et al. In addi-
tion, we identified clusters of stromal cells expressing Il4ra and
Tgfbr1 by random t-SNE approach as well as clusters for Il17rd,
Ccl7, Cxcl1 and Cxcl10 by using both stability algorithms (Support-
ing Information Figs. 2 and 3). Thus, cells expressing the cytokines
Il7, Il15, Il12a, Il17d, Clec14a, Igf2, Lgals4, Tnfsf13b, Il4, Wnt5a
and Tgfbi, or the chemokines Ccl9, Cxcl16 form unique subsets of
bone marrow stromal cells (Fig. 3A).

IL17D is a novel cytokine which inhibits the development
of myeloid progenitor cells [22]. CLEC14A is a type I trans-
membrane involved in cell-to-cell adhesion, and thus shaping
immune response [23]. IL12A has multiple effects on T and natu-
ral killer cells [24]. CXCL16 attracts memory T cells which express
CXCR6 [25]. CCL9 and CCL7 attract subsets of dendritic [26]
and monocytes, respectively [27]. Expression of any of these
chemokine/cytokine genes was indeed exclusive to distinct stro-
mal cells, with less than 10% of cells co-expressing any two of
these genes as estimated by the Jaccard similarity coefficient (Fig.
3B). Furthermore, stromal cells expressing these cytokine and
chemokine genes express defined gene signatures, based on their
entire transcriptomes, qualifying them as distinct subpopulations
of stromal cells (Fig. 3C).

C© 2019 The Authors. European Journal of Immunology published by
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Figure 3. Cytokine and chemokine expression is restricted to distinct subsets of stromal cells. The experimental procedure is the same as described in the
legend of Fig. 1. (A) t-SNE plots of supervised clustering of cells using 108 genes encoding secreted factors with known role in communication of
stromal cells with cells of the hematopoietic system. Cells expressing a particular gene are highlighted in red (* Defines stable clusters as defined
by Consensus Clustering based on random t-SNEs and/or Consensus Clustering as proposed by Kiselev and colleagues [21]). (B) Co-expression
of selected communication genes as defined by Jaccard similarity coefficient (Proportion of cells expressing two or at least one marker). (C)
Comparisons of gene expression profiles expressing selected marker genes forming stable clusters. Fold change (FC) shows the log2 (Average
Expression of positive cells) - log2 (Average Expression of negative cells), displayed are the top 10 genes with the highest fold change. DiffExpTest-
method was used for the statistical analysis of differential expressed genes. The t-SNE analysis shown in Fig. 3 is based on n = 1035 individual
stromal cells.
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Concluding remarks

BM has been identified as the residency of immune memory cells
providing long-term protection against systemic pathogens. BM
stromal cells have been postulated to organize the survival niches
for these memory cells [1–5]. Analyzing the individual transcrip-
tomes of more than 1000 murine BM stromal cells, we find a
tremendous heterogeneity, with essentially no two cells expressing
the same transcriptome. Nearly all stromal cells express CXCL12,
a critical signal to attract immune memory cells or their pre-
cursors. Distinct subsets of stromal cells express IL-7 or IL-15,
cytokines which have been invoked in the maintenance of CD4
and CD8 memory lymphocytes [28, 29]. More than 5% of the
stromal cells express Tnfsf13b, the gene encoding for the protein
BAFF (B-cell activating factor), a cytokine critical for the main-
tenance of memory plasma cells [30]. Thus, BM stromal cells
are potentially autonomous in providing niches for the long-term
maintenance of immune memory cells. With regards to the main-
tenance of hematopoietic stem cells and early progenitors; Cxcl12
is expressed by all stromal cells whiles Kitl and Csf1 are expressed
by about 80% of cells (Fig. 3A). Flt3l and Il7 are expressed by
small fraction of BM stromal cells. In perspective, this data set
provides a considerably fundus towards an understanding of the
interaction of stromal cells and hematopoietic cells on the single
cell level.

Materials and methods

Mice

IL-7-GFP knock-in mice were kindly provided by Koichi Ikuta
(Kyoto University, Japan). C57BL/6J and mice expressing GFP
under control of the ubiquitin promoter (Ubq:GFP) were obtained
from Jackson Laboratories (Germany) and housed under specific
pathogen-free conditions at the DRFZ, Berlin. All experiments
were approved by the federal state institution “Landesamt für
Gesundheit and Soziales” (T0192/10),Berlin, Germany.

Single cell suspension of BM

BM flush-out and the empty bones (tibia and femur) were digested
with 0.5 mg/ml collagenase IV (Sigma-Aldrich), 1 mg/ml DNase I
(Sigma-Aldrich), 0.25 mg/mL Dispase II (Roche), with or without
5 μg/mL Latrunculin B (Sigma-Aldrich), for 30 min at 37°C.

Flow cytometry

Flow cytometry and cell sorting were performed as described [31].
The following antibodies were used: anti-CD45(30F11), anti-
VCAM-1(429), anti-CD31(390), anti-Ter119(Ter119), antibodies
were purchased from Miltenyi Biotec, Biolegend, or produced in

DRFZ. Dead cells were excluded by DAPI. Flow cytometric data
were acquired on MACSQuant (Miltenyi Biotec). BDInflux cell
sorter (BD Bioscience) was used for cell sorting. Flow cytometric
data were analyzed with FlowJo (Tree Star, Inc.).

In-situ quantification of radiation resistant BM
stromal cells

Chimeric mice were generated as previously described [1]. Briefly,
mice that express GFP ubiquitously were irradiated and reconsti-
tuted with BM cells from C57BL/6J mice. Immunofluorescence
staining of BM sections was performed according to established
protocol [1] using the following antibodies: anti-VCAM-1(429)
and anti-CD31(390). For the nuclear staining, sections were
stained with 1 μg/mL DAPI in PBS. Images were acquired using
a Zeiss LSM710 confocal microscope with a 20 × /0.8 numerical
aperture objective and were analyzed with Zen 2009 Light Edition
software (Carl Zeiss Micro Imaging).

Single cell RNA-sequencing

For single cell library preparation, ex vivo FACS sorted VCAM-
1+CD45-Ter119-CD31- BM cells were applied to the 10X
Genomics platform using the Single Cell 3’ Reagent Kit V2
(10x Genomics) following the manufacturer’s instructions. Upon
adapter ligation and index PCR, the quality of the obtained cDNA
library was assessed by Qubit quantification, Bioanalyzer fragment
analysis (HS DNA Kit, Agilent) and KAPA library quantification
qPCR (Roche). The sequencing was performed on a NextSeq500
device (Illumina) using a High Output v2 Kit (150 cycles) with the
recommended sequencing conditions (read1: 26nt, read2: 98nt,
index1: 8 nt, index2: n.a.).

Sc RNA-seq analysis

Illumina output was demultiplexed and mapped to the mm10
reference genome by cellranger-2.0.2 (10x Genomics Inc.) using
refdata-cellranger-mm10-1.2.0 in default parameter setting and
3000 expected cells. Raw UMI-counts were further analyzed
using R 3.5.2 with Seurat package [32], as proposed by Butler
and colleagues [33], including log-normalization of UMI- counts,
detection of variable genes and scaling. T-distributed Stochas-
tic Neighbour Embedding and the underlying Principle Compo-
nent Analysis was performed based on 30 components using vari-
able genes and a perplexity of 30 as set by default. Potential
lymphocyte and erythrocyte contamination cells expressing Ptprc
(CD45) or hemoglobin subunits (Hba) respectively were detected
and excluded. Data were reanalyzed after excluding the contam-
inates using the remaining 1035 stromal cells (Fig. 1 J-L and
2A). Scatterplots for co-expression of genes were based on nor-
malized UMI-counts, with an artificial noise subtracted form 0
counts for visualization (Fig. 2B). Co-expression matrices were
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based on the Jaccard similarity coefficient of cells expressing
two or at least one gene (Fig. 2C and Fig. 3B). Heat maps (Fig.
3C) show the log-transformed fold change of mean expression
of positive and negative cells, displayed are the top 10 genes
with the highest fold change. DiffExpTest-method was used for
the statistical analysis of differential expressed genes [34]. The
single cell RNA sequencing data reported in this paper have
been deposited in the Gene Expression Omnibus (GEO) database,
https://www.ncbi.nlm.nih.gov/geo (accession no. GSE131365).

Analysis of stromal communication genes

For the analysis of stromal communication genes, a set of 108
genes were derived from literature (Supporting Information 1A).
Out of these, 37 were detected as variable and used for t-SNE
(Fig. 3A). Cluster stability was analyzed using random t-SNEs
as well as Consensus Clustering as described by Kiselev and col-
leagues [21]. 1000 random t-SNEs were generated based on 80%
of cells, using random seeds for both t-SNE and cell sampling. Clus-
ters within each t-SNE were determined by density-based cluster-
ing (DBSCAN) as implemented in the java Apache Commons Math-
ematics Library “common.math3-3.4.1”, using Euclidian-Distance,
minimum number of 10 cells for a cluster and an average distance
to the tenth’ neighbor as the Epsilon-neighburhood. The consensus
was defined as the ratio of co-occurrence of two cells in the same
cluster and same random t-SNEs. Hierarchical clustering of cells
was performed based on complete linkage and Euclidian Distance.
Main clusters were defined by cutting the tree at 95% of its height,
leading to 24 Clusters with more than 10 cells (Supporting Infor-
mation 3A). Cluster stability is visualized by Silhouette-Plot (Sup-
porting Information 3B). Markers for clusters were determined
by the area under the receiver operating curve (AUC) based on
the expression of the respective gene. Markers were defined by
a threshold of AUC > = 0.95 (Supporting Information Fig. 3C).
All markers were statistically significant with p-values < = 2.E-
8 as determined by the Mann–Whitney-U-Test. The Consensus
Clustering was performed for 2 to 50 expected clusters in default
settings but disabling gene-filtering [21]. The optimal number of
clusters was defined by the highest mean average silhouette width
discarding clustering 2, 3 and 4 after visual inspection of the con-
sensus matrix (Supporting Information Fig. 4A-C). Markers for the
Consensus-Clusters were defined by AUC > = 0.95.
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Proinflammatory type 1 T helper (Th1) cells are enriched in inflamed tissues and contribute

to the maintenance of chronic inflammation in rheumatic diseases. Here we show that

the microRNA- (miR-) 31 is upregulated in murine Th1 cells with a history of repeated

reactivation and in memory Th cells isolated from the synovial fluid of patients with

rheumatic joint disease. Knock-down of miR-31 resulted in the upregulation of genes

associated with cytoskeletal rearrangement and motility and induced the expression of

target genes involved in T cell activation, chemokine receptor– and integrin-signaling.

Accordingly, inhibition of miR-31 resulted in increased migratory activity of repeatedly

activated Th1 cells. The transcription factors T-bet and FOXO1 act as positive and

negative regulators of T cell receptor (TCR)–mediated miR-31 expression, respectively.

Taken together, our data show that a gene regulatory network involving miR-31, T-bet,

and FOXO1 controls the migratory behavior of proinflammatory Th1 cells.

Keywords: CD4, miR-31, miRNA, target identification, T cell migration, Th1 cells, regulatory networks, antagomirs

INTRODUCTION

Chronic synovial inflammation in rheumatoid arthritis (RA) is dependent on the migration and
retention of T cells (1). Proinflammatory type 1 Th (Th1) cells are particularly enriched in the
inflamed joints of patients with RA (2, 3). These cells express the transcription factor TWIST1,
a hallmark of Th1 cells which have undergone repeated rounds of reactivation (4). TWIST1
limits inflammation (4) and, at the same time, promotes the survival of Th1 cells in inflamed
tissues by up-regulating the microRNA (miR)-148a which targets the pro-apoptotic protein Bim
(5, 6). This is in accordance with the observation that T cells isolated from inflamed joints are
resistant to apoptosis (7) and persist in inflamed tissues despite state-of-the-art immunosuppressive
therapies (4).

While trafficking of proinflammatory Th1 cells to sites of inflammation is well-characterized
[reviewed in Mellado et al. (1)], the molecular mechanisms mediating their retention within
inflamed tissues remain unclear. For CD4+ T cells, this retention has been associated with
chemokine receptor-, integrin-, and T cell receptor (TCR)-signaling that affect cell adhesion
and motility (8–10). Generally, cell motility depends on the rearrangement of the actin
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cytoskeleton. In T cells, this is mediated by a crosstalk of several
signal transduction cascades including the phosphoinositide
3-kinase- (PI3K) signaling pathway activated via TCR and
G-protein-coupled receptors (GPCRs), integrin signaling and
the Ras homolog gene family- (Rho-) GTPases (11). It has
been shown, that microRNAs interfering with these pathways
are able to modulate the motility of lymphocytes (12–14).
Thus, microRNAs might contribute to the persistence of
proinflammatory Th1 cells in the inflamed tissues, by moderately
and coordinately suppressing several genes involved in these
signal transduction pathways (15).

Here we have identified the microRNA-31 (miR-31) as
regulator of migration in Th1 cells in vitro. MiR-31 is selectively
and highly expressed in repeatedly activated murine Th1 cells
and effector memory Th cells isolated from the synovial fluid
of patients suffering from RA. MiR-31 targets a set of genes
interfering with PI3K-, Rho-GTPase-, and integrin-signaling.
Repeatedly activated Th1 cells expressing high levels of miR-
31 showed significantly reduced migration toward CXCL10
compared to Th1 cells activated only once and expressing
low amounts of miR-31. Migration of repeatedly activated Th1
cells could be restored by miR-31 inhibition using antagomirs.
Expression of miR-31 was dependent on TCR activation,
interferon (IFN-) γ and the Th1 master transcription factor
T-bet. In contrast, the transcription factor Forkhead box
protein O1 (FOXO1) inhibited miR-31 expression directly or by
repressing T-bet and IFN-γ.

Thus, miR-31 controls the motility of proinflammatory Th1
cells in vitro. The same mechanism might also contribute to the
retention of inflamed tissue resident Th cells expressing high
levels of miR-31, as observed in RA.

MATERIALS AND METHODS

Mice
C57BL/6, BALB/c, OTII, and Tbx21−/− mice were purchased
from Charles Rivers and/or bred and kept under specific
pathogen-free conditions at the internal animal facility of the
DRFZ. Mice were treated conformable to law and euthanized
by cervical dislocation. All experiments were approved by the
federal state institution “Landesamt für Gesundheit und Soziales”
(T0192/10) in Berlin, Germany.

Cell Culture
CD4+CD62Lhi (naïve) or CD4+ lymphocytes from spleens and
lymph nodes of 6- to 10-weeks old mice were isolated and
purified as described (16). In brief, CD4+ cells were labeled with
αCD4-FITC (GK1.5, DRFZ) followed by Magnetic Cell Sorting
(MACS) with αFITC microbeads (Miltenyi Biotec). Subsequent
purification of CD4+CD62Lhi cells was achieved using αCD62L
microbeads (Miltenyi Biotec). Unless stated otherwise, cells
were cultured in “RPMI complete medium” (supplemented with
10% fetal calf serum (FCS), 100 units/ml penicillin, 0.1 mg/ml
streptomycin and 10µM β-mercaptoethanol). To generate Th1,
Th2, and Th17 lineage, CD4+CD62Lhi cells from OTII mice
were cultured (1:5) with irradiated (30Gy), CD90.2 depleted
splenocytes (as antigen presenting cells; APCs) in the presence of

OVA323−339 (0.5mM) in one of the following polarization media:
RPMI complete medium supplemented with IL-12 (5 ng/ml,
R&D Systems) and αIL-4 (10µg/ml, 11B11) for Th1, IL-4
(100 ng/ml, culture supernatant of HEK293 cells transfected
with murine IL-4 cDNA), αIFN-γ (10µg/ml, XMG 1.2), and
αIL-12 (10µg/ml C17.8) for Th2 and TGF-β1 (1 ng/ml, R&D
Systems), IL-6, IL-23 (20 ng/ml, R&D Systems), αIL-4, and αIFN-
γ for Th17 differentiation (5). For the generation of repeatedly
activated Th (rep) cells, viable cells were separated by density
gradient centrifugation using Histopaque 1083 (Sigma Aldrich)
and reactivated in corresponding polarization medium with
freshly isolated APCs every 6 days for three times consecutively
(5). For Th1 culture, IL-2 (10 ng/ml, R&D Systems) was
added from the second stimulation on. Cells from C57BL/6,
BALB/c and Tbx21 were cultured (1 × 106 cells/ml) in Th1
polarization medium with IL-2 and activated with plate-bound
αCD3 and αCD28 (3µg/ml, BD). Unless stated otherwise,
cells were removed from the stimulus 48 h post activation and
transferred into new cell culture plates. TGF-β1 (5 ng/ml,) or
IFN-γ (10 ng/ml, R&D Systems) was added where needed.

Patient Material
T helper cells were isolated from the synovial fluid of patients
suffering from RA or peripheral blood of healthy donors
(HC) as described (5, 17). In brief, cells from RA patients
were depleted for CD15+ cells using MACS. Afterwards,
CD3+CD4+CD14−CD45RO+ cells were labeled and purified by
Fluorescence Activated Cell Sorting (FACS). All gating strategies
were performed according to the guidelines for the use of flow
cytometry and cell sorting (18). Cells from the blood of HC were
separated by density gradient centrifugation using LSM 1077,
and purified by FACS as described above. If needed, cells were
restimulated with PMA/Ionomycin for 3 h and/or lysed in TRIzol
(Invitrogen). All human studies were approved by the Charité
ethical committee and the informed consent of all participating
subjects was obtained.

Retroviral Transfection and Transduction of
T Cells
Viral supernatant was obtained by calcium phosphate
cotransfection of HEK293 cells with plasmids for ectopic
expression of a constitutive active form of FOXO1 (pMIT-
FOXO1A3) or the empty control (pMIT) (19) together with
the retroviral packaging plasmids pCGP and the envelope
plasmid pECO. Medium was replaced after 4 h with DMEM
complete medium supplemented with HEPES (20mM). Viral
supernatant was collected 24 h−72 h later and stored at −80◦C.
For the transduction of CD4+ T cells from C57BL/6 mice,
Th1 polarization medium was removed 36–40 h post activation
and the viral supernatant supplemented with polybrene
(8µg/ml) was added followed by centrifugation for 1.5 h at
32◦C and 1,800 rpm. After 1 h of incubation at 37◦C and 5%
CO2, viral supernatant was replaced with the former culture
supernatant. Forty-eight hours post transduction, cells were
labeled with αThy1.1-PE (OX-7, BioLegend) and enriched by
MACS using αPE microbeads (Miltenyi Biotec) according to the
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manufacturer’s recommendations. Enrichment efficiency was
controlled by flow cytometry (Supplementary Figure 5).

Inhibition of MiR-31 by Antagomir
Treatment
Specific, highly modified, cholesterol-coupled antagomir
oligonucleotides (custom synthesized by Dharmacon)
(20) were purchased lyophilized and reconstituted as
described (21). A miR-31 specific Antagomir-31 (5-
mC(∗)mA(∗)mGmCmUmAmUmGmCmCmAmGmCmAmUm
CmUmUmG(∗)mC(∗)mC(∗)mU(∗)-3-Chol) and an unspecific
Antagomir-SCR control (5-mU(∗)mC(∗)mAmCmGmCmAmG
mAmUmUmCmAmUmAmA(∗)mC(∗)mG(∗)mU(∗)-3-Chol)
were used. Modifications: 2-O-methyl-ribonucleotides (mN),
phosphorothioates in the backbone (∗) and a cholesterol
molecule (Chol) at the 3′end.

Repeatedly activated Th1 (Th1 rep) cells were treated
(5 × 106 cells/ml) in serum-free siRNA delivery medium
(ACCELL, Dharmacon) containing Antagomir-31 or Antagomir-
SCR (1µM) for 1.5 h at 37◦C and 5% CO2. Cell suspension was
diluted (1:5) with Th1 polarization medium and reactivated with
plate-bound αCD3 and αCD28 (3µg/ml). Inhibition efficiency
was assessed by qRT-PCR.

Inhibition of FOXO1 and FOXO3 by siRNA
Treatment
A pool of 8 ACCELL siRNAs specific for Foxo1 and Foxo3 (4
siRNAs each, Dharmacon) was used to decrease the expression
of Foxo1 and Foxo3 mRNAs. Th1 rep cells (two rounds of
restimulation) (1 × 107 cells/ml) were treated with a mixture
of this particular 8 siRNAs (0.25µM each) or an unspecific
siSCR control (2µM) in serum free siRNA delivery medium
(ACCELL, Dharmacon). After 2 h of incubation at 37◦C and 5%
CO2, cell suspension was diluted (1:1) with RPMI medium (final
concentrations: 2.5% FCS, 10µg/ml aIL-4, 5 ng/ml IL-12 and
10 ng/ml IL-2) and cells were activated with plate-bound αCD3
and αCD28 (3µg/ml).

Adhesion Assay
A high binding 96-well plate (Corning) was coated with ICAM-
1 (R&D Systems) or IgG1 FC (R&D Systems) (10µg/ml) for
2 h at 37◦C. Non-specific binding was blocked with adhesion
buffer (HBSS Ca2+ Mg2+ supplemented with 1% BSA) for 1 h
at 37◦C. Th1 rep cells were washed twice with PBS, resuspended
in pre-warmed, equilibrated adhesion buffer (2 × 106 cells/ml)
and starved for 1 h at 37◦C and 5% CO2. PMA (10 ng/ml),
Ionomycin (1µg/ml) and CXCL10 (100 ng/ml, Immunotools)
were added 10min before the cell suspension was transferred into
the coated wells (50 µl/well). Forty-five minutes after incubation
and adhesion at 37◦C and 5% CO2, the plate was washed 4
times with 250 µl warm adhesion buffer using an ELX washer
according to the manufacturers recommendations. Adherent
cells were detached with ice cold PBS/BSA/EDTA and counted
using a MACSQuant (Miltenyi Biotec).

Transwell Migration Assay
T helper cells were starved in RPMI supplemented with 0.5%
fatty acid free BSA (Sigma Aldrich) (migration medium, 4–8 ×

106 cells/ml) for 1 h at 37◦C and 5% CO2. Fifty microliters of the
cell suspension, containing 2–4× 105 cells were transferred onto
an ICAM-1 (10µg/ml) coated membrane (5µm pore size) in
the upper well of a transwell plate (Corning). For transmigration
toward the lower well containing 200 µl migration medium
supplemented with CXCL10 (100 nM), cells were incubated for
2 h at 37◦C and 5% CO2. The number of transmigrated cells was
assessed by a MACSQuant.

RNA Isolation and qRT-PCR
Unless stated otherwise, all kits were used according to
the manufacturer’s recommendations. Total RNA was isolated
using ZR RNA MiniPrepTM kit (Zymo Research). Expression
values of mature miR-31 (hsa-miR-31, ThermoFisher, assay
ID 002279; mmu-miR-31, assay ID 000185) and U6 snRNAs
(assay ID 001973) were assessed by qRT-PCR using TaqMan
Assays following cDNA synthesis with MircoRNA Reverse
Transcription kit. For analysis, expression values of miR-31
were normalized by the change-in-threshold method (2−1CT) to
values of obtained from snU6.

Expression values of mRNAs were assessed by SYBR
Green based qRT-PCR (Roche) using the following primer
pairs: hypoxanthine guanine phosphoribosyltransferase (HPRT)
forward 5′-TCCTCCTCAGACCGCTTTT-3′, HPRT reverse 5′-
CATAACCTGGTTCATCATCGC-3′, Tbx21 forward 5′-TCC
TGCAGTCTCTCCACAAGT-3′, Tbx21 reverse 5′-CAGCTG
AGTGATCTCTGCGT-3′, FOXO1 forward 5′-CGGGCTGGA
AGAATTCAATTC-3′, FOXO1 reverse, 5′-AGTTCCTTCATT
CTGCACTCGAA-3′. Alternatively mRNA was quantified by
qRT-PCR based TaqMan Assays (ThermoFisher) using the
following assays: ABLIM1 Mm01254316_m1, CD28 Mm0
1253994_m1, CD69 Mm01183378_m1, CDC42 Mm01194005
_g1, EIF4EBP2 Mm00515675_m1, FOXO1 Mm00490671_m1,
FOXO3 Mm01185722_m1, HPRT Mm03024075_m1, INFG
Mm01168134_m1, KLF2 Mm01244979_g1, LATS2 Mm00497
217_m1, LPP Mm00724478_m1, PPP2R2A Mm01317426_g1,
PPP3CA Mm01317678_m1, Pri-miR-31 Mm03306874, RAC1
Mm01201653_mH, RHOA Mm00834507_g1, SELL Mm00441
291_m1, STK40 Mm00512134_m1, and YWHAE Mm004942
42_m1.

In both cases, reverse transcription was performed using the
Reverse Transcription kit (Applied Biosystems). For analysis,
expression values were normalized by the change-in-threshold
method (2−1CT) to values of obtained from Hprt.

Intracellular Staining
Prior to intracellular transcription factor staining, dead cells
were labeled with fixable viability dye aqua (Thermofisher).
Cells were fixed and stained at room temperature using the
FoxP3/Transcription Factor Staining kit (eBioscience) according
to the manufacturer’s recommendations with fixing and staining
times of 1 h each. The following antibodies were used: T-Bet-PE
(4B10, BioLegend) and FoxP3-eF450 (FJK-16s, eBioscience).
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Next Generation Sequencing and
Determination of mRNA/miR-31 Binding
Sites
RNA of Th1 cells after four rounds of restimulation was isolated
using the RNeasy Micro kit (Qiagen) and cDNA libraries from
a maximum of 100 ng total RNA were prepared using the
Tru-Seq Standard Total RNA Library kit (Illumina) according
to the manufacturer’s recommendations. Quality control was
performed with a bioanalyzer using the RNA 600 Pico Kit and
RNAwith a RIN> 8 was used for library preparation. Paired-end
sequencing (2× 75 nt) was performed on a NextSeq500 Illumina
device using the NextSeq500/550 Mid output kit v2 (150 cycles).
Raw sequence reads were mapped to mouse GRCm38/mm10
genome using TopHat2 (22) in very-sensitive settings for
Bowtie2 (23). The total RNA-sequencing data reported in this
paper have been deposited in the Gene Expression Omnibus
(GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession
no. GSE122218).

A set of 421 conserved putative mir-31 target genes
(PTs) was determined using TargetScanMouse 7.1 (24) (413
genes) and augmented by genes found in literature (8 genes)
(Supplementary Table 1). To further delimitate the putative
targets in Th1 cells the maximal ratio between the coverage of
miR-31 binding regions in the 3′-UTR and the median coverage
in exons were computed (also see Figure 2A). If multiple miR-31
bs within the 3′-UTR of one gene were present, the bs with the
highest ratio was included.

Determination of the miR-31 TSS and
Promoter Analysis
The putative transcription start site (TSS) was determined by
visual inspection of the RNA-Seq coverage of the genomic
region upstream of the mmu-miR-31 stem loop locus (mirBase:
chr4:88910557-88910662) and compared to published RNA-Seq
data from CD8+ T cells (25) using IGV-Browser (26, 27).
The respective promoter region was determined visually by the

analysis of p300 (28), H3K4me3, and H3K27me3 (29) ChIP-
seq data of murine Th1 cells using the Cistrome database
(30). Putative binding sites for the transcription factors T-
Bet, STAT1, STAT4, and FOXO1 within the promoter region
were predicted by ECR Browser (31) based on TRANSFAC
professional library V10.2 (32) with a matrix similarity of 0.75.
Predicted sites were validated by the respective ChIP-Seq data
using Cistrome database (30) for p300 (28), H3K4me3 and
H3K27me3 (29), STAT1 (28), STAT4 (33), T-bet (34), and
FOXO1 (35).

Microarray Analysis After miR-31
Antagonism
Microarray experiments were performed according to Niesner
et al. (4). In brief, Th1 rep cells were treated with Antagomir-
31 or Antagomir-SCR and RNA was extracted 36, 48, and
72 h after antagomir treatment and the RNA quality were
controlled as described above. Ten micrograms of the RNA
were reverse transcribed and hybridized to Mouse 430_2
(Affymetrix). Raw signals were processed by the affy R
package using RMA for normalization to quantify gene
expression and MAS5 to determine the present and absent
genes (37). Genes present in at least 50% of the Antagomir-
31 or Antagomir-SCR treated samples at different time
points were defined to be expressed and these genes were
used for the follow-up analysis. The Affymetrix microarray
data reported in this paper have been deposited in the
GEO database, https://www.ncbi.nlm.nih.gov/geo (accession no.
GSE122223).

Subramanian et al. (38), Mootha et al. (39) with PT and
PT50 as gene sets were performed with parameters as shown in
Supplementary Table 2d. The significance of higher enrichment
of the PT50 over the PT set was evaluated by the Welch’s test
of nominal enrichment scores (NES)s from 1,000 independent
GSEA’s each using a randomly chosen subset of PT with sizes
equal to the size of the PT50 set.

FIGURE 1 | MiR-31 is upregulated in murine Th1 rep cells, and in memory Th cells from the synovial fluid of RA patients. (A) MiR-31 expression in once (day 6) and

repeatedly (three rounds of restimulation with 6 day intervals) activated Th1, Th2, Th17, and ex vivo isolated naive CD4+ cells normalized to snU6 determined by

qRT-PCR. Each data point represents an independent experiment (n = 12 [naive and Th1], 5 [Th2], 4 [Th17]) (Wilcoxon-Test for paired data, ***p ≤ 0.001). (B) MiR-31

expression normalized to snU6 in CD3+CD4+CD14−CD45RO+ T cells isolated from the synovial fluid of patients suffering from RA or blood from healthy control (HC)

donors ex vivo or after 3 h of restimulation with PMA/ionomycin (P/I) (n = 5 RA; n = 4 HC) determined by qRT-PCR. Each data point represents an individual donor,

horizontal bar: median (Mann-Whitney test for unpaired data, *p ≤ 0.05).
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For the evaluation of the biological function of miR-31 a
GSEA was performed based on KEGG pathways with the same
parameters as before. The interaction network was build based
on STRING v10.5 using mus musculus as host organism. Only
validated interactions were included using “low confidence”
for experimentally and “high confidence” for database based
interactions. The resulting network was arranged and modified
manually for interpretation using the Cytoscape application (36).
Genes were added to complete TCR- (Cd3d, Cd3e, Cd3g, Lcp2,
Zap70, Nck1, and Nck2) and GPCR- (Cxcr3, Gnai1, Gnai2, and
Gnai3) signaling. Genes without interactions were removed.

Statistics
Unless stated otherwise, the Mann–Whitney test for unpaired
data was used with ∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001.
Statistical analysis was performed with GraphPad Prism 5.02.

RESULTS

MiR-31 Is Upregulated in Repeatedly
Activated Th1 Cells and in Synovial Fluid
Th Cells From Patients With Rheumatoid
Arthritis
As miR-31 has been shown to be expressed in CD4+ (40) and
CD8+ T cells upon TCR stimulation (25), we aimed to investigate
miR-31 expression after repeated antigenic TCR stimulation of
murine Th1- cells and in memory Th cells isolated from the
inflamed tissue of RA patients. With the rational that Th cells
involved in chronic inflammation have a history of repeated
restimulation with persistent (auto-) antigens, we once (Th
once) or repeatedly activated (Th rep) type 1 (Th1), type 2
(Th2), and type 17 (Th17) lymphocyte subsets (5) and analyzed
the expression pattern of miR-31. MiR-31 was expressed in all
investigated Th subsets, but was selectively upregulated (3.2-fold)
in Th1 rep cells (Figure 1A). CD3+CD4+CD14−CD45RO+

memory Th cells isolated from the synovial fluid of patients with
RA expressed 8.4-fold (ex vivo) and 4.9-fold (after restimulation
with PMA/ionomycin) higher levels of miR-31 when compared
to their counterparts isolated from the peripheral blood (PB) of
healthy subjects (HC) (Figure 1B). Thus, miR-31 was similarly
upregulated in inflamed tissue derived Th cells of RA patients
and in murine Th1 rep cells, suggesting a comparable function
of miR-31 in these cell types.

A Subset of Putative MiR-31 Target Genes
Is Significantly Upregulated After MiR-31
Antagonism
Next, we aimed to identify putative miR-31 target genes in Th1
rep cells to investigate the regulatory impact of miR-31. We
used TargetScanMouse7.1 (24) in combination with a literature
screen to define a list of 421 putative targets (PTs) of miR-31,
mainly based on phylogenetic conservation of miR-31 binding
sites (bs) and on published targets (Supplementary Table 1).
It has been described that activated and proliferating Th cells
express mRNAs with shortened 3′ untranslated regions (3′-
UTRs) resulting in fewer microRNA target sites (41). To analyze

whether the defined PTs contain miR-31 bs within their 3′-UTR
in the Th1 rep cells, we performed high throughput sequencing
of total RNA (RNA-seq) from resting Th1 rep cells (Figure 2A)
and determined the presence of the miR-31 bs in relation to the
presence of the protein coding exons. A high ratio of miR-31
bs expression to the median exon expression of the respective
transcript would indicate a high probability for miR-31 bs to be
present. Of the 421 PTs, 282 were expressed in Th1 rep cells. One
hundred thirty-four of them had a miR-31 bs to exon ratio > 0.9,
72 between 0.5 and 0.9, and 76 a ratio < 0.5. For 139 PTs no
transcripts were detectable (Figure 2B). Hence, 206 PTs harbor
at least one miR-31 bs in more than 50% of the expressed mRNA
molecules (PT50) in Th1 rep cells (Figure 2B). To validate the
predicted target genes of miR-31, we activated Th1 rep cells with
anti-CD3- and anti-CD28-antibodies (αCD3/28), concurrently
inhibiting miR-31 with a specific antagomir (Antagomir-31)
(21). The expression levels of the putative miR-31 targets were
quantified by global transcriptome analysis 36, 48, and 72 h
following T cell activation and antagomir treatment. MiR-31
expression was significantly reduced by 99% by Antagomir-31
treatment for a period of 72 h after reactivation when compared
to Th1 rep cells treated with a control antagomir (Antagomir-
SCR) (Figure 2C). No significant enrichment of PT or PT50

was observed 36 and 48 h after miR-31 inhibition by gene
set enrichment analysis (GSEA). However, after 72 h both PT
and PT50 gene sets were significantly enriched compared to
Antagomir-SCR treated controls (NES 1.25; p ≤ 0.017 for PT
and NES 1.34; p ≤ 0.033 for PT50) (Figure 2D), showing even
higher enrichments for the PT50 subset (p ≤ 0.001) (Figure 2E).
Of note, 92 of 206 genes showed a positive correlation (rank
metric score > 0) after miR-31 knock-down and thus were
responsible for the higher enrichment score obtained for PT50

(Supplementary Table 2a). By using our novel miRNA target
identification approach, which includes the gene expression
pattern of the putative targets and the presence of miRNA bs
within the their 3′UTRs in a specific cell type, we could increase
the identification rate of genes which were affected by miRNA
inhibition. Thus, the identified genes are most likely direct target
genes of the analyzed miRNA, here miR-31.

MiR-31 Targets a Set of Motility Related
Genes in Th1 Rep Cells
In order to elucidate the biological function of miR-31 in
Th1 rep cells, we performed a GSEA after miR-31 antagonism
based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (42). Here, we focused on 72 h after antagomir
treatment, since we observed an exclusive significant enrichment
of putative miR-31 targets at this time (Figure 2D). We identified
two gene sets as significantly enriched in Th1 rep cells treated
with Antagomir-31 as compared to the Antagomir-SCR treated
control: “Phosphatidylinositol 3-kinase signaling system” (40
genes, p = 0.01; NES = 1.59) and “Regulation of actin
cytoskeleton” (108 genes, p = 0.03; NES = 1.36) (Figure 3A
and Supplementary Tables 2b,c). Since PI3K signaling is part
of the network that regulates the actin cytoskeleton (11), we
focused on the gene set “Regulation of actin cytoskeleton”
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FIGURE 2 | Significant upregulation of miR-31 targets after knock-down of miR-31. (A) Schematic overview of the method to determine the fraction of putative

miR-31 target mRNA molecules that contain at least one miR-31 bs in their 3′-UTR. Depicted is the coverage (black bars, middle row) of n exons and the 3′-UTR

(upper row) containing the miR-31 bs (indicated in blue). The ratio is calculated from the median coverage of the exons and the coverage of the miR-31 bs in the

3′-UTR (bottom row). (B) 421 putative miR-31 targets were grouped according to the ratio determined in (A). (C) MiR-31 expression in Th1 rep cells 24, 48, and 72 h

after activation with αCD3/28 and treatment with Antagomir-31 or Antagomir-SCR normalized to snU6 determined by qRT-PCR. Data is shown as mean +SEM,

n = 11, pooled from five independent experiments (Mann-Whitney test for unpaired data, ***p ≤ 0.001). (D) GSEA with the PT- and PT50- gene-sets and the

transcriptome data of Th1 rep cells 36, 48, and 72 h after activation with αCD3/28 and treatment with Antagomir-31 or Antagomir-SCR. Data is shown as enrichment

curves with each putative target gene (PT, black; PT50, green) in ranked order from most upregulated (left) to most downregulated (right). Nominal p-values are

depicted in the figure. (E) Welch’s test of nominal enrichment scores (NES) from 1,000 independent GSEA’s each using a randomly chosen subset of PT with sizes

equal to the size of the PT50 set, p-value is depicted in the figure.
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FIGURE 3 | MiR-31 targets a set of genes involved in cytoskeletal rearrangement and miR-31 inhibition increases the motility of Th1 rep cells. (A) GSEA of the

transcriptome data obtained from Th1 rep cells 72 h after activation with αCD3/28 and treatment with Antagomir-31 or Antagomir-SCR with the KEGG-pathway

database (v. 6.0) used as source for gene-sets. Data of two significantly enriched gene-sets is shown as enrichment curves with all genes in ranked order from most

(Continued)
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FIGURE 3 | upregulated (left) to most downregulated (right). Nominal p-values are depicted in the figure. (B) Network of validated functional interactions among

positively correlated miR-31 targets (green rimmed; Figure 2D) and the genes defining the gene set “regulation of actin cytoskeleton” (red). The resulting network was

adapted to T cells (also see methods). Genes without interactions are not included. (C) QRT-PCR of target mRNA expression in reactivated Th1 rep cells 72 h after

antagomir treatment relative to Hprt and normalized to Antagomir-SCR treated control. Data is shown as mean +SEM, n = 12 (for Lats2, RhoA, Stk40, Ywhae) pooled

from four independent experiments, or n = 6 (for Ablim1, Cd28, Cdc42, Eif4ebp2, LPP, Ppp2r2a, Ppp3ca, Rac1) pooled from two independent experiments

(Mann-Whitney test for unpaired data, **p ≤ 0.01, *p ≤ 0.05). (D,E) Transwell migration assays with an ICAM-1 coated membrane (10µg/ml) and CXCL10 (100 ng/ml)

in the lower compartment for once and repeatedly activated Th1 cells, 72 h after reactivation with αCD3/28 (D) and Th1 rep cells, 72 h after antagomir treatment and

reactivation with αCD3/28 (E), assessed by flow cytometry, normalized to inserted cell number. Data is shown as mean +SEM, n = 16–18 pooled from four

independent experiments (Mann-Whitney test for unpaired data, ***p ≤ 0.001).

in our follow-up analyses. We evaluated the connection of
the 92 positively correlating, putative direct miR-31 targets
with the 108 genes involved in the regulation of the actin
cytoskeleton by creating a network of validated interactions using
the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) (43) (Figure 3B). The resulting network shows the
interactions between the PI3K-, Rho-GTPase- and integrin-
signal transduction pathways and 41 of the 92 identified putative
direct miR-31 targets. In Th1 cells the PI3K- pathway is
addressed by TCR- and GPCR-signaling [here as an example
CXC motif chemokine receptor (CXCR) 3], which is why
we additionally integrated these factors into the network (for
detailed description see methods). To validate some putative
miR-31 targets from the identified network (Figure 3B) on
mRNA level, we measured the expression of 9 candidates after
miR-31 antagonism by qRT-PCR. All 9 putative target genes were
significantly upregulated 72 h after Antagomir-31 treatment by
10 to 50% compared to Th1 rep cells treated with Antagomir-
SCR (Figure 3C). The Rho-GTPases RHOA (Ras homolog gene
family, member A), RAC1 (Ras-related C3 botulinum toxin
substrate 1) and CDC42 (Cell division control protein 42
homolog) are key mediators of the cytoskeletal rearrangement
and thus motility of T cells (11). Compared to Antagomir-
SCR treated controls, Th1 rep cells treated with Antagomir-
31, showed an upregulation of RhoA and Rac1 by ∼8 and
∼10%, respectively. In contrast, Cdc42 remained unchanged
(Figure 3C). Thus, miR-31 indirectly regulates the expression
of at least two of the central components for cytoskeletal
rearrangement via its putative direct targets. Based on the
network analysis we hypothesized that miR-31 might affect the
adhesion and/or the motility of Th1 cells induced by the TCR-,
chemokine receptor- and integrin-signaling.

MiR-31 Antagonism Increases the Motility
of Repeatedly Activated Th1 Cells
To test the potential impact of miR-31 function on the
rearrangement of the actin cytoskeleton, we assessed the adhesion
of Th1 rep cells restimulated with PMA/ionomycin in the
presence of CXC motif chemokine (CXCL) 10 and Intracellular
Adhesion Molecule 1 (ICAM-1), i.e., the respective ligands for
CXCR3 and Lymphocyte function-associated antigen 1 (LFA-
1), both of which are expressed on Th1 rep cells (44, 45).
We observed an increase of ∼40% in adherent Th1 rep cell
number after inhibition of miR-31. Of note, this effect could
only be observed in the presence of PMA/ionomycin, ICAM-
1 and CXCL10 together (Supplementary Figure 1), which also
mimics the milieu of inflamed tissues (46). To examine whether

miR-31 also regulates the motility of Th1 rep cells, we tested
the migration of Th1 rep through an ICAM-1 coated membrane
toward CXCL10 in an in vitro transwell migration assay,
in which Th1 rep cells migrated ∼50% less than Th1 once
cells (Figure 3D). This reduced migratory capacity of Th1 rep
cells was partly rescued by Antagomir-31 treatment which
significantly increased the migration of Th1 rep cells by ∼30%
compared to Antagomir-SCR treatment (Figure 3E).

The PI3K-, Rho-GTPase- and integrin- signal transduction
pathways which we identified to interact with target genes of
miR-31 are also linked to T cell activation and thus T cell
expansion and effector function. However, no differences in
absolute cell numbers and the cytokine production of Th1 rep
cells after antagomir treatment and reactivation with αCD3/28
could be detected as compared to Antagomir-SCR treated cells
(Supplementary Figure 2).

MiR-31 Is Induced by TCR Signaling in Th1
Cells
To investigate the induction of miR-31 during Th1
differentiation, we stimulated naive CD4+ T cells with αCD3/28
for 4 days in the presence of Th1 polarizing conditions, i.e.,
IL-12 and anti-IL-4 blocking antibodies. Compared to naive
CD4+ T cells, the expression of mature miR-31 was 5-fold
upregulated 3 h post activation (p.a.) and further increased
15-fold at 24 h p.a (Figure 4A). Subsequently, miR-31 expression
remained stable until day 3 and significantly decreased again
by 30% until day 4 p.a. (Figure 4A). In contrast, resting Th1
rep cells already exhibited ∼100-fold higher expression than
naive Th cells, which did not increase until day 1 after αCD3/28
activation (Figure 4A). Thereafter, Th1 rep cells maintained high
levels of miR-31 throughout the remainder of the observation
period until day 4 p.a. (Figure 4A). These results suggest
that the induction of miR-31 during the initial phase of Th1
differentiation occurs via TCR signaling, whereas in Th1 rep cells
additional mechanisms might be involved in the upregulation of
miR-31.

The Primary miR-31 Transcript in Th1 Cells
Consists of 3 Exons and Its Genomic
Locus Contains Th1 Specific Transcription
Factor Binding Sites in the Putative
Promoter Region
To understand the transcriptional regulation of miR-31 in Th1
cells, we first determined the transcriptional start site (TSS)
for the primary miR-31 transcript using total RNA-seq data
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FIGURE 4 | TCR/CD28 induced expression of mir-31 is increased by T-Bet and IFN-γ. (A) MiR-31 expression kinetics normalized to snU6 after the first activation of

naive CD4+ (left panel) or reactivation of Th1 rep cells (right panel) with αCD3/28, presented relative to values obtained from naive CD4+ cells ex vivo, determined by

qRT-PCR. Data is shown as mean ±SEM, n = 8–12 pooled from 3 to 4 independent experiments (One-way Anova with Mann-Whitney test for unpaired data,

*p ≤ 0.05, **p ≤ 0.01). (B) RNA-Seq coverage of the miR-31 gene locus in Th1 rep cells (upper row) and analysis of published ChIP-seq data from Th1 cells for p300

(28), H3K4me3 and H3K27me3 (29) using the Cistrome Browser (lower row). (C) Analysis of the putative promoter region as determined in (B) using published

ChIP-Seq data obtained from Th1 cells for T-Bet (34), STAT1 (28), and STAT4 (33) and from naive CD4+ T cells (35), as well as predicted conserved binding sites for

these transcription factors obtained from ECR Browser. (D) Schematic overview of the murine miR-31 gene locus and the resulting primary transcript as analyzed in

(B). (E) MiR-31 expression normalized to Hprt in naive CD4+ cells activated with αCD3/28 in Th1 polarizing conditions for 48 h ± IFN-γ (10 ng/ml), presented relative

to values obtained from naive CD4+ cells ex vivo determined by qRT-PCR. Data is shown as mean ±SEM, n = 4–8 pooled from two independent experiments

(One-way Anova with Dunn’s test for multiple comparison, **p ≤ 0.01).

from Th1 rep cells. The putative TSS of the murine primary
miR-31 transcript is located approximately at chromosomal
position mm10:chr4:88,938,478 and spans an intergenic region
of ∼28.6 kb (Figures 4B,D), which confirms the TSS previously
determined by homology analysis of mouse and man (25). The
primary transcript expressed by Th1 rep cells consists of 3

exons and has a size of ∼1,036 bp (Figure 4D). By reanalyzing
Th1 cell ChIP-seq (chromatin immunoprecipitation followed by
sequencing) data of p300 (28) and H3K4me3 (29) occupancy
using the Cistrome database (30), we observed enrichment
of p300 and H3K4me3 binding in close proximity of the
putative TSS (Figure 4B). Furthermore, we could identify a
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FIGURE 5 | FOXO1 represses T-bet and miR-31 in Th1 cells. (A) Correlation between miR-31 expression normalized to snU6 and Foxo1 expression normalized to

Hprt determined five times in 6 day intervals from naive to Th1 rep cells (qRT-PCR) (n = 15 from one experiment, p value is depicted in the figure). (B) Foxo1, Foxo3

and pri-miR-31 expression normalized to Hprt in repeatedly (two rounds of stimulation) activated Th1 cells, treated with a pool of 8 siRNAs specific for

(Continued)
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FIGURE 5 | Foxo1 and Foxo3 or a SI-SCR control, analyzed 48 h after siRNA treatment by qRT-PCR, presented relative to the SI-SCR control. Data is shown as

mean +SEM, n = 6 pooled from two independent experiments (Mann-Whitney test for unpaired data, *p ≤ 0.05, **p ≤ 0.01) (C) Klf2, Sell, Cd69 and pri-miR-31

expression normalized to Hprt in activated CD4+ cells transduced 36–40 h post activation with a retroviral vector expressing a constitutive active FOXO1 (FOXO1A3)

or an empty control vector (RV). Cells were cultured under Th1 polarizing conditions for additional 48 h. Expression was analyzed by qRT-PCR 48h post transduction

and is presented relative to RV. Data is shown as mean +SEM, n = 6 pooled from two independent experiments (Mann-Whitney test for unpaired data, **p ≤ 0.01)

(D) Representative intracellular protein staining and T-Bet protein expression in the samples analyzed in (C), presented as MFI of T-Bet, normalized to RV assessed by

flow cytometry. Data is shown as mean +SEM, n = 5–11 pooled from three independent experiments (Mann-Whitney test for unpaired data, **p ≤ 0.01). (E) Foxo1

expression normalized to Hprt in Th1 rep cells activated with αCD3/28 under Th1 polarizing conditions for 48 h ±TGFβ, presented relative to values obtained from

untreated Th1 rep cells determined by qRT-PCR. Data is shown as mean +SEM, n = 9 pooled from 3 independent experiments (Mann-Whitney test for unpaired

data, **p ≤ 0.01, ***p ≤ 0.001). MiR-31 expression normalized to snU6 in the same cells, presented relative to Th1 rep cells before reactivation assessed by

qRT-PCR. Data is shown as mean +SEM, n = 9 pooled from three independent experiments (One-way Anova with Dunn’s test for multiple comparison, *p ≤ 0.05,

***p ≤ 0.001). (F) Representative intracellular protein staining of Th1 rep cells activated with αCD3/28 under Th1 polarizing conditions for 48 h ±TGFβ and T-Bet

protein expression, presented as MFI of T-Bet, normalized to untreated Th1 rep cells. Data is shown as mean +SEM, n = 2–3 pooled from four independent

experiments (Mann-Whitney test for unpaired data, ***p ≤ 0.001). Ifng expression normalized to Hprt in the samples analyzed in (A), presented relative to RV. Data is

shown as mean +SEM, n = 6 pooled from two independent experiments (Mann-Whitney test for unpaired data, *p ≤ 0.05, **p ≤ 0.01). (G) Representative

intracellular FOXP3 protein staining of Th1 rep cells activated with αCD3/28 in Th1 polarizing conditions for 48 h ±TGF-β.

CpG island close to this site using USCS Genome Browser
(47) (Supplementary Figure 3). To identify transcription factors
(TFs), which regulate the transcription of miR-31 in Th1
cells, we performed an in silico promoter analysis in a region
±1.5 kb relative to the putative TSS (mm10:chr4:88937246-
88940346) using the Evolutionary Conservation of Genomes
(ECR) Browser (31). We identified a set of binding sites for TFs
important for Th1 differentiation, including Signal Transducer
And Activator Of Transcription (STAT) 1, STAT4, T-bet, and
FOXO1 (Figure 4C). Reanalysis of additional ChIP-seq data
sets showed STAT1 (28), STAT4 (33), and T-bet (34) in close
vicinity to the putative TSS of the primary miR-31 transcript
(Figure 4C). Since Foxo1 expression decreased after repeated
activation (Supplementary Figure 4), we also analyzed ChIP-Seq
data from naive CD4+ cells (35) and detected FOXO1-dependent
DNA enrichment in the putative miR-31 promoter region. Taken
together, we suggest that the expression of mir-31 in Th1 rep
cells might be upregulated by a positive feedback loop in a direct
or indirect fashion by the activation and induction of STAT1,
STAT4, and T-bet as well as the downregulation of FOXO TFs.

TCR Mediated miR-31 Expression in Th1
Cells Is Increased by T-Bet and the Effector
Cytokine IFN-γ
In order to validate that T-bet promotes the expression of miR-
31, naive CD4+ T cells isolated from Tbx21−/− or wildtype
(WT) mice were activated with αCD3/28 for 48 h under Th1
polarizing conditions. The induction of miR-31 expression was
diminished by ∼50% in activated Tbx21 deficient Th cells
compared to wild type cells (Figure 4E). MiR-31 induction after
Th cell activation could be increased to WT levels by adding
10 ng/ml recombinant IFN-γ (Figure 4E). In addition to the in
silico ChIP-Seq analysis, these data suggest that STAT1, STAT4,
and T-bet enforce the expression of miR-31 in differentiating Th1
cells.

FOXO1 Represses T-Bet and miR-31
Expression in Th1 Cells
FOXO1 binds to the TSS of pri-miR-31 in naïve Th cells andmost
likely inhibits the expression of miR-31 in these cells. Therefore,
we analyzed Foxo1 expression in Th1 rep cells. Foxo1 expression

FIGURE 6 | Schematic overview of mechanisms controlling the motility of Th1

rep cells. Antigenic stimulation of the TCR and CD28 leads to the activation of

NFAT/NFκB and the PI3K/Akt pathway. IFN-γ induces the activation and

expression of STAT1 and T-Bet, respectively. NFAT/NFκB induces the

expression of miR-31 which might be amplified by STAT1 and T-bet and

reduces the cell motility. PI3K/Akt inactivates FOXO1 which supports the

expression of miR-31 either in a direct fashion or by disabling the FOXO1

dependent inhibition of T-bet. Simultaneously, the inhibition of FOXO1 reduces

the expression of KLF2, CD62L, and S1PR1 and induces the expression of

CD69.

in these cells was reduced by ∼20% compared to Th1 once
cells (Supplementary Figure 4). In addition, Foxo1 expression
negatively correlated with miR-31 expression upon repeated
rounds of restimulation in Th1 cells (Figure 5A). To investigate
whether FOXO transcription factors including FOXO1, and its
functional redundant family member FOXO3, actively repress
miR-31, we inhibited Foxo1 and Foxo3 mRNAs with a pool of
8 different siRNAs (SI-FOXO) in Th1 rep cells. Foxo1 and Foxo3
expression were reduced by ∼50 and ∼65%, respectively, when
compared to control (SI-SCR) treated cells (Figure 5B). This
reduction was associated with an increased expression of the
primary miR-31 transcript (pri-miR-31) by ∼40% (Figure 5B,
Supplementary Figure 6A shows data for mature miR-31).

The repressive function of FOXO1 on miR-31 expression in
Th1 cells was further validated by the ectopic overexpression
of a constitutively active form of FOXO1 (FOXO1A3) (19).
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The FOXO1A3 transduced cells were magnetically enriched by
the surface reporter marker Thy1.1 (Supplementary Figure 5)
48 h after transduction. Consistent with published results (48),
the expression of the FOXO1 induced transcription factor
Klf2 (Krüppel-like Factor 2) and Sell, a gene which encodes
for the protein CD62L (L-selectin), were upregulated by
3.2- and 1.5-fold, respectively. In contrast, Cd69 was down
regulated ∼20% in cells ectopically overexpressing FOXO1A3
as compared to cells transduced with an empty retroviral
vector (RV) (Figure 5C). As expected, the pri-miR-31 was
reduced by∼40% upon overexpression of FOXO1A3 (Figure 5C,
Supplementary Figure 6B shows data for mature miR-31),
which was associated with a reduced expression of Ifng mRNA
by∼60% as well as T-bet protein by∼30% as determined by flow
cytometry (Figure 5D).

It is known, that the Transforming growth factor (TGF)
β stabilizes the expression of total FOXO1 protein (19).
Therefore, we induced FOXO1 expression in Th1 rep cells
by re-activating the cells in the presence of recombinant
TGFβ. Forty-eight hours p.a., Foxo1mRNA expression increased
by ∼50% in the presence of TGFβ as compared to the
untreated control, while miR-31 expression decreased by 70%
(Figure 5E, Supplementary Figure 6C shows data for pri-
miR-31). Furthermore, T-bet protein and Ifng mRNA were
significantly reduced in TGFβ treated Th1 rep cells by ∼30
and ∼22%, respectively (Figure 5F). This TCR induced miR-
31 expression can be blocked by in vitro addition of TGFβ,
and is most likely due to the induction of FOXP3 (Forkhead-
Box-Protein P3) that directly binds within the miR-31 promoter
blocking its transcription (40). Notably, the treatment with TGFβ
did not cause FOXP3 expression in fully differentiated Th1
rep cells, indicating different control mechanisms for miR-31
expression in different T-cell subsets (Figure 5G). Therefore, the
inactivation of FOXO TFs seems to be necessary in order to
provide high levels of miR-31 in Th1 rep cells.

DISCUSSION

We and others have previously shown that T cells isolated from
inflamed tissues of patients with chronic inflammatory diseases
are enriched for a Th1 phenotype characterized by the expression
of the transcription factor TWIST1 and the secretion of the Th1
signature cytokine IFN-γ (2–4). Interestingly, these cells can be
readily found in the inflamed tissues of patients undergoing state-
of-the-art immunosuppressive therapies suggesting that they
escape from conventional therapeutic interventions (4). This
might be due to adaptation of the cells to the inflamed milieu,
e.g., by the induction of the anti-apoptotic microRNA miR-
148a (5). However, it has remained elusive how these cells are
kept in the inflamed tissues, where they mediate and perpetuate
chronic inflammation. Here we identified a molecular pathway
which controls the motility of Th1 cells with a history of
repeated restimulation (Figure 6). The periodic TCR-mediated
activation of these cells resulted in an IFN-γ and T-bet dependent
upregulation of miR-31, which could be abrogated by FOXO1,
a transcription factor expressed in resting Th1 cells. MiR-31
reduced the motility of proinflammatory Th1 cells by regulating
the expression of genes which are involved in the rearrangement

of actin cytoskeleton downstream of TCR-, chemokine receptor-
and integrin-signaling.

To decipher which biological functions are altered following
the upregulation of miR-31 in Th1 rep cells we sought to identify
its target mRNAs in this particular cell type. Usually, target
identification is based on computational prediction of microRNA
bs (24). This method delivers a vast number of potential targets
including numerous false positive results (49) which have to
be excluded experimentally (50). One reason for this could be
that most prediction algorithms do not consider 3′-UTR length
and, thus, physical presence of predicted miRNA bs. However,
it is known that upon stimulation, Th cells in particular shorten
their 3′-UTR in order to escape miRNA mediated control (41).
By considering the presence of miRNA bs in the 3′UTR, we
were able to account for this phenomenon and to increase the
identification rate of genes which were affected by the inhibition
of miR-31. Interestingly, we observed a significant induction
of these genes only after 72 h of activation and Antagomir-31
treatment in restimulated Th1 rep cells. This might be due to
the fact that restimulated T cells, in addition to shortening the
3′-UTR, also repress the function of the RNA induced silencing
complex (RISC) by ubiquitination and degradation of Argonaute
proteins (51) and so escape miRNA mediated control. Taken
together, our novel approach for target identification takes kinetic
aspects into account which appear to be of great importance
for miRNA function in stimulated T cells. To experimentally
prove that the identified putative targets are directly regulated by
interaction of their 3′UTR with miR-31, repoter assays have to be
performed. Indeed, some of the putative targets, e.g., Stk40 and
Lats2, were already verified elsewhere using a luciferase reporter
assay (25).

Our analysis revealed a modest increase of putative direct
or indirect miR-31 target gene expression ranging from 10 to
50% after miR-31 inhibition. These genes are functionally linked
to signals downstream of the TCR, chemokine receptors and
integrins, as we observed in our network analysis. It is widely
accepted that the impact of a miRNA on a specific cellular
function increases by targeting several factors that belong to
the same biological pathway or protein complex (52, 53). For
example, miR-181a targets multiple phosphatases downstream of
the TCR and augments the sensitivity of T cells to cognate antigen
stimulation (54). Accordingly, by reducing several components
of the three pathways mentioned above, miR-31 repressed the
motility of Th1 rep cells, most likely by affecting rearrangement
of the actin cytoskeleton and cell adhesion. This repression
could be attributed to the upregulation of miR-31, as knock-
down of miR-31 rescued the motility of Th1 rep cells. Of
note, we could not observe a difference in Cxcr3 expression in
these cells (data not shown), which excludes the possibility of
disturbed chemokine sensing due to the expression of miR-31.
Interestingly, Moffett et al. identified miR-31 as a mediator of
CD8+ T cell exhaustion by regulating some of the same genes
that we also identified as being affected by miR-31 inhibition
(25). We assume that these genes also have an impact on TCR-,
chemokine receptor- and integrin-signaling in CD8+ T cells
and thus, miR-31 might also be able to suppress the motility
of exhausted cytotoxic T cells. Our results in Th1 rep cells are
further corroborated by Fuse et al. showing the KEGG-pathway
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“rearrangement of actin cytoskeleton” to be enriched for miR-
31 target genes and, that a reduced expression of miR-31 is
associated with increased migration and invasion of prostate
cancer cells (55). Furthermore, miR-31 could also be linked
to the migratory behavior of glioma cells (56), ovarian- (57),
breast- (58), and gastric cancer cells (59) and hepatocellular
carcinoma cells (60). Since TCRmediated activation of the PI3K-
and Rho-GTPase- signal transduction pathways also affects the
expansion and effector functions of T cells (61), we investigated
a possible impact of miR-31 on this. However, knockdown of
miR-31 by 99% neither had an effect on the expansion of Th1
rep cells, nor on their cytokine production. This is in line with a
study using CD4 specific conditional miR-31 knockout mice and
demonstrating that miR-31 has no effect on the proliferation of T
cells (40).

Why is miR-31 exclusively upregulated in Th1 rep cells
resulting in their reduced motility? Interestingly, we observed a
delayed induction of miR-31 in Th1 rep cells as compared to
naive CD4+ T cells activated under Th1 polarizing conditions.
We speculate that the induction of miR-31 in Th1 rep cells
is not only dependent on TCR signaling, but also on the
master transcription factor T-bet, suggesting that the additional
upregulation of miR-31 in Th1 rep cells is dependent on a
network of transcription factors active only in Th1, and not in
Th2 and Th17 cells. On account of this, we propose that the
expression of miR-31 in Th1 rep cells might be sequentially
orchestrated via a positive feed-back mechanism involving TCR
signaling and the cytokines IFN-γ and IL-12, which activate
STAT1, STAT4 (62), and T-bet (5) either independently or
synergistically. This is supported by the presence of functional
binding sites for the Th1 specific transcription factors T-
bet, STAT1, and STAT4 in the proximal promoter region
of pri-miR-31 in Th1 once cells and corroborated by our
results obtained from studies with T-bet deficient T cells. With
high probability a similar positive feed-back transcriptional
mechanism might be active in Th1 rep cells, because these
cells produce high amounts of IFN-γ and upregulate T-bet
(5). However, it remains to be shown, whether the three TFs,
STAT1, STAT4, and T-bet, also bind to the proximal promotor
of pri-miR-31 and to what extent each individual TF contributes
to the upregulation of miR-31.

Furthermore, we identified FOXO1 as a suppressor of miR-
31 expression in Th1 cells. FOXO1 is highly expressed in resting
naive Th cells (63), inhibits cell cycle progression (64, 65),
represses T-bet in Th1 cells (66), and regulates T cell homing
(67). Ectopic overexpression of a constitutively active form of
FOXO1, or in vitro TGFβ treatment to induce Foxo1 expression,
led to miR-31 repression and reduced levels of T-bet and the
effector cytokine Ifng. The repression of miR-31 can be either
mediated directly by FOXO1 binding to the promoter of pri-
miR-31, or indirectly by reducing T-bet and IFN-γ expression.
Moreover, we could show that enforced FOXO1A3 expression
induced Sell (CD62L) and Klf2 and reduced Cd69 expression.
Taken together, it is possible that the induction of KLF2, CD62L,
and CCR7 (67) and a simultaneous repression of CD69 and miR-
31 by FOXO1 might license T cells to recirculate to secondary
lymphoid organs (48, 68) and to egress from the inflamed
tissue (69).

In this study, we used in vitro generated Th1 cells, which
were subjected to repeated rounds of activation as a model for
Th cells derived from inflamed tissues of patients with chronic
inflammation (4–6, 70). They mimic inflamed tissue resident Th
cells expressing similar levels of the TF TWIST1 (4). In contrast to
exhausted dysfunctional CD8+ T cells (71), Th1 rep cells are very
efficient in their effector function and induce inflammation in
murine transfer colitis (6, 70) and Ovalbumin-induced arthritis
(4). In humans, a markedly expanded CD4+ T cell population
expressing the exhaustion marker PD-1 can be found in the
inflamed joints of RA patients. These cells are not anergic or
exhausted but can readily provide help to B-cells (72). In line
with this observation, we found that the expression of miR-
31 was also strongly upregulated in memory Th cells isolated
from the synovial fluid of RA patients as compared to their
counterparts from the blood, suggesting a different role of this
miRNA in CD4+ cells in chronic inflammation as compared
to exhausted CD8+ cells from chronic viral infections (25).
In addition, the cells within the inflamed joint receive signals
which favor Th1 polarization and miR-31 induction. This is
in line with our previous studies showing the upregulation of
T-bet and the activity of the IL-12/STAT4 axis in memory T
cells isolated from inflamed tissues of patients with autoimmune
diseases including RA (4, 5). We hypothesize that the milieu
within the inflamed synovium of RA patients favors the induction
of miR-31, on the one hand by a repeated auto-antigenic
stimulation inducing the expression of T-bet and IFN-γ, and
on the other, by IL-7 expression (73) which represses FOXO1
(48), thereby arresting proinflammatory Th cells in the inflamed
tissue, where they receive survival signals that counteract
immunosuppressive therapies and promote inflammation (4).
Therefore, our observation that the miR-31 reduces the motility
of Th1 rep cells in vitro might reflect the situation in a chronic
inflammatory setting.We suggest evaluating the function of miR-
31 on Th1 rep cell motility in a chronic inflammatory setting
using conditional miR-31 knockout mice (25) or transferring
miR-31 expressing or Antagomir-31 treated human Th cells in
a humanized model of arthritic inflammation (74) in future
studies. In conclusion, reducing miR-31 levels by Antagomir-
31 treatment could be a novel approach to mobilize therapy
resistant proinflammatory Th1 cells from the inflamed tissues
and eventually to resolve chronic inflammation.
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