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1 Summary 
 

Accurate and efficient neurotransmission is achieved through a complex 

interplay of proteins and lipids at the presynaptic active zone (AZ). Action 

potentials (APs) trigger the fusion of synaptic vesicles (SVs) with the plasma 

membrane at AZs in a coordinated manner. The subsequent release of 

neurotransmitter (NT) into the synaptic cleft and activation of postsynaptic 

receptors elicits a response in the opposing cell. Synapses are plastic 

structures and this feature aids in modulating neurotransmission depending on 

the situational requirements. Plasticity is thought to form the basis of information 

processing including learning and memory and its dysregulation is linked to 

neurological disorder. This thesis presents work that explores the molecular 

contributions of AZ proteins and lipid signalling to neurotransmission and 

plasticity, using electrophysiology and microscopy at the Drosophila 

melanogaster larval neuromuscular junction (NMJ). 

In the first part of the thesis, the role of lipid signalling is investigated. The ability 

to load and activate an initially chemically caged PI(4,5)P2 is confirmed in 

mammalian cell culture, with observed changes in actin organisation. At the 

Drosophila NMJ, acutely uncaged PI(4,5)P2 provides a possible protective effect 

against decreasing responses to stimulation. PI(4,5)P2 is metabolised to 

diacylglycerol (DAG), and application of a functionally analogous phorbol ester 

(PMA) is also shown here to greatly enhance evoked but not spontaneous NT 

release. 

Neurotransmission during presynaptic homeostatic plasticity provides a primary 

focus for this thesis. This form of plasticity maintains stable neurotransmission 

in response to a reduction in postsynaptic NT sensitivity, induced rapidly by 

pharmacological application of a postsynaptic NT receptor antagonist or 

chronically by genetic deletion of the receptors. Functionally, presynaptic 

homeostatic potentiation (PHP) occurs as NT release increases to compensate 

for postsynaptic challenge. This is accompanied by structural reorganisation of 

AZs proteins, involving an increase in presynaptic protein levels. 
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It is shown here that the SV priming factor and release site generating protein 

Unc13A is vital for rapid PHP, and the N-terminal portion of Unc13A is 

specifically identified as being essential for this process. Interestingly, the AZ 

cytomatrix scaffold protein Bruchpilot (BRP) is necessary for the structural 

aspect of homeostatic plasticity but is dispensable for functional PHP. However, 

following the long-term chronic induction of presynaptic homeostatic plasticity, 

BRP is found to be necessary for both functional PHP and structural AZ 

reorganisation. Additionally, axonal transport is required for both manifestations 

during long-term homeostatic plasticity. 

The results outline the similarities and differences between acutely and 

chronically induced presynaptic homeostatic plasticity and they suggest how 

core AZ proteins differentially regulate this process depending on the timescale. 

The disparity between the functional and structural components of homeostatic 

plasticity is unveiled, indicating that PHP does not necessarily require AZ 

structural change on short timescales, instead being important for consolidation 

of potentiation. 
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2 Zusammenfassung 

 

Präzise und effiziente Neurotransmission wird durch ein komplexes 

Zusammenspiel von Proteinen und Lipiden an der präsynaptischen aktiven 

Zone (AZ) erreicht. Aktionspotentiale (AP) lösen die koordinierte Fusion von 

synaptischen Vesikeln (SV) mit der Plasmamembran der AZ aus. Die 

anschließende Ausschüttung von Neurotransmittern (NT) in den synaptischen 

Spalt und die Aktivierung von postsynaptischen Rezeptoren löst eine Erregung 

der postsynaptischen Zelle aus. Die Eigenschaft von Synapsen, plastische 

Strukturen darzustellen, erlaubt die Modulation von Neurotransmission je nach 

bestehenden Anforderungen. Synaptische Plastizität wird als Grundlage für 

Informationsverarbeitung sowie für Lernen und Gedächtnisbildung angesehen. 

Ihre Dysregulierung wird mit neurologischen Erkrankungen in Verbindung 

gebracht. Diese Arbeit befasst sich mit der Beteiligung von AZ Proteinen und 

Lipid-Signalkaskaden an Neurotransmission sowie synaptischer Plastizität, die 

mithilfe von Elektrophysiologie und Mikroskopie an der larvalen 

neuromuskulären Synapse von Drosophila melanogaster untersucht wurde. 

Im ersten Teil dieser Arbeit wird die Rolle, die Lipide bei der Signalübertragung 

spielen, untersucht. Zunächst wird gezeigt, wie kultivierte Zellen mit einer 

anfangs durch einen chemischen „Käfig“ inaktivierten Form von PI(4,5)P2 

geladen werden können. Es wird desweiteren verifiziert, dass diese 

Komponente aktiviert werden kann und dass dies zu Änderungen der 

Aktinorganisation führt. An der neuromuskulären Synapse von Drosophila wird 

zudem gezeigt, dass akut aktiviertes PI(4,5)P2 als möglicher Mechanismus zum 

Schutz gegen abnehmende Übertragungsstärke dient. PI(4,5)P2 wird zu 

Diacylglycerol (DAG) metabolisiert und es wird in dieser Arbeit demonstriert, 

dass sein Analogon Phorbolester (PMA) AP-induzierte postsynaptische 

Antwortstärke stark verändert, während es keinen Effekt auf spontane 

synaptische Aktivität hat. 

Neurotransmission im Kontext von präsynaptischer homöostatischer Plastizität 

(PHP) stellt den Hauptfokus dieser Dissertation dar. Im Zuge einer verringerten 

NT-Sensitivität von postsynaptischen Rezeptoren , die entweder durch 
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pharmakologische Interferenz durch postsynaptische Rezeptorantagonisten 

oder den genetisch erzielten Verlust der Rezeptoren erzielt werden kann, stellt 

PHP eine beständige Neurotransmission sicher. Funktionell beinhaltet PHP 

eine Kompensation einer solchen postsynaptischen Herausforderung, die durch 

den Anstieg von freigesetztem NT durch die Präsynapse erzielt wird. Begleitet 

wird dies durch die strukturelle Umgestaltung von präsynaptischen Proteinen, 

was ihren Anstieg an der AZ beinhaltet. 

Das AZ Protein Unc13A spielt eine essentielle Rolle für die Vorbereitung der SV 

für ihre Fusion und wurde zudem als das Molekül identifiziert, das ihre 

Freisetzungsstelle definiert. In dieser Arbeit wird gezeigt, dass Unc13A und im 

Spezifischen der N-terminale Teil des Proteins, unabdingbar für die funktionelle 

Komponente von PHP ist. Zwar ist das AZ Strukturprotein Bruchpilot (BRP) 

notwendig für den strukturellen Aspekt der PHP, interessanterweise ist es 

jedoch entbehrlich für funktionelle PHP. Im Zuge der chronischen Induktion von 

homeostatischer Plastizität hingegen, ist BRP sowohl für die funktionelle als 

auch für die strukturelle Komponente notwendig. Zudem wird axonaler 

Transport von synaptischem Material für beide Aspekte von PHP über längere 

Zeiträume gebraucht. 

Die Ergebnisse dieser Arbeit stellen die Gemeinsamkeiten und Unterschiede 

der schnellen und chronisch induzierten PHP einander gegenüber und 

skizzieren, wie Kernproteine an der AZ diesen Prozess in Abhängigkeit von 

seiner Zeitskala regulieren. Die Unterschiede zwischen den molekularen 

Komponenten der funktionellen und strukturellen PHP werden aufgedeckt und 

es werden Hinweise dafür aufgezeigt, dass PHP nicht zwingend die strukturelle 

Ummodellierung der AZ benötigt. 
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3 Introduction 

 

3.1 The Action Potential 

Debate surrounds the emergence of nervous system in animals (Metazoa). 

Comb jelly fish (Ctenophora) possess a nervous system yet sponges (Porifera), 

which are apparently more recent in the phylogenetic tree, lack a nervous 

system (Liebeskind et al., 2017). Regardless of the specific timeline of their 

evolution, neurons exist in all complex bilaterally symmetrical animals and form 

the basis of the nervous system. 

Neurons are a type of excitable cell specialised for conveying electrical signals 

that facilitated the development of rapid and diverse behaviour in animals 

(Liebeskind et al., 2017). As is the case in many other cells, a concentration 

gradient of charged ions exists across the neuronal plasma membrane. While 

the concentration of K+ ions is higher intracellularly, the concentration of Na+ 

ions is higher extracellularly (Kandel et al., 2000). At rest, the membrane is 

more conductive for K+, which moves down its concentration gradient out of the 

cell. Compared to the positive exterior, the default state of neuronal membranes 

is therefore to be negatively charged inside, as cations (K+) exit. The unequal 

charge distribution between the intracellular and extracellular space is a 

fundamental aspect of neuronal membranes. The electrical potential (voltage) 

difference across the membrane is referred to as the resting membrane 

potential. Na⁺/K⁺ pumps actively transport Na+ and K+ against their ion gradient 

in an ATP and hence energy dependent process, supporting the maintenance 

of neuronal membrane resting potential (Kandel et al., 2000). It is important to 

consider the equilibrium potential of specific ions, which describes the potential 

at which there is a net flow of zero across the membrane for that particular ion. 

This information aids in predicting membrane potential behaviour in certain 

situations. The membrane potential will tend to move towards the equilibrium 

potential of the ions it has the greatest conductance for at a point in time. 

Therefore, the opening and closing of ion channels is one of the greatest 

determinants of the membrane potential. As an example, the resting potential is 
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close to the equilibrium potential of K+ due to a high proportion of K+ leak 

channels constitutively open. 

Neurons make use of alterations in the membrane potential to propagate 

signals known as action potentials (APs) along elongated protrusions, which 

extend toward other cells (Kandel et al., 2000). In most neurons, APs move 

away from the cell body (soma) via axons and towards it via similar structures 

referred to as dendrites. An AP is a wave of depolarisation and repolarisation of 

the membrane potential. AP initiation and propagation was described by 

Hodgkin and Huxley (1952) in the squid giant axon. 

For an action potential to be initiated, the membrane must depolarise sufficiently 

in relation to the resting membrane potential, crossing a threshold potential in 

the process (Figure 1) (Zhang and Stewart, 2010b). This can happen at several 

sites of the neuronal membrane, but commonly occurs at the axon hillock, and 

is caused by the opening of ion channels embedded in the membrane. Current 

passing into the neuron overcomes the resting membrane potential, leading to 

positive feedback. At the threshold potential the probability for voltage gated 

Na+ channels to open, and for Na+ to enter the cell drastically increases. Na+ 

conductance is increased, and the membrane potential rapidly moves towards 

the equilibrium potential of Na+ (Figure 1). Towards the peak of membrane 

depolarisation, the opening probability of voltage gated K+ channels increase. 

Na+ channels enter an inactive state, which serves to limit further entrance of 

Na+ ions while K+ exits the cell. Further AP initiation is not possible until Na+ 

channels have exited the inactive state, a period called the absolute refractory 

period. 

The membrane potential starts to repolarise again, and K+ conductance is at its 

peak (Zhang and Stewart, 2010b). The potential moves towards the equilibrium 

potential of K+. While repolarising, the membrane passes the resting membrane 

potential and become hyperpolarised due to a combination of delay in closure of 

voltage gated K+ channels and permanently open K+ leak channels. A relative 

refractory period exists during this hyperpolarisation: The possibility to initiate 

another AP is reduced as the extremely polarised membrane is less likely to be 

sufficiently stimulated to reach the threshold potential than it would be at the 
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resting potential. Gradually, most of the remaining open voltage gated K+ 

channels close and the membrane returns to the resting potential. APs 

propagate in an all-or-nothing fashion by influencing the potential of the 

membrane in close proximity to the initiation site, moving as a wave and 

opening voltage gated ion channels as they travel. Various properties of axons 

can increase or decrease the conduction velocity and kinetics of APs, including 

the axon diameter, ion channel density, and the presence/absence of insulating 

myelin (Freeman et al., 2016). Electrical resistance in the axon is inversely 

related to axon diameter. This means that larger axons will permit faster AP 

conduction (Kandel et al., 2000). In some axons, a myelinating sheath reduces 

the membrane capacitance and increases resistance between regions of the 

axon known as nodes of Ranvier (Castelfranco and Hartline, 2015). In a 

process known as salutatory conduction APs are forced to jump between these 

nodes, at which voltage gated Na+ channels are concentrated, vastly increasing 

conduction velocity (Kandel et al., 2000). 
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Figure 1: The Action Potential: Example time course and stages. 

From rest, membrane depolarisations of the neuronal membrane must reach a 
threshold potential to initiate an AP. On doing so, voltage gated Na+ channels open and 
the membrane rapidly depolarises further as Na+ enter the cell. Towards the peak of an 
AP, Na+ channels begin to close and voltage gated K+ channels begin to open and K+ 

exiting the cell increases. At the peak, Na+ channels have entered a refractory inactive 
state. K+ channels are open but begin to close as the membrane repolarises. Closure of 
K+ channels is delayed and the membrane potential passes the resting membrane 
potential, becoming hyperpolarised. Remaining K+ channels close soon after and the 
membrane returns to the resting potential. 

 

3.2 Chemical synapses 

Neurons communicate with each other at specialised sites called synapses. At 

chemical synapses, the presynaptic neuron releases chemical messengers 

called neurotransmitters (NTs) that bind to receptors on the membrane of the 

postsynaptic neuron or muscle. Active Zones (AZs) are presynaptic regions 

specifically configured to respond to the arrival of APs and release 

neurotransmitter accordingly (exocytosis) (Südhof, 2012). NTs are stored in 
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sac-like synaptic vesicles (SVs) and those localised at the plasma membrane 

are said to be docked. A small proportion is prepared for AP-induced exocytosis 

of their contents (primed). SVs that are docked and primed for plasma 

membrane fusion do so due to acute Ca2+ influx through a cluster of voltage 

gated Ca2+ channels following membrane depolarisation (Südhof, 2012). Fusion 

occurs when the two lipid bilayers (of the SV and the plasma membrane) merge 

(Han et al., 2017). NT is subsequently released into the synaptic cleft, the 

extracellular space between the presynapse and the postsynapse, prior to 

binding and activating postsynaptic NT receptors. Synapses do not only 

transmit information; they also modulate and transform it (Südhof, 2012). A 

feature of the presynaptic AZ is its ability to plastically react to changes in 

neuronal activity, achieved via the function of a host of regulatory proteins, lipids 

and signalling pathways (Zhai and Bellen, 2004). 

SVs at the presynapse are proposed to exist in three separate pools: the readily 

releasable pool (RRP), the reserve pool and the recycling pool (Rizzoli and 

Betz, 2005). The RRP consists of SVs that are docked at the AZ and primed to 

fuse with the membrane in response to an AP, in other words, fully release 

competent. They are immediately releasable on stimulation and strong 

stimulation will successfully deplete the pool (Rizzoli and Betz, 2005). When an 

AP arrives at the presynapse, there is an associated probability due to 

Ca2+-influx that individual SVs will be released, so called release probability 

(Böhme et al., 2018). The distinction between docking and priming is important 

as docked SVs are not necessarily immediately releasable (Verhage and 

Sørensen, 2008). Labelling of recycled SVs at the frog NMJ revealed docked 

SVs at AZ membranes that are not released following stimulation (Rizzoli and 

Betz, 2004). Drosophila priming mutants display a near complete loss of 

neurotransmission but maintain approximately half the number of docked SVs 

at AZs compared to wild-type (Böhme et al., 2016). However, debate surrounds 

the separation of docking and priming (Imig et al., 2014). At mouse 

hippocampal synapses in slice culture, the number of observed docked SVs 

seems to correlate with previous estimations of the RRP (Stevens and 

Tsujimoto, 1995) and it is argued that docked SVs are primed (Imig et al., 

2014). SVs in the recycling pool may be recruited with appropriate stimulation 
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but many SVs in the reserve pool are unlikely to ever be released at 

physiological conditions (Denker and Rizzoli, 2010). While it was initially thought 

that the recycling and reserve pool were spatially distinct there is now evidence 

that they are mixed (Denker et al., 2009). Reserve pool SVs may be tethered to 

the scaffold, and mobile recycling SVs can mature to enter a similar state 

(Denker and Rizzoli, 2010). 

 

3.3 The quantal nature of synaptic transmission 

Bernard Katz and colleagues performed pioneering experiments at the frog 

NMJ, discovering “miniature end-plate potentials” in muscle membranes at rest. 

These spontaneous events could be unveiled to be the minimum unit of 

neurotransmission by reducing extracellular Ca2+ to the point where presynaptic 

stimulation produced muscle responses of equal amplitude and no lower (Fatt 

and Katz, 1952). It was established that synaptic transmission is underpinned 

by the release characteristics of defined all-or-none packets of neurotransmitter 

and summation of these formed the basis of larger responses (del Castillo and 

Katz, 1954). Shortly afterwards, the first electron micrographs of synaptic 

vesicles were published (Robertis and Bennett, 1955). From the work of Katz 

one can derive the following formula to explain the postsynaptic depolarisation 

of the muscle membrane in response to presynaptic nerve stimulation: I = Npq, 

where N is the number of independent SV release sites, p is the probability of 

SV release and q, the amplitude of the postsynaptic response to individual SVs 

(quantal size) (Figure 2a) (Takahashi, 2015). Put simply, an AP that stimulates 

NT release at the synapse will produce a postsynaptic response that is a 

function of the number of SVs positioned and ready for release, the probability 

of individual SVs to be released (independent of each other) and the size of the 

postsynaptic response to NT contained within each SV. 

N is dependent on SVs docking and priming at appropriate sites on the plasma 

membrane called release sites. There is debate regarding the term “release 

site” and whether it should refer to the entirety of an AZ, as in many cases, SVs 

are released individually at AZs (Pulido and Marty, 2017). This is not always 

true however, because at certain AZs, multiple SVs can be released at once 
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(Rudolph et al., 2015). Thus, it is accurate to refer to release sites as the 

specific location within an AZ where SVs dock and fuse, as I do here. Unc13 is 

the likely candidate protein for localising SVs with a defined distribution at AZs 

and subsequent priming, and release is limited by it (Reddy-Alla et al., 2017; 

Sakamoto et al., 2018). 

The probability that SVs will release (q) is influenced by their placement at the 

membrane in relation to Ca2+-channels, as tighter coupling (nanometre range) 

in the case of Unc13A-localised SVs will have a higher probability of triggering 

fusion via the Ca2+-sensor synaptotagmin (Böhme et al., 2016). Experiments at 

Calyx of Held synapses involving homogenous uncaging of presynaptic Ca2+, 

visualisation  with fluorescent dye and electrophysiology allowed the 

relationship between intracellular Ca2+ and NT release to be determined 

(Schneggenburger and Neher, 2000). The Ca2+-sensor binds multiple Ca2+ ions 

and is not saturated under normal stimulation conditions, making it and hence p 

quite sensitive to changes in intracellular Ca2+ concentration (Schneggenburger 

and Neher, 2000). Ca2+ buffering at greater distances from the Ca2+ source and 

the action of Ca2+ pumps will reduce p (Walter et al., 2018). 

q is determined as the amplitude of the response to spontaneous events and is 

influenced by not only NT filling and content of SVs but also characteristics of 

the postsynapse such as the function, availability and density of NT receptors 

(Karunanithi et al., 2002). Alterations in postsynaptic responses can complicate 

the accurate determination of presynaptic function, for example due to NT 

receptor desensitisation (Koike-Tani et al., 2008). 

Spontaneous fusion of SVs represent individual quantal events (Takahashi, 

2015). The postsynaptic response is a summation of many quanta. Dividing the 

evoked postsynaptic response amplitude by the average spontaneous SV 

fusion event amplitude allows the determination of the number of SVs released 

by stimulation (quantal content) (Figure 2b). A situation relevant to this thesis is 

depicted in Figure 2c, whereby postsynaptic sensitivity to NT is reduced (either 

by pharmacological receptor blockade or deletion of receptors) leading to 

smaller spontaneous responses (smaller q) (Böhme et al., 2019). Plastic 

adaptation of the synapse compensates, maintaining the evoked response (I). 
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Assuming q is not altered due to presynaptic changes (e.g. lower SV NT 

content), either the number of SV release sites (N), the probability of SV fusion 

(p) or both, are increased. The number of released SVs is thus drastically 

increased in response to stimulation. 

 

 

Figure 2: The postsynaptic response to presynaptic stimulation depends on 
several key variables. 

(a) The evoked postsynaptic response (I: eEPSC or eEPSP) is determined by: 1) N: 
The number of independent SV release sites. 2) p: The probability that SVs will release 
in response to an AP. 3) q: The size of the response to a single vesicular NT release 
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event (quanta). (b) A single spontaneous event produces a postsynaptic response of 
particular amplitude and represents a fusion of a single SV (quanta). An evoked 
stimulation produces a much larger postsynaptic response. The evoked response is a 
summation of many SV fusion events. The evoked response can be divided by the 
mean spontaneous response to determine the total number of SVs released as a result 
of stimulation, also referred to as the quantal content. (c) Postsynaptic challenge 
reduces the sensitivity to NT of single SV events (q). This does not lead to a reduction 
in the evoked response, however. The evoked response is a summation of an 
increased number of individual quanta. The quantal content has increased in the 
depicted situation. Considering I = Npq, if q is lowered, N/p must increase to maintain I. 

 

3.4 Components of the presynaptic active zone 

A structured and conserved array of proteins at the presynapse, the AZ 

cytomatrix, is responsible for localising proteins, lipids and SVs in close 

proximity to the membrane to accurately promote fusion reactions (Südhof, 

2012). Electron microscopy (EM) reveals the electron dense projections of the 

cytomatrix. These structures vary widely in appearance between different 

synapses and species, from the ribbon-like dense projections of skate 

electroreceptors to the pyramid-like dense projections in the mammalian 

hippocampus. The Drosophila NMJ exhibits a distinctive “T-bar”, consisting of a 

pedestal extending from the membrane capped by a platform (Zhai and Bellen, 

2004). Much of these earlier EM studies were performed by chemical fixation 

and crosslinking of protein, which is quite disruptive to the AZ ultrastructure 

structure (Südhof, 2012). More recently, high-pressure freeze or freeze 

substitution EM and cryoelectron tomography has been employed to provide a 

complementary view of the AZ structure (Bruckner et al., 2015). This approach 

reveals the filamentous nature of the cytomatrix with filaments appearing to link 

SVs at the AZ. The diversity in AZ structure is likely forms the basis of the 

various functional demands at different synapses (Zhai and Bellen, 2004). 

APs arriving at the presynapse activate voltage gated Ca2+ channels, permitting 

Ca2+ influx. Initial voltage gated Ca2+ channels experiments made use of various 

antagonists and toxin blockers to unveil different channel types, classifying 

them into L-,N-, P/Q-, R- and T-type channels accordingly (Catterall, 2011).  

These channels have varying characteristics such as being activated by high or 

low membrane voltage depolarisations and exhibit differential expression 
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depending on their subunit composition (Simms and Zamponi, 2014). Channels 

consist of an essential CaVα1 subunit plus auxiliary subunits. CaVβ are involved 

in channel inactivation and transcriptional repression while CaVα2δ subunits are 

involved in channel density modulation and channel targeting (Simms and 

Zamponi, 2014). Some channels may also possess a Cavγ subunit. The Cavα1 

subunit determines the channel subfamily (CaV1, CaV2 or CaV3) Cavα1 are 

pore-forming proteins of four large repeated domains, each domain consisting 

of six transmembrane spanning α-helices (Catterall, 2010). The CaV2 subfamily 

are central for synaptic transmission and interact extensively with presynaptic 

proteins involved with NT release (Catterall, 2011). Ca2+ influx at the Drosophila 

NMJ presynapse occurs to a large extent through the Dmca1A subunit Ca2+ 

channel, homologous to the CaV2.1 Ca2+ channel. The α1 subunit is encoded by 

the gene cacophony (cac) (Smith et al., 1998). 

Fusion of SVs is opposed by repulsive forces (electrostatic and hydration 

repulsion) acting against the two lipid bilayers coming together. An array of 

proteins at the presynapse assist in overcoming this energy barrier for SV 

fusion, culminating  in the formation of the SNARE complex (Han et al., 2017). 

SNARE (Soluble N-ethylmaleimide sensitive factor Attachment protein 

REceptor) proteins are located at either the plasma membrane (t-SNAREs: 

syntaxin-1 and SNAP-25) or on the vesicular membrane (v-SNAREs: 

synaptobrevin/VAMP2) (Han et al., 2017; Sollner et al., 1993). These three 

proteins arrange themselves as four alpha helical bundles at the junction of the 

SV and plasma membrane (Sutton et al., 1998). The priming protein Munc18 is 

proposed to hold syntaxin-1 in a closed state, inhibiting SNARE complex 

formation (Genç et al., 2014). Priming involves the weakening of this interaction, 

and phosphorylated Munc18 has a reduced affinity for syntaxin-1. Despite this, 

Munc18 remains associated with the SNARE complex. Ca2+ influx into the 

presynapse stimulates SV fusion via binding to the Ca2+ sensor, synaptotagmin, 

embedded in the SV (Mackler et al., 2002). Synaptotagmin-1 (syt-1) triggers NT 

release through the function of two Ca2+ binding C2 domains. Additionally, 

binding of synaptotagmin to either the SNARE complex, lipids in the plasma 

membrane, or both, aids in exocytosis (Walter et al., 2011). 
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3.5 (M)unc13 

SVs docked at the membrane require priming prior to fusion and Unc13 is vital 

for this process (Augustin et al., 1999; Böhme et al., 2019; Richmond et al., 

1999; Varoqueaux et al., 2002). Sydney Brenner identified unc-13 in the 

nematode worm Caenorhabditis elegans as a protein with a phorbol 

ester/diacylglycerol binding domain, which were known at the time to enhance 

neurotransmitter release (Maruyama and Brenner, 1991). Worms possess two 

isoforms of UNC-13, a short isoform (UNC-13S) and a long isoform (UNC-13L) 

(Hu et al., 2013). Mammals possess five Munc13 genes, Munc13-1, Munc13-2, 

Munc13-3, Munc13-4 and BAP3. Only Munc13-1, Munc13-2 and Munc13-3 are 

expressed in the brain (Südhof, 2012). Munc13-2 is further divided into two 

differentially expressed isoforms, one brain specific (bMunc13-2) and one 

ubiquitously (ubMunc13-2) expressed (Brose et al., 1995; Song et al., 1998; 

Südhof, 2012). Munc13-1 was identified as being vital for neurotransmission by 

priming SVs for release at murine excitatory glutamatergic synapses (Augustin 

et al., 1999). In cortical and hippocampal neurons, Munc13-1 is expressed at all 

presynapses (Kawabe et al., 2017). bMunc13-2 is expressed along with 

Munc13-1 at only 10% of synapses. Interestingly only bMunc13-2 localisation 

and stability are dependent on the scaffold ELKS (discussed below) and 

interference with this interaction reduces SV priming. 

Munc13 is an essential priming and release site generating protein (Reddy-Alla 

et al., 2017). The priming activity of Munc13 is performed via a MUN domain 

(Basu et al., 2005; Stevens et al., 2005). It is likely that the MUN domain 

removes a lock on SNARE complex formation, consequently promoting 

exocytosis. Munc13 appears to assist in relieving the syntaxin-1/Munc18 closed 

conformation, allowing SNARE complex formation (Ma et al., 2011).  Munc13-1 

interacts directly with RIM1, an interaction that is important to maintain the 

number of releasable SVs (Betz et al., 2001). Worm UNC-13L contains a C2A 

domain (Zhou et al., 2013), and this domain is known to activate the UNC-13 

via RIM (Liu et al., 2019). The C2A domain is conserved in mouse Munc13-1 

and ubMunc13-2, interacting with RIM proteins  (Andrews-Zwilling et al., 2006). 

The C2A domain of Munc13 undergoes homodimerization, inhibiting the priming 

action of the MUN domain, and it is thought that RIM prevents this autoinhibition 
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(Camacho et al., 2017; Deng et al., 2011). Rescue with a Zn2+-finger fragment 

from the N-terminus of RIM can rescue the SV priming defect observed on 

conditional double knockout of all RIM isoforms. Conversely,  monomeric 

constitutively active ubMunc13-2 (point mutant in C2A domain) was able to 

rescue the priming defect brought about by RIM loss (Deng et al., 2011). RIM-

BP2 is required specifically for Munc13-1 clustering at mossy fibre synapses 

and in autaptic (self-synapsing) granule neurons, loss of RIM-BP2 leads to a 

reduction in docked SVs and the RRP (Brockmann et al., 2019). Monomeric 

constitutively active Munc13-1 (C2A mutation mentioned above (Deng et al., 

2011)) was able to bypass RIM-BP loss in these granule neurons and rescue 

impaired neurotransmission (Brockmann et al., 2019). The interaction of 

Munc13 and RIM-BP might be indirect, for example via RIM. These studies 

have illustrated that Munc13 relies on significant interaction with AZ scaffold 

proteins for reliable function. 

The functional domains of Munc13 are varied (Figure 3). The C1 domain of 

Munc13 can bind diacylglycerol (DAG) and the functionally analogous phorbol 

esters (Basu et al., 2007). DAG, a derivative of the membrane lipid PI(4,5)P2, 

can be substituted experimentally with the phorbol esters, phorbol 12-myristate 

13-acetate (PMA) (Song et al., 2002) or 4β-phorbol-12, 13-dibutyrate (PdBu) 

(Basu et al., 2007). Translocation of Munc13-1 to plasma membranes is 

observed when the phorbol ester PMA is applied to cells (Blanco et al., 2019). 

Stimulated and spontaneous neurotransmission are greatly enhanced by C1 

activation of Munc13 (Rhee et al., 2002). It has been proposed that C1 acts as 

a partial autoinhibitory domain that limits neurotransmitter release by interfering 

with MUN function unless activated (Basu et al., 2007). Phorbol esters increase 

C1 domain membrane binding which would compete with the intramolecular 

inhibition by the C1. 

The C2B domain facilitates Ca2+-dependent phospholipid binding by Munc13 

(Shin et al., 2010). Mutations that enhance or abolish the function of this domain 

positively or negatively affect neurotransmission during sustained stimulation 

(Shin et al., 2010). Deletion of the C2B domain can enhance release, indicating 

that the C2B may be autoinhibitory (functioning with the C1 domain) and that 

Ca2+ binding removes this inhibition (Michelassi et al., 2017). Munc13-1 and 
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ubMunc13-2 contain a Ca2+/calmodulin-binding domain (CaM binding domain) 

that enhances priming, the RRP and the response to residual Ca2+ due to 

repetitive stimulation (short-term plasticity) (Junge et al., 2004; Lipstein et al., 

2013; Zikich et al., 2008). Potential CaM binding sites have also been identified 

in bMunc13-2 and Munc13-3  (Lipstein et al., 2012). 

In Drosophila, Unc13 exists as a single gene that is expressed as at least two 

different isoforms, Unc13A and Unc13B, differing at their N-terminal end (Xu et 

al., 1998). Like mammalian Munc13, Drosophila Unc13 is essential for 

neurotransmitter release (Aravamudan et al., 1999). Neither Drosophila Unc13 

isoform contains a C2A domain and only Unc13A possesses a CaM binding site 

(Figure 3) (Böhme et al., 2016; Reddy-Alla et al., 2017). Unc13A loss results in 

nearly complete loss of AP-induced exocytosis. Each isoform is responsible for 

localising SVs with a specific nanoscopic distribution at the AZ. Unc13A and 

consequently SVs localise close to Ca2+-channels at the centre of the 

cytomatrix AZ (Böhme et al., 2016). These are SVs with a high probability of 

release. Unc13B on the other hand makes only a minor contribution to release 

and localises further from the centre of the AZ (Böhme et al., 2016). The N-

terminal portion of Unc13A is vital for its appropriate localisation at the AZ while 

the C-terminal portion provides the priming function (Reddy-Alla et al., 2017). 

Deletion of the N-terminus results in loss of defined Unc13A localisation. 

Unc13A and SVs are found across the surface of the membrane, resulting in a 

decrease in release probability of SVs and an increase in asynchronous 

release. Confirming that Unc13 is the release site generating molecule, deletion 

of the priming C-terminus of Unc13A and expression of the localising N-

terminus, block endogenous Unc13A from forming release sites at the AZ 

(Reddy-Alla et al., 2017). 
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Figure 3: Structure of Drosophila Unc13A. 

Unc13A includes several functional domains that bind other proteins or lipids, shown 
are the MUN, C1, C2B, C2C and CaM domains. Unc13A can be tagged with GFP at the 
C terminus without removing protein function. An identified Unc13A epitope permits 
isoform specific immunohistochemistry. Additionally, genetic manipulations such as 
expression of only the C-terminus (C-term-GFP) or complete deletion of the protein 
(EMS7.5) are possible. 

 

3.6 The role of PI(4,5)P2 during exocytosis at the AZ 

The plasma membrane is not relevant purely as the site of SV fusion. It contains 

a variety of signalling lipids that regulate exocytosis (Khuong et al., 2013; Walter 

et al., 2017). Although a number of phospholipids are involved in synaptic 

transmission, a partial focus of this thesis is PI(4,5)P2. Phospholipids such as 

PI(4,5)P2 may influence exocytosis in several ways, which I will discuss in the 

following section (Martin, 2012). Firstly, PI(4,5)P2 directly changes the physical 

properties of the membrane. Secondly, they recruit, localise and regulate 

proteins vital for SV exocytosis. Finally, their metabolism to secondary 

messengers and signalling lipids initiates signalling pathways that modulate 

exocytosis (Martin, 2012). 

Membrane curvature changes induced by the physical properties of lipids such 

as PI(4,5)P2 may aid or inhibit physical fusion of SVs. As an inverted cone-

shaped lipid, PI(4,5)P2 tends to bulge in the direction of the polar head groups 

when in a lipid monolayer. This acts to prevent the formation of a high negative 

curvature stalk, an important step in vesicular membranes fusing with the 

plasma membrane  (Chernomordik and Kozlov, 2008). This characteristic of 
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PI(4,5)P2, promoting positive curvature, inhibits SNARE-dependent fusion 

(James et al., 2008). 

Interaction and binding of proteins at the AZ is one of the most well studied 

functions of PI(4,5)P2 during exocytosis. SNARE proteins interact extensively 

with PI(4,5)P2. PI(4,5)P2 was implicated in altering the movement of syntaxin-

1/SNAP-25 heterodimers in the plasma membrane (Wagner and Tamm, 2001). 

In PC12 cells, docked SVs also locate to areas of PI(4,5)P2 and syntaxin-1 

clustering (Aoyagi et al., 2005; Barg et al., 2010; Kabachinski et al., 2014; Lang 

et al., 2001). It seems syntaxin-1 may be clustered by PI(4,5)P2, particularly as 

the PI(4,5)P2 degrading phosphatase synaptojanin-1 inhibits syntaxin-1 

clustering (van den Bogaart et al., 2011). It is suggested that syntaxin-1 acts to 

remove the fusion resistant characteristics of PI(4,5)P2 by sequestering it  away 

from the direct fusion site (James et al., 2008). Supporting these findings, 

syntaxin-1 lipid binding mutants exhibit exocytotic defects (James et al., 2008; 

Lam et al., 2008). 

Beyond SNAREs, proteins involved in priming docked SVs interact with 

PI(4,5)P2. Munc13 binds PI(4,5)P2 via its Ca2+-dependent C2B domain. 

Disturbance of this domain severely affects exocytosis (Shin et al., 2010). 

Munc13 promotes SNARE function to facilitate release (Ma et al., 2013). In 

PC12 cells, Munc13-1 has been observed translocating to the membrane due to 

Ca2+ influx from stimulation. Further supporting the importance of the C2B 

domain of Munc13, mutants of Ca2+ dependent PI(4,5)P2 binding do not 

translocate to the membrane (Kabachinski et al., 2014). 

The Ca2+ sensor syt-1 possesses a C2B domain that interacts with PI(4,5)P2 

(Shin et al., 2009). By binding PI(4,5)P2 via the C2B domain, affinity of this 

sensor for Ca2+ is increased (Radhakrishnan et al., 2009). A specific polylysine 

motif in the C2B domain is vital for function and interfering with this motif affects 

exocytosis (Loewen et al., 2006). Membrane bridging is an essential process as 

SVs dock at the plasma membrane and prepare to fuse. This process involves 

syt-1, likely due to PI(4,5)P2 interactions (Kuo et al., 2011; Seven et al., 2013). It 

has also been proposed however that a single syt-1 could bridge two SNARE 

complexes via its C2B domain (Zhou et al., 2017). PI(4,5)P2 potentiation of 
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exocytosis via Munc13-2 and syt-1 has been confirmed by acutely uncaging 

PI(4,5)P2 in chromaffin cells (Walter et al., 2017). 

 

3.7 RIM and RBP 

Various scaffold proteins comprise the presynaptic AZ. The scaffold protein 

RIMs (Rab3 interacting molecules) are essential for neurotransmission in 

several species (Han et al., 2011; Müller et al., 2012; Schoch et al., 2002). In 

mice and worms, RIM has been shown to be vital for SV localisation at the AZ 

membrane. Mutants lacking RIM show disturbed distribution in relation to dense 

projections in EM (Han et al., 2011; Weimer et al., 2006). Additionally, RIMs 

have been found to confine Ca2+-channels at the AZ (Han et al., 2011; Kaeser 

et al., 2011). In Drosophila, loss of RIM reduces Ca2+-influx and the RRP 

(Müller and Davis, 2012). As I will mentioned previously, mammalian RIM 

interacts with Munc13 to regulate the docking and priming of SVs (Camacho et 

al., 2017; Deng et al., 2011). 

RIM-Binding Protein (RIM-BP) is likewise vital for NT release. In Drosophila, 

RIM-BP was found to regulate the AZ ultrastructure, Ca2+-channel clustering, 

Ca2+ influx and the RRP (Liu et al., 2011; Müller et al., 2015). In mammals it is 

also heavily involved in Ca2+-channel localisation (Grauel et al., 2016). 

Following knockout of RIM-BP2, CaV2.1 channels were mislocalised. Ca2+ influx 

was unaffected but the probability of vesicular release was reduced (Grauel et 

al., 2016). The relationship of RIM-BP to RIM is well established, particularly in 

regard to Ca2+ regulation (Hibino et al., 2002). At Calyx of Held synapses, 

singular deletion of RIM and RIM-BP does not block NT release. Double 

deletion of both however nearly completely abolishes evoked 

neurotransmission, unveiling that there is redundancy between RIM/RIM-BP 

(Acuna et al., 2016). 

 

3.8 ELKS / CAST / BRP 

ELKS/CAST family proteins are large presynaptic AZ scaffold proteins that are 

known to interact extensively with many other AZ proteins. During the 
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identification of members of this family, two individual vertebrate ELKS/CAST 

proteins were named several times leading to a degree of confusion in the 

nomenclature. CAST is also known as Erc2 or ELKS2. ELKS is also known as 

Rab6IP2a, Erc1 or CAST2. CAST and ELKS differ in their expression; CAST is 

primarily expressed in the mammalian brain and ELKS expression is ubiquitous 

with the ELKS2α isoform being brain specific (Hida and Ohtsuka, 2010). A high 

degree of homology exists between CAST and ELKS, and a member of this 

family is present in C. elegans, indicating that it is evolutionarily conserved 

(Deguchi-Tawarada et al., 2004). 

At hippocampal synapses ELKS regulates SVs in seemingly disparate ways. 

Hippocampal cultures neurons conditionally lacking both CAST and ELKS 

displayed disrupted neurotransmission at inhibitory synapses with a reduction in 

the probability of release (Liu et al., 2014). Ca2+ influx is also reduced without a 

change in the Ca2+-channels themselves, perhaps due to an alteration of 

channel opening. At small excitatory synapses on the other hand, loss of both 

CAST and ELKS reduces the readily releasable pool without affecting the 

probability of vesicular release (Held et al., 2016). Based on these double 

knockout experiments, CAST and ELKS maintain the frequency of spontaneous 

vesicular release at both inhibitory and excitatory synapses (Held et al., 2016; 

Liu et al., 2014). Single knockout experiments in mice produced different 

findings than double knockout of ELKS/CAST in culture. CAST was found to 

generally increase vesicular release only at inhibitory synapses in mice (Kaeser 

et al., 2009). Conflicting with this however, a recent single CAST knockout 

experiment in mice found increased spontaneous vesicular quantal size and 

decreased probability of vesicular release but only at excitatory synapses, 

(Kobayashi et al., 2016). It is difficult to make strict comparisons between these 

experiments due to the large differences in experimental design (in-vivo vs. 

in-vitro) and use of single or conditional double knockouts. Regardless, 

ELKS/CAST family proteins play diverse and important roles at mammalian 

AZs. 

The CAST/ELKS homolog Bruchpilot (BRP) is a major component of the 

presynaptic Drosophila AZ. The N-terminus of BRP is highly homologous to 

CAST/ELKS while the coiled  coil domain rich C-terminus is similar to 
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cytoskeletal proteins such as plectin and myosin heavy chain (Wagh et al., 

2006). Loss of BRP results in the disappearance of the T-bar at AZs. Similarly, 

truncation of BRP results in shortened T-bars (Fouquet et al., 2009). BRP is 

essential for Ca2+ channel clustering and the release probability is reduced in 

the absence of BRP (Kittel et al., 2006). 

Two isoforms of the protein exist in Drosophila, Brp-190 and Brp-170, which 

differ in their N-terminus (Matkovic et al., 2013). They localise distinctly and do 

not overlap at the AZ when viewed by high resolution STED microscopy. 

Removal of either of these isoforms individually interferes with the number of 

SVs readily available to exocytose, as uncovered by sustained stimulation. 

Vesicular release probability is similar however, indicating that localisation of 

SVs is possible with one isoform (Matkovic et al., 2013). Supporting the 

hypothesis that BRP is involved in tethering SVs to the AZ, loss of the extreme 

C-terminus of BRP, leads to a reduction in the number of SVs observed at the 

AZ, reduced probability of vesicular release and reduced SV recovery 

(Hallermann et al., 2010). This reinforces the importance of the C-terminus of 

BRP for proper neurotransmission. 

 

3.9 Presynaptic plasticity 

Synapses dynamically adapt to neuronal firing or changes in their environment 

to upregulate, downregulate or maintain neurotransmission, according to the 

situational requirements. Together, these varied processes are referred to as 

synaptic plasticity and can take several different forms at the chemical 

presynapse. Synaptic plasticity underlies memory, learning, filtering and 

sensory adaptation as well as supporting consistent neurotransmission 

(Delvendahl and Müller, 2019). 

Use-dependent short-term plasticity (STP) operates on timescales of 

milliseconds to minutes. It is divided into three categories: facilitation, 

depression and augmentation/posttetanic potentiation (Regehr, 2012). Closely 

successive APs arriving at synapses most often do not elicit the same degree of 

postsynaptic activation. Facilitation occurs when a stimulus produces a larger 

release of NT than preceding stimuli. Similarly, depression occurs when 
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subsequent stimuli produce reduced NT release. Posttetanic potentiation can 

be observed following sustained high frequency stimulation as a general 

enhanced responsiveness to stimuli and increase in the number of spontaneous 

SV fusion events (Regehr, 2012). STP is heavily influenced by release 

probability (p) and SV pool characteristics such as the size of the RRP  or pool 

repopulation (Böhme et al., 2018; Regehr, 2012). Receptor desensitisation at 

the postsynapse can compound STP estimation (Koike-Tani et al., 2008). 

On extended timescales, long term plasticity takes the form of depression (LTD) 

or potentiation (LTP). LTP or LTD at the presynapse is extremely diverse and 

can be initiated by signalling pathways with their origin in the postsynapse 

(retrograde signalling), presynapse or even nearby synapses (Yang and 

Calakos, 2013). Signalling can occur in a wide number of different ways, from 

endocannabinoid activation of presynaptic CB1 receptors, to metabotropic 

glutamate receptors, and even nitric oxide (Atwood et al., 2014; Stanton et al., 

2003). Downstream, LTP can be positively or negatively regulated by cyclic 

adenosine monophosphate (cAMP) via cAMP-dependent protein kinase A 

(PKA) or Ca2+-signalling involving calmodulin and CaMKII. (Atwood et al., 2014; 

Yang and Calakos, 2013). 

Presynaptic homeostatic plasticity is a form of plasticity that maintains 

neurotransmission, for example in response to external or environmental 

challenge to the synapse (Böhme et al., 2019). Postsynaptic NT receptor 

blockade or loss is compensated by an increase in presynaptic release. At the 

rat NMJ, a nicotinic acetylcholine receptor blocker α-bungarotoxin (αBTX) was 

found to decrease the size of detected spontaneous vesicular release. 

However, over the course of a several weeks, up to a month, presynaptic NT 

release gradually increased (Plomp et al., 1992). At the mouse NMJ, αBTX was 

again used to determine that postsynaptic receptor blockade results in 

compensatory presynaptic release (Wang et al., 2010). This phenomenon is 

best described at the Drosophila NMJ (Frank et al., 2006), and the increase in 

NT release is generally referred to as presynaptic homeostatic potentiation 

(PHP). Additionally, homeostatic vesicular NT loading and homeostatic 

depression have been reported (Gaviño et al., 2015; Gois et al., 2005). For 

plasticity to occur, following postsynaptic receptor challenge, the postsynapse 
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must effectively signal retrogradely across the synapse to the site of presynaptic 

release at the AZ  (Delvendahl and Müller, 2019). A structural rearrangement of 

AZ proteins including Ca2+ channels coincides with increased SV exocytosis 

(Böhme et al., 2019). Much of this thesis will explore fundamental aspects of 

this form of plasticity at the Drosophila NMJ.   

 

3.10 Aims and goals 

I aimed to investigate the contribution of presynaptic AZ proteins to the initiation 

and maintenance of homeostatic plasticity, with a particular interest in the 

priming protein Unc13A and scaffold protein BRP. I sought to answer the 

question if either or both of these proteins is required for presynaptic 

homeostatic plasticity, and what aspects of this process they regulate 

(functional PHP or structural reorganisation). Making use of electrophysiology 

and microscopy, I applied a combination of pharmacological, genetic and 

immunohistochemical techniques at the fruit fly (Drosophila melanogaster) NMJ 

to answer this question. 

Additionally, I aimed to investigate the acute uncaging of the phospholipid 

PI(4,5)P2 and assess its contribution to exocytosis at the NMJ, as well as 

application of PMA to assess DAG-mediated modulation of neurotransmission. 
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4 Methods 

 

4.1 The fruit fly as a model organism 

The fruit fly Drosophila melanogaster has been utilised for over a century to 

pursue the study of a wide range of biological processes such as genetic 

heredity, embryonic/larval development and as an animal model of human 

disease (Markow, 2015). First produced in large numbers by Charles W. 

Woodworth, he recommended it to William E. Castle who introduced it to his 

laboratory. Thomas Hunt Morgan and his graduate student Herman J. Muller 

went on to win individual Nobel Prizes, using Drosophila to explore 

chromosomal heredity and X-ray mutagenesis respectively (Markow, 2015). 

Drosophila was and continues to be an attractive choice as a model organism 

for a number of reasons which I will briefly detail here. 

Drosophila has a short lifespan allowing study of multiple generations and 

production of genetic crosses in a brief space of time; roughly 10 days from egg 

to adult at 25˚C (Figure 4) (Allocca et al., 2018). Life stages are distinct; starting 

with the embryo, progressing through three larval moulting stages (instar), a 

pupal stage and finally the emergence of the adult fly. Large numbers of 

offspring can be produced by a single female, laying over a hundred eggs a day 

during peak oviposition and many hundreds more during a lifetime (Shapiro, 

1932). Flies are relatively cheap and easy to maintain. Adults and larvae can be 

immobilised using carbon dioxide or volatile anaesthetics for the purposes of 

crossing or dissection (Campbell and Nash, 1994). 

Flies only have four pairs of chromosomes, three pairs of autosomes and one 

pair of sex chromosomes (Allocca et al., 2018). Balancers are homozygous 

lethal and possess multiple inversions to prevent undesirable recombination; 

both of these characteristics protect against loss of the allele/genotype of 

interest (Ashburner et al., 2005). Balancers also express dominant identifiable 

phenotypic markers. Balancer chromosomes are used extensively to maintain 

stocks of particular genes or mutations of interest as well as aiding in sorting 

during fly crossing or selection of larvae for experiments.  
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Analysis of fly gene function has been greatly supported by the fact that the 

Drosophila genome has been sequenced and available for nearly two decades 

(Adams et al., 2000). Genetic manipulation is possible using a number of 

methods that has expanded over the years. Transposon mediated integration, 

gene targeting by homologous recombination, site specific integrase insertion, 

bacterial artificial chromosomes and more recently the CRISPR/Cas9 system 

are examples of genetic manipulation tools in Drosophila (Allocca et al., 2018). 

Traditionally mutagenesis using transposable P-elements, potent chemical 

agents such as Ethyl Methanesulfonate (EMS) or X-rays combined with genetic 

screening had been used to generate fly lines for study (Allocca et al., 2018). 

With the advent of the CRISPR/Cas9 system, the specificity and accuracy of 

genetic modification has increased vastly. 

Use of the Drosophila model system benefits from the commercial availability of 

many fly lines for targeted gene expression. The UAS-Gal4 system involves 

genes placed under the control of Upstream Activation Sequence (UAS) sites 

(Brand and Perrimon, 1993). These gene specific lines are crossed with lines 

possessing tissue specific expression of the transcription factor GAL4. GAL4 

binding of the UAS site in the progeny of these crosses achieves controlled 

expression of genes in desired cells and tissue. For even greater control of 

expression and temporal specificity, lines exist for pharmacological or 

temperature-sensitive activation of the UAS/GAL4 system (Osterwalder et al., 

2001; Zeidler et al., 2004). Finally, there is a huge degree of homology between 

flies and humans. Approximately 65% of human genes implicated in disease 

have Drosophila homologs  (Ugur et al., 2016). 
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Figure 4: The Drosophila melanogaster life cycle. 
The timing and developmental stages of Drosophila at 25°C is depicted. Provided by 
Meida Jusyte. 

 

4.2 The Drosophila neuromuscular junction 

Much of the work in this thesis was performed at the Drosophila larval 

neuromuscular junction (NMJ). Electrophysiology at the larval NMJ was first 

described by Jan and Jan (1976). Motoneuronal bundles propagating from the 

ventral ganglion approach each hemisegment anteriorly from the ventral midline 

on the left and the right. Branching out into the hemisegment, each nerve 

bundle innervates the various muscles of that segment terminating at clusters of 

boutons. Motoneurons can be subdivided into classes based on their differing 

morphology, neurotransmitter type, firing characteristics and muscle innervation 
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(Pérez-Moreno and O'Kane, 2019). Type I are glutamatergic and can be 

subdivided further into Type Ib and Type Is. Type 1b, so called for their ‘big 

boutons’, display less branching and tonic firing (Menon et al., 2013; Pérez-

Moreno and O'Kane, 2019). Type 1s on the other hand have smaller boutons, 

tend to innervate many more muscles than 1b, fire in phasic fashion, have a 

larger proportion of SVs in the RRP and have greater release efficacy. Type II 

(octopaminergic) and Type III (peptidergic) nerves have neuromodulatory 

functions (Pérez-Moreno and O'Kane, 2019; Stocker et al., 2018). 

A major benefit of the Drosophila NMJ is the regular and easily identifiable 

muscle pattern (Keshishian et al., 1993). There are 400 striated muscle cells in 

third instar larvae, each possessing 10-20 nuclei (Jan and Jan, 1976). 

Intracellular recordings are usually performed at muscle 6,7,12 and 13 due to 

their large size, easy access and ventral positioning (Zhang and Stewart, 

2010a). Drosophila NMJs are not cholinergic like those of mammals., ionotropic 

excitatory glutamate receptors are permeable to Na+, K+, Mg2+ (Jan and Jan, 

1976) but also highly permeable to Ca2+ and share some sequence and 

structural similarities with vertebrate AMPA and kainate receptors. Importantly 

however they are neither AMPA or kainite receptors and do not 

pharmacologically respond in the same way (Han et al., 2015). They are 

composed of five subunits. All possess subunits GluRIIC, GluRIID, GluRIIE, an 

accessory subunit Neto, but differ in their fifth subunit. This subunit can be 

either GluRIIA or GluRIIB, influencing receptor properties such as 

desensitisation kinetics and gating properties (DiAntonio et al., 1999; Petzoldt et 

al., 2014). 

 

In the following sections I will describe in detail the pharmacology, 

electrophysiology, immunohistochemistry and microscopy techniques I 

employed to investigate neurotransmission at the Drosophila NMJ. 

However, I will first describe the techniques used to confirm the loading and 

acute activation of a caged PI(4,5)P2 compound, followed by application to the 

Drosophila NMJ. For more information on all experiments, particularly the 

reasoning and outcomes; please refer to the Results section. 
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Figure 5: UV light uncages cg-PI(4,5)P2. 
cg-PI(4,5)2 in solution forms micelles. A high affinity PI(4,5)P2 sensor consisting of a 
lipid binding PH domain and a fluorescent GFP will not bind PI(4,5)P2 when the 
coumarin cage is present on the lipid. The lipid sensor binds PI(4,5)P2 following 
photocleavage of the coumarin group with intense UV light. 

 

4.3 Uncaging PI(4,5)P2 

The following PI(4,5)P2 uncaging experiments were performed as described in 

Walter et al. (2017) and so the procedural details are also largely as published 

there (Section 4.3). 

 

4.3.1 PI(4,5)P2 uncaging in vitro 

A loading solution was made by adding 20 µM cg-PI(4,5)P2 (stored in a 20 mM 

DMSO-stock) to imaging buffer (HBSS with 5% FCS), making sure that cg-

PI(4,5)P2 was only exposed to red light to avoid premature uncaging. The high-

affinity PI(4,5)P2-sensor PLCδ1-PH-GFP (stored as a 1.8 mg/ml PBS/20% 

Glycerol stock) was also added in a 1:20 ratio to the cg-PI(4,5)P2 imaging buffer 

solution (e.g. 5 ml in 100 ml). The solution was pipetted onto a glass coverslip in 

an incubation chamber (37°C), and imaged on a TIRF microscope (Nikon Ti 

Eclipse), featuring a 60X TIRF objective (Apo TIRF 1.49NA, Nikon), a sCMOS 

camera (Neo, Andor), four excitation laser lines: (405,488 nm, 568 nm, 647 nm) 
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an appropriate dichroic mirror (Di01-R405/488/561/635), filter (FF01-

446/523/600/677) and operated with ImageJ micromanager software. At 50% 

(30MW) 488 nm laser power, images were taken of the glass coverslip with 

200 ms exposure every second. Following the 488 nm frame an uncaging frame 

with the 100% (60 MW) 405 nm laser (200 ms exposure) was used to uncage 

PI(4,5)P2 before returning to a 488 nm frame. Using Fiji (ImageJ) software, 

cg-PI(4,5)P2 on the glass was identified in the 405 nm channel. ROIs were 

placed on this cg-PI(4,5)P2 and transferred to the corresponding 488 nm 

channel images. The fluorescence intensity of PLCδ1-PH-EGFP before and 

after the uncaging frame was compared. 

 

4.3.2 Culture and transfection of cell lines 

HEK 293T (Figure 7b) and COS-7 (Figure 8a) cells were purchased from 

ATCC, who confirmed the identity of the cells by performing short tandem 

repeat profiling. Cell lines were also tested for mycoplasma contaminations 

monthly. Cells were cultured in DMEM (Lonza) supplied with 10% fetal bovine 

serum (FBS, Gibco 10270–106) and 1% penicillin/streptomycin. Cells were not 

used beyond passage 30 from original (splitting of cells). COS-7 cells were 

transfected using Lipofectamine 2000 (Life Technologies) according to 

manufactures instructions with the following DNA concentrations: 1 µg of 

mCherry-INPP5E-CAAX plasmid (Posor et al., 2013) and 2 µg DNA of EGFP-

PH-PH (PLCδ1) plasmid from Michael Krauss (Leibniz-Forschungsinstitut für 

Molekulare Pharmakologie, Berlin, Germany). 

The LifeAct-RFP experiments depicted in Figure 8b were performed in HEK 

293T cells provided by Dr. Therese Schaub and Prof. Dr. Victor Tarabykin 

(Institute of Cell Biology and Neurobiology, Charité Berlin). These were cultured 

in DMEM GlutaMAX (Thermo Fisher/Gibco) supplied with 10% fetal bovine 

serum (FBS, Gibco 16140063) and 1% penicillin/streptomycin at 37°C in a 

humidified atmosphere (5% CO2). Cells were not used beyond passage 40 

from original. This cell line was not tested for mycoplasma contaminations. Cells 

were transfected using Lipofectamine LTX (Thermo Fisher Scientific) according 

to manufactures instructions with 1.8 µg DNA of LifeAct-RFP (pmRFPruby-
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N1*LifeAct (GB lab plasmid nr 28) in pmRFPruby-N1) provided by Geert van 

den Bogaart (Radboud University Medical Center, Nijmegen, the Netherlands). 

Cells were used 18–24 hours following transfection with LifeAct-RFP. 

 

4.3.3 Cellular loading of cg-PI(4,5)P2 

Loading solution was made for HEK 293T (Figure 7b) and COS-7 (Figure 8a) 

cells by adding 20 µM cg-PI(4,5)P2 (stored in a 20 mM DMSO-stock) and 0.02% 

Pluronic F-127 (Sigma-Aldrich, MO, USA, stock (20% solution in DMSO)) to 

imaging buffer (HBSS with 5% FCS). Preparation of loading solution was 

performed under red light to prevent premature uncaging. The control solution 

contained an equal volume of DMSO in the place of cg-PI(4,5)P2. The resulting 

solutions were vortexed for 3 minutes to prevent formation of lipid micelles. A 

cell plate was taken from a CO2-incubator (5%) and cell medium removed with 

a pipette from the wells to be loaded, making sure to avoid drying out of the 

cells. cg-PI(4,5)P2/control loading solution was gently pipetted into the wells, 

avoiding disruption of the cells by pipetting onto the wall of each well. The cell 

plate was returned to the incubator for 30 minutes (37˚C). The plate was again 

taken from the incubator and the loading solution removed from each well. 

Wells were washed twice with cg-PI(4,5)P2/Pluronic-free imaging buffer. 

Loading of cg-PI(4,5)P2 was performed for HEK 293T (Figure 8b) cells as 

described above, substituting cell culture medium for imaging buffer as the 

loading solvent (20 µM cg-PI(4,5)P2, 0.02% Pluronic F-127 in cell culture 

medium). Following 30 minutes incubation (37˚C) in a CO2-incubator (5%), cells 

were washed twice with a solution containing: (in mM) NaCl 145, KCl 3, HEPES 

10, CaCl2 1, MgCl2 1 and Glucose 6, pH adjusted to 7.4 and with an osmolarity 

of 290 mOsm/l. 

 

4.3.4 Visualisation of cellular PI(4,5)P2 localisation and uncaging  

CellMask Deep Red plasma membrane stain (Thermo Fisher Scientific, stored 

at room temperature in the dark as a 5 mg/ml stock in DMSO) was added as a 

1:1000 dilution to imaging buffer (Figure 7b). HEK 293T cells were incubated for 
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5 minutes in the CellMask imaging buffer solution before washing twice with 

fresh imaging buffer. The cells were then subsequently loaded with cg-PI(4,5)P2 

or control DMSO as described above. Cells were then placed in an incubation 

chamber (37°C) and imaged on a Spinning Disk Confocal Microscope (Nikon 

TI-Eclipse) featuring a 60X objective (P-Apo NA 1.40, Nikon), Yokogawa 

spinning disk (CSU-X1), an EMCCD camera (AU-888 Andor), four excitation 

laser lines: (405, 488 nm, 561 nm, 638 nm), a Borealis unit (Andor), an 

appropriate dichroic mirror (Di01R405/488/561/635), specific filters (BP450/50 

and BP700/75 for coumarin and CellMask, respectively) and operated with NIS 

Elements (Nikon) software. Images were captured at 0.5 s intervals (200 ms 

exposure) for 30 seconds using a 638 nm laser at 20% power (100 mW) to 

visualise the CellMask. Each 638 nm frame was followed by a frame captured 

with a 405 nm laser at 30% power (100 mW) to visualise the coumarin-caging 

group of cg-PI(4,5)P2 and uncage it. Using Fiji (ImageJ) software, line profile 

ROIs were placed in the CellMask imaging channel (excitation 638 nm) across 

the plasma membrane (90˚ angle in relation to the membrane) of individual 

cells, crossing from the extracellular space into nucleus-free cytosol. Only one 

membrane ROI was selected per cell. The site of maximum CellMask 

fluorescence intensity along each line was deemed to be the midpoint of the 

plasma membrane (calculated using the second output parameter of the built-in 

MATLAB function ‘max’ ((MATLAB vers. 7.12.0 R2011a)). For each line profile 

ROI, a 3 µm long section was aligned at each frame (using a custom MATLAB 

script) such that the calculated plasma membrane midpoint was 1.5 µm along 

the section (i.e. each frame of each line profile ROI was centred at the plasma 

membrane).  The Cell Mask fluorescence intensity values along the line profile 

were noted at 15 positions preceding (-1.5 µm) and 15 positions succeeding 

(+1.5 µm) the mid-point. Each line profile ROI, following alignment to plasma 

membrane as explained above, was transferred as is to the corresponding 

coumarin channel (405 nm excitation) frame. The coumarin fluorescence 

intensity values were noted at the exact same line positions as the CellMask 

channel values. In both channels, the pixel intensity value of the 1st position on 

each line (i.e. 1.5 µm extracellular to the plasma membrane) was subtracted 

from values at all other positions to obtain background subtracted line profiles. 

The analysed aligned line profile sections were then averaged across all cells. 
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COS-7 cells were transfected with EGFP-PH (PLCδ1), mChINPP5E-CAAX and 

loaded with cg-PI(4,5)P2 or DMSO control as described above (Figure 8a). Cells 

were imaged on the TIRF microscope setup describe previously for PI(4,5)P2 

uncaging in vitro  (Figure 7a). Images were captured at 1 s intervals (200 ms 

exposure) using a 488 nm laser at 50% power (30 MW) to visualise EGFP, 

immediately followed by a 561 nm laser at 100% power (50 MW) to visualise 

mCherry. This sequence cycled until the interval between the 10th and 11th 

cycle (10–11 s), where a single frame was introduced (400 ms exposure) using 

a 405 nm laser at 100% power (60 MW) to UV uncage PI(4,5)P2. COS-7 cells 

expressing both the constitutive phosphatase and lipid sensor were analysed 

using Fiji (ImageJ) software. ROIs of plasma membrane were selected in the 

EGFP (488 nm excitation) channel only (3 per cell) and the mean fluorescence 

intensity noted over time. A ratio of EGFP fluorescence intensity change 

(before/after UV uncaging) in these ROIs was calculated by dividing intensities 

after the UV uncaging frame by the corresponding intensities prior to the UV 

uncaging frame. Values were then averaged across ROIs. 

 

4.3.5 LifeAct-RFP imaging 

HEK 293T cells were transfected with LifeAct-RFP and loaded with cg-PI(4,5)P2 

or DMSO control as previously described. Cells were placed in an incubation 

chamber (37°C) and imaged on a TIRF microscope (Nikon Ti eclipse) featuring 

a x100 objective (Apo TIRF 1.49NA, Nikon), an EMCCD camera (iXon 888 

Andor, EM gain set to 300), four excitation laser lines: (405,488 nm, 561 nm, 

647 nm), suitable filter sets and controlled by the Nikon NIS-Elements AR 

Software (vers. 4.51.01). Images were acquired at 0.5 second intervals (100-

200 ms exposure) with a 561 nm laser (2% intensity) to visualise LifeAct-RFP. 

After 5 frames, three consecutive UV frames (100 ms exposure) were 

introduced with the same interval to uncage PI(4,5)P2, produced using the 

405 nm laser (25% intensity). Imaging was then resumed at the same 0.5 

second intervals (100-200 ms exposure) with a 561 nm laser (2% intensity) to 

visualise LifeAct-RFP. Using Fiji (ImageJ), circular ROIs of equal size were 
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selected on cellular footprints resembling filamentous structures in the 

LifeAct-RFP channel (561 nm excitation), presumed to be LifeAct-RFP bound 

actin (white circles, Figure 8b). The mean fluorescence intensity of a single ROI, 

placed outside the cell, was subtracted from those of all cellular ROIs at each 

frame to account for background fluorescence (yellow circle). The mean 

fluorescence intensities of all cellular ROIs were averaged for each frame per 

cell and then normalised to the very first frame. Cells were then divided based 

on treatment group and averaged at each frame. 
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4.4 Fly handling and stocks 

All Drosophila larvae were raised at 25˚C under standard laboratory conditions  

(Sigrist et al., 2003) on semi defined medium (Bloomington recipe). Fly crosses 

and stocks were kept at room temperature. Experiments were performed using 

male and female third instar larvae. 

 

Table 1: List of fly lines used. 

Fly line Figure Source 

Wild-type: +/+ (w1118) 11-12, 15, 

17-19 

Bloomington Drosophila 

Stock Center 

brpmCherry/III 9, 16 (Matkovic et al., 2013) 

Mhc-myr-GCaMP5G/III 10 (Reddy-Alla et al., 2017) 

unc13ANull: EMS7.5/P84200 12 (Böhme et al., 2016) 

P84220 from DGRC 

Unc13A-GFP: elav-GAL4/+;;UAS-

Unc13A-GFP/+;P84200/P84200 

13-14 (Böhme et al., 2016) 

P84220 from DGRC 

C-term-GFP: elav-GAL4/+;;UAS-C-

term-GFP/+; P84200/P84200 

13-14 (Reddy-Alla et al., 2017) 

P84220 from DGRC 

gluRIIANull:AD9/df(2 L)clh4 or 

gluRIIASP16/gluRIIASP16 

17-19 (Petersen et al., 1997) 

brpNull: brpΔ6.1/brp69 15, 18 (Kittel et al., 2006) 

(Fouquet et al., 2009) 

gluRIIANull,brpNull: 

gluRIIASP16,brpΔ6.1/gluRIIASP16, brp69 

18 (Petersen et al., 1997) 

(Kittel et al., 2006) 

(Fouquet et al., 2009) 

aplip-1ek4:aplip-1ek4/Df(3L)BSC799 19 Bloomington Drosophila 

Stock Center 

gluRIIANull;aplip-1ek4: AD9/df(2L)clh4; 

aplip-1ek4/Df(3L)BSC799 

19 (Petersen et al., 1997) 

Bloomington Drosophila 

Stock Center 

DGRC = Drosophila Genome Research Center 
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The following procedures for dissection, incubation, electrophysiology and 

immunohistochemistry (in relation to Homeostatic Plasticity) were performed as 

described in Böhme et al. (2019) and so the details are also as published there. 

 

4.5 Electrophysiology 

4.5.1 Dissection and incubation of larvae for electrophysiology 

Third instar larvae were individually placed on Sylgard (184, Dow Corning, 

Midland, MI, USA) and pinned at the head and the tail. The pins were placed 

close enough together so as to not stretch the larvae. A small incision was 

made with a sharp scissors in the dorsal cuticle near the tail pin. Starting from 

this posterior incision, a cut was made along the length of the larva extending 

beyond the head pin, being sure not to stretch the larva when cutting. 

The following solutions were used to incubate larvae prior to recording; 

• PMA incubation (Figure 10): HL3 for TEVC recording (values in mM: 

NaCl 70, KCl 5, MgCl2·6H2O 20, NaHCO3 10, trehalose 5, sucrose 115, 

HEPES 5, CaCl2 0, pH adjusted to 7.2) (Stewart et al., 1994) containing 

2 µM Phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, MO, USA 

(stored at -20˚C as 10 mM stock in DMSO)). Control incubations 

contained an equal volume of DMSO instead of PMA. 

• Phtx incubation (Figures 12-13, 15, 17a): Modified HL3 for current clamp 

recording (values in mM: NaCl 70, KCl 5, MgCl2·6H2O 10, NaHCO3 10, 

trehalose 5, sucrose 115, HEPES 5, CaCl2 0, pH adjusted to 7.2) 

containing 20 µM PhTx-433 (Sigma-Aldrich, MO, USA (stored at -20˚C 

as 4 mM stock in dH2O)). Control incubations contained an equal volume 

of dH2O instead of PhTx. 

40 µl of the incubation solution was gently pipetted into the larval abdominal 

cavity using minimal force. Larvae were incubated for 10 minutes at room 

temperature (~22˚C). Dissection was completed in the incubation solution as 

below. 
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Larvae in Figures 11, 14, 17e, 18-19 were not pre-incubated; 40 µl of modified 

HL3 for current clamp only (values in mM: NaCl 70, KCl 5, MgCl2·6H2O 10, 

NaHCO3 10, trehalose 5, sucrose 115, HEPES 5, CaCl2 0, pH adjusted to 7.2) 

was gently pipetted onto the larva before dissection. 

The cuticle was pinned down twice on either side. The intestines and trachea 

were cut at the posterior and held firmly with forceps as the remaining 

connections to the body were cut before being fully removed, taking care not to 

pull on the preparation. The brain was held slightly raised above the preparation 

and the segmental nerves cut without touching the underlying muscle. Finally 

the brain was removed. 

Larvae in Figures 12-13, 15. 17a were minimally washed of incubation solution 

with HL3 three times. Larvae in Figures 10-11, 14, 17e, 18-19 were not washed. 

 

Dissection and incubation with cg-PI(4,5)P2 

Larvae in Figure 9 were dissected on ice under red light in HL3 for TEVC 

recording (values in mM: NaCl 70, KCl 5, MgCl2·6H2O 20, NaHCO3 10, 

trehalose 5, sucrose 115, HEPES 5, CaCl2 0, pH adjusted to 7.2) (Stewart et 

al., 1994). Following dissection they were incubated on ice for 30 minutes in 

100 µl HL3 containing 40 µM cg-PI(4,5)P2 (stored at -80 ˚C, 20 mM stock in 

DMSO) and 0.04% Pluronic F-127 (Sigma-Aldrich, MO, USA, stock (20% 

solution in DMSO) stored at room temperature and preheated to 40˚C prior to 

use). After incubation, larvae were washed once with HL3. 

 

4.5.2 Current clamp recording 

The Sylgard block and completed larval preparation was placed in the 

electrophysiological recording chamber. Prior to recording, CaCl2 (1M stock 

stored at 4˚C) was added to modified HL3 for current clamp recording (values in 

mM: CaCl2 0.4, NaCl 70, KCl 5, MgCl2·6H2O 10, NaHCO3 10, trehalose 5, 

sucrose 115, HEPES 5, pH adjusted to 7.2). The recording chamber was filled 

with 2 ml HL3. 
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Recordings were performed at room temperature in current clamp mode at 

muscle 6 (Figures 11-15, 17-19)  in abdominal segments A2/A3 as previously 

described (Zhang and Stewart, 2010a) using an Axon Digidata 1550A digitizer, 

Axoclamp 900A amplifier with HS-9A x0.1 headstage (Molecular Devices, CA, 

USA) and on a BX51WI Olympus microscope with a 40X LUMPlanFL/IR water 

immersion objective. Sharp intracellular recording electrodes were made using 

a Flaming Brown Model P-97 micropipette puller (Sutter Instrument, CA, USA) 

with a resistance of 20-35 MΩ and back-filled with 3 M KCl. Cells were only 

considered with a membrane potential less than -60 mV and membrane 

resistances greater than 4 MΩ. All recordings were acquired using Clampex 

software (v10.5) and sampled at 10-50 kHz, filtering with a 5 kHz low-pass filter. 

eEPSPs were recorded by stimulating the appropriate nerve at 0.1 Hz, 5 times 

(8 V, 300 µs pulse) using an ISO-STIM 01D stimulator (NPI Electronic, 

Germany). Stimulating suction electrodes were pulled on a DMZ-Universal 

Puller (Zeitz-Instruments GmbH, Germany) and fire polished (width of axon 

bundle, differs depending on genotype) using a CPM-2 microforge (ALA 

Scientific, NY, USA).  

Spontaneous mEPSPs in Figure 11 were recorded for 30 seconds. 1 ml of 

solution was then removed without disturbing the preparation or electrodes and 

exchanged for 1 ml of HL3 added containing PhTx-433 (Sigma-Aldrich, MO, 

USA), mixing gently with the pipette to a final concentration of 4 µM PhTx. 

Spontaneous mEPSPs were recorded immediately, again for 30 seconds. 

Stimulation was performed at 10 Hz for 10 seconds to measure eEPSPs or in 

the case of control recordings, 10 seconds without stimulation. Finally, mEPSPs 

were recorded for 30 seconds. 

For current clamp recordings in Figures 14 and 17, cells with an initial 

membrane potential greater than −55 mV, resistances less than 5MΩ were 

rejected. eEPSPs were recorded by stimulating the appropriate nerve at 0.2 Hz, 

10 times (6 V, 300 μs pulse) (Figure 17) or 0.2 Hz continuously (8 V, 300 μs 

pulse) (Figure 14). 
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Figure 6: Dissected larva and current clamp recording configuration. 
Left: Dissected larval preparation showing muscle pattern in abdominal segments A2-
A6. Right: Example placement of electrodes for Current Clamp recording in right A3 
hemisegment. The cut end of the segmental motoneuron bundle is sucked into the 
stimulating electrode and the sharp recording electrode is inserted into muscle 6. 

 

4.5.3 Two electrode voltage clamp (TEVC) recording 

The Sylgard block and completed larval preparation was placed in the 

electrophysiological recording chamber. CaCl2 (1M stock stored at 4˚C) was 

added to HL3 for TEVC recording (NaCl 70, KCl 5, MgCl2·6H2O 10, NaHCO3 

10, trehalose 5, sucrose 115, HEPES 5, CaCl2 0, pH adjusted to 7.2) to a final 

concentration of 2 mM (Figure 9) or 1.5 mM (Figure 10). The recording chamber 

was filled with 2 ml HL3. TEVC recordings were performed as previously 

described (Zhang and Stewart, 2010c) in muscle 6 (Figure 9) or muscle 4 

(Figure 10) of abdominal segments A2/A3. Cells were only considered with a 

membrane potential less than -50 mV and membrane resistances greater than 

4 MΩ. UV uncaging in combination with paired-pulse TEVC recording (Figure 8) 

was performed using a JML-C2 UV flash lamp (Rapp OptoElectronic GmbH, 
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Germany) with ET 405/40 bandpass filter. A UV flash (C2) was given 2 seconds 

after the first paired-pulse. 

 

4.5.4 Electrophysiological analysis 

Analysis of eEPSPs/eEPSCs and mEPSPs/mEPSPCs was performed with 

Clampfit 10.5. Average eEPSP/eEPSC amplitudes were measured. High 

frequency trains in Figure 9 were analysed using a custom MATLAB script 

(MATLAB vers. 7.12.0 R2011a). mEPSPs/mEPSCs traces were filtered with a 

500 Hz Gaussian low-pass filter. An mEPSP/mEPSC template was generated 

for each cell in Figures 10-11, 15, 18-19. A single mEPSP template was used to 

identify individual mEPSPs in Figures 12-13. mEPSPs were analysed with a 

genotype specific template in Figures 14,17. The mean mEPSP amplitude per 

cell and mEPSP frequency was calculated in all experiments. Quantal contents 

were calculated by dividing the mean eEPSP by mean mEPSP for each 

cell/stimulation cycle. 

 

4.6 Drosophila Imaging 

4.6.1 Live imaging of axonal transport 

Third instar larvae were dissected and transferred to a recording chamber as 

described above for current clamp electrophysiology, filling the recording 

chamber with 2 ml modified HL3. Imaging was performed on a BX51WI 

Olympus microscope equipped with a 60X water immersion objective (LUMFL 

NA 1.10, Olympus, Tokyo, Japan), Lumencor SPECTRA X light engine 

(Lumencor, OR, USA), EGFP/mCherry filter (59022x, Chroma Technology 

Corporation, VT, USA) and operated with ImageJ micromanager software. Prior 

to recording 1 ml of modified HL3 was removed from the recording chamber 

and exchanged for 1 ml of modified HL3 (values in mM: CaCl2 0.4, NaCl 70, KCl 

5, MgCl2·6H2O 10, NaHCO3 10, trehalose 5, sucrose 115, HEPES 5, pH 

adjusted to 7.2) containing PhTx-433 (Sigma-Aldrich, MO, USA (stored at -20˚C 

as 4 mM stock in dH2O)) or control dH2O, gently mixing with the pipette to 

obtain a final concentration of 20 µM PhTx. Imaging was commenced 
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immediately at nerve bundles above muscle 4, abdominal segments A2-A4. 

Image stacks were acquired at 15 second intervals with a z-step of 1 µm, 

800 ms exposure and 550/15 nm light at maximum power (260 mW). Image 

stacks were analysed using Fiji (ImageJ) software. A max projection of each 

stack was generated, and fluorescent particles manually tracked with the 

ImageJ Manual Tracking plugin. Fluorescent particles were placed into two 

categories based on their individual movement over 10 minutes; anterograde-

/retrogradely or stable/slowly oscillating particles. The proportion of particles in 

each category out of the total observed particles in a nerve bundle was 

calculated. 

 

4.6.2 Dissection and Immunohistochemistry 

Individual third instar larvae were selected and placed on a rubber dissection 

puck and pinned at the head and the tail. A 40 µl drop of HL3 (values in mM: 

NaCl 70, KCl 5, MgCl2·6H2O 20, NaHCO3 10, trehalose 5, sucrose 115, HEPES 

5, CaCl2 0, pH adjusted to 7.2) (Stewart et al., 1994) was pipetted onto the 

larva. A small incision was made with a pair of sharp scissors in the dorsal 

cuticle near the tail pin. Starting from this posterior incision, a cut was made 

along the length of the larva extending beyond the head pin. The cuticle was 

stretched and pinned down twice on either side. The intestines and trachea 

were cut at the posterior and held firmly with forceps as the remaining 

connections to the body were cut before being fully removed. The HL3 was 

removed and the larva fixed with ice-cold methanol for 5 minutes. The methanol 

was then removed before washing 5 times with PBS containing 0.05% Triton X-

100 (0.05% PBT). Fixed larvae were transferred and stored in a 1.5 ml 

Eppendorf tube containing ice-cold 0.05% PBT until blocking. Larvae were 

blocked for an hour in 0.05% PBT containing 5% normal goat serum (NGS), 

rotating on a wheel at room temperature. The blocking solution was then 

removed and larvae were incubated overnight on a wheel at 4°C in the primary 

antibody solution (BRP and Unc13A) consisting of 0.05% PBT containing 

mouse NC 82 (1:200 dilution, Developmental Studies Hybridoma Bank, 

University of Iowa, Iowa City, USA) and guinea pig Unc13A (1:500, (Böhme et 

al., 2016)). Larvae were washed 5 times over 2 hours on a wheel by 
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exchanging the solution in the tube every 30 minutes for 1.5 ml of fresh 0.05% 

PBT. Larvae were incubated for 4 hours on a rotating wheel at room 

temperature in the secondary antibody solution consisting of PBT (0.05%) 

containing goat anti-mouse Cy3 (1:500, Jackson ImmunoResearch, PA, USA, 

115–165–146), goat anti-guinea pig Alexa-Flour-488 (1:500, Life Technologies, 

CA,USA,  A11037) and goat anti-HRP Alexa-Flour-647 (1:250, Jackson 

ImmunoResearch, PA, USA, 123–605–021). Larvae were again washed 5 times 

over 2 hours (every 30 mins) on a rotating wheel, each time exchanging the 

solution in the Eppendorf tube with 1 ml of fresh 0.05% PBT. After the last 

wash, the larvae were washed overnight on a rotating wheel at 4°C. All solution 

was then removed from the larvae and they were mounted on a glass slide in 

Vectashield (Vector Laboratories), and sealed under a coverslip with nail 

varnish. Microscope slides were stored in the dark at -20°C. 

 

4.6.3 Confocal Imaging and synaptic intensity analysis 

Confocal imaging was performed on a Leica SP8 microscope (Leica 

Microsystems, Germany) equipped with a 63X 1.4 NA oil immersion lens, four 

excitation laser lines (405 nm (not used), 488 nm, 552 nm, and 638 nm), 

suitable filter sets and controlled with LCS AF software. Fixed larval 

preparations were viewed at room temperature and NMJ images acquired at 

type 1b boutons, muscle 4 in abdominal segments A2-A5. Image stacks were 

acquired with a z-step size of 0.25 µm, a pixel size of 100 nm, zoom factor 1.8, 

1024x256 pixel resolution, line averaging of 3, and scanned at 400 Hz. Fiji 

(ImageJ) software was used to process image stacks, including enhancement 

of brightness/contrast. A custom script was used, selecting 3 points on the 

image stack 40 pixels from the NJ/signal, to subtract background fluorescence. 

The image stack was separated into its 3 individual channels and a max 

projection generated for each channel. The HRP-647 channel (stained neuronal 

membrane) was used to create a mask, drawing an outline around the NMJ of 

interest. A Gaussian blur filter (1.00 Sigma radius) was applied and the 

threshold adjusted to remove signal outside the NMJ, making sure the HRP 

signal remained continuous. Additional areas of signal outside the NMJ were 

removed with the freehand tool. The final binary HRP mask was saved, and 
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then applied to each of the other two channels (Subtract) to restrict analysis to 

the NMJ. For image analysis in Figures 17 and 19, a custom script was used to 

further restrict analysis to AZs (BRP staining was used as an AZ marker). The 

script identified and measured points of high intensities in the BRP channel, the 

mean intensity was calculated. The intensities at these exact same points was 

measured in the Unc13A channel and the mean intensity calculated. In 

Figure 18, no script was used and instead the mean intensity across the entire 

NMJ (as defined by the HRP mask) was measured and calculated for both 

channels (BRP and Unc13A). 

 

4.7 Statistics 

Statistical analysis for all experiments was performed in GraphPad Prism 6 

software. Data sets were tested for normality (D’Agostino & Pearson omnibus 

normality test) and compared for equal variances (F test). Student’s t-test was 

used to compare the mean of two unpaired groups and for those that were not 

normally distributed or were of unequal variance; a Mann-Whitney U test was 

used. For paired recordings, paired t-test was used. For comparing multiple 

groups, nonparametric one-way analysis of variance (ANOVA) with Tukey’s 

multiple comparison test was used. For specific statistical information on 

individual datasets, including n values, p values and statistical tests used, 

please see Table 2 (Appendix 8.4).  
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5 Results 

 

5.1 Loading and uncaging PI(4,5)P2 

In addition to the formation of membranes, lipids play a central role in several 

important cellular processes. They act as targets for protein localisation, 

substrates for the generation of secondary messengers and as modulators of 

various cellular signalling pathways. In order to study the biological activity of 

signalling lipids, a chemically caged, membrane permeant phosphatidylinositol 

4,5-bisphosphate (PI(4,5)P2) was used that could be loaded into cells and 

optically uncaged, hence becoming biologically available. Prior to this however, 

it was necessary to test the ability to uncage the lipid and test its binding to a 

lipid sensor. Advantage was taken of the tendency of lipids to form micelles 

when suspended in an aqueous solution. An imaging buffer was made up 

containing cg-PI(4,5)P2 (to a final concentration of 20 µM) and a high affinity 

lipid sensor specific for PI(4,5)P2. This sensor was a fusion protein of the 

pleckstrin homology (PH) domain of phospholipase C-delta 1 (PLCδ1) tagged 

with EGFP (5% final concentration). PLCδ1 is an enzyme that endogenously 

binds PI(4,5)P2 with high affinity during its metabolism. The solution was only 

briefly vortexed so as not to break up the aggregated PI(4,5)P2 and pipetted into 

a chamber containing a glass coverslip. On a TIRF microscope, which allows 

restricted illumination within nanometres of the coverslip (restricted 

background), these micelles of PI(4,5)P2 could be observed on the surface of 

the glass in the GFP channel (488 nm) (Figure 7a). The PI(4,5)P2 was 

visualised prior to uncaging due to some degree of binding to PLCδ1-PH-EGFP. 

The lipid sensor in solution was also observed in the background. The coverslip 

was illuminated with 405 nm light to uncage PI(4,5)P2,  and with excitation of 

the coumarin its fluorescence could be observed in the UV channel. Following 

uncaging, the relative fluorescence intensity of micelles in the GFP channel 

increased drastically indicating that these were indeed micelles of PI(4,5)P2 and 

that the phospholipid was uncaged, hence facilitating additional PLCδ1-PH-

EGFP binding which establishes that the coumarin cage indeed impedes 

binding. 
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As uncaging of PI(4,5)P2 had been established to be effective in a simplified 

assay, it was now important to confirm loading of the lipid into cells. Human 

Embryonic Kidney (HEK) cells were stained with far-red dye (CellMask, 

Invitrogen) to visualise the plasma membrane of cells, which could be observed 

with a 638 nm laser without uncaging the UV-sensitive coumarin cage of 

PI(4,5)P2 (405 nm). Following this, cells were loaded by incubating in imaging 

buffer containing cg-PI(4,5)P2 (20 µM final concentration) and an equal volume 

of Pluronic F-127 (0.02% final concentration) for 30 minutes. Control cells were 

loaded with a solution containing only DMSO and Pluronic. Following loading 

the cells were observed on a spinning disk confocal microscope. Both the 

CellMask and coumarin cage of PI(4,5)P2 could be clearly seen at the plasma 

membrane. Internal cellular fluorescence indicated that the PI(4,5)P2 was not 

restricted to the plasma membrane and likely also localising to intracellular 

structures, e.g. endosomes. I was interested in the sub cellular distribution of 

PI(4,5)P2 so examined line profiles of sections of the plasma membranes. Using 

a custom MATLAB script, these profiles were aligned in the PI(4,5)P2 channel 

using the maximum fluorescence of the CellMask channel to determine the 

centre of the plasma membrane. The average of many of these line profiles 

illustrates the obvious presence of PI(4,5)P2 at the plasma membrane and 

within the cell, which was absent extracellularly and in control cells. After 60 

frames of UV imaging this had significantly decreased as the coumarin cage 

was cleaved by continuous UV light (Figure 7b). This confirmed that caged 

PI(4,5)P2 could be loaded into cells, that it was visible at the plasma 

membrane/intracellularly and that it could be uncaged. 
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Figure 7: Confirmation of PI(4,5)P2 UV uncaging and loading into HEK cells. 
(a) Left panel: A solution containing cg-PI(4,5)P2 and soluble PI(4,5)P2 sensor, PLCδ1-
PH-EGFP, applied to a glass coverslip reveals lipid micelles accumulated on the 
surface using TIRF microscopy. PLCδ1-PH-EGFP is also visible in the background. On 
the left a comparison of EGFP fluorescence (488 nm) before and after UV uncaging 
can be seen. The white box indicates and encompasses an example micelle on the 
glass coverslip. Right panel: The example micelle is shown before uncaging (EGFP 
fluorescence (488 nm)), during uncaging (UV fluorescence (405 nm)), and again after 
uncaging (EGFP fluorescence (488 nm)). Below this, quantification is shown of EGFP 
fluorescence at 10 such micelles before and after UV uncaging. (b) Left panel: HEK 
cells were incubated for 30 minutes at 37°C with cg-PI(4,5)P2 (top) or without cg-
PI(4,5)P2 (bottom) in vehicle DMSO (0.02%) and Pluronic (0.02%). Cells were also 
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incubated with CellMask Deep Red plasma membrane stain. Line profiles are shown in 
white crossing the plasma membrane, with the plasma membrane identified by 
CellMask Deep Red fluorescence (638 nm). The line profiles are then transferred to the 
corresponding Coumarin fluorescence (405 nm) UV images. Line profiles in both 
channels are aligned based on the CellMask fluorescence maximum. Right panel: 
Mean fluorescence line profiles of Cell Mask (pink), Coumarin before UV uncaging 
(dark blue) and Coumarin after 30 s UV uncaging (light blue). The Coumarin is 
localised within the cg-PI(4,5)P2 loaded cells (top) and at the position of the membrane 
is significantly lower after UV uncaging. It is absent from vehicle-only loaded cells 
(bottom). Statistics: Paired T-test, *p ˂ 0.05, ***p ˂ 0.001, not significant (n.s.) p > 0.05, 
mean ± SEM. For details see Table 2. Scale bars: 5 µm. Modified from Walter et al. 
(2017). 

 

The question remained whether PI(4,5)P2 loaded into cells was biologically 

active after uncaging. To investigate this, COS-7 cells were transfected with 

PLCδ1-PH-EGFP to visualise uncaged PI(4,5)P2 available for binding. In an 

attempt to degrade endogenous PI(4,5)P2 that might bind the EGFP sensor 

prior to uncaging and would obscure observation of fresh lipid-sensor binding, 

the cells were also transfected with a mCherry tagged inositol polyphosphate 5-

phosphatase targeted to the plasma membrane via a CAAX motif (mCh-

INPP5E). I had previously observed sensor localising to the membrane, even in 

the absence of uncaging. Cells were loaded with cg-PI(4,5)P2 or DMSO 

(control) as before and the large footprints of the COS-7 cells imaged on a TIRF 

microscope. The lipid sensor was to some extent already present at the plasma 

membrane and after imaging for 10 seconds a moderate degree of bleaching 

occurred (Fig 8a). Following the 10th frame a single UV uncaging frame was 

introduced to the sequence prior to the 11th frame. Small circular ROIs (of equal 

size) of the footprints of cells were analysed. The change of GFP fluorescence 

between subsequent frames was significantly different when comparing cg-

PI(4,5)P2 loaded cells and control cells. In PI(4,5)P2 loaded cells, uncaging 

appeared to briefly counteract the bleaching, while no such effect was seen in 

control cells. This confirmed that upon uncaging, PLCδ1-PH-EGFP was 

localised to the membrane and that PI(4,5)P2 was available for binding. 

PI(4,5)P2 is well known to regulate actin organisation and bind actin regulator 

proteins, contributing to processes such as cellular migration and endocytosis 

(Senju and Lappalainen, 2019).  To establish that loaded and uncaged 
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PI(4,5)P2 would have identifiable effects on cellular processes, HEK cells were 

transfected with an RFP tagged LifeAct construct. This fluorescent peptide 

binds filamentous actin, allowing any cytoskeletal rearrangements due to 

increases in PI(4,5)P2 to be examined. Cells were loaded with PI(4,5)P2 or 

DMSO control as before and imaged on a TIRF microscope. After 5 frames in 

the RFP channel at 2 Hz, a UV frame to uncage PI(4,5)P2 was introduced 

before resumption of imaging in the RFP channel. 10 ROIs of equal size were 

taken from the footprint of each cell, averaged and background subtracted. It 

was clear that uncaging PI(4,5)P2 increased LifeAct fluorescence in these 

regions (Figure 8b), and presumably actin near the plasma membrane almost 

immediately. This is consistent with other studies that show that actin 

polymerisation is enhanced with increased PI(4,5)P2 (Scholze et al., 2018) and 

provides evidence that uncaging PI(4,5)P2 alters cellular processes. 
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Figure 8: Uncaging PI(4,5)P2 recruits a high affinity lipid sensor to the plasma 
membrane of COS-7 cells and triggers actin changes at the plasma membrane 
of HEK cells. 
(a) Left panel: COS-7 cells transfected and expressing PLCδ1-PH-EGFP (top) and 
mCh-INPP5E-CAAX (bottom) were incubated for 30 minutes at 37°C with cg-PI(4,5)P2 
or without cg-PI(4,5)P2 in vehicle DMSO (0.02%) and Pluronic (0.02%). An example 
ROI is shown in white. Middle panel: Using TIRF microscopy, PLCδ1-PH-EGFP 
fluorescence (488 nm) and mCh-INPP5E-CAAX fluorescence (561 nm) was imaged 
with a single UV uncaging frame (405 nm) between the 10th and 11th frames. 
Right panel: The ratio of PLCδ1-PH-EGFP fluorescence change with UV uncaging is 
significantly higher in ROIs from cg-PI(4,5)P2 loaded cells. (b) Left panel: HEK cells 
transfected with LifeAct-RFP were incubated for 30 minutes at 37°C with cg-PI(4,5)P2 
(top) or without cg-PI(4,5)P2 (bottom) in vehicle DMSO (0.02%) and Pluronic (0.02%). 
ROIs of high LifeAct-RFP fluorescence were selected from areas of TIRF images and 
averaged per cell. A ROI of background fluorescence (outside each cell) was 
subtracted from each cell average. Right panel: After 5 frames at 2 Hz in the RFP 
channel (561 nm), 3 UV frames (405 nm) uncaged cg-PI(4,5)P2 before resumption of 
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imaging at 2 Hz in the RFP channel (561 nm). LifeAct-RFP fluorescence increased at 
the membrane before (left) to after uncaging (right) in cg-PI(4,5)P2 loaded cells. In 
control cells, there was no such increase in LifeAct-RFP fluorescence. Statistics: 
Students unpaired T-test or Mann-Whitney U test, ***p ˂ 0.001, mean ± SEM. For 
details see Table 2. Scale bars: 5 µm. Modified from Walter et al. (2017). 

 

5.2 Uncaging PI(4,5)P2 at the Drosophila NMJ 

To investigate the effect of uncaging PI(4,5)P2 in vivo, I turned to the Drosophila 

melanogaster larval NMJ. C2 domains of several synaptic proteins can bind 

PI(4,5)P2, such as unc13A and syt-1. Therefore I focused on possible 

modulation of neurotransmission with PI(4,5)P2 uncaging. Drosophila larvae 

were incubated with PI(4,5)P2 (40 µM) and an equal volume of Pluronic for 30 

minutes before being washed and transferred to a recording chamber 

containing artificial haemolymph (HL3 (2 mM Ca2+)). 

To measure neurotransmitter release, two electrode voltage clamp (TEVC) 

recordings were performed using intracellular sharp electrodes inserted into 

muscle cells (M6) of abdominal segments A2/A3, clamping the membrane 

potential at -70 mV. The measured readout of the experiment is the current 

required to keep the membrane potential at this holding potential (-70 mV). A 

suction electrode was used to stimulate an AP in the relevant nerve for the 

correct hemi segment. TEVC provides a measure of the postsynaptic receptor 

activation due to NT release following the generation of an AP and subsequent 

opening of presynaptic voltage gated Ca2+ channels. Paired stimulations allow 

an assessment of the probability of neurotransmitter release at synapses, 

determined as the ratio of the second amplitude divided by the first amplitude. A 

low probability of release will result in facilitation from the first to the second 

amplitude. A high probability of release will have the opposite effect, resulting in 

depression from the first to the second amplitude. Following a paired-pulse 

stimulation (25 ms ISI), a UV uncaging flash was delivered to the relevant NMJ 

2 seconds later. Larvae expressing mCherry tagged BRP were used so that the 

appropriate NMJ could be identified for maximum effect. Control larvae were 

also loaded with PI(4,5)P2 but received no flash. After another 2 seconds, an 

identical paired stimulation was delivered (Figure 9a). There was no change in 

the paired-pulse ratio before the UV flash to after the UV flash, indicating 
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negligible change in the release probability (Figure 9b). It is possible that 

loading Drosophila larvae with PI(4,5)P2 is problematic as the NMJ is not as 

accessible as in the previous cell culture experiments. There was however a 

slight decrease in the amplitudes of the first responses in control larvae, which 

was reduced in uncaged larvae (Figure 9c). This indicates a protective effect of 

PI(4,5)P2 on the slight depletion of release observed with repeated stimulations 

in a short space of time. 
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Figure 9: Uncaging PI(4,5)P2 at the Drosophila NMJ. 
(a) All BRP-mCherry larvae were loaded with cg-PI(4,5)P2 for 30 minutes before TEVC 
recordings at muscle 6, abdominal segments A2/A3 (2mM Ca2+). Top: Representative 
traces of  evoked (eEPSC) paired-pulse stimulations (25 ms interstimulus interval) 
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performed 4 seconds apart without a UV uncaging flash (black-grey (control)) or with a 
UV uncaging flash (red-orange) midway between the paired stimuli (2 s). (b) The 
paired-pulse ratio (2nd EPSC amp./1st EPSC amp.), a measure of the release 
probability at synapses, did not differ between the first and second paired-pulse in 
control larvae or following a UV uncaging flash. (c) The 1st eEPSC amplitude of a 
paired-pulse stimulation is larger than the 1st eEPSC amplitude of another paired-pulse 
stimulation 4 seconds later (control larvae). In larvae that were exposed to a UV 
uncaging flash, the decrease in the 1st eEPSC amplitude from paired-pulse to paired-
pulse was reduced. Cg-PI(4,5)P2 from Walter et al. (2017). Statistics: Paired T-test, 
**p ˂ 0.01, not significant (n.s.) p > 0.05, mean ± SEM. For details see Table 2. 

 

5.3 PMA potentiation at the Drosophila NMJ 

In addition to PI(4,5)P2, exocytosis is influenced by a variety of signalling lipids, 

including its derivative DAG (Rhee et al., 2002). The phorbol ester PMA acts in 

much the same way as DAG by binding to C1 domains. PMA has been shown 

to increase exocytosis, both due to evoked stimulation and in the spontaneous 

release of single SVs (Song et al., 2002; Virmani et al., 2005). Unc13A is a 

likely target for the increased release due to phorbol ester application (Basu et 

al., 2007). To investigate the role of PMA and hence DAG in exocytosis at the 

Drosophila NMJ, larvae were incubated for 10 minutes in PMA (2 µM) or 

DMSO. Following incubation, they were fully dissected, transferred to a 

recording chamber containing artificial haemolymph (HL3 (1.5 mM Ca2+)) and 

TEVC recordings performed in muscle 4 of segments A2/A3. Miniature 

excitatory postsynaptic currents (mEPSCs), which occur spontaneously, are 

observed when single SVs fuse and release neurotransmitter resulting in a 

postsynaptic response. By recording these events I could determine the 

contents of single SVs and the frequency of their spontaneous fusion. 

Interestingly there was no increase in either the amplitude or frequency of these 

events (Figure 10c,d), as had been observed in other systems. This could 

suggest a different mechanism is present elsewhere and absent in Drosophila 

regarding activation of spontaneous events by PMA. High frequency train 

stimulations were also performed. As expected, the amplitude of the first peak 

was significantly increased, and this persisted for several further responses 

(Figure 10e, g). The emergence of depression and a lower paired-pulse ratio 

confirms a higher probability of release (Figure 10h). By dividing the first 

amplitude (eEPSC) by the average mEPSC amplitude, the total number of SVs 
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released in response to a single stimulation could be determined (quantal 

content). This was significantly increased with PMA treatment (Figure 10f). The 

number of released SVs had increased, while the content of these SVs had 

remained constant (mEPSC amplitude). To gain insight into the origin of this 

increase of release, I first calculated the cumulative release for every cell. This 

was done by adding the amplitude of each eEPSC (baseline to peak) to the 

amplitude of the previous eEPSC in the train (Figure 10i). Later in the train, 

steady state is reached, which is the point at which equilibrium exists between 

the release of SVs and recruitment of fresh SVs. By fitting a line (linear fit) to the 

cumulative release at this late portion of the train (stimuli 30 to 60) for each 

treatment, one can determine the number of SVs that were initially available for 

release (readily releasable pool (RRP)). This is calculated by back extrapolating 

to the y-intercept of each fitted line.  The value of the y-intercept was 

significantly larger with PMA treatment, indicating an increased RRP 

(Figure 10j). This is in line with the effects of PMA potentiation on RRP size 

reported in experiments in other systems (Gillis et al., 1996; Stevens and 

Sullivan, 1998). The slope of each fitted line provides an insight into the priming 

rate of new SVs. There was no significant difference between treatments 

(Figure 10k). This experiment confirms that PMA, and presumably DAG, 

increases the RRP and hence the probability for neurotransmitter release at the 

Drosophila NMJ. 
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Figure 10: The phorbol ester PMA increases release probability and the readily 
releasable pool at the Drosophila NMJ. 
(a) Average eEPSC (evoked) traces of 100 Hz trains (60 APs) in PMA (2 µM) treated 
(red) or DMSO treated (blue) third instar Mhc-myr-GCaMP5G larvae, recording from 
muscle 4 abdominal segments A2/A3 (1.5 mM Ca2+) (b) Example mEPSC 
(spontaneous) traces in 2 µM PMA treated (red) or DMSO treated (blue) animals. (c) 
mEPSC amplitudes are unaffected by PMA treatment. (d) mEPSC frequencies are 
unchanged with PMA treatment (e) eEPSC amplitudes are increased with PMA 
treatment (f) Quantal content is increased with PMA treatment (g) Mean total amplitude 
for each train stimulus for 2 µM PMA (red) or DMSO. Initial amplitudes are increased 
with PMA treatment (h) Paired-pulse ratio decreases with PMA treatment, indicating a 
higher release probability (i) Mean cumulative total amplitude with back-extrapolation 
curve fitted after 30 stimuli for 2 µM PMA (red line) or DMSO (blue line). (j) Individual y-
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intercepts from back-extrapolation are larger with PMA treatment, a measure of the 
readily releasable pool (k) There is no change in individual slopes from back-
extrapolation, a measure of the forward vesicle priming rate. Statistics: Students 
unpaired T-test or Mann-Whitney U test, *p ˂ 0.05, **p ˂ 0.01, ***p ˂ 0.001, not 
significant (n.s.) p > 0.05, mean ± SEM. For details see Table 2. 

 

5.4 Investigating Synaptic Plasticity - Philanthotoxin 

I concluded direct research of signalling lipids and pivoted towards investigating 

other mechanisms regulating synaptic transmission. I became interested in the 

homeostatic modulation of neurotransmission in response to postsynaptic 

receptor disruption. To investigate this, I would make use of the polyamine 

toxin, Philanthotoxin (PhTx), secreted in the venom of the European beewolf 

(Philanthus triangulum). PhTx is a potent and irreversible antagonist of 

invertebrate ionotropic glutamate receptors, which blocks receptors in a use-

dependent manner while they are in the open conformation (i.e. in the presence 

of glutamate). To investigate induction of plasticity that occurs in response to 

the pharmacological block of glutamate receptors, it was first important to 

understand the characteristics of PhTx itself. Although similar experiments had 

been previously published (Peled et al., 2014), they lacked accurate 

quantification of spontaneous transmission, comparing responses before/after 

PhTx application and with/without presynaptic stimulation. 

I performed current clamp recordings at the Drosophila NMJ. Unlike the 

previous TEVC recordings, where the potential of the membrane is fixed 

(measuring current injection into the muscle necessary to maintain this 

potential), current clamp recording measures the membrane potential of the 

muscle. Larvae were dissected and transferred to a recording chamber 

containing artificial haemolymph (HL3 (1.5 mM Ca2+)). A single intracellular 

recording electrode was inserted into muscle 6 of segments A2/A3 to measure 

the muscle membrane potential and a stimulation electrode positioned at the 

relevant nerve. Spontaneous miniature excitatory postsynaptic potentials 

(mEPSPs) were first recorded for 1 minute in the absence of toxin (Figure 11a). 

PhTx (4 µM) was then applied and recording immediately resumed for another 

minute. A significant decrease in mEPSP amplitude was observed. Thus, 

application of PhTx leads to an immediate reduction in the sensitivity of the 
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postsynapse to released glutamate. There was only a slight decrease in the 

frequency of these events. Strong AP stimulation was then performed. Initially, 

large postsynaptic eEPSP responses were observed. With repeated activation 

in the presence of PhTx, postsynaptic eEPSP responses declined, as expected 

by the use-dependence of the toxin (Figure 11b). This strong reduction of the 

postsynaptic response was not observed in the absence of PhTx (data not 

shown). 

I next sought to understand the effect that stimulation in the presence of PhTx 

would have on spontaneous mEPSPs. Following stimulation, the frequency of 

mEPSPs was greatly reduced while mEPSP amplitude did not reduce further, 

compared to recordings from non-stimulated cells (Figure 11c, d). Stimulation 

increased the number of activated receptors, which were subsequently blocked 

upon opening. The fact that mEPSP frequency was also affected indicated that 

a portion of spontaneous events were becoming undetectable, due to the 

increased block of receptors at a number of AZs. Evoked and spontaneous 

release must activate the same postsynaptic glutamate receptors, and so I 

could conclude that it is acceptable to compare the postsynaptic response of 

both release modes. 
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Figure 11: Characterisation of PhTx application and consequences of 
stimulation. 
(a) Representative mEPSP (spontaneous) traces and quantification of mEPSP 
frequency and amplitude before and after PhTx (4 µM) (1.5 mM Ca2+). mEPSP 
frequency is only slightly reduced immediately after PhTx application while mEPSP 
amplitude is strongly reduced. (b) Representative trace of eEPSP (evoked) response 
and quantification of 10 Hz 100 AP stimulation showing a strong PhTx use dependent 
decrease in eEPSP amplitude. (c,d) Representative mEPSP traces and quantification 
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of mEPSP frequency and amplitude comparing the effect of stimulation on 
spontaneous activity. (c) Both mEPSP amplitude and frequency are unaffected by a 
control 10 second rest period. (d) mEPSP frequency is strongly reduced by 10 Hz 100 
AP stimulation while mEPSP amplitude is largely unaffected. Statistics: Paired T-test, 
*p ˂ 0.05, **p ˂ 0.01, ***p ˂ 0.001, not significant (n.s.) p > 0.05, mean ± SEM. For 
details see Table 2. 

 

5.5 Rapid Homeostatic Plasticity 

PhTx allows the investigation of the consequences of postsynaptic sensitivity 

loss at the synapse. Homeostatic plasticity can be observed in two distinct 

ways: Firstly, as a structural re-arrangement and increase of proteins such as 

Ca2+ channels at AZs, and secondly as a functional increase in presynaptic 

neurotransmitter release (presynaptic homeostatic potentiation (PHP)). To 

illustrate PHP in action, I incubated wildtype larvae with PhTx (20 µM) for 10 

minutes, washed them and performed current clamp recordings (M6, A2/A3) in 

toxin-free artificial haemolymph (HL3). This differs from the previous experiment 

where recordings were performed in the presence of PhTx. These animals 

exhibited reduced mEPSP amplitudes, as the postsynapse became less 

sensitive to glutamate detection. Despite this, evoked amplitudes (eEPSPs) 

remained largely unperturbed (Figure 12a,b). On calculation of the quantal 

content (average eEPSP/average mEPSP), one could clearly determine that 

there was a dramatic increase in neurotransmitter release to overcome the 

pharmacological challenge presented by PhTx. This illustrates that the 

presynapse had compensated by increasing the release that resulted from a 

single stimulus. 

Evoked release is dependent on the release site protein Unc13A. I wanted to 

investigate its role in PHP as I suspected it to be of central importance in the 

upregulation of release. We had previously noted an increase in AZ proteins 

BRP, RBP and the Ca2+ channel subunit Cacophony (Cac) at unc13ANull NMJs, 

although this increase was less than that observed in wildtype. In larvae 

expressing Unc13B but not Unc13A (unc13ANull), evoked responses were 

greatly reduced to a mere fraction of the wildtype response (Fig 12c,d) as 

Unc13A is a vital release factor. mEPSP amplitudes were comparable between 

genotypes. Following incubation of wildtype and unc13ANull larvae with PhTx, 
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larvae were washed and transferred to a recording chamber containing toxin-

free artificial haemolymph. mEPSP amplitudes were reduced in both genotypes. 

As the control unc13ANull eEPSP response was already significantly reduced, 

the PhTx treated larvae often exhibited complete failure to respond. For this 

reason, 5 stimulations were delivered and the resulting average amplitude was 

considered. PhTx treated unc13ANull animals exhibited overall reduced evoked 

amplitudes compared to control treatment. In wildtype animals, evoked 

amplitudes were maintained despite treatment with PhTx. Due to the inability of 

unc13ANull to maintain evoked amplitudes with PhTx treatment; one could 

calculate that the quantal content had indeed failed to increase, which is 

necessary to overcome PhTx challenge. Therefore, I could confirm that Unc13A 

is a vital component, not only for normal evoked release but also for the 

induction of homeostatic plasticity. The absence of PHP in the unc13ANull, 

despite the presence of the Unc13B isoform, allows us to also conclude that 

Unc13B is not sufficient for this plasticity. 

 

Figure 12: Unc13A is essential for rapid PHP. 

(a) Representative eEPSP (evoked) and mEPSP (spontaneous) traces of wild-type 
control (black) and PhTx (20 µM) (blue) treated third instar larvae, recording from 
muscle 6 abdominal segments A2/A3 (0.4 mM Ca2+). (b) Quantification of mEPSP 
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amplitude, eEPSP amplitude and Quantal content of wild-type control (black) and PhTx 
(blue) treated larvae. Quantal Content is increased in wild-type PhTx treated larvae as 
mEPSP amplitude is reduced with no change in eEPSP amplitude compared to 
controls. (c) Representative eEPSP (evoked) and mEPSP (spontaneous) traces of 
unc13ANull control (grey) and PhTx (20 µM) (red) treated larvae. (d) Quantification of 
mEPSP amplitude, eEPSP amplitude and Quantal content of unc13ANull control (grey) 
and PhTx (red) treated larvae. There is a decrease in both mEPSP amplitude and 
eEPSP amplitude and no change in Quantal content between unc13ANull treatment 
groups. Statistics: Students unpaired T-test or Mann-Whitney U test, *p ˂ 0.05, 
**p ˂ 0.01, ***p ˂ 0.001, not significant (n.s.) p > 0.05, mean ± SEM. For details see 
Table 2. Modified from Böhme et al. (2019). 

 

It has been previously shown that the N-terminal region of unc13A was 

responsible for localising the protein to ensure proper Ca2+-channel SV coupling 

distances at AZs (Reddy-Alla et al., 2017). I wanted to explore whether 

homeostatic plasticity could be induced in animals that were lacking both 

endogenous unc13A and unc13B but where a GFP tagged unc13A, lacking the 

N-terminal region, was re-expressed (C-term-GFP). This would leave the 

catalytic and interaction domains (e.g. MUN, C1 and C2B domains) intact, with 

the exception of the Calmodulin binding site. In control larvae, a full length GFP 

tagged unc13A was expressed in the same null background (Unc13A-GFP). 

Both genotypes displayed comparable evoked eEPSP responses (Fig 13) 

confirming that animals expressing C-term-GFP retained the ability to generate 

a large response to single stimuli. While this genotype had been previously 

shown to have reduced amplitudes compared to Unc13-GFP, those 

experiments were performed at higher Ca2+ (1.5 mM) and Mg2+ (20 mM) 

concentrations and in a TEVC configuration (Reddy-Alla et al., 2017). The 

amplitudes of mEPSPs in both genotypes control treatments were also similar. 

NMJs of animals expressing C-term-GFP displayed a higher mEPSP frequency 

(data not shown), as had been previously reported. Larvae of both genotypes 

were incubated using the PhTx method described previously (Figure 12), before 

washing and transfer to a toxin-free recording chamber. Current clamp 

recordings revealed mEPSP amplitudes that were reduced following PhTx 

treatment in both genotypes. Evoked eEPSP responses were maintained in 

Unc13A-GFP but clearly reduced in C-term-GFP animals after PhTx treatment, 

compared to non-PhTx treated controls. On calculation of the quantal content, 
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PhTx treated Unc13-GFP animals possessed increased quantal release. 

Quantal content was lower for PhTx treated C-term-GFP compared to control 

treatment. Thus, the N-terminal region of Unc13A is required for PHP. 

 

 

Figure 13: The N-terminal portion of Unc13A is essential for rapid PHP. 
(a) Representative eEPSP (evoked) and mEPSP (spontaneous) traces of Unc13A-GFP 
control (black) and PhTx (20 µM) (blue) treated third instar larvae, recording from 
muscle 6 abdominal segments A2/A3 (0.4 mM Ca2+). (b) Quantification of mEPSP 
amplitude, eEPSP amplitude and Quantal content of Unc13A-GFP control (black) and 
PhTx (blue) treated larvae. Quantal Content is increased in wild-type PhTx treated 
larvae as mEPSP amplitude is reduced with no change in eEPSP amplitude compared 
to controls. (c) Representative eEPSP (evoked) and mEPSP (spontaneous) traces of 
C-term-GFP control (grey) and PhTx (20 µM)  (red) treated larvae. (d) Quantification of 
mEPSP amplitude, eEPSP amplitude and Quantal content of C-term-GFP control 
(grey) and PhTx (red) treated larvae. There is a decrease in both mEPSP amplitude 
and eEPSP amplitude and a slight non-significant decrease in Quantal content 
between C-term-GFP treatment groups. Statistics: Students unpaired T-test or 
Mann-Whitney U test, *p ˂ 0.05, **p ˂ 0.01, ***p ˂ 0.001, not significant (n.s.) p > 0.05, 
mean ± SEM. For details see Table 2. Modified from Böhme et al. (2019). 

 

While the above experiments are well suited for examining the induction of 

PHP, they do not report on the time course of this plasticity. I wanted to 
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examine the induction of PHP in these genotypes and so recorded the response 

before, during and after PHP induction. Initial mEPSP and eEPSP (0.2 Hz) 

current clamp recordings were performed in the absence of PhTx. This allowed 

a cell-specific baseline for each parameter to be established. PhTx was then 

added to the recording chamber and remained continuously present from this 

point forward. Animals were allowed to incubate for 200 seconds without 

recording. Stimulation was then resumed at 0.2 Hz continuously for 500 

seconds. Over 50 second intervals, spontaneous responses were identified to 

determine mEPSP frequency and the mean mEPSP amplitude. The average 

eEPSP amplitude was also determined over the same 50 second interval. A 

lower concentration of 4 µM PhTx was used (compared to 20 µM), as also used 

in Figure 11. PhTx was continuously present during long-term recording with 

stimulation. 

In both Unc13A-GFP and C-term-GFP expressing animals, mEPSP amplitude 

was strongly decreased with PhTx addition and there was no divergence 

between genotypes over time (Figure 14b). mEPSP frequency following PhTx 

application was not initially reduced but did decrease noticeably in both 

genotypes over time (Figure 14c). The drop in frequency is likely caused by the 

continuous intermittent AP stimulation, as previously observed and described in 

Figure 11. Both of the mEPSP amplitude and mEPSP frequency observations 

were in line with that initial PhTx characterisation experiment. Despite eEPSP 

amplitudes in both genotypes initially being the same and both dropping after 

PhTx application, at later time points there is a stronger reduction in C-term-

GFP animals compared to the Unc13A-GFP control (Figure 14d). It had 

previously been reported in an experiment with intermittent stimulation in the 

presence of PhTx that eEPSP amplitude and hence quantal content rises over 

time in controls (Frank et al., 2006). These animals did recover to pre-PhTx 

eEPSP amplitudes however. This is likely due to the continuous intermittent 

stimulation. As with mEPSP frequency (Figure 14c) and as shown in Figure 11, 

the toxin is use-dependent. An increase of quantal content was observed after 

PhTx application in Unc13A-GFP animals, which was on average maintained 

over the course of the experiment. While C-term-GFP animals also exhibited an 

initial slight increase in quantal content, it was lower and by 400 seconds 
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following PhTx application was significantly lower than the levels in Unc13-GFP 

animals (Figure 14e). 

The reason behind the decrease of quantal content in the C-term-GFP 

genotype is perhaps again due to the loss of events with increased receptor 

blockade over time. This experiment confirmed the homeostatic plasticity defect 

previously seen in C-term-GFP. It also provided an overview of the time course 

of plasticity induction. C-term-GFP animals fail to deal with the pharmacological 

insult to glutamate receptors, diverging over time from Unc13A-GFP expressing 

animals, which maintain an increased quantal content. 
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Figure 14: Time course of PHP induction following PhTx application in larvae 
expressing full length Unc13A or lacking the N-terminus of Unc13A 
(C-term-GFP). 
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(a) Representative eEPSP (evoked) and mEPSP (spontaneous) traces of Unc13A-GFP 
(blue) and C-term-GFP (red) before PhTx application and after 650 s PhTx (4 µM) 
treatment with 0.2 Hz stimulation in third instar larvae, recording from muscle 6 
abdominal segments A2/A3 (0.4 mM Ca2+). (b) Quantification of mEPSP amplitude; 
mEPSP amplitude is greatly reduced following PhTx application in both genotypes but 
further reduction with stimulation is minimal (c) Quantification of mEPSP frequency; 
mEPSP frequency only slightly decreases in both genotypes following PhTx application 
but continued stimulation reduces it further over time (d) Quantification of eEPSP 
amplitude; PhTx application reduces eEPSP amplitude in both genotypes, but with 
continued stimulation time, Unc13A-GFP amplitudes are maintained while C-term-GFP 
amplitudes continue to decrease (e) Quantification of Quantal Content: Quantal 
Content is slightly increased in both genotypes following PhTx application but diverges 
thereafter with time and continued stimulation, QC is maintained in Unc13A-GFP larvae 
but decreases in C-term-GFP larvae and the difference is significant 400 s after PhTx 
application. Statistics: Students unpaired T-test or Mann-Whitney U test, *p ˂ 0.05, not 
significant (n.s.) p > 0.05, mean ± SEM. For details see Table 2. 

 

We had seen that Phtx induced protein increases of Unc13A and Syx-1A at the 

AZ were dependent on BRP, as brpnull animals lacked such remodelling (Böhme 

et al., 2019). In order to explore the relevance of BRP for PHP, I made use of 

the same brpnull animals. Evoked responses and hence quantal release were 

lower in brpnull mutants compared to wildtype. Despite this, brpnull larvae 

displayed a relative increase in quantal content following PhTx treatment, as in 

wildtype (Figure 15b,d). This surprising result implied that even in a situation 

where the AZ structure is severely disrupted, PHP is possible on these rapid 

timescales. It also suggests that the structural reorganisation of the AZ and the 

compensatory increase in neurotransmitter release are independent of each 

other, at least at this short timescale (see Discussion). 
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Figure 15: BRP is dispensable for rapid PHP. 
(a) Representative eEPSP (evoked) and mEPSP (spontaneous) traces of wild-type 
control (black) and PhTx (20 µM) (blue) treated third instar larvae, recording from 
muscle 6 abdominal segments A2/A3 (0.4 mM Ca2+). (b) Quantification of mEPSP 
amplitude, eEPSP amplitude and quantal content of wild-type control (black) and PhTx 
(blue) treated larvae. Quantal content is increased in wild-type PhTx treated larvae as 
mEPSP amplitude is reduced with no change in eEPSP amplitude compared to 
controls. (c) Representative eEPSP (evoked) and mEPSP (spontaneous) traces of 
brpNull control (grey) and PhTx (20 µM) (red) treated larvae. (d) Quantification of 
mEPSP amplitude, eEPSP amplitude and Quantal content of brpNull control (grey) and 
PhTx (red) treated larvae. Quantal Content is increased in brpNull PhTx treated larvae 
as mEPSP amplitude is reduced with no change in eEPSP amplitude compared to 
controls. Statistics: Students unpaired T-test or Mann-Whitney U test, *p ˂ 0.05, 
***p ˂ 0.001, not significant (n.s.) p > 0.05, mean ± SEM. For details see Table 2. 
Modified from Böhme et al. (2019). 

 

5.6 Transport of BRP in the axon 

PHP and the structural rearrangement of protein at AZs occur rapidly. Both are 

observed in larvae within 10 minutes of incubation with PhTx. I wondered what 

the source of additional protein being added to AZs might be. One possibility is 

that AZ proteins are freshly transported to synapses and so I decided to 
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investigate this using animals expressing mCherry tagged BRP. It was noted in 

this genotype that fluorescent particles of BRP-mCherry could be clearly seen in 

the motoneuronal axons of these animals. While some particles did not move, 

others moved in an anterograde or retrograde fashion (Figure 16a). This 

movement was not consistent and often involved brief pauses before a particle 

was seen to continue. PhTx was acutely applied to the extracellular solution and 

imaging initiated immediately. It was noted that the proportion of particles that 

were motile increased in both directions within 10 minutes (Figure 16b). In some 

cases, only motile particles were observed following PhTx application. If the 

motility of BRP in the axon increases with PhTx incubation but BRP is not 

required for functional PHP on short timescales (Figure 15), I wondered if this 

effect indicated a requirement for BRP on longer timescales. 

 

Figure 16: Axonal BRP motility increases following PhTx application. 

(a) Fluorescent particles are observed moving in the axons near muscle 4, abdominal 
segments A2-A4 of third instar larvae expressing mCherry tagged BRP. Over time (0-8 
min) particles move anterogradely towards the NMJ and retrogradely away from it 
(scale bar: 5 µm) (b) With PhTx application, there is a significant increase in the 
proportion of particles observed to be motile rather than stationary. Statistics: Students 
unpaired T-test, *p ˂ 0.05, mean ± SEM. For details see Table 2. 
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5.7 Chronic Homeostatic Plasticity 

PHP can also occur in response to a more significant and long-term disruption 

of glutamate receptors at the postsynapse. Glutamate receptors at the 

Drosophila postsynapse can possess either GluRIIA or GluRIIB as their fifth 

subunit (DiAntonio et al., 1999). Loss of receptors containing GluRIIA results in 

expression of only receptors containing GluRIIB and reduces the general NT 

sensitivity of the postsynapse. Genetic removal of GluRIIA however does not 

lead to an obvious defect following evoked stimulation (Figure 17a,c). gluRIIANull 

animals have reduced mEPSPs, as with PhTx treatment, due to decreased 

sensitivity to released glutamate. Presynaptic release is subsequently increased 

to compensate, reaching eEPSP amplitudes comparable to wildtype. Levels of 

AZ proteins Unc13A and BRP also increase drastically at the NMJ upon 

GluRIIA loss (Figure 17b,d). This manipulation of GluRIIA is more severe than 

PhTx as it occurs over the lifetime of the animal and so this form of homeostatic 

plasticity differs in several key ways. It is for example dependent on translation, 

while PhTx-induced PHP is translation independent. The increase in quantal 

content is also more pronounced than with PhTx treatment. 
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Figure 17: Chronic induction of PHP results in more robust functional and 
structural synaptic homeostatic plasticity. 

(a,b,c) In wildtype animals, application of PhTx leads to an increase in quantal content 
within 10 minutes to compensate for glutamate receptor block. This is accompanied by 
a structural reorganisation (increase) of AZ proteins. b replotted from Figure 12 a, b  
(d,e,f) Genetic deletion of GluRIIA receptors over the life of the animal leads to a much 
more robust increase in quantal content and a greater increase in AZ proteins 
compared to the pharmacological experiment. Statistics: Students unpaired T-test or 
Mann-Whitney U test, **p ˂ 0.01, ***p ˂ 0.001, not significant (n.s.) p > 0.05, mean ± 
SEM. For details see Table 2. Scale bars: 5 µm. Data in c, f provided by Mathias 
Böhme. Modified from Böhme et al. (2019). 

 

I wanted to identify if proteins that were non-essential for short-term functional 

PHP, instead played a role with long-term chronic induction of PHP. I made use 

of null mutants for both BRP and GluRIIA (brpNull;glurIIANull), to determine 

whether BRP played a more important role in chronically induced PHP, which is 

implied by the increase in BRP motility in the trafficking experiment (Figure 16). 

The primary point of interest was the loss of functional plasticity. Comparing 

brpNull to brpNull;glurIIANull, evoked amplitudes were significantly reduced with 

GluRIIA loss and quantal content did not increase to compensate (Figure 

18a,b). 
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Synaptic BRP levels increased comparing wildtype to gluRIIANull, as structural 

plasticity was induced. Synaptic BRP was absent in both brpNull genotypes 

(Figure 18c,d). 

I wanted to investigate the reorganisation of Unc13A. When considering 

changes in synaptic Unc13A levels, BRP is often used as a marker to identify 

AZs. As BRP was absent from the BRP null genotypes, Unc13A levels were 

instead analysed over the entire NMJ for all genotypes. There was a slight 

increase in average Unc13A levels comparing wildtype to gluRIIANull NMJs. This 

was not statistically significant however, likely due to the fact that in this case, 

analysis of Unc13A intensity was not restricted to AZs. As a result, regions with 

unspecific binding by the primary antibody were also considered (which is prone 

to background staining). Comparing brpNull to brpNull;glurIIANull, there was no 

increase in synaptic Unc13A levels (Figure 18c,d). 

These data confirmed that on longer timescales BRP is vital for both structural 

and functional plasticity, uncovering a difference to short-term homeostatic 

plasticity, which only required BRP for structural rearrangement. 
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Figure 18: BRP is essential for both functional PHP and structural 
rearrangement with chronic loss of GluRIIA. 
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Figure 18 continued (a) Representative eEPSP (evoked) and mEPSP (spontaneous) 
traces of wild-type control (black), gluRIIANull (gold), brpNull (pink) and gluRIIANull;brpNull 
(dark blue) larvae. (b) Quantification of mEPSP amplitude, eEPSP amplitude and 
Quantal Content. mEPSP amplitudes are decreased in both gluRIIANull genotypes. 
eEPSP amplitudes are reduced in gluRIIANull and brpNull compared to wild-type but 
reduced to a much greater extent in gluRIIANull;brpNull double mutants. Quantal content 
is increased comparing gluRIIANull to wild-type animals but there is no change in 
Quantal Content in brpNull animals, regardless of GluRIIA loss. (c) Representative 
confocal images of third instar NMJs at muscle 4 abdominal segments A2-A4 
immunolabelled for BRP and Unc13A (scale bars: 5 µm) (d)  Quantification of synaptic 
BRP and Unc13A. Left: BRP increased in gluRIIANull animals compared to wild-type. 
BRP was absent in both brpNull genotypes. Right: Unc13A intensity was slightly 
increased in gluRIIANull animals compared to wild-type (non-significant: see text). 
Unc13A intensity was unchanged in both brpNull genotypes. Statistics: One-way 
ANOVA with Tukey’s multiple comparison test, *p ˂ 0.05, ***p ˂ 0.001, not significant 
(n.s.) p > 0.05, mean ± SEM. For details see Table 2. Data in a, b provided by Pragya 
Goel. Modified from Böhme et al. (2019). 

 

Finally, I wondered if disrupting transport of AZ proteins to the NMJ could affect 

PHP in the chronic  situation. I had already seen that BRP-mCherry movement 

in the axon is increased following PhTx application (Figure 16). App-like 

interacting protein (aplip-1) acts as an adapter protein for kinesin and cargo 

vesicles, facilitating transport along the axon towards the NMJ. It had been seen 

that aplip-1 knockdown lead to accumulations of BRP and Unc13A in the axon. I 

made use of larvae lacking GluRIIA and possessing a loss of function point 

mutation in aplip-1 (gluRIIANull;aplip-1ek4), that prevents binding of aplip-1 to 

Kinesin Light Chain (KLC) (Horiuchi et al., 2005; Siebert et al

Comparing wildtype to gluRIIANull and aplip-1ek4 to aplip-1ek4;glurIIANull, mEPSP 

amplitudes decreased for both comparisons. There was also a trend for 

decreased evoked amplitudes upon GluRIIA loss. Quantal content however was 

significantly increased between wildtype and gluRIIANull. There was a 

comparatively smaller increase in quantal content for aplip-1ek4 vs. 

aplip-1ek4;glurIIANull, indicating a partial defect in functional PHP (Figure 19a,b). 

Average BRP intensity levels increased from wildtype to gluRIIANull animals but 

this was not the case when comparing aplip-1ek4 to aplip-1ek4;glurIIANull  (Figure 

19c,d). While Unc13A levels increased for both comparisons, this was only 

statistically significant for w1118 vs. gluRIIANull, supporting the previous 
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observation of a partial defect in plasticity. From this I could conclude that aplip-

1 plays a role in establishing PHP in the chronic situation. Aplip-1 is at least 

partially responsible for transportation of AZ proteins and the upregulation of 

release in PHP. This loss of plasticity was less pronounced than seen 

previously upon BRP deletion, likely due to the fact aplip-1 is only one of many 

such adapters and that extensive redundancy exists to overcome such 

perturbations. 
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Figure 19: Transport adapter Aplip-1 is essential for both functional PHP and 
structural rearrangement with chronic loss of GluRIIA. 
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Figure 19 continued (a) Representative eEPSP (evoked) and mEPSP (spontaneous) 
traces of wild-type control (black), gluRIIANull (gold), aplip-1ek4 (red) and gluRIIANull; 
aplip-1ek4 (purple) larvae. (b) Quantification of mEPSP amplitude, eEPSP amplitude 
and Quantal Content. mEPSP amplitudes are decreased in both gluRIIANull genotypes. 
eEPSP amplitudes are slightly decreased in both gluRIIANull genotypes. Quantal 
content is increased comparing gluRIIANull to wild-type animals. There is only a slight 
increase in Quantal Content of gluRIIANull; aplip-1ek4 animals compared to aplip-1ek4 
animals. (c) Representative confocal images of third instar NMJs at muscle 4 
abdominal segments A2-A4 immunolabelled for BRP and Unc13A (scale bars: 5 µm) 
(d)  Quantification of synaptic BRP and Unc13A. Left: BRP intensity increased in 
gluRIIANull animals compared to wild-type. BRP intensity was unchanged comparing 
both aplip-1ek4 genotypes. Right: Unc13A intensity was increased in gluRIIANull animals 
compared to wild-type. Unc13A intensity was unchanged comparing both aplip-1ek4 
genotypes. One-way ANOVA with Tukey’s multiple comparison test, *p ˂ 0.05, 
***p ˂ 0.001, not significant (n.s.) p > 0.05, mean ± SEM. For details see Table 2. Data 
in c, d provided by Mathias Böhme. Modified from Böhme et al. (2019). 

 

5.8 Summary of Results 

The key findings of these experiments were as follows: 

Lipid modulation of cellular processes and neurotransmission 

• It is possible to efficiently load, uncage and observe PI(4,5)P2 localisation 

in vivo. 

• Acutely uncaged PI(4,5)P2  has detectable effects on actin reorganisation 

and exocytosis. 

• PMA enhances NT release and the RRP at the Drosophila NMJ but has 

no obvious effect on spontaneous neurotransmission. 

 

Presynaptic Homeostatic Plasticity 

• The priming protein Unc13A is essential for rapid functional PHP. 

• The N-terminus of Unc13A is also essential for rapid functional PHP. 

• The scaffold protein BRP is not necessary for rapid functional PHP. 

• Axonal transport of BRP increases following application of PhTx. 

• BRP and the adapter protein Aplip-1 are important during both functional 

PHP and structural reorganisation at the AZ during chronic induction of 

homeostatic plasticity.  
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6 Discussion 

 

Initially inositol phospholipids were discovered to be important for exocytosis as 

their metabolism affected secretion in chromaffin cells (Eberhard et al., 1990).  

Secretion of tritiated norepinephrine from these chromaffin cells was inhibited 

by PLC metabolism of PI(4,5)P2 in a reaction requiring ATP. It was 

subsequently discovered that the generation of  PI(4,5)P2 was important for 

dense core vesicle (DCV) secretion and that this was Ca2+ dependent (Hay et 

al., 1995; Holz et al., 2000). In regard to SVs at the membrane, PI(4,5)P2 was 

found to positively modulate the RRP and priming (Di Paolo et al., 2004; Gong 

et al., 2005; Milosevic et al., 2005). PI(4,5)P2 is enriched at sites of vesicle 

docking in microdomains of the plasma membrane (James et al., 2008; van den 

Bogaart et al., 2011). Most of these early experiments were performed by 

making fairly disruptive alterations to cellular systems and without the ability to 

uncage PI(4,5)P2 acutely . 

 

6.1 Benefits of uncaging PI(4,5)P2 

Previous studies involving the study of protein-lipid interactions have taken 

broadly different approaches to unearth the specifics of exocytosis at the 

synapse. Mutation of amino acid residues in relevant lipid binding proteins was 

one such approach. The C2 domains of syt-1 and Munc13 were altered in an 

attempt to inhibit PI(4,5)P2 binding (Li et al., 2006; Shin et al., 2010). Release 

probability was reduced in the case of syt-1 C2B mutants (Li et al., 2006). 

Exocytosis with sustained stimulation was lower in Munc13 C2B mutants (Shin 

et al., 2010). These mutations interfere with sites of Ca2+-dependent lipid 

binding however so it becomes difficult to ascertain if it is rather the perturbed 

Ca2+ interaction at physiological conditions that affects exocytosis or 

phospholipid binding itself, if indeed these are separate at all. 

Lipids cannot be easily manipulated (i.e. mutation of the encoding genes) as is 

the case for proteins, and so we must rely on altering their levels instead. 

Interference with the kinases responsible for the generation of phospholipids 
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was approach previously used (Di Paolo et al., 2004). Knockout of the neuronal 

phosphatidylinositol-4-phosphate 5-kinase type Iγ, PIPKIγ, lead to a reduction of 

the RRP, spontaneous events and a vesicle recycling defect consistent with 

impaired vesicular trafficking in neurons cultured from mice that die within 24 

hours of birth (Di Paolo et al., 2004). In mouse chromaffin cells, large dense 

core vesicle (LDCV) exocytosis was also affected by PIPKIγ KO. There was a 

reduction of PI(4,5)P2 at the membrane and a subsequent reduction of the RRP 

and priming rate (Gong et al., 2005). 

Conversely, upregulation of PI(4,5)P2 levels by overexpressing PIPKIγ or 

injecting it directly was shown to be successful in increasing PI(4,5)P2 and 

hence the RRP and LDVC secretion. The effect on exocytosis can be reversed 

by expression of a phosphatase against PI(4,5)P2, synatpojanin-1 (Chang-Ileto 

et al., 2011; Milosevic et al., 2005). A major downside of these approaches is 

that modulation occurs over long timescales, or in the case of the invasive 

injection, is already biologically active prior to localisation. A benefit of the 

method I describe here is the speed of PI(4,5)P2 modulation (Walter et al., 

2017). Rather than tens of seconds, PI(4,5)P2 is uncaged immediately and 

already localised at the plasma membrane (Figure 7). However, defined 

localisation within the cell of uncaged PI(4,5)P2 is uncertain, leading to possible 

PI(4,5)P2 increases elsewhere (Walter et al., 2017). PI(4,5)P2 localises not only 

over the plasma membrane but at other membranes throughout the cell, 

including internal cellular structures (Figure 7b). There is additional potential for 

knock-on effects as it metabolised to agents such as DAG.  

Despite the confirmation of PI(4,5)P2 potentiating exocytosis in other systems, 

no immediate change in the probability of release was observed with uncaging 

at the Drosophila NMJ, only a slight protective effect against reductions in 

amplitude due to subsequent stimulation (Figure 9). It is unknown to what 

degree the caged lipid is loaded and access to Drosophila larval NMJ synapses 

is uncertain. Uncaging experiments in cell culture provide much greater access 

to the membrane than the Drosophila NMJ (Figure 8). 
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6.2 PI(4,5)P2 & Actin 

Phosphoinositides play a vital role in cell migration due to its role in regulating 

the actin cytoskeleton. PI(4,5)P2 is produced at focal adhesions. When local 

PI(4,5)P2 synthesis is lost, cell adhesion by integrin-ligand binding and 

ultimately integrin-actin force coupling are perturbed (Legate et al., 2011). 

PI(4,5)P2 is concentrated at patches of ruffling lamella in migrating cells that 

also exhibit high levels of filamentous actin (f-actin) (Golub and Caroni, 2005). 

Focal adhesion proteins such as α-actinin, kindlin, talin and vinculin bind 

PI(4,5)P2 (Saarikangas et al., 2010; Senju and Lappalainen, 2019). Vinculin-

talin binding and binding of vinculin to actin filaments, is regulated by PI(4,5)P2, 

and serves as part of the important bridge between the cytoskeleton and focal 

adhesions (Chinthalapudi et al., 2014; Ezzell et al., 1997). Cellular migration 

dependent on adhesion is referred to as mesenchymal migration. At the leading 

edges of such migrating cells, lamellipodia are centres of actin cytoskeletal 

rearrangement (Senju and Lappalainen, 2019). Actin nucleation of f-actin 

branches is initiated by the Arp2/3 complex, which itself is activated by neuronal 

Wiskott-Aldrich Syndrome protein (N-WASP). N-WASP moves from a closed 

inactive state to an open conformation by interaction with Cdc42, a rho family 

GTPase, and PI(4,5)P2 (Prehoda et al., 2000; Rohatgi et al., 2000). Formins are 

involved in actin nucleation and polymerisation. mDia1 and mDia2 are targeted 

to the membrane via their N-terminus.  (Gorelik et al., 2011; Ramalingam et al., 

2010). Conversely, depolymerisation by Actin-depolymerizing-factor 

(ADF)/cofilins and inhibition of elongation by heterodimeric actin-capping protein 

(CP) is reversed by PI(4,5)P2. Proteins that downregulate the formation of actin 

structures are bound by PI(4,5)P2 at the membrane and restricted to an inactive 

state (Kim et al., 2007; Zhao et al., 2010). Moving away from nucleation of 

existing f-actin at lamellipodia, the actin polymerisation protein, profilin, has also 

been shown to interact with PI(4,5)P2 (Skare and Karlsson, 2002). 

Actin and PI(4,5)P2 play a part in regulating clathrin-mediated endocytosis. Coat 

and actin network assembly is linked to higher levels of PI(4,5)P2. Disassembly 

is associated with lower PI(4,5)P2 levels and coincides with higher synaptojanin-

1 (Perera et al., 2006; Sun et al., 2007). Filamentous actin production via Arp2/3 

is also reduced with lower PI(4,5)P2 (Zoncu et al., 2007). BAR and F-BAR 
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domain proteins interact with PI(4,5)P2 activity during endocytosis. They are 

present in members of the WASP-family of proteins. The BAR domain protein 

SNX9 activates actin assembly via N-WASP for example (Yarar et al., 2007). 

The Arp2/3 complex is also activated by Type I myosins which in turn interact 

with PI(4,5)P2 (Fernández-Golbano et al., 2014). 

I made use of LifeAct tagged with RFP to visualise f-actin (Figure 8). LifeAct is 

composed of the first 17 aa of Abp140 from Saccharomyces cerevisiae (Riedl et 

al., 2008). A benefit of using LifeAct is that it is less disruptive to actin function 

than use of actin-fluorophore fusion proteins. In such cases, untagged actin 

must compensate and mitigate for dysfunction caused by tagged actin. A 

downside of LifeAct however, is a large degree of background fluorescence 

likely due to it binding soluble g-actin (Riedl et al., 2008). Another downside is 

the possible side effects on normal actin organisation. In Drosophila germline 

cells, high expression of LifeAct leads to sterility and strong actin 

disorganisation (Spracklen et al., 2014). It is proposed that the strong 

UAS/GAL4 germline driver used is at fault as previous studies making use of 

considerably weaker germline drivers (Huelsmann et al., 2013; Zanet et al., 

2012). Similarly, it has been shown that LifeAct expressed at differing 

concentrations can have variable effects on severing or elongation of actin in 

fission-yeast cells (Courtemanche et al., 2016). While these studies claim level 

of LifeAct to be the primary cause of these aberrant phenotypes, underlying 

explanations are the sequestration of g-actin by LifeAct or competition and 

interference with endogenous actin-binding proteins. Nevertheless, as Melak et 

al. (2017) has noted, there is a host of studies successfully making use of the 

low toxicity of LifeAct without issue for the visualisation of actin in mice, 

zebrafish, plants and fungi. 

LifeAct has been used as a probe to identify the role of actin and PI(4,5)P2 in 

determining cell polarity in C. elegans (Scholze et al., 2018). PI(4,5)P2 

colocalises to similar regions of the embryos and moves ahead of it. Vitally, 

both rely on the presence of the other. PI(4,5)P2 structures depend on f-actin 

function, and PI(4,5)P2 alteration affects actin organisation (Scholze et al., 

2018). I observed similar actin reorganisation following PI(4,5)P2 uncaging 

(Figure 8) (Walter et al., 2017). 
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6.3 PMA as an analogue for DAG 

PI(4,5)P2 modulates release further by generation of second messengers and 

initiating signalling pathways due to its metabolism. PI(4,5)P2 is metabolised by 

phospholipase C (PLC) enzymes to DAG and inositol 1,4,5-triphoshate (IP3) 

(Brose et al., 2004). At the synapse, DAG binds the C1 domains of Protein 

Kinase Cs (PKC) and Unc13. Experiments performed on bovine adrenal 

chromaffin cells or hippocampal neurons claimed that the potentiation induced 

by PMA was via activation of PKC, leading to an increase in the RRP (Gillis et 

al., 1996; Stevens and Sullivan, 1998). Bisindolylmaleimide (BIS), a PKC 

inhibitor, interfered with PMA induced potentiation of release and RRP (Stevens 

and Sullivan, 1998). BIS binds to the catalytic site of PKC and not the DAG 

binding C1 domain. Stevens and Sullivan also showed an increase in the 

refiling rate of SVs with PMA that was blocked by BIS. At the Drosophila larval 

NMJ however, it was shown that PMA induced potentiation could increase 

evoked release despite the use of PKC inhibitors (Song et al., 2002). BIS 

applied in conjunction with PMA failed to prevent facilitation after 16 minutes, 

indicating that another target of PMA rather than PKC is responsible for 

potentiation at the Drosophila NMJ. I could confirm that PMA induced 

potentiation was possible at the Drosophila NMJ (Figure 10e, f, g, h). To 

investigate whether this was due to an increase in the RRP, I performed high 

frequency stimulation. The data indeed indicate an increase in the RRP (Figure 

10i, j). 

It has more recently been claimed that PMA induces an increase in Ca2+ 

sensitivity, not RRP size, and BIS blocks this, indicating that PKC is vital 

(pituitary gonadotropes) (Zhu et al., 2002). At Calyx of Held synapses, where 

PdBu leads to an increase in exocytosis and spontaneous release, an increase 

in affinity for Ca2+ of the release machinery has likewise been postulated (Lou et 

al., 2005). With PMA application and subsequent BIS inhibition this was shown 

to be PKC dependent (Wu and Wu, 2001). Increased potentiation via Ca2+ 

sensitivity has been suggested to occur due to lowering of the energy barrier for 

vesicular fusion (Basu et al., 2007). 
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I did not observe an increase in the amplitude of spontaneous release 

(Figure10 c). The inability of phorbol esters to potentiate spontaneous 

amplitudes has been observed with PdBu application in Drosophila (Ortega et 

al., 2018). Likewise, in hippocampal culture spontaneous amplitudes were not 

potentiated by phorbol esters, but the frequency of these events was increased 

(Stevens and Sullivan, 1998). Increased spontaneous frequency due to phorbol 

ester application is well established in mammals (Lou et al., 2008). I cannot 

report any change of spontaneous frequency at the Drosophila NMJ following 

PMA application (Figure10 d). It has been suggested that this effect is due to 

the maturity of synapses, as young hippocampal culture synapses lacked the 

effect of PMA application on the frequency while older synapses displayed a far 

greater number of spontaneous events (Virmani et al., 2005). The claim that this 

is due to the lack of an established RRP at these synapses is perhaps not 

comparable to the Drosophila larval NMJ however. 

Due to the partial effects of PKC inhibitors and similar experiments, it was 

known that there must be other factors involved in the upregulation of release. 

Unc13 is a primary target for DAG and phorbol esters. In fact, Unc13 is the 

primary contributor as explored in hippocampal neurons. (Basu et al., 2007; 

Rhee et al., 2002). PKC mediated effects are often secondary and Unc18 for 

example can be activated downstream of PKC (Cijsouw et al., 2014; Edwards et 

al., 2012; Genç et al., 2014; Nili et al., 2006). 

Of course DAG/phorbol esters have functional roles in activating signalling 

pathways and processes other than exocytosis, some of these receptors 

include protein kinase D, diacylglycerol kinases α, β, and γ, RasGRPs and 

chimaerins (Brose et al., 2004). 

 

6.4 Summary of Lipid Signalling and Modulation of Neurotransmission 

It can be concluded that loading cg-PI(4,5)P2 into mammalian cells and acutely 

uncaging it is an effective way to alter cellular processes such as actin 

reorganisation. Uncaged PI(4,5)P2 at the Drosophila NMJ does not increase 

release probability but may prevent a decrease in response to multiple 

stimulations. 
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The metabolism of PI(4,5)P2 was not directly examined following uncaging. 

Rather pharmacological PMA application was used to mimic DAG function. 

PMA successfully potentiates evoked NT release but has no effect on 

spontaneous release. This highlights a difference to PMA modulation of 

neurotransmission at mammalian synapses, which exhibit a sharp increase in 

the frequency of spontaneous release.  
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6.5 Presynaptic Homeostatic Plasticity 

At the Drosophila NMJ, block or deletion of glutamate receptors at the 

postsynapse leads to a compensatory increase in presynaptic neurotransmitter 

release to account for the reduced sensitivity of the postsynapse. For this to 

reliably occur on both short and long timescales the information that receptors 

are perturbed must travel retrogradely across the synapse. Receptor blockade 

initiates a signalling pathway or pathways within the muscle postsynapse. This 

in turn activates retrograde trans-synaptic signalling which links to necessary 

changes at the presynaptic neuron. The presynapse responds with altered 

structural organisation of proteins, particularly at the AZ cytomatrix, as well as 

increased functional neurotransmitter exocytosis. 

 

6.5.1 The postsynaptic origin of presynaptic homeostatic plasticity 

The initiation of signalling during induction of presynaptic homeostatic plasticity 

must originate at the postsynapse. Glutamate receptor activation leads to Ca2+ 

influx and it was speculated that loss of Ca2+ influx due to glutamate receptor 

loss/block was responsible for signal initiation (Haghighi et al., 2003). During 

normal neurotransmission, Ca2+ influx leads to activation and phosphorylation of 

Ca2+/calmodulin-dependent protein kinase II (CaMKII). Inhibition of CaMKII at 

the postsynapse by expression of CaMKII inhibitory peptides in the muscle 

reduces presynaptic neurotransmitter release. Deletion of glutamate receptors 

should also increase presynaptic neurotransmitter release but muscle 

expression of constitutively active CaMKII supresses the ability of synapses to 

upregulate presynaptic release (Haghighi et al., 2003; Li et al., 2018). This 

indicates that CaMKII signalling in the muscle is required following chronic 

glutamate receptor loss. On the rapid timescale, levels of observed 

phosphorylated CaMKII are reduced following PhTx application (Goel et al., 

2017). Extracellular Ca2+ concentration does not alter the levels of active 

pCaMKII however, suggesting that Ca2+ influx does not influence CaMKII during 

rapid plasticity. As I will discuss later however, observed changes in protein 

level cannot always be related to the functional reality and the timing of 

plasticity can reveal dramatic differences at the Drosophila NMJ. 
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Dystrophin is another negative regulator of synaptic homeostasis at the 

postsynapse (van der Plas, Mariska C et al., 2006). As a part of the Dystrophin-

glycoprotein complex (DGC), it acts to link the muscle actin cytoskeleton to the 

extracellular matrix. Increased neurotransmitter release occurs due to muscle 

specific loss of Dystrophin isoforms. Rho GTPases as part of Rho signalling are 

another important mediator of cytoskeletal changes and vesicle trafficking (Hall, 

1998). Rho GTPases move between an active GTP bound state, catalysed by 

Rho-type guanine nucleotide exchange factors (RhoGEFs), and an inactive 

GDP bound state, catalysed by Rho GTPase activating proteins (RhoGAPs). 

Dystrophin interacts with the RhoGAP crossveinless-c (cv-c). Just as with 

Dystrophin mutation, cv-c mutation (loss of function) results in a significant 

increase of presynaptic release, without affecting postsynaptic responses 

(Pilgram et al., 2011). This Dystrophin or cv-c mediated increase of release can 

be reversed by targeting Cdc42 for mutation, indicating that the Rho GTPase 

Cdc42 functions downstream of both Dystrophin and cv-c in this pathway 

(Pilgram et al., 2011). Cdc42 might function in a system with the RhoGEF, 

Ephexin (Exn), to activate presynaptic Ephs receptor and ultimately modulate 

CaV2.1 Ca2+ channels during induction of synaptic homeostasis. Exn appears to 

be more important for long-term synaptic homeostasis and dispensable for rapid 

PHP however (Frank et al., 2009).  

An interesting candidate for plasticity regulation, Importin 13 (imp13) is 

observed around nuclei of muscles and neurons and is involved in transport of 

proteins across the nuclear membrane (Giagtzoglou et al., 2009). Similarly to 

Dystrophin and cv-c, it acts as a negative regulator of presynaptic release. 

Imp13 mutation results in stronger presynaptic release at low or normal 

extracellular Ca2+. It is claimed that this phenotype is lost at higher Ca2+ 

concentrations; however, the experiments were performed in current clamp, 

where it is possible that the maximum stimulated response in both cases has 

been reached. The probability of release, determined by PPR, is also higher in 

imp13 mutants (Giagtzoglou et al., 2009). This increase can be reversed by 

postsynaptic-specific, but not presynaptic-specific, overexpression of imp13. 

The assumption is made that because visualised BRP is unchanged in these 

mutants, release site number is also unchanged. Unc13 is more likely to be the 
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release site generating molecule (Reddy-Alla et al., 2017). It would be 

appropriate to perform variance-mean analysis to determine the number of 

release sites (Scheuss and Neher, 2001). In imp13 mutants there is a slight 

increase in presynaptic intracellular Ca2+, observed by forward filling the cut end 

of the motoneuron with a Ca2+ sensitive dye and imaging at the synaptic bouton 

(Giagtzoglou et al., 2009). 

Target of rapamycin (TOR) has been shown to be important for long-term 

synaptic homeostasis (Penney et al., 2012). In a chronic homeostatic situation, 

glutamate receptor mutants lacked presynaptic exocytotic compensation when 

TOR was specifically lost at the postsynapse, indicating that it controls the 

retrograde signal. Further supporting this, postsynaptic overexpression of TOR 

increases presynaptic release. TOR phosphorylates proteins such p70 S6 

ribosomal kinases (S6Ks). Cap-dependent translation is modulated by TOR 

signalling and as an enhancer of cap-dependent translation, S6K is likewise 

vital for synaptic homeostasis (Penney et al., 2012). Postsynaptic constitutive 

overexpression of S6K increases presynaptic release. Mutants lacking GluRIIA 

and one copy of cap-binding complex protein eIF4E, which is also activated by 

TOR, lack synaptic homeostasis. eIF4E is a translation initiation factor and is 

required for the increased presynaptic release due to postsynaptic TOR and 

S6K overexpression. Translation is initiated after eIF4E binds eIF4G, and is 

inhibited by 4E-BP. As a consequence 4E-BP along with the transcription factor 

Forkhead box O (Foxo) can act as negative regulators of changes in 

presynaptic neurotransmitter release (Kauwe et al., 2016). 

 

6.5.2 Retrograde signalling in homeostatic plasticity 

There have been several attempts to define the exact molecule responsible for 

relaying the signal of postsynaptic receptor blockade across the synaptic cleft. 

For such a process, a presynaptic receptor for this signal would also be 

required. An initial candidate for retrograde signalling was via secretion of Bone 

Morphogenic Proteins (BMPs), most being members of the TGF-β superfamily 

(Marqués et al., 2002). The BMP type II receptor, wishful thinking (Wit), was 

shown to be important for NMJ synapse development, as abnormal synapse 
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size, ultrastructure and reduced transmission is reported upon its mutation 

(Aberle et al., 2002). Mutants of the BMP ligand glass bottom boat (Gbb) were 

subsequently discovered to display similar synapse abnormalities (McCabe et 

al., 2003). The phosphorylated transcription factor Mad is a known effector 

protein of wit signalling and would normally accumulate in motoneuron but is 

lacking in Gbb mutants. Gbb and Wit are vital for rapid PHP (Goold and Davis, 

2007). However, in the case of motoneuronal loss of Gbb it is possible to 

reverse PHP deficiency by motoneuronal Gbb rescue. Gbb generated in the 

muscle was not required. This indicates that Gbb is not acting retrogradely as a 

signal across the synapse. Neuronal retrograde axonal transport and 

continuous developmental presence of Mad in the neuron is however required 

for synaptic homeostasis (Goold and Davis, 2007). While the presence of these 

processes may be important during development, as previously mentioned, 

rapid and acute increase of vesicular release occurs despite the use of 

translation blockers and severing the nerve axon, indicating fresh protein from 

the soma is unnecessary (Böhme et al., 2019; Frank et al., 2006). 

One of the best candidates as a retrograde signal is semaphorin 2b (Sema2b) 

(Orr et al., 2017). Plexins act as receptors for proteins from the semaphorin 

family. It was postulated that sema2b, secreted from the muscle 

postsynaptically was binding to presynaptic plexin B (PlexB). Sema2b and 

PlexB mutants lack rapid PHP. RNAi knockdown of Sema2b postsynaptically in 

the muscle and PlexB presynaptically in the motoneuron block rapid PHP. The 

reverse, knockdown of Sema2b presynaptically and PlexB postsynaptically had 

no effect on PHP. Interestingly, purified SemaB protein applied to SemaB 

mutants could also rescue rapid PHP. The presynaptic cytoplasmic 

actin-depolymerisation mediating protein Mical is essential downstream of 

PlexB (Orr et al., 2017). 

Multiplexin, a matrix protein that can be cleaved to produce the signalling factor 

Endostatin, is involved in presynaptic neurotransmitter release and Ca2+ 

channel upregulation (Wang et al., 2014). PhTx application or co-mutation of 

glutamate receptors in multiplexin mutants reveals that it is vital during both 

rapid and chronic PHP, as presynaptic compensation is absent in these two 

situations. Multiplexin mutants also exhibit decreased Ca2+ channel abundance 
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and reduced Ca2+ influx. During induction of homeostasis it is proposed that 

multiplexin is processed in the synaptic cleft by an unknown protease, 

producing endostatin that subsequently interacts with CaV2.1 channels at the 

presynapse to increase Ca2+ influx. 

Finally, a candidate for the involvement of immune signalling has been found. 

Immune Receptor PGRP-LC (Harris et al., 2015). This receptor is located 

presynaptically and it is proposed to detect a trans-synaptic signal to regulate 

the RRP during rapid PHP. 

 

6.5.3 Presynaptic molecular components 

Increased Ca2+ influx is a central observation during the induction of rapid 

homeostatic plasticity, likely contributing to greater vesicular fusion (Müller and 

Davis, 2012). Ca2+ influx has a direct effect on the probability of vesicular 

release. The Cac subunit containing Ca+-channel is a vital presynaptic 

component contributing to PHP. Cac mutants are unable to maintain synaptic 

homeostasis and so Cac is a downstream target of the retrograde signal (Müller 

and Davis, 2012). Cac mutants have lower baseline transmission which 

decreases further with the additional block of postsynaptic glutamate receptors, 

confirming a defect in rapid PHP (Frank et al., 2006). Cac channels accumulate 

at the presynapse during rapid homeostatic plasticity and this increase occurs 

early after PhTx treatment (Böhme et al., 2019; Gratz et al., 2019). Another 

Ca2+ channel subunit, the auxiliary α2δ-3, is presynaptically vital for sustained 

rapid PHP (Wang et al., 2016). Degenerin/Epithelial Sodium channels 

(DEG/ENaC) may provide a route for differential Ca2+ influx via Cac channels 

during induction of rapid PHP (Younger et al., 2013). Two subunits of ENaCs 

are coded for by pickpocket11 and pickpocket16 (ppk11 & ppk16) and are 

required presynaptically for rapid PHP. Mutation or knockdown of ppk11 & 

ppk16 abolishes rapid PHP. In the absence of postsynaptic blockade, mutation 

or knockdown of ppk11 and ppk16 does not affect baseline transmission. 

Pharmacological application of an ENaC blocker Benzamil also does not affect 

baseline transmission; however subsequent application of PhTx unveils a defect 

in induction of rapid PHP. This proves that ENaCs are less important for normal 
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synaptic release and play a larger role in a situation where PHP becomes 

necessary. Several propositions are made about how ENaC might contribute to 

the increase of exocytotic release during PHP. One possibility is that K+ 

channel inactivation occurs due to ENaC-mediated membrane depolarisation, 

subsequently broadening action potentials (Younger et al., 2013). The second 

proposal is that sub threshold membrane depolarisation via ENaC increases 

basal Ca2+ concentration and hence Ca2+-dependent channel facilitation 

(Younger et al., 2013). It is also not possible to discount that Ca2+ itself flows 

through ENaCs (Younger et al., 2013). 

Loss of scaffolding RIMs proteins leads to reduced Ca2+ influx and reduced 

exocytotic release (Müller et al., 2012). RIM mutants lack PHP and fail to 

upregulate their already low vesicular release in response to glutamate receptor 

blockade. RIMs are responsible for regulating Ca2+ channel level increases and 

the RRP (Graf et al., 2012). Nonetheless, they still maintain the ability to 

increase Ca2+ influx during acute postsynaptic challenge (Müller et al., 2012). 

The reduced release of SVs is due to an inability to regulate the RRP during 

rapid homeostasis (Müller et al., 2012). Another scaffolding protein, Fife, 

interacts with RIM and is central to proper cytomatrix formation. Rapid PHP is 

perturbed in fife mutants (Bruckner et al., 2012; Bruckner et al., 2016). 

RBP is also required for induction of homeostatic plasticity (Müller et al., 2015). 

Like RIM mutants, RBP mutants fail to expand the RRP. Unlike RIM however, 

they also fail to increase Ca2+ influx (Müller et al., 2015). This indicates that 

Ca2+ channel accumulation and SV release changes are both downstream of 

RBP. SV recovery in RBP mutants is reduced compared to wildtype, and the 

divide between genotypes widens drastically with induction of homeostatic 

plasticity (Müller et al., 2015). 

BRP is a core scaffold protein at the AZ, and as the other AZ scaffold proteins 

had been determined to be essential for rapid PHP, I wondered if the same 

might be true for BRP. PHP requires Ca2+ channel clustering and increases in 

vesicular exocytosis, both of which BRP is known to influence (Kittel et al., 

2006). BRP null mutants exhibit lower postsynaptic responses to presynaptic 

stimulation, compared to wildtype (Figure 15). Surprisingly, loss of BRP did not 
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affect the ability of synapses to maintain this response. Vesicular release was 

increased due to rapid PHP, indicating that BRP is not essential for rapid PHP. 

A range of non-scaffolding proteins are implicated in homeostasis at the 

presynapse. Complete loss of Unc18/Rop is lethal. Nevertheless, RNAi 

knockdown or heterozygous mutation have been used to examine its role during 

rapid PHP (Ortega et al., 2018). Unc18 knockdown confirms that even partial 

loss has a negative impact on induction of rapid PHP. Unc18 is also implicated 

in interacting with RIM to establish PHP. Heterozygous loss of both Unc18 and 

RIM completely abolishes PHP, compared to the partial defect seen in either 

individual heterozygous null mutant. Syx-1A loss is shown to reverse the defect 

of PHP seen in the heterozygous Unc18 null mutant (Ortega et al., 2018). 

Dysbindin, a gene associated with schizophrenia, in Drosophila is involved in 

establishing PHP at the presynapse in a manner independent of Ca2+ influx and 

Cac, although it may also be downstream of either (Dickman and Davis, 2009). 

Rab3-GAP (Müller et al., 2011), SNAP-25 and Snapin have been identified as 

candidates regulating PHP (Dickman et al., 2012). Presynaptic kainate receptor 

(KAR) subunit KaiRID is required for rapid PHP, as seen in loss of function 

mutants (Kiragasi et al., 2017). The accessory subunit Neto can modulate KARs 

and two are expressed at the Drosophila NMJ, Neto-α and Netoβ (Han et al., 

2019). Although Neto-β is the predominant isoform at the NMJ, it is restricted to 

the postsynapse and only Neto-α is expressed pre- and postsynaptically. Neto-

α null mutants display a deficit of maintaining rapid PHP. Presynaptic 

overexpression of Neto-α can rescue and even overcompensate for deficient 

PHP at the NMJ, in animals lacking endogenous Neto-α and KaiRID. It is 

claimed that Neto-α is crucial and sufficient for rapid PHP (Han et al., 2019). 

 

6.5.4 Unc13 and Homeostatic Plasticity 

I investigated the contribution of Unc13 to homeostatic plasticity. As it is a vital 

SV priming protein, I hypothesised that it would be essential to homeostatic 

plasticity. There are two isoforms, Unc13A and Unc13B. Previous work showed 

the differential distribution of each isoform (Böhme et al., 2016). Defining the 

centre of the AZ by GFP labelled Ca2+ channels (Cac-GFP), Unc13A is located 
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closer to the centre of the AZ than Unc13B. Combining high pressure freeze 

(HPF) embedding with electron microscopy, it is possible to determine that loss 

of Unc13A leads to the lack of defined SV docking close to the centre of the AZ. 

Loss of Unc13A also drastically decreases stimulated exocytosis and synapses 

have a greatly reduced probability of release. (Böhme et al., 2016) Exocytosis 

at Unc13A null synapses is also more sensitive than wildtype to Ca2+ buffering 

(EGTA-AM), indicating that activity and hence Ca2+ influx at these synapses 

results in exocytosis of SVs placed further from the Ca2+ channel. 

Unc13A is responsible for localisation of primed and docked SVs with tight 

coupling to Ca2+ channels. As I show here, PHP is abolished upon loss of 

Unc13A, even when Unc13B remains (Figure 12). The low NT release of the 

Unc13A null mutant is unable to compensate for postsynaptic receptor 

blockade. Homeostatic plasticity relies on Unc13A to provide the necessary 

release sites (N), as well as Ca2+ influx (via Cac) increasing SV release 

probability (p). From this it can be concluded that Unc13A is vital for rapid PHP 

to occur reliably. 

Unc13B on the other hand is less important for exocytosis, as its loss leads to a 

much less severe deficit in neurotransmission compared to Unc13A loss 

(Böhme et al., 2016). It could be inferred based on the SV distribution of 

Unc13A null mutants that if SVs are positioned by Unc13B, they do so at a 

greater distance. Importantly, it appears Unc13B is not necessary for rapid 

induction of PHP, as evidenced by re-expression of Unc13A in the null 

background exhibiting normal induction of PHP (Figure 13a). This suggests that 

PHP relies on SV placement close to the centre of the AZ, at least at these Ca2+ 

concentrations. 

Focusing on Unc13A, I was interested in the function of the N-terminus of the 

protein and how it relates to homeostatic plasticity. The N-terminus is important 

for localisation (Reddy-Alla et al., 2017). Overexpression of the N-terminus in a 

wildtype background, leads to competition with endogenous Unc13A, blocking 

functional release sites and overall reduction of docked/primed SVs (Reddy-Alla 

et al., 2017). Stimulated exocytosis is reduced compared to control animals. 

SVs require the C-terminal portion of the protein to properly dock and prime. 
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Expression of the C-terminus of Unc13A in a null background results in protein 

that cannot localise with specific distribution at the AZ (Reddy-Alla et al., 2017). 

It heterogeneously covers the membrane and is observed at close proximity to 

the Ca2+ channels where it would usually be excluded. Unc13A C-term 

maintains the ability to form independent release sites, although the number of 

these is vastly increased. Consequently, the number of docked SVs is also 

increased. There is a reduction in stimulated exocytosis compared to full length 

Unc13A rescue that becomes more pronounced with increased extracellular 

Ca2+. My data confirms the defect in release, with a ~20% reduction in 

amplitude observed (Figure 13). 

Application of PhTx uncovers a severe defect in the induction of PHP 

(Figure 13, 14). Quantal content does not increase. The induction of rapid 

homeostatic plasticity occurs within 10 minutes. The conclusion can be made 

that the C-terminal portion of Unc13A alone is not sufficient for homeostatic 

plasticity. Accurate localisation of Unc13A is required at synapses for a fast 

increase in vesicular release, supporting the idea that release site generation by 

Unc13A is just as important for PHP as priming alone. 

It is possible however that the CaM-binding domain may play some role in 

modulating homeostatic synaptic plasticity as it does in other forms of plasticity, 

notably STP in mammals (Lipstein et al., 2012). Synapses do not exclusively 

display one form of plasticity at any one time and there may be mechanistic 

overlap. In worms, the UNC-13L isoform possesses a CaM site that accelerates 

NT release (Hu et al., 2013). In C-term-GFP mutants lacked this site due to the 

nature of the deletion as the CaM binding-site is proximal to the N-terminus. 

This will need to be explored further with specific targeting of the domain. 

As mentioned in the Introduction, a C2A domain exists in the N-terminus of 

mouse and worm Munc13/UNC-13 that is lacking in Drosophila Unc13, and this 

interacts with RIM to prime SVs (Andrews-Zwilling et al., 2006; Camacho et al., 

2017; Deng et al., 2011; Zhou et al., 2013). RIM-BP in mammals also appears 

to be involved in this interaction of Unc13 and RIM to prime SVs (Brockmann et 

al., 2019). It is possible such activating function is nevertheless still present in 

the N-terminus of Drosophila Unc13 and that a domain like the CaM-binding site 
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may fulfil this function, leading to activation of Unc13 already present at the AZ 

during PHP. 

Finally, it is interesting to consider how the mechanisms and components 

important for presynaptic homeostatic plasticity may apply to other forms of 

plasticity or neurotransmission (as I mentioned above for STP), focusing on 

Unc13 as the release site molecule. Dysfunction of Unc13 can have wide 

ranging effects and genetic variability in Munc13-1 has been identified as a risk 

factor for neurodegenerative diseases in humans, including amyotrophic lateral 

sclerosis and frontotemporal dementia (Diekstra et al., 2014). Deletion of the 

N-terminus of Unc13A was shown to inhibit learning and short-term memory 

formation when expressed in the mushroom body of the adult fly, indicating that 

the specific loss of this region of the protein is not only necessary for PHP but 

may be involved in other forms of plasticity (Böhme et al., 2019). There is a 

great degree of conservation in plasticity and learning mechanisms. Taking the 

example of olfactory conditioning in Drosophila, it additionally involves 

cAMP-PKA signalling with PKA being further implicated in many other forms of 

plasticity including presynaptic facilitation in  the sea slug Aplysia or mammalian 

LTP (Michel et al., 2011). It seems natural then that Unc13, with such a vital 

role in potentiation (homeostatic or otherwise), would be another possible 

conserved candidate for the convergence of synaptic adaptation pathways. 

 

6.6 Differences in Homeostatic Plasticity - Structural versus Functional 

Presynaptic homeostatic plasticity presents as two distinct phenomena. As 

discussed, the first involves the increase in presynaptic vesicular release due to 

a greater number independent release sites, compensating for loss of glutamate 

sensitivity at the postsynapse, a form of functional plasticity (Böhme et al., 

2019; Müller et al., 2012). The second involves the rapid rearrangement of 

cytomatrix AZ proteins, a form of structural plasticity at Drosophila 1b boutons. I 

propose that while both often occur in tandem, structural and functional 

plasticity can be completely separated. 

A host of AZ proteins visualised at the AZ increase rapidly during homeostatic 

plasticity, including BRP, RBP, Cac, Unc13A and Syx-1A (Böhme et al., 2019; 
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Goel et al., 2017; Gratz et al., 2019; Weyhersmüller et al., 2011). In fact, BRP 

and RBP are required for the structural rearrangement of other AZ proteins 

such as Unc13A (Böhme et al., 2019). Combining immunohistochemistry with 

super-resolution STED microscopy unveils the arrangement of these proteins at 

the AZ. When looking at many AZs, a regular geometric pattern can be 

observed for Unc13A, BRP and RBP. AZs consist of clusters of these proteins 

arranged in a very regular shape. On application with PhTx or deletion of 

GluRIIA, the number of AZs with a greater number of clusters of Unc13A, BRP 

and RBP increases. Referring to these clusters as “nano-modules”, it appears 

that under conditions that induce homeostatic plasticity, additional nano-

modules of certain AZ proteins are inserted at AZs or larger nano-modules 

fragment into smaller ones. This is not true for all AZ proteins, as it was 

observed that Syx-1A and Unc18 do not cluster. Unc18 also does not undergo 

rapid structural homeostatic plasticity, but is vital for rapid PHP (Böhme et al., 

2019; Ortega et al., 2018). 

A major question surrounding this phenomenon is where this protein comes 

from, as a storage pool is not immediately obvious. One possibility is 

rearrangement of protein already at the AZ. We know that inhibition of 

translation prevents neither rapid structural or rapid functional plasticity (Böhme 

et al., 2019; Frank et al., 2006), however I elaborate on these experiments later. 

Immunohistochemistry only reveals the location of protein at a particular point in 

time and not its transport. Unc13A and BRP for example had been visualised 

being co-transported in the axon (Böhme et al., 2019). I looked at motoneuronal 

axons of larvae expressing BRP-mCherry and observed particles of BRP 

moving as well as remaining stationary (Figure 16). On treatment with PhTx, the 

number of motile particles increased while the number of stationary particles 

decreased. The movement of motile particles is not uniform, often stopping and 

starting again. Vesicles carrying dendritic proteins have been described moving 

in similar fashion with such vesicles pausing at patches of actin (Watanabe et 

al., 2012). It is proposed that proteins are conveyed along axons and dendrites, 

stopping at regions of high actin for sorting and filtering, such as at the axon 

initial segment. 
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Proper actin function is vital for AZ-remodelling. Actin polymerisation blocker 

Latrunculin B inhibits rapid structural plasticity at AZs (Böhme et al., 2019). It is 

thus plausible that AZ proteins are transported via actin into the AZ during rapid 

structural plasticity. Immunohistochemistry experiments as well as live imaging 

experiments of Cac at individual AZs were performed with the segmental nerve 

intact (Böhme et al., 2019; Gratz et al., 2019). Proteins associated with 

transport of AZ components BRP/RBP, such as serine-arginine (SR) protein 

kinase at location 79D (Srpk79D) (Driller et al., 2019) and transport adapter 

App-like interacting protein 1 (Aplip-1) (Siebert et al., 2015), when mutated lead 

to co-accumulations of BRP/Unc13A in the axon (Böhme et al., 2019). These 

mutants are incapable of AZ protein rearrangement during homeostatic 

plasticity. Interestingly, while rapid structural plasticity is lost, rapid functional 

plasticity remains, further supporting the idea that rapid structural plasticity is 

separate from PHP. 

I have shown this separation of functional and structural aspects is true for BRP 

(Figure 15). It was assumed that such an important component regarding AZ-

remodelling would also be important for PHP. Loss of BRP had been observed 

to prevent an increase of the release site factor Unc13A (Böhme et al., 2019). 

As mentioned previously, this is not the case however, as treatment with PhTx 

in mutants lacking BRP maintain PHP (Figure 15). Likewise, interference with 

transport of BRP/RBP by mutation of Srpk79D or Aplip-1, while affecting AZ-

remodelling, does not inhibit induction of rapid PHP (Böhme et al., 2019). It is 

possible that AZ-remodelling occurs in preparation for a long-term perturbation 

of synapses as a form of consolidation, and Srpk79D/Aplip-1 are involved in 

moving sufficient quantities of AZ proteins to the NMJ. Unc13A present at the 

AZ and previously inactive may be sufficient to upregulate release during rapid 

induction of PHP. It can be concluded, that while it was once assumed that the 

upregulation of presynaptic release during homeostatic plasticity was 

inseparable from the acute remodelling of the proteins at the AZ, this is 

revealed to no longer be the case. The two mechanisms do not necessarily 

directly relate to each other on very short timescales of a few minutes. 
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6.7 Differences in Homeostatic Plasticity - Rapid versus Chronic 

Presynaptic homeostatic plasticity occurring in response postsynaptic challenge 

involves rapid plasticity following pharmacological blockade of glutamate 

receptors or long-term plasticity observed when glutamate receptors are 

chronically absent (Figure 17). These data support the possibility that these two 

types of homeostatic plasticity are distinct, in phenotype and mechanism. 

Proteins that were only required for AZ-remodelling on short timescales become 

vital for PHP on longer timescales. During rapid homeostatic plasticity there is 

no change in Unc18 but during chronic plasticity Unc18 drastically increases at 

the presynapse. AZ-remodelling and PHP is also generally more robust during 

chronic plasticity compared to rapid plasticity. The fact remains that genetic 

deletion of receptors is very different from pharmacological blockade. Loss of 

GluRIIA receptors occurs over the lifetime of the organism and so the 

consequence may be widespread, knock-on effects that distinguish this form of 

plasticity from the rapid form. BRP, while dispensable for rapid PHP, is required 

on the long-term for both structural plasticity and chronic PHP (Figure 18). 

Likewise, transport associated proteins Srpk79D and Aplip-1 are also required 

for both structural plasticity and PHP but only upon chronic glutamate receptor 

loss (Figure 19). Axonal transport is likely vital on long term timescales, 

involving transport of protein from the soma. 

Regarding production of new protein, rapid homeostatic plasticity is 

hypothesised to be independent of translation. Severing the axon does not 

prevent rapid PHP (Frank et al., 2006), an observation that perhaps implied that 

rapid homeostatic plasticity is independent of translation. The presence of 

presynaptic ribosomal components and active translation at mammalian 

glutamate synapses has recently been identified however (Scarnati et al., 

2018). Regions of active protein synthesis are determined by SUrface SEnsing 

of Translation (SUnSET), whereby puromycin is acutely applied, incorporated 

into polypeptides followed by removal, tissue fixation and immunostaining for 

the newly generated puromycin polypeptides. It is possible that similar 

processes exist at the Drosophila NMJ presynapse. 

Acute application of the translation blocker Cycloheximide directly to larvae has 

been used to inhibit translation and presumably would do so postsynaptically 
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and presynaptically. Rapid PHP induction is unperturbed by Cycloheximide use 

(Böhme et al., 2019; Frank et al., 2006). Chronic plasticity on the other hand is 

mediated by TOR signalling and so postsynaptic translation is thought to be 

necessary (Kauwe et al., 2016; Penney et al., 2012). A recent study has 

reported that application of Cycloheximide to GluRIIA mutants did not affect 

chronic PHP, nor did application to larvae overexpressing TOR reduce their 

increased release (Goel et al., 2017). One could conclude from this that 

translation is unimportant for chronic PHP also and that TOR signalling is not 

directly involved in potentiated presynaptic release. 

The use of Cycloheximide as a translation blocker has been confirmed to inhibit 

memory retention as long-term memory is sensitive to its use. Adult flies were 

fed Cycloheximide at least 12 hours before testing (Tully et al., 1994). Both the 

method of application and length of time prior to testing differs greatly from 

experiments where it was acutely applied to larvae (Böhme et al., 2019; Frank 

et al., 2006). The incubation time may be insufficient to block PHP as for 

example Unc13 is very stable at the NMJ, taking many hours to recover from 

fluorescence recovery after photobleaching (FRAP) (Reddy-Alla et al., 2017). 

Further evidence that presynaptic plasticity requires protein synthesis is seen at 

mammalian hippocampal synapses (Han and Stevens, 2009). Application of 

TTX and subsequent silencing of nerve firing for 1 day leads to a presynaptic 

increase in the probability of NT release. This has been shown to be 

transcription dependent, as it is inhibited by use of the transcription blocker A-D. 

In order to quantify the level of translation inhibition and determine the origin of 

AZ proteins, fluorescent timers (FTs) may be useful. FTs involve a chromophore 

that changes wavelength over time and can aid in determining the age and 

trafficking of proteins. FTs exist with suitably long blue to red fluorescence 

conversion rates (Subach et al., 2009; Terskikh et al., 2000). As an alternative 

to pharmacological blockade of translation, an optogenetic approach to disable 

translation might be possible. Chromophore-assisted light inactivation (CALI) 

involves tagging a protein with a chromophore that upon stimulation with light, 

rapidly generates oxygen radicals that oxidise residues elsewhere on the 

tagged protein. As a result, the function of the tagged protein is acutely 

temporally and spatially disrupted (Lin et al., 2013; Tour et al., 2003). By 
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targeting proteins, essential for translation, the importance for induction of 

homeostatic plasticity could be more confidently explored. CALI could also 

potentially be used to induce plasticity, targeting GluRIIA for example. 

Manipulation of postsynaptic receptors over the medium time scale might shed 

more light on the separation between rapid and chronic plasticity, making use of 

an optogenetic approach to disable receptors over a few hours. 
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Figure 20: The functional and structural aspects of Presynaptic Homeostatic 
Plasticity differ depending on induction method. 
Homeostatic plasticity at the Drosophila NMJ can be induced in two ways, the acute 
pharmacological (Rapid) application of PhTx or the genetic (Chronic) deletion of 
GluRIIA. Both methods manifest as distinct functional and structural changes at the 
presynaptic AZ. 
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6.8 Presynaptic Homeostatic Plasticity - Conclusion and Outlook 

While it might previously have been assumed that the structural rearrangement 

and increase of AZ proteins is fundamentally linked to the functional aspect of 

presynaptic homeostatic plasticity, the work described here proves that this is 

not the case. On rapid timescales, despite the fact the scaffold (BRP) 

undergoes such change, it is unnecessary for PHP. The release site molecule 

Unc13A on the other hand is essential, and it is likely that material already at 

the AZ becomes activated to increase NT release in such a situation 

(Figure 20). 

The answer to why the AZ undergoes structural reorganisation is perhaps due 

to the need to consolidate functional potentiation over long timescales, as 

during chronic presynaptic homeostatic plasticity. Plastic modulation is stronger, 

both functionally and structurally, and efficient transport of AZ proteins is 

mandatory. Increased supply of protein such as Unc13A may increase the 

ceiling for potentiation. 

The two induction methods are quite different however, as it is a comparison of 

pharmacological block of glutamate receptors over the course of minutes versus 

the genetic deletion and absence of receptors over the life of the animal. 

Investigation of whether further potentiation is possible by application of phorbol 

ester, converging on Unc13A during rapid of chronic plasticity, would be 

interesting. 

It remains to be seen whether these two situations (rapid versus chronic) reflect 

a common form of presynaptic homeostatic plasticity. If there is a switch 

between the two, it may purely be the duration and extent of postsynaptic 

receptor challenge that steers synapses towards either form of plasticity. 

Nevertheless, presynaptic homeostatic plasticity as a whole is a vital process 

for stable neurotransmission. 
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8.2 Abbreviations 

 

αBTX   α-bungarotoxin 

AMPA   a-amino-3-hdroxy-5-methyl-4-isooxazolepropionic acid 

AP   action potential 

Aplip1  APP-like protein interacting protein 1 

ATP   adenosine triphosphate 

AZ   active zone 

BIS   Bisindolylmaleimide 

BMP   bone morphogenic factor 

BRP   Bruchpilot 

Cac   Cacophony 

CALI   chromophore assisted light inactivation 

CaM   Calmodulin 

CaMKII  Ca2+/calmodulin-dependent protein kinase II 

cAMP   cyclic adenosine monophosphate 

CAST   CAZ-Associated STructural protein 

cg-PI(4,5)P2  caged phosphatidylinositol 4,5-bisphosphate 

cv-c   crossveinless-c 

DAG   diacylglycerol 

DEG/ENaC  Degenerin/Epithelial Sodium channel 

DMSO  dimethyl sulfoxide 

eEPSC/P  evoked excitatory postsynaptic potential 

EGTA ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-
tetraacetic acid 

ELKS protein rich in the amino acids E, L, K and S 

EM   electron microscopy 

EMS   ethyl methanesulfonate 

Exn   Ephexin 

Foxo   Forkhead box O 

FRAP   fluorescence recovery after photobleaching 
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GAL4   galactose-responsive transcription factor GAL4 

GFP   green fluorescent protein 

Gbb   glass bottom boat 

GluR   glutamate receptor 

imp13   Importin13 

ISI   interstimulus interval 

KAR   kainate receptor 

KLC   kinesin light chain 

LDCV   large dense core vesicle 

LTD   long-term depression 

LTP   long-term potentiation 

mEPSC/P  mini excitatory postsynaptic current/potential 

(M)unc13  (mammalian) Uncoordinated-13 

(M)unc18  (mammalian) Uncoordinated-18 

NMJ   neuromuscular junction 

NT   neurotransmitter 

PdBu   4β-phorbol-12, 13-dibutyrate 

PHP   presynaptic homeostatic potentiation 

PIPKIγ  phosphatidylinositol-4-phosphate 5-kinase type Iγ 

PhTx   Philanthotoxin 

PKA   protein kinase A 

PKC   protein kinase C 

PLC   phospholipase C 

PlexB   plexin B 

PMA   phorbol 12-myristate 13-acetate 

PPR   paired-pulse ratio 

QC   quantal content 

RBP   RIM binding protein 

RFP   red fluorescent protein 

RhoGAP  Rho GTPase activating protein 
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RhoGEF  Rho-type guanine nucleotide exchange factor 

RIM   Rab3 interacting molecule 

RNAi   RNA interference 

ROI   region of interest 

RRP   readily releasable pool 

S6K   p70 S6 ribosomal kinase 

SEM   standard error of the mean 

Sema2b  semaphorin 2b 

SNARE  Soluble N-ethylmaleimide sensitive factor Attachment 
   protein Receptor 

Srpk79D  serine arginine protein kinase at cytological position 79D 

STED   stimulated emission depletion (microscopy) 

STP   short-term plasticity 

SUnSET  SUrface SEnsing of Translation 

SV   synaptic vesicle 

Syt   synaptotagmin 

Syx   syntaxin 

TEVC   two-electrode current clamp 

TIRF   total internal reflection fluorescence (microscopy) 

TOR   target of rapamycin 

TTX   tetrodotoxin 

UAS   upstream activating sequence 

UV   ultraviolet 

VAMP   vesicle associated membrane protein 

Wit   wishful thinking 

  



Appendix 

130 
 

8.3 Figure Index 

Figure 1: The Action Potential: Example time course and stages. .................... 8 

Figure 2: The postsynaptic response to presynaptic stimulation depends on 

several key variables. ....................................................................................... 12 

Figure 3: Structure of Drosophila Unc13A. ...................................................... 18 

Figure 4: The Drosophila melanogaster life cycle. .......................................... 27 

Figure 5: UV light uncages cg-PI(4,5)P2. ......................................................... 29 

Figure 6: Dissected larva and current clamp recording configuration. ............. 39 

Figure 7: Confirmation of PI(4,5)P2 UV uncaging and loading into HEK cells. 46 

Figure 8: Uncaging PI(4,5)P2 recruits a high affinity lipid sensor to the plasma 

membrane of COS-7 cells and triggers actin changes at the plasma membrane 

of HEK cells. ..................................................................................................... 49 

Figure 9: Uncaging PI(4,5)P2 at the Drosophila NMJ. ..................................... 52 

Figure 10: The phorbol ester PMA increases release probability and the readily 

releasable pool at the Drosophila NMJ. ........................................................... 55 

Figure 11: Characterisation of PhTx application and consequences of 

stimulation. ....................................................................................................... 58 

Figure 12: Unc13A is essential for rapid PHP. ................................................ 60 

Figure 13: The N-terminal portion of Unc13A is essential for rapid PHP. ........ 62 

Figure 14: Time course of PHP induction following PhTx application in larvae 

expressing full length Unc13A or lacking the N-terminus of Unc13A 

(C-term-GFP). .................................................................................................. 65 

Figure 15: BRP is dispensable for rapid PHP.................................................. 67 

Figure 16: Axonal BRP motility increases following PhTx application. ............ 68 

Figure 17: Chronic induction of PHP results in more robust functional and 

structural synaptic homeostatic plasticity. ........................................................ 70 

Figure 18: BRP is essential for both functional PHP and structural 

rearrangement with chronic loss of GluRIIA. .................................................... 72 

Figure 19: Transport adapter Aplip-1 is essential for both functional PHP and 

structural rearrangement with chronic loss of GluRIIA. .................................... 75 

Figure 20: The functional and structural aspects of Presynaptic Homeostatic 

Plasticity differ depending on induction method. .............................................. 99 

  



 

131 
 

8.4 Statistics summary 

 

Table 2: Summary of experimental parameters. 

Figure Description Mean ± SEM (n) p value 
Statistical 

test 

      Figure 7a 488 nm channel intensity before uncaging after uncaging 
  

  
857.9 ± 23.17 (10) 1518 ± 80.72 (10) < 0.0001*** Paired t-test 

      Figure 7b 405 nm channel intensity Frame 1 Frame 60 
  

 
cg-PI(4,5)P2 416.9 ± 122.4 (14) 182.6 ± 34.61 (14) 0.0328* Paired t-test 

 
DMSO 30.33 ± 13.71 (5) 36.89 ± 15.11 (5) 0.6392 Paired t-test 

      
Figure 8a 488 nm channel intensity DMSO cg-PI(4,5)P2 

  

  
0.9869 ± 0.004366 (15) 1.009 ± 0.004972 (15) 0.0005*** 

Mann-Whitney 
U test 

      
Figure 8b 561 nm channel intensity DMSO cg-PI(4,5)P2 

  

  
0.9805 ± 0.002376 (5) 1.00 ± 0.005143 (6) 0.0043** 

Mann-Whitney 
U test 
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Figure Description Mean ± SEM (n) p value 
Statistical 

test 
Figure 9b Paired-pulse ratios Before After 

  
 

No flash 0.9137 ± 0.02038 (7) 0.9242 ± 0.03308 (7) 0.5345 Paired t-test 

 
Flash 0.9436 ± 0.02200 (7) 0.9452 ± 0.01421 (7) 0.9518 Paired t-test 

      
 

First amplitudes (nA) Before After 
  

 
No flash  -90.546 ± 6.651 (7)  -84.961 ± 6.497 (7) 0.0082** Paired t-test 

 
Flash  -99.034 ± 4.872 (7)  -93.720 ± 4.758 (7) 0.0643 Paired t-test 

      
  

DMSO PMA 
  

Figure 10c mEPSC amplitude (nA)  -5.622 ± 0.2002 (9)  -5.437 ± 0.222 (9) 0.3347 
Mann-Whitney 

U test 

Figure 10d mEPSC frequency (Hz) 2.296 ± 0.2076 (9) 2.489 ± 0.2067 (9) 0.5202 
Unpaired 

t-test 

Figure 10e eEPSC amplitude (nA)  -55.861 ± 8.181 (9)  -81.931 ± 6.824 (9) 0.0142* 
Mann-Whitney 

U test 

Figure 10f Quantal content 99.55 ± 14.27 (9) 152.6 ± 14.11 (9) 0.0078** 
Mann-Whitney 

U test 

Figure 10h Paired-pulse ratio 0.9004 ± 0.04298 (9) 0.7155 ± 0.07297 (9) 0.0442* 
Unpaired 

t-test 

Figure 10j y-intercept  -284.171 ± 78.881 (9)  -549.913 ± 87.024 (9) 0.0379* 
Unpaired 

t-test 

Figure 10k Slope  -78.823 ± 3.965 (9)  -72.221 ± 4.892 (9) 0.31 
Unpaired 

t-test 
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Figure Description Mean ± SEM (n) p value 
Statistical 

test 

  
before PhTx after PhTx 

  Figure 11a mEPSP frequency (Hz) 2.417 ± 0.1329 (18) 2.226 ± 0.1917 (18) 0.0435* Paired t-test 

 
mEPSP amplitude (mV) 0.8902 ± 0.03051 (18) 0.5702 ± 0.02297 (18) <0.0001*** Paired t-test 

  

after PhTx, before no 
stim after PhTx, after no stim 

  Figure 11c mEPSP frequency (Hz) 2.163 ± 0.2705 (9) 2.144 ± 0.2429 (9) 0.8962 Paired t-test 

 
mEPSP amplitude (mV) 0.5261 ± 0.03291 (9) 0.5218 ± 0.02073 (9) 0.8328 Paired t-test 

  
after PhTx, before stim after PhTx, after stim 

  Figure 11d mEPSP frequency (Hz) 2.289 ± 0.2863 (9) 1.726 ± 0.1790 (9) 0.0027** Paired t-test 

 
mEPSP amplitude (mV) 0.6144 ± 0.02594 (9) 0.5675 ± 0.04475 (9) 0.1371 Paired t-test 

      
 

Wild-type Ctrl PhTx 
  Figure 12b, 

17b mEPSP amplitude (mV) 0.8074 ± 0.03153 (8) 0.4539 ± 0.03266 (8) < 0.0001*** 
Unpaired 

t-test 

 
eEPSP amplitude (mV) 17.32 ± 2.681 (8) 15.57 ± 1.609 (8) 0.5844 

Unpaired 
t-test 

 
Quantal content 21.15 ± 2.758 (8) 34.4 ± 2.616 (8) 0.0036** 

Unpaired 
t-test 

 
unc13ANull 

    
Figure 12d mEPSP amplitude (mV) 0.9881 ± 0.06958 (9) 0.9881 ± 0.06958 (9) 0.0006*** 

Unpaired 
t-test 

 
eEPSP amplitude (mV) 3.296 ± 0.6671 (9) 1.453 ± 0.3050 (9) 0.0188* 

Mann-Whitney 
U test 

 
Quantal content 3.395 ± 0.6906 (9) 2.795 ± 0.8457 (9) 0.3799 

Mann-Whitney 
U test 
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Figure Description Mean ± SEM (n) p value 
Statistical 

test 

 
Unc13A-GFP Ctrl PhTx 

  
Figure 13b mEPSP amplitude (mV) 1.372 ± 0.09085 (12) 0.7788 ± 0.05711 (13) <0.0001*** 

Unpaired 
t-test 

 
eEPSP amplitude (mV) 21.59 ± 2.756 (12) 21.44 ± 3.101 (13) 0.9714 

Unpaired 
t-test 

 
Quantal content 16.63 ± 2.498 (12) 29.20 ± 4.383 (13) 0.0396* 

Mann-Whitney 
U test 

 
C-term-GFP 

    
Figure 13d mEPSP amplitude (mV) 1.194 ± 0.06731 (10) 0.7063 ± 0.03215 (11) <0.0001*** 

Mann-Whitney 
U test 

 
eEPSP amplitude (mV) 16.77 ± 2.326 (10) 6.800 ± 1.744 (11) 0.0028** 

Mann-Whitney 
U test 

 
Quantal content 14.77 ± 2.405 (10) 9.416 ± 2.115 (11) 0.1096 

Unpaired 
t-test 

      
 

Values 400s after PhTx Unc13A-GFP C-term-GFP 
  

Figure 14b mEPSP amplitude (mV) 0.4891 ± 0.01298 (14) 0.5129 ± 0.02204 (15) 0.7148 
Mann-Whitney 

U test 

Figure 14c mEPSP frequency (Hz) 1.016 ± 0.1134 (14) 1.128 ± 0.1244 (15) 0.5124 
Unpaired 

t-test 

Figure 14d eEPSP amplitude (mV) 14.77 ± 2.400 (14) 8.927 ± 0.9712 (15) 0.0769 
Mann-Whitney 

U test 

Figure 14e Quantal content 30.49 ± 5.068 (14) 17.65 ± 1.897 (15) 0.0292* 
Mann-Whitney 

U test 
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Figure Description Mean ± SEM (n) p value 
Statistical 

test 

 
Wild-type Ctrl PhTx 

  
Figure 15b mEPSP amplitude (mV) 1.031 ± 0.06045 (18) 0.4999 ± 0.04065 (23) <0.0001*** 

Unpaired 
t-test 

 
eEPSP amplitude (mV) 28.41 ± 2.743 (18) 22.77 ± 2.075 (23) 0.1024 

Unpaired 
t-test 

 
Quantal content 30.66 ± 4.253 (18) 54.34 ± 7.698 (23) 0.0217* 

Mann-Whitney 
U test 

 
brpNull 

    
Figure 15d mEPSP amplitude (mV) 1.381 ± 0.08217 (11) 0.5881 ± 0.03854 (11) <0.0001*** 

Mann-Whitney 
U test 

 
eEPSP amplitude (mV) 9.931 ± 1.850 (11) 8.793 ± 1.804 (11) 0.6643 

Unpaired 
t-test 

 
Quantal content 7.632 ± 1.679 (11) 15.54 ± 3.108 (11) 0.0368* 

Unpaired 
t-test 

      
  

Ctrl PhTx 
  

Figure 16b Motile 39.45 ± 7.431 (10) 66.06 ± 7.391 (9) 0.0216* 
Unpaired 

t-test 

 
Stable 60.55 ± 7.431 (10) 33.94 ± 7.391 (9) 

  
      

Figure 17b See Figure 12b 
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Figure Description Mean ± SEM (n) p value 
Statistical 

test 

 
Wild-type Ctrl PhTx 

  
Figure 17c BRP intensity 641.9 ± 45.84 (21) 940.3 ± 74.49 (23) 0.0044** 

Mann-Whitney 
U test 

 
Unc13A intensity 530.5 ± 34.74 (21) 842.7 ± 54.48 (23) 0.0002*** 

Mann-Whitney 
U test 

      

 
gluRIIANull Ctrl PhTx 

  
Figure 17e mEPSP amplitude (mV) 1.144 ± 0.06038 (10) 0.3680 ± 0.02385 (9) <0.0001*** 

Mann-Whitney 
U test 

 
eEPSP amplitude (mV) 22.17 ± 1.759 (10) 21.09 ± 1.771 (9) 0.671 

Unpaired 
t-test 

 
Quantal content 19.99 ± 2.005 (10) 60.95 ± 8.605 (9) <0.0001*** 

Mann-Whitney 
U test 

      

 
gluRIIANull Ctrl PhTx 

  
Figure 17f BRP intensity 21.51 ± 3.006 (20) 27.97 ± 1.772 (29) 0.0029** 

Mann-Whitney 
U test 

 
Unc13A intensity 17.30 ± 2.059 (20) 20.11 ± 1.654 (29) 0.291 

Unpaired 
t-test 
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Figure Description Mean ± SEM (n) p value 
Statistical 

test 
Figure 18b mEPSP amplitude (mV) 

    

 
Wild-type vs. gluRIIANull 0.940 ± 0.03 (9) 0.488 ± 0.02 (8) < 0.0001*** One way 

ANOVA with 
Tukey's multiple 
comparison test  

brpNull vs. brpNull;gluRIIANull 1.07 ± 0.04 (8) 0.497 ± 0.01 (9) < 0.0001*** 

 
gluRIIANull vs. brpNull;gluRIIANull 0.488 ± 0.02 (8) 0.497 ± 0.01 (9) 0.99 

 
eEPSP amplitude (mV) 

    

 
Wild-type vs. gluRIIANull 33.82 ± 0.75 (9) 26.67 ± 0.93 (8) < 0.0001*** One way 

ANOVA with 
Tukey's multiple 
comparison test  

brpNull vs. brpNull;gluRIIANull 25.52 ± 1.16 (8) 14.79 ± 1.16 (9) < 0.0001*** 

 
gluRIIANull vs. brpNull;gluRIIANull 26.67 ± 0.93 (8) 14.79 ± 1.16 (9) < 0.0001*** 

 
Quantal content 

    

 
Wild-type vs. gluRIIANull 36.18 ± 1.147 (9) 59.04 ± 2.81 (8) < 0.0001*** One way 

ANOVA with 
Tukey's multiple 
comparison test  

brpNull vs. brpNull;gluRIIANull 23.92 ± 1.157 (8) 29.61 ± 1.79 (9) 0.144 

 
gluRIIANull vs. brpNull;gluRIIANull 59.04 ± 2.81 (8) 29.61 ± 1.79 (9) < 0.0001*** 

Figure 18d BRP intensity 
    

 
Wild-type vs. gluRIIANull 21.51 ± 3.006 (20) 27.97 ± 1.772 (29) 0.0432* One way 

ANOVA with 
Tukey's multiple 
comparison test  

brpNull vs. brpNull;gluRIIANull 1.031 ± 0.07860 (22) 1.026 ± 0.09475 (20) > 0.9999 

 
gluRIIANull vs. brpNull;gluRIIANull 27.97 ± 1.772 (29) 1.026 ± 0.09475 (20) < 0.0001*** 

 
Unc13A intensity 

    

 
Wild-type vs. gluRIIANull 17.30 ± 2.059 (20) 20.11 ± 1.654 (29) 0.5523 One way 

ANOVA with 
Tukey's multiple 
comparison test  

brpNull vs. brpNull;gluRIIANull 11.65 ± 1.199 (22) 10.52 ± 0.6132 (20) 0.959 

 
gluRIIANull vs. brpNull;gluRIIANull 20.11 ± 1.654 (29) 10.52 ± 0.6132 (20) < 0.0001*** 
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Figure Description Mean ± SEM (n) p value 
Statistical 

test 
Figure 19b mEPSP amplitude (mV) 

    

 
Wild-type vs. gluRIIANull 0.813 ± 0.04 (15) 0.353 ± 0.01 (17) < 0.0001*** One way 

ANOVA with 
Tukey's multiple 
comparison test  

aplip1ek4 vs. aplip1ek4;gluRIIANull 0.924 ± 0.08 (18) 0.346 ± 0.02 (20) < 0.0001*** 

 
gluRIIANull vs. aplip1ek4;gluRIIANull 0.353 ± 0.01 (17) 0.346 ± 0.02 (20) 0.99 

 
eEPSP amplitude (mV) 

    

 
Wild-type vs. gluRIIANull 24.19 ± 2.321 (15) 18.28 ± 2.45 (17) 0.31 One way 

ANOVA with 
Tukey's multiple 
comparison test  

aplip1ek4 vs. aplip1ek4;gluRIIANull 22.31 ± 2.44 (18) 14.03 ± 2.040 (20) 0.05 

 
gluRIIANull vs. aplip1ek4;gluRIIANull 18.28 ± 2.45 (17) 14.03 ± 2.040 (20) 0.54 

 
Quantal content 

    

 
Wild-type vs. gluRIIANull 31.03 ± 3.41 (15) 54.32 ± 8.19 (17) 0.04* One way 

ANOVA with 
Tukey's multiple 
comparison test  

aplip1ek4 vs. aplip1ek4;gluRIIANull 26.96 ± 3.74 (18) 41.64 ± 6.22 (20) 0.026 

 
gluRIIANull vs. aplip1ek4;gluRIIANull 54.32 ± 8.19 (17) 41.64 ± 6.22 (20) 0.4 

Figure 19d BRP intensity 
    

 
Wild-type vs. gluRIIANull 716.9 ± 45.52 (33) 929.2 ± 55.15 (34) 0.04* One way 

ANOVA with 
Tukey's multiple 
comparison test  

aplip1ek4 vs. aplip1ek4;gluRIIANull 678.8 ± 55.82 (31) 770.4 ± 62.67 (37) 0.651 

 
gluRIIANull vs. aplip1ek4;gluRIIANull 929.2 ± 55.15 (34) 770.4 ± 62.67 (37) 0.17 

 
Unc13A intensity 

    

 
Wild-type vs. gluRIIANull 551.9 ± 40.71 (33) 758.7 ± 44.26 (34) 0.011* One way 

ANOVA with 
Tukey's multiple 
comparison test  

aplip1ek4 vs. aplip1ek4;gluRIIANull 610.4 ± 46.23 (31) 741.2 ± 51.86 (37) 0.1963 

 
gluRIIANull vs. aplip1ek4;gluRIIANull 758.7 ± 44.26 (34) 741.2 ± 51.86 (37) 0.9928 
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